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this case the existence problem is usually simpler and we focus on the extremal problem: 

What is the maximum number of edges, e = e(n), in a graph with order II and with a given 

local property? By graph we will always mean a finite simple graph. The main objective 

of the present paper is to raise interest in this fascinating and hard problem. 

Consider the following instances. 

I. All neighbourhoods are independent sets. In other words, the underlying graph is 

triangle-free. This particular case of Tunin' s theorem was already solved in 1906 by 

Mantel [4]: e ::;; n 2/4; the bound is tight. 

n. All neighbourhoods are paths - for 3-connected planar graphs. Zelinka [71 proved 

e ::;; 2n + 3LII 14J 6 for n ;::: 8; the bound is tight. 

III. All neighbourhoods are I-regular (= peIfect matching) graphs for 3-connected planar 

graphs. Zelinka [8] proved e ::;; (¥) (n - 2); the bound is tight. 

IV. All neighbourhoods are I-regular graphs. As we learned from Zelinka [8], this class of 

graphs was introduced in an unpublished lecture of D. Froncek in 1986. However, the 

corresponding extremal problem was implicitly solved by Ruzsa and Szemeredi r5] in 

1976. We are indebted to Professor Paul Erdos for pointing out this reference. 

The result is e o(n 2», and e can reach cf3(n)n, where r3(n) denotes the largest number 

m such that there are m positive integers less than 11 no three of which fOlm an arithmetic 

progression. According to a result of F. Behrend [1], r3(n) ;::: n 
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In order to prove the result o(n2) for IV, we the Ruzsa-Szemeredi theorem and 

derive from it an upper bound for a collection of problems. 

Theorem. Ku.zs:a-~;zem{~redl [5]) If there system on n vertices such that no six 

vertices carry three or then the number of triplets is 0(n2). 

Theorem 1. SUPD<)Se G is with n vertices e edges, such that each belongs 

to at one triangle, but at most k. Then e o(n\ 
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Introduce a graph T whose vertex is the triangle set of G and two make an 

edge in T if, in G, they intersect in an In T the are bounded by 3(k - 1). 

Introduce a graph S whose vertex set that of T and two different triangles make an edge 

iff their distance is at most in T. In the are bounded by A = 9(k - 1 )2, while S 

is (A + 1) - vertex-colourable. Let Gi be the of G whose edge set is the 

edge set of triangles of colour i, for iI, 2, ... , A + 1. The second and third claims for Gi 

ensure the applicability of the Ruzsa-Szemeredi theorem. The fourth claim ensures that the 

sum of the numbers of edges in the G/s is still 0(1/ 2). The second and third claims hold 

because of the definition of S and the existence of its (A + 1) - vertex colouring. [] 
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Notice, that for graphs having J-regular neighbourhoods, k = 1 and the Ruzsa-Szemeredi 

theorem applies directly to the entire triangle set of the graph_ Also, making the e = 0(112) 

explicit in the theorem of Ruzsa and Szemeredi allows k = k (n) to approach infinity (in a 

sufficiently slow manner). 

Ruzsa and Szemeredi gave a construction for triplet system on n vertices with 

(lIlOO)rin)n triplets with no six vertices spanning three triplet'>. Fortunately, no two trip

lets intersect in two vertices in their construction so that, taking all pairs covered by triplets 

as the edge set for a graph, we get a graph with cr3(n)n edges, in which the neighbourhoods 

are I-regular. 

We also construction for such a graph here since we think this construction is better 

motivated geometrically. 

Const.ruction 2. Suppose 1 ~ a l < a2 < ... < am < n!2, where m 1"3(1112) and no three term 

arithmetic progression occurs among the a's. Consider the following vertex set: 

{(i ,i): 1 ~} ll, 1 ~ 3}. Make triplets of those three vertices which lie on a straight line 

of the type y G!.x + b. Define a graph G by making edges from those pairs of vertices 

which are covered by a triplet. Drop from G the isolated vertices. Notice that three edges 

coming from different triplets can make a triangle if and only if au + Gv = 2Gw for the cor

responding straight lines. Also, no two triplet'> - being parts of straight lines - intersect in 

two vertices. Finally, for c < 1, ricm) ~ c'rim) for some c'. [] 

V. All neighbourhoods are paths (of possibly different lengths at least 1). Theorem 1 

applies with k 2, e = 0(n2). We have such graphs with en logn edges for some values 

of n. 
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Construction 3. Let Qk denote the k-dimensional cube, whose vertices are the k-digit 0 - 1 

sequences so that n :::: 2k. For i = 1,2, .. . ,k 1 set 

am :::: 0 or 1, for m < i and m > i + I} 

and 

am :::: 0 or 1, for m < i and m > i I} . 

,1:-1 

Define Q; by adding to the edge set of the set u A}, where tj:::: 0 or 1 (so the definition 
j=1 

of Q; depends on the choice of t/s). In Q; all neighbourhoods are paths. Without loss of 

generality we consider only the neighborhood of 00 ... 0. List the vertices: 

1) 1000 ... 0 

2) 1100 ... 0 

3) 0100 ... 0 

4) 0110 ... 0 

5) 0010 ... 0 

2n -1) 000 ... 01. 

Out of this sequence the odd-numbered vertices always belong to the neighbourhood of 

00 ... 0, the even-numbered ones mayor may not. If they do, they are connected to the two 

neighbouring (in the list) vertices by edges from Qk' If they do not, their neighbours on the 

li st above make an since if (00 ... 0, v) E A/, then the pair made from the two (list) 

1-1 
neighbours of v belong to Aj j. [J 
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VI. All neighbourhoods are cycles, possibly of different length. 

Theorem 1 applies with k 2, e = 0(fl2). There are such graphs with en log n edges for 

some values of n. Construction 3 goes through with slight modifications. 

Construction 4. Set 

A: = {{Oa2 ... an _ 10, 1a2 ... an _ 11} :am ° or 1, 1 < m < n} 

and set E (Q;) = E (Qk) v ~ A';, where tj = ° or 1. The definition of Q; depends again on 
j=l 

the choice of tj ' s. In the course of proving Construction 4, it is easy to check that the 

neighbourhood of 00 ... 0 is a cycle. (] 

VII. All neighbourhoods are unions of disjoint copies of the same graph H. Theorem 1 

holds with k = max degree in H, e = 0(n 2). 

The following theorem gives a good lower bound in the case of some interesting H' s: 

Theorem 5. Suppose there is a graph L such that every neighbourhood in L is the bipartite 

graph H. Then we have infinitely many graphs Gn with IV(Gn)1 =n, le(G,JI ?cr3(n)n, 

such that each neighbourhood in G n is a disjoint union of copies of H . 

Proof. Set Gn = G xL, where C is the graph from Construction 2. By x we denote the 

graph product in which two points in the product of the vertex sets make an edge iff their 

projections both are edges. Denote by NlI(v) the subgraph of H induced by the neighbours 

of v. We recall the well-known fact, that for a bipartite graph M, K2 x M is the juxtaposi-

tion of two copies of M. Now observe, that for g E VeC) and IE VeL), 

NcxL(g,l) =Nc(g)xNL(l). Since NcCg) is a juxtaposition of some edges and NL(l) is the 

bipartite graph H, NG(g)xNL(l) is the disjoint union of some copies of H. We leave the 

enumeration of edges and vertices in G n to the reader. [] 
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Applications. For H an even cycle or a path with at least three edges we have a bipartite 

graph H for which L exists (see [2]), therefore Theorem 5 applies. 
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