

1

ICANN Monitoring System API (MoSAPI)

Version 2.9
2019-03-25

1. Introduction .. 4

1.1. Date and Time ... 4

1.2. Credentials .. 4

1.3. Glossary ... 4

2. Common elements used in this specification ... 6

3. Session handling .. 7

3.1. Creating a session .. 7

3.2. Closing a session .. 9

4. API method authentication ... 10

5. Specification 10 monitoring ... 11

5.1. Monitoring the state of a TLD .. 11

5.2. Monitoring the Alarm status of a Service .. 14

5.3. Monitoring the availability of a Service ... 15

5.4. Query a list of Incidents for a Service ... 16

5.5. Monitoring the state of a particular Incident ... 18

5.6. Monitoring the False Positive flag of an Incident ... 19

5.7. Querying the list of measurements for an Incident ... 21

5.8. Querying the details of a particular measurement .. 22

5.8.1. DNS/DNSSEC Monitoring error codes .. 28

5.8.2. RDDS Monitoring error codes .. 33

6. Maintenance window support .. 37

6.1. Common elements for maintenance window support 37

6.1.1. Schedule object .. 37

6.1.2. Schedule object identifier .. 37

6.2. Creating or updating a schedule for a maintenance window 38

6.3. Deleting a schedule for a maintenance window ... 39

6.4. Retrieving a schedule object for a maintenance window 40

6.5. Getting the list of maintenance windows that have not ended yet 41

7. Probe node network .. 42

8. HTTP/400 extended error codes ... 44

9. Domain Abuse Activity Reporting (DAAR) ... 46

9.1. Getting the latest DAAR report available for the TLD .. 46

9.2. Querying for a DAAR report for a date ... 48

9.3. Querying for DAAR reports available ... 49

10. Recent Measurements ... 51

10.1. Querying years for which reports are available ... 51

10.2. Querying months for which reports are available ... 52

2

10.3. Querying days for which reports are available ... 53

10.4. Querying for available measurements.. 54

10.5. Querying the details of a particular measurement .. 55

3

Document Revision History

Version
Publishing

date
Description of the change

Projected date to
implement the version
of the specification in

production

2.5 2017/11/28 First version released to the public. In production

2.6 2018/02/12

ADDITION - Default rate-limit and
expiration date values were added in
section 3.1.

In production

ADDITION - Maximum length definitions
for name and description were added in
section 6.1.1.

ADDITION - Result code 2016 (section
8) was added to the result code table.

CHANGE - Result code 2007 message
(section 8) was changed to cover the
case of equal values in the endTime
and startTime.

2.7 2018/03/06 MoSAPI released as a production
service.

In production

2.8 2018/10/02 ADDITION - UP-inconclusive-no-data
and UP-inconclusive-no-probes were
added to sections 5.1 and 5.8.

Never released to
production, replaced

with version 2.8.1

CHANGE - Error codes changed in
sections 5.8.1 and 5.8.2.

CHANGE - Editorial updates.

2.8.1 2018/11/26 CHANGE - Minor adjustments to the list
of error codes in sections 5.8.1 and
5.8.2.

Never released to
production, replaced

with version 2.8.2

2.8.2 2019/02/21 CHANGE - Error codes changed in
sections 5.8.1.

2019/02/21

2.9 2019/03/25 ADDITION - Section 9 and 10 was
added.

2019/04/30

4

1. Introduction

This document describes the REST API methods provided by ICANN to registry operators in
order to retrieve information collected by the ICANN Monitoring System API (MoSAPI).

1.1. Date and Time

All the fields that represent dates in this document must contain timestamps indicating the date
and time in Coordinated Universal Time (UTC).

1.2. Credentials

The MoSAPI uses the same username, password, and list of IP address blocks (IPv4 and/or
IPv6) as the Registry Reporting Interface (RRI). The Registry Operator manages these
credentials through the Global Domain Division (GDD) portal.

The MoSAPI supports both IPv4 and IPv6 transport.

The MoSAPI requires the use of HTTPS to provide confidentiality, server authentication, and
integrity in the communication channel.

1.3. Glossary

In the following section, the concepts used in the MoSAPI are explained:

• Service: a service that may be monitored by the MoSAPI. The potential monitored
services are: dns, rdds, epp and dnssec.

• Test Cycle: series of tests executed to verify the state of a monitored Service. For DNS,
the Service is considered to be up at a particular moment, if at least two of the delegated
name servers registered in the DNS have successful results from tests to each of their
public-DNS registered IP addresses in the root zone for the name server. For the RDDS
Services (i.e. Whois tcp/43 and web-Whois) to be considered up at a particular moment,
the Services must have successful results from tests to the randomly chosen public-DNS
registered IP address to which whois.nic.<TLD> resolves. If 51% or more of the testing
probe nodes see a monitored Service as unavailable at a given time, the Service will be
considered unavailable. For RDDS, if any of the RDDS Services (i.e. Whois tcp/43 and
web-Whois) is considered unavailable, the RDDS will be considered unavailable. The
minimum number of active testing probe nodes to consider the results of a test cycle as
valid at any given time is 20 for DNS and 10 for RDDS; otherwise the test cycle results
will be discarded and the Service will be considered up.

5

• Test: for DNS it means one non-recursive DNS query sent to a particular IP address via
UDP or TCP; if DNSSEC is offered in the queried DNS zone, for a query to be
considered answered, the signatures must be positively verified against a corresponding
DS record published in the parent zone. For RDDS it means one query sent to a
particular IP address. The answer to the query must contain the corresponding
information from the Registry System, otherwise the query will be considered
unanswered. A query with a RTT higher than X milliseconds will also be considered
unanswered. For DNS (UDP) X=2,500 ms, DNS (TCP) X=7,500 ms for RDDS X=10,000
ms.

• RTT (Round Trip Time): for DNS/UDP, the sequence of two packets, the UDP DNS
query and the corresponding UDP DNS response. For DNS/TCP, the sequence of
packets from the start of the TCP connection to its end. For Whois tcp/43, the sequence
of packets from the start of the TCP connection to its end, including the reception of the
Whois tcp/43 response. For web-Whois, the sequence of packets from the start of the
TCP connection to its end, including the reception of a HTTP response; if the Registry
Operator implements HTTP URL redirection (e.g. HTTP 302), only the last HTTP
transaction is measured.

• Emergency Threshold: downtime threshold that if reached by any of the monitored

Services may cause the TLD's Services emergency transition to an interim registry
operator. To reach an Emergency Threshold a Service must accumulate X hours of total
downtime during the last 7 days (i.e. rolling week). For DNS X=4, for RDDS X=24.

• Incident: an Incident is the collection of measurements from the moment an Alarm is
generated until the moment that the Alarm is cleared. An Incident can have 2 distinct
states:

 Active: measurements corresponding to a current downtime.
 Resolved: measurements corresponding to past downtime.

The measurements of Incidents that occurred in the last 7 days (i.e. rolling week, from:
the current date and time -7days, to: the current date and time) are considered for the
Service's Emergency Threshold calculations.

• Alarm: an Alarm signals that a Service has been detected as being down because X
consecutive test cycles with Y minutes between them failed. An Alarm is cleared when
the Service is detected as being up because X consecutive test cycles with Y minutes
between them have been successful. For DNS, X=3 and Y=1. For RDDS, X=2 and Y=5.
An alarmed Service triggers the creation of an Incident; if the Alarm is cleared then the
Incident will be marked as resolved.

• False Positive: a flag set to an Incident indicating that an Incident was found by a
manual process to be a false positive. When an Incident is marked as a False Positive
the measurements of the Incident are not used for the Emergency Threshold
calculations.

6

2. Common elements used in this specification

In the following section, common elements used in this specification are explained:

• <base_url>: the base URL of the MoSAPI is
https://mosapi.icann.org/mosapi/<version>/<tld>, for example:
https://mosapi.icann.org/mosapi/v1/example/monitoring/state

Where:

 <version> must be substituted by the version number of the specification supported

by the server. For this specification its value must be 'v1'.
 <tld> must be substituted by the TLD being queried. In case of an IDN TLD, the A-

label must be used.

• <service> must be substituted by the Service being queried. The possible values of
Service, as described in Section 1 of Specification 10, are: dns, dnssec, rdds, and epp.

https://mosapi.icann.org/mosapi/%3cversion%3e/%3ctld
https://mosapi.icann.org/mosapi/v1/example/monitoring/state

7

3. Session handling

The MoSAPI provides two endpoints for session handling, the authentication mechanism is HTTP
Basic Access Authentication as specified in RFC 2617.

Authentication credentials for the API methods are provided by ICANN per TLD. The credentials
must only be used when creating a session using the <base_url>/login API method described in
this section.

3.1. Creating a session

<base_url>/login

Possible results:

• HTTP/401, the <base_url>/login API method provides a HTTP/401 status code, sets the
HTTP header Content-type to "text/plain; charset=utf-8", and provides a text response in
the HTTP Entity-body with the string "Invalid credentials" when the authentication
credentials are invalid.

• HTTP/403, the <base_url>/login API method provides a HTTP/403 status code, sets the
HTTP header Content-type to "text/plain; charset=utf-8", and provides a text response in
the HTTP Entity-body with the string "Your IP address is not allowed to connect for this
TLD" if the credentials are valid but the connecting IP address is not whitelisted for the
specified <tld>.

• HTTP/429, the <base_url>/login API method provides a HTTP/429 status code, sets the
HTTP header Content-type to "text/plain; charset=utf-8", and provides a text response in
the HTTP Entity-body with the string "You reached the limit of login requests per minute"
for the specified <tld>.

Note: Only connections originating from IP addresses whitelisted for the <tld> counts
towards the limit. Connections originating from IP addresses not included in the whitelist
are dropped without further validation. Currently, the rate-limit allows for two login
requests every 300s per <tld>. Developers are encouraged to re-use the session to
minimize the number of login requests.

• HTTP/200, when a valid request is received, the <base_url>/login API method provides
an HTTP/200 status code, sets the HTTP header Content-type to "text/plain; charset=utf-
8", and provides a text response in the HTTP Entity-body with the string "Login
successful". The HTTP header Set-Cookie is set with the cookie attributes
"id=<sessionID>; expires=<date>; path=<base_url>; secure; httpOnly".

 The <sessionID> value is a 160-bit random value encoded in Base16.
 The <date> value is the expiration date of the session.

Example using curl (https://curl.haxx.se/) for a login request:

curl --cookie-jar cookies.txt --user user:passwd

https://mosapi.icann.org/mosapi/v1/example/login

Note: Every time the <base_url>/login API method successfully validates the credentials and
origin IP address, a new session is created. Only 4 concurrent sessions are permitted per TLD. A
session is only terminated after its expiration date (by default, the value of expiration date is 15
minutes after the session is created), by using the <base_url>/logout API method, or if the

https://mosapi.icann.org/mosapi/v1/example/login

8

session is the oldest and a new session is being created that would be above the limit of
permitted concurrent sessions.

9

3.2. Closing a session

<base_url>/logout

In order to destroy a session, the client must set the HTTP header Cookie with the value
"id=<sessionID>", where <sessionID> must be a 160-bit random value provided in the HTTP
server response of a successful "login" request. If multiple cookies are provided, the first cookie is
used for destroying the session.

Possible results:

• HTTP/401, the <base_url>/logout API method provides a HTTP/401 status code, sets the
HTTP header Content-type to "text/plain; charset=utf-8", and provides a text response in
the HTTP Entity-body with the string "Invalid session ID" when the specified <sessionID>
is invalid.

• HTTP/403, the <base_url>/logout API method provides a HTTP/403 status code, sets the
HTTP header Content-type to "text/plain; charset=utf-8", and provides a text response in
the HTTP Entity-body with the string "Your IP address is not allowed to connect for this
TLD" if the specified <sessionID> is valid but the connecting IP address is not whitelisted
for the specified <tld>.

• HTTP/200, when a valid request is received, the <base_url>/logout API method provides
a HTTP/200 status code, sets the HTTP header Content-type to "text/plain; charset=utf-
8", and provides a text response in the HTTP Entity-body with the string "Logout
successful". The HTTP header Set-Cookie is set with the values "id=; expires=<date>;
path=<base_url>; secure; httpOnly".

 The <date> value is set to the Unix epoch date and time.
 The <version> value must be 'v1'.
 The <tld> value is the TLD being queried.

Example using CURL for a logout request:

curl --cookie cookies.txt https://mosapi.icann.org/mosapi/v1/example/logout

https://mosapi.icann.org/mosapi/v1/example/logout

10

4. API method authentication

When sending a request to the MoSAPI, the client must set the HTTP header Cookie with the
value "id=<sessionID>", where <sessionID> must be the 160-bit random value provided in the
last HTTP server response of a successful "login" request. If multiple cookies are provided, the
first cookie is used for validating the session.

The following responses may be provided by the API by the methods shown below:

• HTTP/401, the API method provides a HTTP/401 status code, sets the HTTP header
Content-type to "text/plain; charset=utf-8", and provides a text response in the HTTP
Entity-body with the string "Invalid session ID" when the specified <sessionID> is invalid.

• HTTP/403, the API method provides a HTTP/403 status code, sets the HTTP header
Content-type to "text/plain; charset=utf-8", and provides a text response in the HTTP
Entity-body with the string "Your IP address is not allowed to connect for this TLD" if the
specified <sessionID> is valid but the connecting IP address is not whitelisted for the
specified <tld>.

11

5. Specification 10 monitoring

Registries may access the monitoring information collected by the SLA Monitoring system using
the GET HTTP verb in the MoSAPI methods described below. The monitoring information will be
refreshed at least every 2 minutes.

5.1. Monitoring the state of a TLD

<base_url>/monitoring/state

Possible results:

• HTTP/200, when a valid request is received, the <base_url>/monitoring/state API method
provides a HTTP/200 status code and sets the HTTP header Content-type to
"application/json; charset=utf-8".

If a valid request is received, a JSON object with the fields listed below is provided in the
HTTP Entity-body:

• "version", a JSON number that contains the version number of the JSON object
intended for future upgrades of the specification; for this version the value will
always be "1".

• "tld", a JSON string that contains the monitored TLD.

• "status", a JSON string that contains the status of the TLD as seen from the
monitoring system. The "status" field may contain one of the following values:

 Up: all of the monitored Services are up.
 Down: one or more of the monitored Services are down.
 Up-inconclusive: the SLA monitoring system is under maintenance, therefore

all the monitored Services of the TLD are considered to be up by default.
Note: if the status is "Up-inconclusive", all Services in the "testedServices"
array will have the status with a value of "disabled".

• "lastUpdateApiDatabase", a JSON number that contains the Unix time stamp of
the date and time that the monitoring information provided in the MoSAPI was
last updated from the monitoring system central database.

• "testedServices", a JSON array that contains detailed information for each
potential monitored service (i.e. DNS, RDDS, EPP, DNSSEC). Each <service>
object contains the following fields:

o "status", a JSON string that contains the status of the Service as seen from

the monitoring system. The "status" field can contain one of the following
values:

 Up: the monitored Service is up.
 Down: the monitored Service is down.
 Disabled: the Service is not being monitored.
 UP-inconclusive-no-data: indicates that there are enough probe nodes

online, but not enough raw data points were received to make a
determination.

 UP-inconclusive-no-probes: indicates that there are not enough probe
nodes online to make a determination.

12

o "emergencyThreshold", a JSON number that contains the current percentage
of the Emergency Threshold of the Service. Note: the value "0" specifies that
the are no Incidents affecting the Emergency Threshold of the Service.

o "incidents", a JSON array that contains "incident" objects. The "incident"

object contains:

- "incidentID", a JSON string that contains the Incident identifier (i.e.
<incidentID>). The Incident identifier (i.e. <incidentID>) is a
concatenation of the Unix time stamp of the start date and time of the
Incident, followed by a full stop (".", ASCII value 0x002E), followed by the
monitoring system identifier.

- "startTime", a JSON number that contains the Unix time stamp of the

start date and time of the Incident.

- "falsePositive", a JSON boolean value that contains true or false with the

False Positive status of the Incident.

- "state", a JSON string that contains the current state (i.e. Active or

Resolved) of the Incident.

- "endTime", a JSON number that contains the Unix time stamp of the end

date and time of the Incident; if the Incident state is active the "endTime"
field will contain a null value.

Example using CURL to request the state of a TLD:

curl --cookie cookies.txt https://mosapi.icann.org/mosapi/v1/example/monitoring/state

https://mosapi.icann.org/mosapi/v1/example/monitoring/state

13

Example of a JSON response for a TLD state request:

{

 "tld": "example",

 "lastUpdateApiDatabase": 1496923082,

 "status": "Down",

 "testedServices": {

 "DNS": {

 "status": "Down",

 "emergencyThreshold": "10.0000",

 "incidents": [{

 "incidentID": "1495811850.1700",

 "endTime": null,

 "startTime": "1495811850",

 "falsePositive": false,

 "state": "Active"

 }]

 },

 "DNSSEC": {

 "status": "Down",

 "emergencyThreshold": "10.0000",

 "incidents": [{

 "incidentID": "1495811790.1694",

 "endTime": null,

 "startTime": "1495811790",

 "falsePositive": false,

 "state": "Active"

 }]

 },

 "EPP": {

 "status": "Disabled"

 },

 "RDDS": {

 "status": "Disabled"

 }

 },

 "version": 1

}

14

5.2. Monitoring the Alarm status of a Service

<base_url>/monitoring/<service>/alarmed

Possible results:

• HTTP/404, the <base_url>/monitoring/<service>/alarmed API method provides a
HTTP/404 status code, sets the HTTP header Content-type to "text/plain; charset=utf-8",
and provides a text response in the HTTP Entity-body with the string "Not available" if the
specified <service> is not being monitored.

• HTTP/200, when a valid request is received, the
<base_url>/monitoring/<service>/alarmed API method provides a HTTP/200 status code
and sets the HTTP header Content-type to "application/json; charset=utf-8".

If a valid request is received, a JSON object with the fields listed below is provided in the
HTTP Entity-body:

• "version", a JSON number that contains the version number of the JSON object
intended for future upgrades of the specification; for this version the value will
always be "1".

• "lastUpdateApiDatabase", a JSON number that contains the Unix time stamp of
the date and time that the monitoring information provided in the MoSAPI was
last updated from the monitoring system central database.

• "alarmed", a JSON string that contains one of the following values:

 Yes: an Alarm exists for the Service.
 No: an Alarm does not exist for the Service.
 Disabled: the Service is not being monitored.

Example using CURL to request the Alarm status of a Service:

curl --cookie cookies.txt

https://mosapi.icann.org/mosapi/v1/example/monitoring/dns/alarmed

Example of a JSON response for a Service in Alarm status:

{

 "version": 1,

 "lastUpdateApiDatabase": 1422492450,

 "alarmed": "Yes"

}

https://mosapi.icann.org/mosapi/v1/example/monitoring/dns/alarmed

15

5.3. Monitoring the availability of a Service

<base_url>/monitoring/<service>/downtime

Possible results:

• HTTP/404, the <base_url>/monitoring/<service>/downtime API method provides a
HTTP/404 status code, sets the HTTP header Content-type to "text/plain; charset=utf-8",
and provides a text response in the HTTP Entity-body with the string "Not available" if the
specified <service> is not being monitored.

• HTTP/200, when a valid request is received, the
<base_url>/monitoring/<service>/downtime API method provides a HTTP/200 status
code and sets the HTTP header Content-type to "application/json; charset=utf-8".
If a valid request is received, a JSON object with the fields listed below is provided in the
HTTP Entity-body:

• "version", a JSON number that contains the version number of the JSON object
intended for future upgrades of the specification; for this version the value will
always be "1".

• "lastUpdateApiDatabase", a JSON number that contains the Unix time stamp of
the date and time that the monitoring information provided in the MoSAPI was
last updated from the monitoring system central database.

• "downtime", a JSON number that contains the number of minutes of downtime of
the Service during a rolling week period.

Example using CURL to request the availability of a Service:

curl --cookie cookies.txt

https://mosapi.icann.org/mosapi/v1/example/monitoring/dns/downtime

Example of a JSON response for a Service availability request:

{

 "version": 1,

 "lastUpdateApiDatabase": 1422492450,

 "downtime": 935

}

https://mosapi.icann.org/mosapi/v1/example/monitoring/dns/downtime

16

5.4. Query a list of Incidents for a Service

<base_url>/monitoring/<service>/incidents?startDate=<startDate>&endD

ate=<endDate>&falsePositive=<falsePositive>

Where:

• Optional <startDate> to be substituted by the Unix time stamp of the 'after' date and time
to filter by. The filter will match Incidents that started after the provided date and time.

• Optional <endDate> to be substituted by the Unix time stamp of the 'before' date and
time to filter by. The filter will match Incidents that started before the provided date and
time.

• Optional <falsePositive> to be substituted by true or false in order to filter the Incidents
marked as False Positive. If its value equals true, only Incidents marked as False Positive
will be returned. If its value equals false, only Incidents not marked as False Positive will
be returned. If <falsePositive> is not defined, all Incidents will be returned.

Note: The <base_url>/monitoring/<service>/incidents supports a maximum of 31 days difference
between <startDate> and <endDate>. If only <startDate> is provided, the API method will return
results that are within 31 days after the date and time provided. If only <endDate> is provided, the
API method will return results that are within 31 days before the date and time provided. If neither
<startDate> nor <endDate> are provided, the API method will return results that are within 31
days before the current date and time. If <endDate> is in the future, the value of <endDate> will
be the current date and time.

Possible results:

• HTTP/400, see section 8.

• HTTP/404, the <base_url>/monitoring/<service>/incidents API method provides a
HTTP/404 status code, sets the HTTP header Content-type to "text/plain; charset=utf-8",
and provides a text response in the HTTP Entity-body with the string "Not available" if the
specified <service> is not being monitored.

• HTTP/200, when a valid request is received, the
<base_url>/monitoring/<service>/incidents API method provides a HTTP/200 status code
and sets the HTTP header Content-type to "application/json; charset=utf-8".

If a valid request is received, a JSON object with the fields listed below is provided in the
HTTP Entity-body:

• "version", a JSON number that contains the version number of the JSON object
intended for future upgrades of the specification; for this version the value will
always be "1".

• "lastUpdateApiDatabase", a JSON number that contains the Unix time stamp of
the date and time that the monitoring information provided in the MoSAPI was
last updated from the monitoring system central database.

• "incidents", JSON array, see definition in section 5.1.

17

Example using CURL to request a list of Incidents of a Service:

curl --cookie cookies.txt

https://mosapi.icann.org/mosapi/v1/example/monitoring/dns/incidents?startDate=14224924

00&endDate=1422493000

Example of a JSON response showing a list of Incidents:

{

 "version": 1,

 "lastUpdateApiDatabase": 1422492450,

 "incidents": [

 {

 "incidentID": "1422492450.699",

 "startTime": 1422492450,

 "falsePositive": false,

 "state": "Active",

 "endTime": null

 },

 {

 "incidentID": "1422492850.3434",

 "startTime": 1422492850,

 "falsePositive": true,

 "state": "Resolved",

 "endTime": 1422492950

 }

]

}

https://mosapi.icann.org/mosapi/v1/example/monitoring/dns/incidents?startDate=1422492400&endDate=1422493000
https://mosapi.icann.org/mosapi/v1/example/monitoring/dns/incidents?startDate=1422492400&endDate=1422493000

18

5.5. Monitoring the state of a particular Incident

<base_url>/monitoring/<service>/incidents/<incidentID>/state

Where:

• <incidentID> must be substituted by the Incident id assigned by the monitoring system.

Possible results:

• HTTP/404, the <base_url>/monitoring/<service>/incidents/<incidentID>/state API method
provides a HTTP/404 status code, sets the HTTP header Content-type to "text/plain;
charset=utf-8", and provides a text response in the HTTP Entity-body with the string "Not
available" if the specified <incidentID> does not exist or if the specified <service> is not
being monitored.

• HTTP/200, when a valid request is received, the
<base_url>/monitoring/<service>/incidents/<incidentID>/state API method provides a
HTTP/200 status code and sets the HTTP header Content-type to "application/json;
charset=utf-8".

If a valid request is received, a JSON object with the fields listed below is provided in the
HTTP Entity-body:

• "version", a JSON number that contains the version number of the JSON object
intended for future upgrades of the specification; for this version the value will
always be "1".

• "lastUpdateApiDatabase", a JSON number that contains the Unix time stamp of
the date and time that the monitoring information provided in the MoSAPI was
last updated from the monitoring system central database.

• "incidents", JSON array, see definition in section 5.1.

Example using CURL to request the state of an Incident:

curl --cookie cookies.txt

https://mosapi.icann.org/mosapi/v1/example/monitoring/dns/incidents/1422492450.699/sta

te

Example of a JSON response for an Incident state request:

{

 "version": 1,

 "lastUpdateApiDatabase": 1422492450,

 "incidents": [

 {

 "incidentID": "1422492450.699",

 "startTime": 1422492450,

 "falsePositive": false,

 "state": "Active",

 "endTime": null

 }

]

}

https://mosapi.icann.org/mosapi/v1/example/monitoring/dns/incidents/1422492450.699/state
https://mosapi.icann.org/mosapi/v1/example/monitoring/dns/incidents/1422492450.699/state

19

5.6. Monitoring the False Positive flag of an Incident

<base_url>/monitoring/<service>/incidents/<incidentID>/falsePositive

Where:

• <incidentID> must be substituted by the Incident id assigned by the monitoring system.

Possible results:

• HTTP/404, the <base_url>/monitoring/<service>/incidents/<incidentID>/falsePositive API
method provides a HTTP/404 status code, sets the HTTP header Content-type to
"text/plain; charset=utf-8", and provides a text response in the HTTP Entity-body with the
string "Not available" if the specified <incidentID> does not exist or if the specified
<service> is not being monitored.

• HTTP/200, when a valid request is received, the
<base_url>/monitoring/<service>/incidents/<incidentID>/falsePositive API method
provides a HTTP/200 status code and sets the HTTP header Content-type to
"application/json; charset=utf-8".

If a valid request is received, a JSON object with the fields listed below is provided in the
HTTP Entity-body:

• "version", a JSON number that contains the version number of the JSON object
intended for future upgrades of the specification; for this version the value will
always be "1".

• "lastUpdateApiDatabase", a JSON number that contains the Unix time stamp of
the date and time that the monitoring information provided in the MoSAPI was
last updated from the monitoring system central database.

• "falsePositive", a JSON boolean value that contains true or false with the False
Positive status of the Incident. The default value is false.

• "updateTime", a JSON number that contains the Unix time stamp of the date and
time the False Positive status was updated; if the False Positive status has never
been updated the "updateTime" field will contain a null value.

Example using CURL to request the False Positive flag of an Incident:

curl --cookie cookies.txt

https://mosapi.icann.org/mosapi/v1/example/monitoring/dns/incidents/1422492930.699/fal

sePositive

Example of a JSON response for an Incident flagged as False Positive:

{

 "version": 1,

 "lastUpdateApiDatabase": 1422492450,

 "falsePositive": true,

 "updateTime": 1422494780

}

https://mosapi.icann.org/mosapi/v1/example/monitoring/dns/incidents/1422492930.699/falsePositive
https://mosapi.icann.org/mosapi/v1/example/monitoring/dns/incidents/1422492930.699/falsePositive

20

Note: The False Positive flag is the only thing that may change after an Incident is resolved. The
user MAY be notified if an Incident is marked as a false positive by an offline mechanism.

21

5.7. Querying the list of measurements for an Incident

<base_url>/monitoring/<service>/incidents/<incidentID>

Where:

• <incidentID> must be substituted by the Incident id assigned by the monitoring system.

Possible results:

• HTTP/404, the <base_url>/monitoring/<service>/incidents/<incidentID> API method
provides a HTTP/404 status code, sets the HTTP header Content-type to "text/plain;
charset=utf-8", and provides a text response in the HTTP Entity-body with the string "Not
available" if the specified <incidentID> does not exist or if the specified <service> is not
being monitored.

• HTTP/200, when a valid request is received, the
<base_url>/monitoring/<service>/incidents/<incidentID> API method provides a
HTTP/200 status code and sets the HTTP header Content-type to "application/json;
charset=utf-8".

If a valid request is received, a JSON object with the fields listed below is provided in the
HTTP Entity-body:

• "version", a JSON number that contains the version number of the JSON object
intended for future upgrades of the specification; for this version the value will
always be "1".

• "lastUpdateApiDatabase", a JSON number that contains the Unix time stamp of
the date and time that the monitoring information provided in the MoSAPI was
last updated from the monitoring system central database.

• "measurements", a JSON array that contains a list of <measurementID> values
assigned by the monitoring system. A <measurementID> is a concatenation of
the Unix time stamp of the date and time when the measurement was computed,
followed by a full stop (".", ASCII value 0x002E), followed by a random value,
followed by a full stop (".", ASCII value 0x002E), followed by the string "json"
(ASCII value, 0x006A + 0x0073 + 0x006F + 0x006E).

Example using CURL to request the list of measurements of an Incident:

curl --cookie cookies.txt

https://mosapi.icann.org/mosapi/v1/example/monitoring/dns/incidents/1422492930.699

Example of a JSON response showing a list of measurements identifiers:

{

 "version": 1,

 "lastUpdateApiDatabase": 1422492450,

 "measurements": [

 "1422492930.699.json",

 "1422492990.699.json",

 "1422493050.699.json",

 "1422493110.699.json"

]

}

https://mosapi.icann.org/mosapi/v1/example/monitoring/dns/incidents/1422492930.699

22

5.8. Querying the details of a particular measurement

<base_url>/monitoring/<service>/incidents/<incidentID>/<measurementI

D>

Where:

• <incidentID> must be substituted by the Incident id assigned by the monitoring system.

• <measurementID> must be substituted by the measurement id assigned by the
monitoring system.

Possible results:

• HTTP/404, the
<base_url>/monitoring/<service>/incidents/<incidentID>/<measurementID> API method
provides a HTTP/404 status code, sets the HTTP header Content-type to "text/plain;
charset=utf-8", and provides a text response in the HTTP Entity-body with the string "Not
available" if the specified <incidentID> does not exist, the specified <measurementID>
does not exist or if the specified <service> is not being monitored.

• HTTP/200, when a valid request is received, the
<base_url>/monitoring/<service>/incidents/<incidentID>/<measurementID> API method
provides a HTTP/200 status code and sets the HTTP header Content-type to
"application/json; charset=utf-8".
If a valid request is received, a JSON object with the fields listed below is provided in the
HTTP Entity-body:

• "version", a JSON number that contains the version number of the JSON object
intended for future upgrades of the specification; for this version the value will always
be "1".

• "lastUpdateApiDatabase", a JSON number that contains the Unix time stamp of the
date and time that the monitoring information provided in the MoSAPI was last
updated from the monitoring system central database.

• "tld", a JSON string that contains the monitored TLD.

• "service", a JSON string that contains the Service being queried. The possible values
of Service, as described in Section 1 of Specification 10, are: dns, dnssec, rdds, and
epp.

• "cycleCalculationDateTime", a JSON number that contains the date and time the test
cycle results were computed.

• "status", a JSON string that contains the status of the Service after computing the
test cycle results. The "status" field can contain one of the following values:

o Up: the monitored Service is up.
o Down: the monitored Service is down.
o UP-inconclusive-no-data: indicates that there are enough probe nodes online, but

not enough raw data points were received to make a determination.
o UP-inconclusive-no-probes: indicates that there are not enough probe nodes

online to make a determination.

23

• "testedInterface", a JSON array that contains information about the interface being
tested. The "testedInterface" fields contains the following fields:

o "interface", a JSON string that contains the tested interface.

o "probes", a JSON array that contains detailed monitoring information per probe
node. The "probes" field contains the following fields:

▪ "city", a JSON string with the location the location of the probe node.

▪ "status", a JSON string that contains the status of the interface as seen from

the probe node. The "status" field can contain one of the following values:

 Up: the monitored Service is up.
 Down: the monitored Service is down.
 Offline: the probe node is offline. Note: the probe node is not considered

part of the probe node universe when calculating the rolling week
thresholds.

 No result: results from this probe node were not received by the central
server when the calculations were executed. Note: the service is
considered to be up for rolling week threshold calculations.

▪ "testData", a JSON array that contains monitoring information. The "testData"

field contains the following fields:

+ "target", a JSON string that in the case of the DNS Service contains the
name server being tested, in the case of RDDS, this field contains "null".

+ "status", a JSON string that in the case of the DNS Service contains the

status of the name server being tested. In the case of RDDS this field
contains the status of the IP address being tested (available in the
"metrics" element, see below). The "status" field contains the following
fields:

 Up: the test was considered successful.
 Down: the test was not considered successful.

+ A "metrics", a JSON array with monitoring details of particular tests. The

"metrics" field contains the following fields:

- "testDateTime", a JSON number that contains the date and time the
result was computed. If the "result" field contains "no data", the
"testDateTime" field will contain a null value.

- "targetIP", a JSON string with the IP Address being tested.

- "rtt", a JSON number that contains the milliseconds needed for the

query to be resolved. If the "result" field contains an error code or "no
data", the "rtt" field will contain a null value.

- "result", a JSON string that contains the value "ok" if the query

response was valid, "no data" if no data was received from the probe
node, or an error code if the result is not valid. The information
regarding the error codes may be found in section 5.8.1 and 5.8.2.

24

Note: in case of "no data" the query response is assumed to be valid
for rolling week threshold calculations

Note: the JSON object for the measurement details provides the status of the test cycle
computed from the results of all probe nodes.

Example using CURL to request the details of a measurement:

curl --cookie cookies.txt

https://mosapi.icann.org/mosapi/v1/example/monitoring/dns/incidents/1422734490.699/142

2734490.699.json

Example of JSON response for a DNS Service measurement details request:

{

 "version": 1,

 "lastUpdateApiDatabase": 1422492450,

 "tld": "example",

 "service": "dns",

 "cycleCalculationDateTime": 1422734490,

 "status": "Up",

 "testedInterface": [

 {

 "interface": "DNS",

 "probes": [

 {

 "city": "WashingtonDC",

 "status": "Down",

 "testData": [

 {

 "target": "ns1.nic.example",

 "status": "Down",

 "metrics": [

 {

 "testDateTime": 1422734513,

 "targetIP": "2001:DB8::1",

 "rtt": null,

 "result": "-204"

 },

 {

 "testDateTime": 1422734513,

 "targetIP": "192.0.2.1",

 "rtt": null,

 "result": "-204"

 }

]

 },

 {

 "target": "ns2.nic.example",

 "status": "Down",

 "metrics": [

 {

 "testDateTime": 1422734513,

 "targetIP": "2001:DB8::2",

 "rtt": null,

 "result": "-204"

 },

 {

 "testDateTime": 1422734513,

 "targetIP": "192.0.2.2",

 "rtt": null,

 "result": "-204"

 }

]

 }

]

 },

 {

https://mosapi.icann.org/mosapi/v1/example/monitoring/dns/incidents/1422734490.699/1422734490.699.json
https://mosapi.icann.org/mosapi/v1/example/monitoring/dns/incidents/1422734490.699/1422734490.699.json

25

 "city": "Sydney",

 "status": "Up",

 "testData": [

 {

 "target": "ns1.nic.example",

 "status": "Up",

 "metrics": [

 {

 "testDateTime": 1422734508,

 "targetIP": "192.0.2.1",

 "rtt": 5,

 "result": "ok"

 }

]

 },

 {

 "target": "ns2.nic.example",

 "status": "Up",

 "metrics": [

 {

 "testDateTime": null,

 "targetIP": "192.0.2.2",

 "rtt": null,

 "result": "no data"

 }

]

 }

]

 },

 {

 "city": "Los Angeles",

 "status": "Offline",

 "testData":[]

 },

 {

 "city": "Sao Paolo",

 "status": "No result",

 "testData": []

 }

]

 }

]

}

26

Example of JSON response for a RDDS Service measurement details request:

{

 "version": 1,

 "lastUpdateApiDatabase": 1422492450,

 "tld": "example",

 "service": "rdds",

 "cycleCalculationDateTime": 1422734490,

 "status": "Down",

 "testedInterface": [

 {

 "interface": "RDDS43",

 "probes": [

 {

 "city": "WashingtonDC",

 "status": "Down",

 "testData": [

 {

 "target": null,

 "status": "Down",

 "metrics": [

 {

 "testDateTime": 1422734513,

 "targetIP": "2001:DB8::1",

 "rtt": null,

 "result": "-200"

 }

]

 }

]

 },

 {

 "city": "Sydney",

 "status": "Up",

 "testData": [

 {

 "target": null,

 "status": "Up",

 "metrics": [

 {

 "testDateTime": 1422734508,

 "targetIP": "192.0.2.1",

 "rtt": 250,

 "result": "ok"

 }

]

 }

]

 }

]

 },

 {

 "interface": "RDDS80",

 "probes": [

 {

 "city": "WashingtonDC",

 "status": "Down",

 "testData": [

 {

 "target": null,

 "status": "Down",

 "metrics": [

 {

 "testDateTime": 1422734513,

 "targetIP": "192.0.2.1",

 "rtt": null,

 "result": "-200"

 }

]

 }

27

]

 },

 {

 "city": "Sydney",

 "status": "Down",

 "testData": [

 {

 "target": null,

 "status": "Down",

 "metrics": [

 {

 "testDateTime": 1422734508,

 "targetIP": "192.0.2.1",

 "rtt": null,

 "result": "-200"

 }

]

 }

]

 }

]

 }

]

}

28

5.8.1. DNS/DNSSEC Monitoring error codes

The following table lists the error codes for DNS/DNSSEC monitoring:

Result
Code Obsolete

Internal
Error Interface Description

-1 N Y
DNS UDP /
DNS TCP Internal error.

-2 N Y DNS UDP
Expecting NOERROR RCODE but got unexpected
RCODE from local resolver.

-3 N Y DNS TCP
Expecting NOERROR RCODE but got unexpected
RCODE from local resolver.

-200 N N DNS UDP No reply from the authoritative name server.

-201 Y N
DNS UDP /
DNS TCP Invalid reply from Name Server.

-204 Y N
DNS UDP /
DNS TCP DNSSEC error.

-206 Y N
DNS UDP /
DNS TCP Keyset is not valid.

-207 N N DNS UDP
Expecting DNS class IN but got class CHAOS in the
DNS response.

-208 N N DNS UDP
Expecting DNS class IN but got class HESIOD in
the DNS response.

-209 N N DNS UDP

Expecting DNS class IN but got something
different from class IN, CHAOS or HESIOD in the
DNS response.

-210 N N DNS UDP Header section incomplete in the DNS response.

-211 N N DNS UDP
Question section incomplete in the DNS
response.

-212 N N DNS UDP Answer section incomplete in the DNS response.

-213 N N DNS UDP
Authority section incomplete in the DNS
response.

-214 N N DNS UDP
Additional section incomplete in the DNS
response.

-215 N N DNS UDP Malformed DNS response.

-250 N N DNS UDP
Querying for a non-existent domain - the AA flag
is off (was expecting on) in the DNS response.

-251 N N DNS UDP

Querying for a non-existent domain - Domain
name being queried not present in question
section of the DNS response.

29

-253 N N DNS UDP

Querying for a non-existent domain - Expecting
NXDOMAIN/NOERROR RCODE but got FORMERR
on the DNS response.

-254 N N DNS UDP

Querying for a non-existent domain - Expecting
NXDOMAIN/NOERROR RCODE but got SERVFAIL
on the DNS response.

-255 N N DNS UDP

Querying for a non-existent domain - Expecting
NXDOMAIN/NOERROR RCODE but got NOTIMP
on the DNS response.

-256 N N DNS UDP

Querying for a non-existent domain - Expecting
NXDOMAIN/NOERROR RCODE but got REFUSED
on the DNS response.

-257 N N DNS UDP

Querying for a non-existent domain - Expecting
NXDOMAIN/NOERROR RCODE but got
YXDOMAIN on the DNS response.

-258 N N DNS UDP

Querying for a non-existent domain - Expecting
NXDOMAIN/NOERROR RCODE but got YXRRSET
on the DNS response.

-259 N N DNS UDP

Querying for a non-existent domain - Expecting
NXDOMAIN/NOERROR RCODE but got NXRRSET
on the DNS response.

-260 N N DNS UDP

Querying for a non-existent domain - Expecting
NXDOMAIN/NOERROR RCODE but got NOTAUTH
on the DNS response.

-261 N N DNS UDP

Querying for a non-existent domain - Expecting
NXDOMAIN/NOERROR RCODE but got NOTZONE
on the DNS response.

-270 N N DNS UDP

Querying for a non-existent domain - Expecting
NXDOMAIN/NOERROR RCODE but got
unexpected (i.e. 11-15) on the DNS response.

-400 N N DNS UDP

Timeout when waiting for a response from the
TLD authoritative servers as reported by the local
DNS resolver.

-401 N N DNS UDP
The TLD is configured as DNSSEC-enabled, but no
DNSKEY was found in the apex.

-402 N N DNS UDP
DNSSEC error in the chain of trust from the root
to the TLD apex.

-403 N N DNS UDP The TLD was not found in the root.

-405 N N DNS UDP
Unknown cryptographic algorithm found in a
DNSSEC signature.

-406 N N DNS UDP
Unsupported cryptographic algorithm found in a
DNSSEC signature.

-407 N N DNS UDP
No RRSIGs were found, and the TLD is expected
to be signed.

30

-408 N N DNS UDP

Querying for a non-existent domain - No
NSEC/NSEC3 RRs were found in the authority
section.

-410 N N DNS UDP No signature covering the RRSET was found.

-414 N N DNS UDP
An RRSIG was found and it is not signed by a
DNSKEY from the KEYSET.

-415 N N DNS UDP Bogus DNSSEC signature was found.

-416 N N DNS UDP An expired DNSSEC signature was found.

-417 N N DNS UDP
A DNSSEC signature with an inception date in the
future was found.

-418 N N DNS UDP
A DNSSEC signature with expiration date earlier
than inception date was found.

-422 N N DNS UDP

A resource record (RR) not covered by the given
NSEC/NSEC3 RRs was found. Note: the condition
is only evaluated if RCODE=NXDOMAIN.

-425 N N DNS UDP
Malformed RRSIG with too few RDATA fields was
found.

-427 N N DNS UDP Malformed DNSSEC response.

-600 N N DNS TCP
Connection to the name server was successful,
but the connection timed out.

-601 N N DNS TCP
Error when opening a connection to the name
server.

-607 N N DNS TCP
Expecting DNS class IN but got CHAOS in the DNS
response.

-608 N N DNS TCP
Expecting DNS class IN but got HESIOD in the
DNS response.

-609 N N DNS TCP

Expecting DNS class IN but got something
different from [IN, CHAOS or HESIOD] in the DNS
response.

-610 N N DNS TCP Header section incomplete in the DNS response.

-611 N N DNS TCP
Question section incomplete in the DNS
response.

-612 N N DNS TCP Answer section incomplete in the DNS response.

-613 N N DNS TCP
Authority section incomplete in the DNS
response.

-614 N N DNS TCP
Additional section incomplete in the DNS
response.

-615 N N DNS TCP Malformed DNS response.

-650 N N DNS TCP
Querying for a non-existent domain - the AA flag
is off (expecting on) in the DNS response.

31

-651 N N DNS TCP

Querying for a non-existent domain - Domain
name being queried not present in question
section of the DNS response.

-653 N N DNS TCP

Querying for a non-existent domain - Expecting
NXDOMAIN/NOERROR RCODE but got FORMERR
on the DNS response.

-654 N N DNS TCP

Querying for a non-existent domain - Expecting
NXDOMAIN/NOERROR RCODE but got SERVFAIL
on the DNS response.

-655 N N DNS TCP

Querying for a non-existent domain - Expecting
NXDOMAIN/NOERROR RCODE but got NOTIMP
on the DNS response.

-656 N N DNS TCP

Querying for a non-existent domain - Expecting
NXDOMAIN/NOERROR RCODE but got REFUSED
on the DNS response.

-657 N N DNS TCP

Querying for a non-existent domain - Expecting
NXDOMAIN/NOERROR RCODE but got
YXDOMAIN on the DNS response.

-658 N N DNS TCP

Querying for a non-existent domain - Expecting
NXDOMAIN/NOERROR RCODE but got YXRRSET
on the DNS response.

-659 N N DNS TCP

Querying for a non-existent domain - Expecting
NXDOMAIN/NOERROR RCODE but got NXRRSET
on the DNS response.

-660 N N DNS TCP

Querying for a non-existent domain - Expecting
NXDOMAIN/NOERROR RCODE but got NOTAUTH
on the DNS response.

-661 N N DNS TCP

Querying for a non-existent domain - Expecting
NXDOMAIN/NOERROR RCODE but got NOTZONE
on the DNS response.

-670 N N DNS TCP

Querying for a non-existent domain - Expecting
NXDOMAIN/NOERROR RCODE but got
unexpected (i.e. 11-15) on the DNS response.

-800 N N DNS TCP

Timeout when waiting for a response from the
TLD authoritative servers as reported by the local
DNS resolver.

-801 N N DNS TCP
The TLD is configured as DNSSEC-enabled, but no
DNSKEY was found in the apex.

-802 N N DNS TCP
DNSSEC error in the chain of trust from the root
zone to the TLD apex.

-803 N N DNS TCP The TLD was not found in the root.

-805 N N DNS TCP
Unknown cryptographic algorithm found in a
DNSSEC signature.

-806 N N DNS TCP
Unsupported cryptographic algorithm found in a
DNSSEC signature.

32

-807 N N DNS TCP
No RRSIGs where found, and the TLD is expected
to be signed.

-808 N N DNS TCP

Querying for a non-existent domain - No
NSEC/NSEC3 RRs were found in the authority
section

-810 N N DNS TCP No signature covering the RRSET was found.

-814 N N DNS TCP
An RRSIG was found and it is not signed by a
DNSKEY from the KEYSET.

-815 N N DNS TCP Bogus DNSSEC signature was found.

-816 N N DNS TCP An expired DNSSEC signature was found.

-817 N N DNS TCP
A DNSSEC signature with an inception date in the
future was found.

-818 N N DNS TCP
A DNSSEC signature with expiration date earlier
than inception date was found.

-822 N N DNS TCP

A RR not covered by the given NSEC/NSEC3 RRs
was found. Note: the condition is only evaluated
if RCODE=NXDOMAIN.

-825 N N DNS TCP
Malformed RRSIG with too few RDATA fields was
found.

-827 N N DNS TCP Malformed DNSSEC response.

Note: error codes marked as Obsolete are listed for documentation purposes.

Note: a test with an error code marked as Internal Error will be considered to be UP.

33

5.8.2. RDDS Monitoring error codes

The following table lists the error codes for RDDS monitoring:

Result
Code Obsolete

Internal
Error Interface Description

-1 N Y

Whois-43
/ Web-
whois Internal Error

-2 N Y

Whois-43
/ Web-
whois

RDDS service could not be tested due to lack of
IPv4/6 transport in the probe node.

-3 N Y Whois-43

Expecting NOERROR RCODE but got unexpected
code when resolving the WHOIS-43 hostname
using the local DNS resolver.

-4 N Y
Web-
whois

Expecting NOERROR RCODE but got unexpected
code when resolving web-whois hostname using
the local DNS resolver.

-200 Y N Whois-43
Connection timed out while trying to get a
response from the server.

-201 N N Whois-43 Syntax error while parsing the WHOIS-43 response.

-204 Y N
Web-
whois

Connection timed out while trying to get a
response from the server.

-205 Y N

Whois-43
/ Web-
whois

Error when trying to resolve the Whois server
hostname (e.g. whois.nic.example).

-206 N N
Web-
whois

An HTTP status code was not found in the HTTP
message.

-207 Y N
Web-
whois

No HTTP/200 status code in response (after
following redirects).

-222 N N Whois-43

Timeout when waiting for a response from the TLD
authoritative servers as reported by the local DNS
resolver.

-224 N N Whois-43
DNSSEC error when trying to resolve the hostname
for the WHOIS-43 server.

-225 N N Whois-43
The hostname for the WHOIS-43 server was not
found in the DNS.

-227 N N Whois-43
Connection to WHOIS-43 server was successful,
but the connection timed out.

-228 N N Whois-43 Connection to WHOIS-43 server was unsuccessful.

-229 N N Whois-43 Empty response received from WHOIS-43 server.

-250 N N
Web-
whois

Timeout when waiting for a response from the TLD
authoritative servers as reported by the local DNS
resolver.

34

-252 N N
Web-
whois

DNSSEC error when trying to resolve the hostname
for the web-whois server.

-253 N N
Web-
whois

The hostname for the web-whois server was not
found in the DNS.

-255 N N
Web-
whois

Connection to the web-whois server was
successful, but the connection timed out.

-256 N N
Web-
whois

Error when opening a connection to web-whois
server.

-257 N N
Web-
whois Malformed HTTP message.

-258 N N
Web-
whois Malformed HTTP message or TLS general error.

-259 N N
Web-
whois

The maximum number of HTTP redirects (301, 302
and 303) were followed, and a 200 / HTTP status
code was not found.

-300 N N
Web-
whois Expecting HTTP status code 200 but got 100.

-301 N N
Web-
whois Expecting HTTP status code 200 but got 101.

-302 N N
Web-
whois Expecting HTTP status code 200 but got 102.

-303 N N
Web-
whois Expecting HTTP status code 200 but got 103.

-304 N N
Web-
whois Expecting HTTP status code 200 but got 201.

-305 N N
Web-
whois Expecting HTTP status code 200 but got 202.

-306 N N
Web-
whois Expecting HTTP status code 200 but got 203.

-307 N N
Web-
whois Expecting HTTP status code 200 but got 204.

-308 N N
Web-
whois Expecting HTTP status code 200 but got 205.

-309 N N
Web-
whois Expecting HTTP status code 200 but got 206.

-310 N N
Web-
whois Expecting HTTP status code 200 but got 207.

-311 N N
Web-
whois Expecting HTTP status code 200 but got 208.

-312 N N
Web-
whois Expecting HTTP status code 200 but got 226.

-313 N N
Web-
whois Expecting HTTP status code 200 but got 300.

-317 N N
Web-
whois Expecting HTTP status code 200 but got 304.

35

-318 N N
Web-
whois Expecting HTTP status code 200 but got 305.

-319 N N
Web-
whois Expecting HTTP status code 200 but got 306.

-320 N N
Web-
whois Expecting HTTP status code 200 but got 307.

-321 N N
Web-
whois Expecting HTTP status code 200 but got 308.

-322 N N
Web-
whois Expecting HTTP status code 200 but got 400.

-323 N N
Web-
whois Expecting HTTP status code 200 but got 401.

-324 N N
Web-
whois Expecting HTTP status code 200 but got 402.

-325 N N
Web-
whois Expecting HTTP status code 200 but got 403.

-326 N N
Web-
whois Expecting HTTP status code 200 but got 404.

-327 N N
Web-
whois Expecting HTTP status code 200 but got 405.

-328 N N
Web-
whois Expecting HTTP status code 200 but got 406.

-329 N N
Web-
whois Expecting HTTP status code 200 but got 407.

-330 N N
Web-
whois Expecting HTTP status code 200 but got 408.

-331 N N
Web-
whois Expecting HTTP status code 200 but got 409.

-332 N N
Web-
whois Expecting HTTP status code 200 but got 410.

-333 N N
Web-
whois Expecting HTTP status code 200 but got 411.

-334 N N
Web-
whois Expecting HTTP status code 200 but got 412.

-335 N N
Web-
whois Expecting HTTP status code 200 but got 413.

-336 N N
Web-
whois Expecting HTTP status code 200 but got 414.

-337 N N
Web-
whois Expecting HTTP status code 200 but got 415.

-338 N N
Web-
whois Expecting HTTP status code 200 but got 416.

-339 N N
Web-
whois Expecting HTTP status code 200 but got 417.

-340 N N
Web-
whois Expecting HTTP status code 200 but got 421.

36

-341 N N
Web-
whois Expecting HTTP status code 200 but got 422.

-342 N N
Web-
whois Expecting HTTP status code 200 but got 423.

-343 N N
Web-
whois Expecting HTTP status code 200 but got 424.

-344 N N
Web-
whois Expecting HTTP status code 200 but got 426.

-345 N N
Web-
whois Expecting HTTP status code 200 but got 428.

-346 N N
Web-
whois Expecting HTTP status code 200 but got 429.

-347 N N
Web-
whois Expecting HTTP status code 200 but got 431.

-348 N N
Web-
whois Expecting HTTP status code 200 but got 451.

-349 N N
Web-
whois Expecting HTTP status code 200 but got 500.

-350 N N
Web-
whois Expecting HTTP status code 200 but got 501.

-351 N N
Web-
whois Expecting HTTP status code 200 but got 502.

-352 N N
Web-
whois Expecting HTTP status code 200 but got 503.

-353 N N
Web-
whois Expecting HTTP status code 200 but got 504.

-354 N N
Web-
whois Expecting HTTP status code 200 but got 505.

-355 N N
Web-
whois Expecting HTTP status code 200 but got 506.

-356 N N
Web-
whois Expecting HTTP status code 200 but got 507.

-357 N N
Web-
whois Expecting HTTP status code 200 but got 508.

-358 N N
Web-
whois Expecting HTTP status code 200 but got 510.

-359 N N
Web-
whois Expecting HTTP status code 200 but got 511.

-360 N N
Web-
whois

Expecting HTTP status code 200 but got an
unexpected status code.

Note: the DNS resolvers used in the system validate DNSSEC.

Note: error codes marked as Obsolete are listed for documentation purposes.

Note: a test with an error code marked as an Internal Error will be considered to be UP.

37

6. Maintenance window support

The Base Registry Agreement allows the Registry Operator to inform ICANN of planned
maintenance times. However, note that per the Base Registry Agreement, there is no provision
for planned outages or similar periods of unavailable or slow service; any downtime, be it for
maintenance or due to system failures, will be noted simply as downtime.

6.1. Common elements for maintenance window support

6.1.1. Schedule object

Registry operators use the schedule object to manage maintenance windows in the MoSAPI. The
schedule object contains the following fields (required):

• "version", a JSON number that contains the version number of the JSON object intended
for future upgrades of the specification; for this version the value will always be "1".

• "name", a JSON string that contains a descriptive name of the maintenance window. The
maximum length is 255 Unicode characters. Note: Unicode characters beyond the 255
limit will be ignored.

• "enable", a JSON boolean value that contains true when the maintenance window is
enabled and false when the maintenance window is disabled.

• "description", a JSON string that contains a description of the maintenance widow. The
maximum length is 255 Unicode characters. Note: Unicode characters beyond the 255
limit will be ignored.

• "startTime", a JSON number that contains the date and time (specified in Unix
timestamp) when the maintenance window starts being active.

• "endTime", a JSON number that contains the date and time (specified in Unix timestamp)
when the maintenance window ends being active.

ICANN will suspend Emergency Escalation services only for the 10% Emergency Threshold alert
for RDDS and EPP when an enabled ("enabled"=true) schedule object exist, and the threshold is
reached on a time covered by the "startTime" and "endTime".

Example of a JSON schedule object:

{

 "version": 1,

"name": "load balancer upgrade",

 "enabled": true,

 "description": "The load balancer will be upgraded to version 3.4",

 "startTime": 1485941725,

 "endTime": 1486001764

}

6.1.2. Schedule object identifier

A schedule object is uniquely identified by a <scheduleID> identifier. The <scheduleID> is an
UUID (as defined in RFC4122) generated by the user. The user defines the <scheduleID>
identifier when creating the schedule object.

38

6.2. Creating or updating a schedule for a maintenance window

In order to create or update a schedule for a maintenance window, the user sends a schedule
object using the PUT HTTP verb in the API method provided at:

<base_url>/mntWin/<service>/<scheduleID>

Possible results:

• HTTP/400, see section 8.

• HTTP/404, the <base_url>/mntWin/<service>/<scheduleID> API method provides a
HTTP/404 status code, sets the HTTP header Content-type to "text/plain; charset=utf-8",
and provides a text response in the HTTP Entity-body with the string "Not available" if the
specified <service> does not exist.

• HTTP/200, the <base_url>/mntWin/<service>/<scheduleID> API method provides a
HTTP/200 status code if the API method was able to receive the input, no syntax issue
was found in the input, and the PUT verb was successful. The API method sets the HTTP
header Content-type to "text/plain; charset=utf-8", and provides a text response in the
HTTP Entity-body with the string "OK".

Example using CURL to create a maintenance window:

curl --cookie cookies.txt -H "Content-Type: application/json"

https://mosapi.icann.org/mosapi/v1/example/mntWin/rdds/16beaa07-46a3-42eb-9e71-

c2e06cfd8a9b -X PUT -d \

'{

"enable": "true",

"name": "Maintenance window for RDDS semester II-2017",

"description": "Pre-planned maintenance window for RDDS",

"startTime": "1512003600",

"endTime": "1512006600",

"version": "1"

}'

https://mosapi.icann.org/mosapi/v1/example/mntWin/rdds/16beaa07-46a3-42eb-9e71-c2e06cfd8a9b
https://mosapi.icann.org/mosapi/v1/example/mntWin/rdds/16beaa07-46a3-42eb-9e71-c2e06cfd8a9b

39

6.3. Deleting a schedule for a maintenance window

In order to delete a schedule for a maintenance window, the user make use of the DELETE HTTP
verb in the API method provided at:

<base_url>/mntWin/<service>/<scheduleID>

Possible results:

• HTTP/400, see section 8.

• HTTP/404, the <base_url>/mntWin/<service>/<scheduleID> API method provides a
HTTP/404 status code, sets the HTTP header Content-type to "text/plain; charset=utf-8",
and provides a text response in the HTTP Entity-body with the string "Not available" if the
specified <scheduleID> does not exist or if the specified <service> does not exist.

• HTTP/200, the <base_url>/mntWin/<service>/<scheduleID> provides a HTTP/200 status
code if the API method was able to receive the input, no syntax issue was found in the
input, and the DELETE verb was successful. The API method sets the HTTP header
Content-type to "text/plain; charset=utf-8", and provides a text response in the HTTP
Entity-body with the string "OK".

Example using CURL to delete a maintenance window:

curl --cookie cookies.txt

https://mosapi.icann.org/mosapi/v1/example/mntWin/rdds/16beaa07-46a3-42eb-9e71-

c2e06cfd8a9b -X DELETE

https://mosapi.icann.org/mosapi/v1/example/mntWin/RDDS/16beaa07-46a3-42eb-9e71-c2e06cfd8a9b
https://mosapi.icann.org/mosapi/v1/example/mntWin/RDDS/16beaa07-46a3-42eb-9e71-c2e06cfd8a9b

40

6.4. Retrieving a schedule object for a maintenance window

In order to get the information of a schedule object, the user make use of the GET HTTP verb in
the following URL:

<base_url>/mntWin/<service>/<scheduleID>

Possible results:

• HTTP/400, see section 8.

• HTTP/404, the <base_url>/mntWin/<service>/<scheduleID> API method provides a
HTTP/404 status code, sets the HTTP header Content-type to "text/plain; charset=utf-8",
and provides a text response in the HTTP Entity-body with the string "Not available" if the
specified <scheduleID> does not exist or if the specified <service> does not exist.

• HTTP/200, the <base_url>/mntWin/<service>/<scheduleID> API method provides a
HTTP/200 status code if the API method was able to receive the input, no syntax issue
was found in the input, and the GET verb was successful. The API method sets the
HTTP header Content-type to "application/json; charset=utf-8". The schedule JSON
object (see section 6.1.1) is provided in the HTTP Entity-body.

Example using CURL to request the details of a maintenance window:

curl --cookie cookies.txt

https://mosapi.icann.org/mosapi/v1/example/mntWin/rdds/16beaa

07-46a3-42eb-9e71-c2e06cfd8a9b

Example of JSON response for a maintenance window details request:

{

 "enable": "true",

 "name": "Maintenance window for RDDS semester II-2017",

 "description": "Pre-planned maintenance window for RDDS",

 "startTime": "1512003600",

 "endTime": "1512006600",

 "version": "1"

}

https://mosapi.icann.org/mosapi/v1/example/mntWin/RDDS/16beaa
https://mosapi.icann.org/mosapi/v1/example/mntWin/RDDS/16beaa

41

6.5. Getting the list of maintenance windows that have not ended yet

In order to get a list of maintenance window identifiers (i.e. "scheduleID") that have not ended yet,
the user make use of the GET HTTP verb in the API method provided by ICANN at:

<base_url>/mntWin/<service>

Possible results:

• HTTP/404, the <base_url>/mntWin/<service>/<scheduleID> API method provides a
HTTP/404 status code, sets the HTTP header Content-type to "text/plain; charset=utf-8",
and provides a text response in the HTTP Entity-body with the string "Not available if the
specified <service> does not exist.

• HTTP/200, the <base_url>/mntWin/<service> API method provides a HTTP/200 status
code if the API method was able to receive the input, and the GET verb was successful.
The API method sets the HTTP header Content-type to "application/json; charset=utf-8".
A JSON array of schedule object identifiers is provided in the HTTP Entity-body.

Example using CURL to request the list of maintenance windows:

curl --cookie cookies.txt https://mosapi.icann.org/mosapi/v1/example/mntWin/rdds

Example of a JSON array that contains the list of maintenance windows identifiers:

{

"schedules": [{

 "scheduleID": "7b2d3012-41f7-4bce-89e9-9a9b85575fa6"

[INCLUDE REST OF ELEMENTS]

 }, {

 "scheduleID": "37e71da9-827d-450a-9909-a64ba42af1d8"

 }]

}

https://mosapi.icann.org/mosapi/v1/example/mntWin/rdds

42

7. Probe node network

The current list of probe nodes used by the Monitoring System may be retrieved by using the
GET HTTP verb in the API method provided by ICANN at:

<base_url>/monitoring/nodes

Possible results:

• HTTP/200, when a valid request is received, the API provides a HTTP/200 status code
and sets the HTTP header Content-type to "application/json; charset=utf-8".

If a valid request is received, a JSON object with the fields listed below is provided in the
HTTP Entity-body:

• "version", a JSON number that contains the version number of the JSON object
intended for future upgrades of the specification; for this version the value will
always be "1".

• "updateTime", a JSON number that contains the Unix time stamp of the date and
time when the list was updated.

• "probeNodes", a JSON array that provides information per probe node. The
"probeNodes" contains the following JSON objects:

o "city", a JSON string that contains the location of the probe node.

o "ipV4", a JSON string that contains the IPv4 address of the probe node. If a

probe node does not support IPv4, the "ipV4" field will contain a null value.

o "ipV6", a JSON string that contains the IPv6 address of the probe node. If a
probe node does not support IPv6, the "ipV6" field will contain a null value.

Example using CURL to request the list of probe nodes:

curl --cookie cookies.txt https://mosapi.icann.org/mosapi/v1/example/monitoring/nodes

https://mosapi.icann.org/mosapi/v1/example/monitoring/nodes

43

Example of a JSON object that contains the list of probe nodes:

{

 "version": 1,

 "updateTime": 1422492450,

 "probeNodes": [

 {

 "city": "Amsterdam",

 "ipV4": "192.0.2.3",

 "ipV6": "2001:DB8::3"

 },

 {

 "city": "Beijing",

 "ipV4": "192.0.2.4",

 "ipV6": null

 },

 {

 "city": "Boston",

 "ipV4": "192.0.2.5",

 "ipV6": "2001:DB8::5"

 },

 {

 "city": "Istanbul",

 "ipV4": "192.0.2.6",

 "ipV6": null

 },

 {

 "city": "WashingtonDC",

 "ipV4": "192.0.2.7",

 "ipV6": "2001:DB8::7"

 },

 {

 "city": "Sydney",

 "ipV4": "192.0.2.8",

 "ipV6": "2001:DB8::8"

 }

]

}

44

8. HTTP/400 extended error codes

The API methods provides a HTTP/400 if the input does not comply with the business rules or the
syntax of the input is invalid. The API method sets the HTTP header Content-type to
"application/json; charset=utf-8". A JSON object with the fields listed below is provided in the
HTTP Entity-body:

• "resultCode", a JSON number that contains the result code.

• "message", a JSON string the contains the standard error message defined in the table
below.

• "description", a JSON string the may be used to provide additional error diagnostic
information.

Example of a JSON object that contains extended error codes:

{

 "resultCode":2001,

 "message":"The UUID syntax is incorrect",

 "description":"The UUID (ee69b727-2abb-4f1c-8208-e5e76zzd758f) syntax is incorrect"

}

45

The following table contains the extended error codes for the HTTP/400 status:

Result
Code

API methods HTTP
Verb

Message

P
U
T

D
E
L
E
T
E

G
E
T

2001 <base_url>/mntWin/

<service>/<schedul

eID>

• • • The UUID syntax is incorrect.

2002 <base_url>/mntWin/

<service>/<schedul

eID>

• The maintenance window start date and time is not

24 hours ahead of the current date and time.

2003 <base_url>/mntWin/

<service>/<schedul

eID>

• The period specified by start and end date and

time is greater than the monthly SLR for the

service.

2004

<base_url>/mntWin/

<service>/<schedul

eID>

• The period specified in the maintenance window

collides with a previously scheduled maintenance

window for the service.

2005 <base_url>/mntWin/

<service>/<schedul

eID>

• • • The maintenance window functionality is disabled

for this TLD.

2006 <base_url>/mntWin/

<service>/<schedul

eID>

 • The maintenance window that you are trying to

delete already started.

2007 <base_url>/mntWin/

<service>/<schedul

eID>

• The endTime is in the past, before or equal to the

startTime.

2008 <base_url>/mntWin/

<service>/<schedul

eID>

• The startTime syntax is incorrect.

2009 <base_url>/mntWin/

<service>/<schedul

eID>

• The endTime syntax is incorrect.

2010 <base_url>/mntWin/

<service>/<schedul

eID>

• The maintenance window that you are trying to

update already ended, updates are not allowed.

2011 <base_url>/monitor

ing/<service>/inci

dents

 • The difference between endDate and startDate is

more than 31 days.

2012 <base_url>/monitor

ing/<service>/inci

dents

 • The endDate is before the startDate.

2013 <base_url>/monitor

ing/<service>/inci

dents

 • The startDate syntax is incorrect.

2014 <base_url>/monitor

ing/<service>/inci

dents

 • The endDate syntax is incorrect.

2015 <base_url>/monitor

ing/<service>/inci

dents

 • The value of falsePositive is invalid.

2016 <base_url>/mntWin/

<service>/<schedul

eID>

• The value of name or description cannot be blank.

2100 <base_url>/mntWin/

<service>/<schedul

eID>

• The JSON syntax is invalid.

2101 <base_url>/mntWin/

<service>/<schedul

eID>

• The maintenance window that you are trying to

update already started, only enabled and endTime

fields can be modified.

46

9. Domain Abuse Activity Reporting (DAAR)

ICANN's Domain Abuse Activity Reporting (DAAR) project is a system for studying and reporting
on domain name registration and security threat (domain abuse) behavior across top-level domain
(TLD) registries and registrars. The overarching purpose of DAAR is to report security threat activity
to the ICANN community, which can then use the data to facilitate informed policy decisions.

DAAR was designed to provide the ICANN community with a reliable, persistent, and reproducible
set of data from which security threat (abuse) analyses could be performed. The system collects
TLD zone data, a very large body of registration data, and complements these data sets with a
large set of high-confidence reputation (security threat) data feeds. The data collected by the DAAR
system can serve as a platform for studying or reporting daily or historical registration or abuse
activity.

MoSAPI provides Registries with access to DAAR-measurements for their TLDs using the GET or
HEAD HTTP verbs in the MoSAPI methods described below.

9.1. Getting the latest DAAR report available for the TLD

<base_url>/daar/report/latest

Possible results:

• HTTP/404, the <base_url>/daar/report/latest API method provides a HTTP/404 status
code, sets the HTTP header Content-type to "text/plain; charset=utf-8", and provides a
text response in the HTTP Entity-body (only when using the HTTP/GET verb) with the
string "Not available" if no report exists for the TLD.

• HTTP/200, when a valid request is received, the <base_url>/daar/report/latest API
method provides a HTTP/200 status code and sets the HTTP header Content-type to
"application/json; charset=utf-8".

The header "Last-Modified" is set to the date and time when the report was generated.

If a valid request is received, a JSON object with the fields listed below is provided in the
HTTP Entity-body (only when using the HTTP/GET verb):

• "version", a JSON number that contains the version number of the JSON object
intended for future upgrades of the specification; for this version the value will
always be "2".

• "tld", a JSON string that contains the monitored TLD.

• "daarReportDate", a JSON string that contains the date of the report in the format
<YYYY>-<MM>-<DD>. Where:

▪ <YYYY>: year
▪ <MM>: zero-padded month
▪ <DD>: zero-padded day.

• "daarReportData", measurements of the DAAR reporting including the following
elements (JSON strings): domains in zone, number of unique abuse domains,
number of spam domains, number of phish domains, number of bot c&c domains
and number of malware domains.

47

Example using CURL to request latest DAAR report:

curl --cookie cookies.txt

https://mosapi.icann.org/mosapi/v1/example/daar/report/latest

Example of a JSON response for the latest DAAR report:

{

 "version": 1,

 "tld": "example",

 "daarReportDate": "2018-12-12",

 "daarReportData": {

 "domainsInZone": 27957,

 "uniqueAbuseDomains": 14,

 "spamDomains": 10,

 "phishDomains": 3,

 "botnetCcDomains": 0,

 "malwareDomains": 2

 }

}

https://mosapi.icann.org/mosapi/v2/example/daar/report/latest

48

9.2. Querying for a DAAR report for a date

<base_url>/daar/report/<YYYY>-<MM>-<DD>

Possible results:

• HTTP/404, the <base_url>/daar/report/<YYYY>-<MM>-<DD> API method provides a
HTTP/404 status code, sets the HTTP header Content-type to "text/plain; charset=utf-8",
and provides a text response in the HTTP Entity-body (only when using the HTTP/GET
verb) with the string "Not available" if a report for the specified date does not exist.

• HTTP/200, when a valid request is received, the <base_url>/daar/report/<YYYY>-<MM>-
<DD> API method provides a HTTP/200 status code and sets the HTTP header Content-
type to "application/json; charset=utf-8".
If a valid request is received, a JSON object with the DAAR report (see section 9.1) is
provided in the HTTP Entity-body (only when using the HTTP/GET verb).

The header "Last-Modified" is set to the date and time when the report was generated.

Example using CURL to request the details of a measurement:

curl --cookie cookies.txt https://mosapi.icann.org/mosapi/v1/example/daar/report/2019-

01-01

Example of JSON response for the DAAR report for a date:

See example in section 9.1.

https://mosapi.icann.org/mosapi/v2/example/daar/report/2019-01-01
https://mosapi.icann.org/mosapi/v2/example/daar/report/2019-01-01

49

9.3. Querying for DAAR reports available

<base_url>/daar/reports?startDate=<startDate>&endDate=<endDate>

Where:

• Optional <startDate> to be substituted by <YYYY>-<MM>-<DD> to match reports after
the provided date and time. If <startDate> is omitted, the oldest available report will
match.

• Optional <endDate> to be substituted by <YYYY>-<MM>-<DD> to match reports before
the provided date and time. If <endDate> is omitted, it will be substituted with the current
date.

Note: if both <startDate> and <endDate> are omitted, all available reports will match.

Possible results:

• HTTP/400, see section 8, only the following error codes apply: 2012, 2013 and 2014.

• HTTP/200, when a valid request is received, the <base_url>/daar/reports?
startDate=<startDate>&endDate=<endDate> API method provides a HTTP/200 status
code and sets the HTTP header Content-type to "application/json; charset=utf-8".

If a valid request is received, a JSON object with the fields listed below is provided in the
HTTP Entity-body (only when using the HTTP/GET verb):

• "version", a JSON number that contains the version number of the JSON object
intended for future upgrades of the specification; for this version the value will
always be "1".

• "tld", a JSON string that contains the monitored TLD.

• "daarReports", a JSON array with all the reports available within the period.

The array contains JSON objects with the following elements:

▪ "daarReportDate", see section 9.1 for definition.

▪ "daarReportGenerationDate", date and time that the report was

generated in the format specified in RFC 3339.

Example using CURL to request the details of a measurement:

curl --cookie cookies.txt https://mosapi.icann.org/mosapi/v1/example/daar/reports

https://mosapi.icann.org/mosapi/v2/example/daar/reports

50

Example of a JSON response for a query of reports available:

{

 "version": 1,

 "tld": "example",

 "daarReports": [{

 "daarReportDate": "2018-12-12",

 "daarReportGenerationDate": "2018-12-13T23:20:50.52Z"

 },

 {

 "daarReportDate": "2018-12-13",

 "daarReportGenerationDate": "2018-12-13T23:20:51.52Z"

 }

]

}

Example of a JSON response when no reports are available for the queried period:

{

 "version": 1,

 "tld": "example",

 "daarReports": []

}

51

10. Recent Measurements

MoSAPI provides Registries with access to measurements files for cycles marked as up or down
using the GET or HEAD HTTP verbs in the MoSAPI methods described below. This functionality
allows Registries to obtain raw data regarding the tests performed by the monitoring system
regardless of the cycle being part of an incident.

10.1. Querying years for which reports are available

<base_url>/monitoring/<service>/measurements

Possible results:

• HTTP/404, the <base_url>/monitoring/<service>/measurements API method provides a
HTTP/404 status code, sets the HTTP header Content-type to "text/plain; charset=utf-8",
and provides a text response in the HTTP Entity-body with the string "Not available" if the
specified <service> is not being monitored.

• HTTP/200, when a valid request is received, the
<base_url>/monitoring/<service>/measurements API method provides a HTTP/200
status code and sets the HTTP header Content-type to "application/json; charset=utf-8".
If a valid request is received, a JSON object with the years for which reports are available
is provided in the HTTP Entity-body (only when using the HTTP/GET verb).

Example using CURL to request years for which reports are available:

curl --cookie cookies.txt

https://mosapi.icann.org/mosapi/v1/example/monitoring/dns/measurements

Example of JSON response of the years for which reports are available:

{

 "version": 1,

 "lastUpdateApiDatabase": 1422492450,

 "years": ["2018", "2017", "2016"]

}

Example of a JSON response when no years are available for the monitored service:

{

 "version": 1,

 "lastUpdateApiDatabase": 1422492450,

 "years": []

}

https://mosapi.icann.org/mosapi/v2/example/monitoring/dns/measurements

52

10.2. Querying months for which reports are available

<base_url>/monitoring/<service>/measurements/<YYYY>

Where:

• <YYYY>: year

Possible results:

• HTTP/404, the <base_url>/monitoring/<service>/measurements API method provides a
HTTP/404 status code, sets the HTTP header Content-type to "text/plain; charset=utf-8",
and provides a text response in the HTTP Entity-body with the string "Not available" if the
specified <service> is not being monitored or the <YYYY> does not exist in the source.

• HTTP/200, when a valid request is received, the
<base_url>/monitoring/<service>/measurements/<YYYY> API method provides a
HTTP/200 status code and sets the HTTP header Content-type to "application/json;
charset=utf-8".
If a valid request is received, a JSON object with the months for which reports are
available is provided in the HTTP Entity-body (only when using the HTTP/GET verb).

Example using CURL to request years for which reports are available:

curl --cookie cookies.txt

https://mosapi.icann.org/mosapi/v1/example/monitoring/dns/measurements/<YYYY>

Example of JSON response of the months for which reports are available:

{

 "version": 1,

 "lastUpdateApiDatabase": 1422492450,

 "months": ["06", "05", "04", "03", "02", "01"]

}

Example of a JSON response when no months are available for the monitored service and
the <YYYY>:

{

 "version": 1,

 "lastUpdateApiDatabase": 1422492450,

 "months ": []

}

https://mosapi.icann.org/mosapi/v2/example/monitoring/dns/measurements

53

10.3. Querying days for which reports are available

<base_url>/monitoring/<service>/measurements/<YYYY>/<MM>

Where:

• <YYYY>: year

• <MM>: zero-padded month

Possible results:

• HTTP/404, the <base_url>/monitoring/<service>/measurements API method provides a
HTTP/404 status code, sets the HTTP header Content-type to "text/plain; charset=utf-8",
and provides a text response in the HTTP Entity-body with the string "Not available" if the
specified <service> is not being monitored or the <YYYY>/<MM> does not exist in the
source.

• HTTP/200, when a valid request is received, the
<base_url>/monitoring/<service>/measurements/<YYYY>/<MM> API method provides a
HTTP/200 status code and sets the HTTP header Content-type to "application/json;
charset=utf-8".
If a valid request is received, a JSON object with the days for which reports are available
is provided in the HTTP Entity-body (only when using the HTTP/GET verb).

Example using CURL to request years for which reports are available:

curl --cookie cookies.txt

https://mosapi.icann.org/mosapi/v1/example/monitoring/dns/measurements/<YYYY>/<MM>

Example of JSON response of the days for which reports are available:

{

 "version": 1,

 "lastUpdateApiDatabase": 1422492450,

 "days": ["03", "02", "01"]

}

Example of a JSON response when no days are available for the monitored service and the
<YYYY>/<MM>:

{

 "version": 1,

 "lastUpdateApiDatabase": 1422492450,

 "days ": []

}

https://mosapi.icann.org/mosapi/v2/example/monitoring/dns/measurements

54

10.4. Querying for available measurements

<base_url>/monitoring/<service>/measurements/<YYYY>/<MM>/<DD>

Where:

• <YYYY>: year

• <MM>: zero-padded month

• <DD>: zero-padded day

Possible results:

• HTTP/404, the <base_url>/monitoring/<service>/measurements API method provides a
HTTP/404 status code, sets the HTTP header Content-type to "text/plain; charset=utf-8",
and provides a text response in the HTTP Entity-body with the string "Not available" if the
specified <service> is not being monitored or the <YYYY>/<MM>/<DD> does not exist in
the source.

• HTTP/200, when a valid request is received, the
<base_url>/monitoring/<service>/measurements/<YYYY>/<MM>/<DD> API method
provides a HTTP/200 status code and sets the HTTP header Content-type to
"application/json; charset=utf-8".
If a valid request is received, a JSON object with the available measurements is provided
in the HTTP Entity-body (only when using the HTTP/GET verb).

Example using CURL to request years for which reports are available:

curl --cookie cookies.txt

https://mosapi.icann.org/mosapi/v1/example/monitoring/dns/measurements/<YYYY>/<MM>/<DD

>

Example of JSON response of the days for which measurements are available:

{

 "version": 1,

 "lastUpdateApiDatabase": 1422492450,

 "measurements": ["1422492930.json", "1422492990.json",

"1422493050.json", "1422493110.json"]

}

Example of a JSON response when no measurements are available for the monitored
service and the <YYYY>/<MM>/<DD>:

{

 "version": 1,

 "lastUpdateApiDatabase": 1422492450,

 "measurements ": []

}

https://mosapi.icann.org/mosapi/v2/example/monitoring/dns/measurements

55

10.5. Querying the details of a particular measurement

<base_url>/monitoring/<service>/measurements/<YYYY>/<MM>/<DD>/<measu

rementID>

Where:

• <YYYY>: year

• <MM>: zero-padded month

• <DD>: zero-padded day

• <measurementID> must be substituted by the measurement id assigned by the
monitoring system.

Possible results:

• HTTP/404, the
<base_url>/monitoring/<service>/measurements/<YYYY>/<MM>/<DD>/<measurementID
> API method provides a HTTP/404 status code, sets the HTTP header Content-type to
"text/plain; charset=utf-8", and provides a text response in the HTTP Entity-body with the
string "Not available" if the specified <service> is not being monitored or the
<measurementID> does not exist in the source.

• HTTP/200, when a valid request is received, the
<base_url>/monitoring/<service>/measurements/<YYYY>/<MM>/<DD>/<measurementID
> API method provides a HTTP/200 status code and sets the HTTP header Content-type
to "application/json; charset=utf-8".
If a valid request is received, a JSON object with the fields listed in section 5.8 is
provided in the HTTP Entity-body.

The Content-Encoding entity header is set to "gzip" indicating that the entity-body is
compressed using the Lempel-Ziv coding (LZ77), with a 32-bit CRC.

• HTTP/406, when a valid request is received, the
<base_url>/monitoring/<service>/measurements/<YYYY>/<MM>/<DD>/<measurementID
> API method provides a HTTP/406 if the client does not include a HTTP header Accept-
Encoding with value set to "gzip".

