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Abstract

Incomplete information makes trade more elastic. When firms face uncertainty
about demand, selection into exporting occurs based on productivity alone. In contrast,
with complete information firms can condition export decisions on both productivity
and demand. The difference in the information available to firms alters the value
of trade at the extensive margin. We show that the identification of trade elasticities
with incomplete information requires quantity data, while trade elasticities in complete
information economies require sales data. Using Brazilian export data, we quantify
trade elasticities in models with and without uncertainty, and find that the elasticities
are larger under uncertainty. This gap increases when demand is more uncertain.
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1 Introduction

Welfare implications for standard trade theory, most recently developed in Arkolakis, Costinot,

and Rodŕıguez-Clare (2012) and Melitz and Redding (2015), show that partial elasticities

of trade with respect to variable trade costs are key parameters for evaluating the welfare

gains from trade. While these implications are derived from a broad class of models in which

firms have complete information about their economic environment, a growing branch of the
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trade literature has demonstrated that models with uncertainty along the lines of Jovanovic

(1982) are well suited to match salient patterns of empirically observed firm behavior.1 How-

ever, normative implications of this alternative information structure for measurements of

the trade elasticities, and therefore welfare gains from trade, are not yet well understood.2

In this paper, we develop trade elasticity expressions for trade models with demand uncer-

tainty and quantitatively show that demand uncertainty alters the size of these key trade

elasticities that ultimately determine the welfare gains from trade.

We show that the distinction between firm productivity versus profitability is key for iden-

tifying trade elasticities in economic environments with and without uncertainty. To do so,

we consider two economic environments, the first of which is a stylized version of Jovanovic’s

(1982) learning model as extended by Timoshenko (2015b) to a trade context. In this model,

firms make export decisions after observing their firm-specific productivity but before ob-

serving their firm-specific demand in foreign markets. Hence, firms make export quantity

and participation decisions based on productivity alone. Export sales thereafter depend on

productivity, through export quantity decisions, and the realization of demand shocks in for-

eign markets. Therefore, standard empirical strategies that identify trade elasticities from

export sales data are inappropriate in this framework, as export sales data contain informa-

tion that does not directly influence how a firm responds to changes in trade costs. Instead,

export quantity data does contain the necessary information about productivity to identify

trade elasticities.

The second economic environment we consider is a standard trade model with complete

information (Melitz (2003), Bernard, Redding, and Shott (2010), Arkolakis et al. (2012),

Melitz and Redding (2015)), in which firms observe both productivity and demand prior to

making export decisions. In contrast to an economy with uncertainty, in this model export

decisions are based on a combination of a firm’s productivity and demand, defined as a

firm’s profitability. The appropriate information about profitability is embedded in export

sales data, which therefore identifies trade elasticities in a complete information environment.

We quantify the magnitude of the trade elasticity under different information environ-

ments and find that trade is more elastic in the presence of demand uncertainty. For quan-

tification, we adapt the structural elasticity estimation approach in Bas, Mayer, and Thoenig

1These papers incorporate Jovanovic (1982) learning mechanism into the Melitz (2003) model, which fea-
tures monopolistically competitive exporters that are heterogeneous in productivity and learn about their
unobserved idiosyncratic demand in foreign markets. See Arkolakis, Papageorgiou, and Timoshenko (2018)
for implications for firm growth as a function of age and size, Timoshenko (2015b) for implication for firm
product switching behavior, and Bastos, Dias, and Timoshenko (Forthcoming) for implications for firm
input and output pricing behavior.

2A notable exception is Arkolakis, Papageorgiou, and Timoshenko (2018), who characterize constrained
efficiency of a model in which firms learn about demand, but do not engage in international trade.

2



(2017) to our model with demand uncertainty and to the model with complete information.

We discipline the complete information model’s profitability distribution with empirical ex-

port sales data and discipline the demand uncertainty model’s productivity distribution with

data on quantities exported. We apply this estimation strategy to Brazilian export data and

find that demand uncertainty amplifies an increase in export sales arising from new entrants

in response to a decline in variable trade costs - the extensive margin response - relative to

the model with complete information. We further find that the amplification effect is larger

when an export destination exhibits larger demand uncertainty, as measured by the variance

of demand shocks realizations.

This paper shows that the information structure faced by firms is crucially important

for measuring the extensive margin response to a decline in trade costs. In countries or

industries in which exporters face high demand uncertainty, by assuming away information

asymmetries, estimates of the partial elasticity of trade with respect to variable trade costs

will likely understate the true magnitude of extensive margin adjustments, and therefore,

the extent of welfare gains.

Our work contributes to the growing literature on decomposing trade elasticities. Chaney

(2008) shows that the partial elasticity of trade can be decomposed into an intensive and an

extensive margin of adjustment. Melitz and Redding (2015) further show that the extensive

margin of adjustment crucially depends on the distributional assumptions with respect to

the sources of firm-level heterogeneity. Sager and Timoshenko (2017) characterize a flexible

distribution that well describes firm-level heterogeneity and find the extensive margin trade

elasticity to be small. This paper demonstrates that selection into exporting (and hence the

extensive margin of trade elasticity), depends on the information structure faced by firms.

Our work also contributes to a literature on measuring trade elasticities. Imbs and Mejean

(Forthcoming) find that there is substantial heterogeneity in bilateral trade elasticities due

to heterogeneity in countries’ industrial production. Furthermore, Imbs and Mejean (2015)

document that elasticities computed using industry-level data are often larger than those

using aggregated data. This paper demonstrates that firms’ information sets affect trade

elasticity measurement and documents an amplification effect on trade elasticities attributed

to uncertainty faced by firms in foreign markets.

A related strand of literature estimates trade elasticities based on complete information

models of trade. Eaton and Kortum (2002) and Simonovska and Waugh (2014) use the

aggregate trade flows and prices data to estimate trade elasticities. In contrast, Caliendo

and Parro (2015) rely on trade flows and tariffs data. We contribute to this literature by

providing an alternative method based on a structural model of trade to compute trade

elasticities and show how an assumption about the information structure faced by firms
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alters elasticity estimates.

Our paper also relates to the literature on information asymmetries in trade. Two highly

related papers are by Timoshenko (2015a) and Dickstein and Morales (2016). Timoshenko

(2015a) finds that past continuous export history predicts current export choice. Dickstein

and Morales (2016) extends this work and demonstrates that firm-level information such as

lagged sales and industry averages predict exporting, but only for large firms (e.g., in terms

of productivity or domestic sales). The authors find that small firms do not seem to make

decisions based on this additional information. While these papers uncover a large set of

factors that predict export decisions, our paper abstracts from such possible correlations

in order to highlight as clearly as possible the interaction between information and trade

elasticities.3

The rest of the paper is organized as follows. Section 2 presents the theoretical framework,

contrasts the elasticity implications between an environment with and without uncertainty,

and describes a method to estimate trade elasticities based on a model with demand uncer-

tainty. Section 3 presents elasticity estimation results. Section 4 concludes. Appendix A

provides a detailed description of the demand uncertainty model and complete information

model. Appendix B provides proofs to all Propositions. Appendix C demonstrates that our

results are robust to the alternative firm-level choice variable under uncertainty.

2 Theoretical Framework

2.1 Economic Environment

In this section we consider a model with heterogeneous firms that export products in mar-

kets characterized by monopolistic competition. This environment is similar to that in Melitz

(2003), and we assume exogenous entry as in Chaney (2008). We further introduce infor-

mation asymmetries by constructing a stylized version of the learning model in Jovanovic

(1982) as was embedded into a trade model in Timoshenko (2015b) to a trade context. All

derivations are relegated to Appendix A.

3 Furthermore, Bergin and Lin (2012) show that the entry of new varieties increases at the time of the
announcement of the future implementation of the European Monetary Union, suggesting that changes in
the information available to firms have immediate consequences for firms’ decisions. Lewis (2014) studies
the effect of exchange rate uncertainly on trade; Allen (2014) shows that information frictions help to
explain price variation across locations; Fillat and Garetto (2015) show that aggregate demand fluctuations
can explain variation in stock market returns between multinational and non-multinational firms; Handley
and Limao (2015) show that when trade policy is uncertain, there is less entry into foreign markets.
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2.1.1 Demand

There are N countries and K sectors, such that each country is indexed by j and each sector

is indexed by k. Each country is populated by a mass of Lj identical consumers whose

preferences are represented by a nested constant elasticity of substitution utility function

given by

Uj =
K∏
k=1

(∫
ω∈Ωijk

(
eθijk(ω)

) 1
εk cijk(ω)

εk−1

εk dω

) εk
εk−1

µk , (1)

where Ωijk is the set of varieties in sector k consumed in country j originating from country

i, cijk(ω) is the consumption of variety ω ∈ Ωijk, εk is the elasticity of substitution across

varieties within sector k, θijk(ω) is the demand shock for variety ω ∈ Ωijk, and µk is the

Cobb-Douglas utility parameter for goods in sector k such that
∑K

k=1 µk = 1.

Each consumer owns a share of domestic firms and is endowed with one unit of labor

that is inelastically supplied to the market. Cost minimization yields a standard expression

for the optimal demand for variety ω ∈ Ωijk, given by

cijk(ω) = eθijk(ω)pijk(ω)−εkYjkP
εk−1
jk , (2)

where pijk(ω) is the price of variety ω ∈ Ωijk, Yjk is total expenditures in country j on

varieties from sector k, and Pjk is the aggregate price index in country j in sector k.4

2.1.2 Supply

Each variety ω ∈ Ωijk is supplied by a monopolistically competitive firm. Each firm can po-

tentially supply one variety of a product from each sector. Upon entry, a firm is endowed with

an idiosyncratic labor productivity level eϕ and a set of idiosyncratic product-destination

specific demand shocks {θijk}.5 Productivity and demand shocks are drawn from indepen-

dent distributions. Denote by gϕijk(.) the distribution from which firms draw productivity,

ϕ, and by gθijk(.) the distribution from which firms draw demand shock, θijk. Firms from

country i face fixed costs, fijk, and variable costs, τij, of selling output to country j. Fixed

and variable costs are denominated in units of labor.

4Note that Yjk = µkYj , where Yj is aggregate income in country j.
5Following the finding of Foster, Haltiwanger, and Syverson (2008) who document that idiosyncratic firm-
level demand shocks rather than productivity account for a greater variation in sales across firms, we focus
on the demand shocks that are firm specific. Each firm from country i draws a separate demand shock for
each destination j and industry k. The ijk subscript on θijk therefore indicates that idiosyncratic firm-level
demand shocks are origin-destination-sector specific. The superscript does not refer to an aggregate origin-
destination-sector level shock that is common across firms. We abstract from such potential aggregate
shocks since they do not affect properties of the distribution of quantities or sales across firms, which is the
focus of our analysis.
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We assume that firms do not possess complete information when making export decisions.

In particular, while firms always observe their productivity shock, ϕ, they do not observe

their demand shocks, θijk, when making export decisions. Therefore, firms choose a quantity

to export to each destination market before knowing destination-specific demand shocks

for their product. Firms choose export quantities to maximize expected profits, subject to

consumer demand (2) and prior beliefs about demand, Eθ(exp(θijk/εk)).
6 Henceforth, the

subscript of the expectation operator indicates that the expectation is taken with respect to

the distribution of the random variable indicated in the subscript.

The firm’s decision problem yields an expression for the optimal quantity exported, given

by

qijk(ϕ) = Bq
ijk · e

εkϕ. (3)

where Bq
ijk is an origin-destination-industry fixed effect.7 The corresponding productivity

entry threshold is given by

e(εk−1)ϕ∗
ijk =

Bϕ
ijk(

Eθ

(
e
θijk
εk

))εk , (4)

where Bϕ
ijk is an origin-destination-industry fixed effect. Once all goods are supplied to

markets, demand shocks are realized and prices clear the goods markets for each variety. A

firm’s realized export sales are given by

rijk(θijk, ϕ) = Br
ijk · e

(εk−1)ϕ+
θijk
εk , (5)

where Br
ijk is an origin-destination-industry fixed effect.

2.1.3 Trade Elasticity

The aggregate trade flow from country i to country j in industry k is defined as

Xijk ≡ Mijk

∫ +∞

ϕ∗
ijk

∫ +∞

−∞
rijk(θ, ϕ)hijk(θ)

gijk(ϕ)

Probijk(ϕ > ϕ∗ijk)
dθdϕ,

6 We assume that prior beliefs are the same across firms and equal the population mean. This assumption
does not fundamentally change our results. In principle, we could expand the set of shocks on which a
firm bases its quantity decision to any idiosyncratic shocks including demand expectations which could be
arbitrarily correlated with firm productivity. What is important is that some idiosyncratic information is
known to a firm before making decisions, and some idiosyncratic information is revealed to that firm after
those decisions have been made.

7 We refer the reader to Appendix A.1.1 for a derivation of and full expression for the origin-destination-
industry fixed effects found in equations (3), (4) and (5).
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where Mijk is the mass of firms exporting from country i to country j in industry k, and

ϕ∗ijk is the productivity entry threshold. The partial elasticity of trade flows with respect to

the variable trade costs is given by

ηijk ≡
∂ lnXijk

∂ ln τij
= (1− εk)︸ ︷︷ ︸

level of the
partial trade elasticity

 1︸︷︷︸
intensive margin

contribution

+ γijk(φ
∗
ijk)︸ ︷︷ ︸

extensive margin
contribution

 , (6)

where φk = (εk − 1)ϕ is a rescaled productivity, and the extensive margin is given by

γijk(φ
∗
ijk) =

eφ
∗
ijkgφijk(φ

∗
ijk)∫ +∞

φ∗ijk
eφgφijk(φ)dφ

. (7)

Equation (6) decomposes the partial trade elasticity into intensive and extensive margin

components, and equation (7) shows that the extensive margin of the partial trade elasticity

is governed by the rescaled productivity entry threshold, φ∗ijk, and the rescaled productivity

distribution, gφijk(·).

2.2 Complete Information Environment

In a complete information environment, firms observe both the productivity and demand

shocks upon entry.8 Firms’ decisions therefore depend on a single profitability parameter

defined by zijk ≡ (εk − 1)ϕ + θijk = φk + θijk. Productivity and demand shocks therefore

simultaneously determine selection into exporting through their impact on the export entry

threshold, the export sales distribution and the partial trade elasticity. In particular, under

complete information, the single profitability entry threshold, z∗ijk is given by

ez
∗
ijk = Bϕ

ijk. (8)

Subsequently, a firm’s export sales are given by

rCIijk(zijk) = Bijke
zijk , (9)

and the partial trade elasticity is given by

ηCIijk = (1− εk)︸ ︷︷ ︸
level of the

partial trade elasticity

 1︸︷︷︸
intensive margin

contribution

+ γCIijk(z
∗
ijk)︸ ︷︷ ︸

extensive margin
contribution

 , (10)

8Appendix A.2 contains a formal description of the complete information economy.
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where the superscript ‘CI’ stands for the ‘Complete Information’ environment, and the ex-

tensive margin is given by

γCIijk(z
∗
ijk) =

gzijk(z
∗
ijk)e

z∗ijk∫ +∞
z∗ijk

ezgzijk(z)dz
, (11)

where gzijk(.) is the distribution of firm profitability.

2.3 Properties of the Partial Trade Elasticity

In comparing the expressions for the partial trade elasticity between the incomplete versus

complete information environments, equations (6) versus (10) clearly indicate that the two

elasticities differ solely along the extensive margin dimension. In this section we establish a

set of properties of the extensive margin component of the partial trade elasticity that will

enable us to show that (under some mild conditions) trade is more elastic under incomplete

information.

Observe from equations (7) and (11) that the extensive margin component of the partial

trade elasticity admits the same functional form in both information environments and can

be simply written as

γ(x) ≡ exg(x)∫ +∞
x

ezg(z)dz
. (12)

Here we drop all the subscripts and focus solely on the functional form of the extensive

margin and its properties. Observe that given a distribution g(.), the extensive margin γ(x)

is a function of the entry threshold denoted by x. Similarly, for a given threshold x, the

extensive margin γ(x) is a function of the distribution g(.). To proceed we make the following

assumptions about distribution g(x).

Assumption 1 (A1) The probability density function g(x) has the following properties:

(i) x ∈ R is the support of the distribution,

(ii) E(ex) ≡
∫ +∞
−∞ ezg(z)dz exists and is finite, and

(iii) the function log
(∫ +∞

x
ezg(z)dz

)
is concave in x.

Assumption (iii), that the log of the conditional expectation of profitability is a concave

function of the threshold value, is important for understanding what assumptions on uncer-

tainty make the extensive margin more elastic. Assumption (iii) requires that the upper tail

of the distribution g(x) not have too much mass. Without such a restriction, total sales of

marginal firms relative to average sales could become very small as the threshold increases,
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and the extensive margin elasticity might not be monotonically increasing. Monotonicity

will allow us to characterize the effect of uncertainty on the extensive margin elasticity.

Accordingly, Proposition 1 below establishes two novel properties of the extensive margin

γ(x).

Proposition 1 Let g(x) be a probability density function satisfying A1. Then the following
hold.

(i) γ(x) ≡ [exg(x)]/
∫ +∞
x

ezg(z)dz is an increasing function of x.

(ii) Denote the extensive margin elasticity associated with g(x) as γ(x). Let g̃(x) be a mean
preserving spread of g(x), with extensive margin elasticity γ̃(x). There exists x∗ such
that γ̃(x) < γ(x) for all x > x∗, γ̃(x) = γ(x) if x = x∗, and γ̃(x) > γ(x) for all x < x∗.

To provide some intuition for why Proposition 1 holds, it is instructive to normalize the

numerator and denominator of γ(x) by
∫ +∞
−∞ ezg(z)dz as follows,

γ(x) =
exg(x)/

∫ +∞
−∞ ezg(z)dz∫ +∞

x
ezg(z)dz/

∫ +∞
−∞ ezg(z)dz

.

Define h(x) = exg(x)/
∫ +∞
−∞ ezg(z)dz. Notice that

∫ +∞
−∞ h(x)dx = 1 and h(x) ≥ 0. Hence,

h(x) is the probability density function. The corresponding cumulative distribution function

is then given by

H(x) =

∫ x

−∞
ezg(z)dz

/∫ +∞

−∞
ezg(z)dz. (13)

The corresponding survival function is given by 1 − H(x) =
∫ +∞
x

ezg(z)dz/
∫ +∞
−∞ ezg(z)dz.

With this change in notation, the extensive margin γ(x) is given by

γ(x) =
h(x)

1−H(x)
. (14)

Hence, the extensive margin of the partial trade elasticity is a hazard rate associated with

a random variable X distributed according to h(x). As such, γ(x) inherits properties of the

hazard rate function the first of which is being a monotonically increasing function. Notice

that part (iii) of A1 ensures that distribution h(x) has a log-concave survival function. Log-

concavity of the survival function ensures that the corresponding hazard rate is increasing:

Notice from equation (14) that γ′(x) = −d2 log(1−H(x))/dx2 which is positive if and only

if log(1−H(x)) is concave.

Part (ii) of Proposition 1 shows that the extensive margin elasticity as a function of

threshold values x ∈ R exhibits a single crossing property. The single crossing property

establishes that the extensive margin elasticity function associated with the cumulative dis-

tribution function of the mean preserving spread, γ̃(x), only crosses the extensive margin
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elasticity function associated with the less dispersed cumulative distribution function , γ(x),

once from above. Notice that equation (14) implies that γ(x) = −d log(1 − H(x))/dx. As

a result, as we show in the proof of Proposition 1 in Appendix B, γ(x) > γ̃(x) if and only

if H(x) > H̃(x). By equation (13), the cumulative distribution functions H(x) and H̃(x)

are defined by distributions g(x) and g̃(x) respectively. By part (ii) of Proposition 1, g̃(x)

is a mean preserving spread of g(x). Hence G(x) crosses G̃(x) once from below. As a re-

sult, this single-crossing property is also preserved when defining a distribution according to

transformation in equation (13). Therefore, γ(x) also crosses γ̃(x) from below once, and for

all values of x sufficiently large we know γ(x) > γ̃(x).

A corollary of part (ii) of Proposition 1 is that the single crossing property of the extensive

margin holds for any affine transformation of the abscissa for either of the functions.

Corollary 1 Let g(x) be a probability density function satisfying A1. ∀a ∈ R there exists

x∗(a) such that γ(x) > γ̃(x+a) if x > x∗(a); γ(x) = γ̃(x+a) if x = x∗(a), and γ(x) < γ̃(x+a)

if x < x∗(a).

In the next subsection we use insights from the discussion herein to show that the exten-

sive margin of the partial trade elasticity is larger under incomplete information.

2.3.1 Comparison of the Partial Trade Elasticities

Observe from equations (6), (7), (10), and (11) that the difference in the partial trade elas-

ticity between the two information environments arises from the extensive margin. Further,

the difference in the extensive margin arises from two separate channels: the entry threshold,

φ∗ijk versus z∗ijk, and the distribution of the corresponding shock, gφijk(.) versus gzijk(.).

To compare the extensive margin elasticities between the two information environments,

γijk(x) versus γCIijk(x), let us first focus on the distribution that define those elasticities, gφijk(.)

versus gzijk(.). Assume that both distributions satisfy Assumption 1. It is worth noting that

distributions that are commonly used in the trade literature, such as a Normal distribution

satisfy A1. Furthermore, the Double EMG distribution that we will use in Section 3.2.1 also

satisfies A1.

Recall that profitability shock z is defined as z = φ + θ, where φ and θ are independent

and are drawn from the probability density functions gφijk(.) and gθijk(.) respectively. Without

the loss of generality we can assume that the mean of θ equals zero. In this case, gzijk(.) is

a mean-preserving spread of gφijk(.). Hence, by part (ii) of Proposition 1, for a sufficiently

high entry threshold, γijk(x) > γCIijk(x), and therefore trade is more elastic under incomplete

information. We will now show that this property holds even if the entry thresholds are

different.
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From equations (4) and (8), the entry threshold φ∗ijk under incomplete information versus

z∗ijk under complete information are related as follows: φ∗ijk = z∗ijk− log (Eθ (exp(θijk/εk)))
εk .

Therefore, the proper comparison of elasticities involves comparing γijk(x) and γCIijk(x +

a), where constant a ≡ log (Eθ (exp(θijk/εk)))
εk . By Corollary 1, for φ∗ijk high enough,

γijk(φ
∗
ijk) > γCIijk(φ

∗
ijk + a) = γCIijk(z

∗
ijk), i.e. trade is more elastic under complete information.

To summarize, as follows from our discussion, trade is more elastic under complete in-

formation because the distribution of the shock that determines the partial trade elasticity

is more dispersed under complete information than under uncertainty. Under uncertainty,

trade elasticity is determined by the distribution of productivity, while under complete in-

formation trade elasticity is determined by the distribution of the profitability shock, a mean

preserving spread of productivity. As a result, the associated hazard rate, consequently the

partial trade elasticity, is lower under complete information than under uncertainty.

We next demonstrate that the information environment faced by firms affects not only

the magnitude of the partial trade elasticity, but also the type of data that are needed to

identify the partial trade elasticity.

2.4 Identification of the Partial Trade Elasticity

Comparing equations (6) and (10) makes clear that the information environment directly

impacts the identification of the extensive margin of the partial trade elasticity. Intuitively,

the information available to firms at the time of making export decisions determines how

responsive their decisions are to changes in variable trade costs. Therefore, quantifying

the partial trade elasticity in the complete and incomplete information economies requires

different data for proper identification.

As can be seen from equations (10) and (11), under complete information the trade

elasticity is identified by the profitability distribution, gzijk(.), and the profitability entry

threshold, z∗ijk. Profitability, is exactly the information that determines firm entry decisions

by equation (8) and subsequently the equilibrium the distribution of firm sales by equation

(9). Hence, export sales data contain the information about profitability that is necessary

to identify the partial trade elasticity under complete information environment.

As can be seen from equations (6) and (7), under incomplete information the partial

trade elasticity is identified by the rescaled productivity distribution, gφijk(.), and the rescale

productivity entry threshold, φ∗ijk. Hence, the partial trade elasticity is governed by produc-

tivity, which, under incomplete information, is the only information available to the firms

at the time at which they make export decisions. As can be seen from equations (3) and

(5), the model implies that productivity can be identified from data on export quantities,

but not export sales. Equation (3) shows that, conditional on variables common to all firms
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(contained in Bq
ijk), a firm’s export quantity decision is entirely governed by its firm-level

productivity shock, ϕ. Since firms only observe their productivity, and productivity is the

only idiosyncratic information upon which firms base their export decisions, productivity

alone determines a firm’s production response to a potential change in variable trade costs.

Therefore, equation (3) shows that such productivity information is contained exactly in the

export quantity data.

This is in contrast to the information embedded in the export sales data. Equation (5)

shows that, conditional on aggregate variables that are common across all firms (Br
ijk), a

firm’s export sales depend on both the firm’s known productivity, ϕ, and the firm’s sub-

sequent idiosyncratic demand realization, θijk. The idiosyncratic firm-level demand shocks

only affect the realized distribution of sales across firms, but play no role in a firm’s decision

making process and therefore do not affect the firm’s response to a change in variable trade

costs. As a result, the model implies that, relative to export quantity data, export sales data

contain additional information that does not directly influence firms export decisions.

Note that productivity and demand are two standard interpretations of model ingredients

relative to the data. Following the trade literature, the model’s productivity and demand

shocks stand in for any variation that allows the model to be consistent with the data on sales

and quantities. What is important for our paper is that, in environments with uncertainty,

productivity shocks stand in for any information that firms possess at the time of making

export decisions while demand shocks stand in for any information that determines sales and

that is revealed after exporting goods.

To summarize, quantity data identifies the extensive margin contribution to the partial

trade elasticity by enabling inference about the productivity distribution and productivity

entry threshold. In contrast, it is only appropriate to identify the partial trade elasticity

using export sales data when firms possess complete information about their demand. In

the next section we adopt an estimation approach suggested by Bas, Mayer, and Thoenig

(2017) and extended by Sager and Timoshenko (2017). Relative to these papers, we extend

the approach to an environment with demand uncertainty.

2.5 Estimation Approach

In this section we detail our approach to estimating partial trade elasticities in the presence of

demand uncertainty. As shown in equation (6), in an environment with uncertainty, selection

occurs based on the productivity alone. Hence the extensive margin of trade elasticity

depends on the productivity entry threshold and the distribution of the productivity draws.

Both can be recovered using the data on the distribution of export quantity as we now

describe.
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Consider the following change of notation. Let ϕ̃ ≡ εkϕ and denote by gϕ̃(.) the proba-

bility distribution function of ϕ̃. Given the change in notation, gϕ̃(.) is just the distribution

of ϕ, gϕijk(.) scaled by the elasticity of substitution, εk.

Given this change in notation, the partial trade elasticity can be expressed as

ηijk = (1− εk)

1 +
εk

εk − 1

gϕ̃(ϕ̃∗)e
εk−1

εk
ϕ̃∗∫ +∞

ϕ̃∗ e
εk−1

εk
ϕ
gϕ̃ijk(ϕ)dϕ

 . (15)

The distribution gϕ̃(.) can be directly recovered from the empirical distribution of the log-

export quantity. Taking the logarithm of equation (3) yields

log qijk = logBq
ijk + ϕ̃. (16)

Observe that the distribution of log-export quantity is given by the distribution of ϕ̃ scaled

by a constant. Hence, parameters of gϕ̃ijk(.) can be recovered from fitting the distribution to

the empirical distribution of log-export quantity.

Given the scaled productivity distribution, gϕ̃ijk(.), we follow Bas et al. (2017) in recovering

the scaled productivity threshold, ϕ̃∗ijk, by matching the model-implied average-to-minimum

ratio to that in our quantity data. The model-implied average-to-minimum ratio of export

quantities given by

Average-to-Minimum Ratio = e−ϕ̃
∗
ijk

∫ +∞

ϕ̃∗
ijk

eϕgϕ̃ijk(ϕ)

Probϕ̃ijk(ϕ > ϕ̃∗ijk)
dϕ. (17)

In the Section 3 we apply the described elasticity estimation approach to quantify the

partial trade elasticity.

3 Quantifying Trade Elasticities

3.1 Data

The data come from the Brazilian customs declarations collected by SECEX (Secretaria

de Comercio Exterior).9 The data record export value and weight (in kilograms) of the

shipments at the firm-product-destination-year level. A product is defined at the 6-digit

Harmonized Tariff System (HS) level. We use the data for the period between 1997 and

2000, when both the sales and the weight data are available.

We proxy the theoretical notion of export quantity with an empirical measure of export

9For a detailed description of the dataset see Molinaz and Muendler (2013). The data have further been
used in Flach (2016) and Flach and Janeba (2017).

13



weight.10 The properties of export weight differ substantially across industries. Hence,

we further conduct our analysis at the destination-year-industry level where we define an

industry as a 6-digit HS code.

We define an observation to be a distribution of export quantity across firms for a given

destination-year-industry triplet, and focus on observations where at least 100 firms export.11

The final sample consists of 190 destination-year-industry observations, and covers 14

destinations and 35 industries. Table 1 provides summary statistics of log-export quantities

and log-sales distributions in our sample.

3.2 Parameter Estimates

3.2.1 The Export Quantity Distribution

To recover the partial trade elasticity we proceed by, first, assuming that the productivity

is drawn from a Double EMG distribution, DEMG(m, υ2, ξL, ξR). The resulting log-export

quantity distribution, gϕ̃ijk(.), then also follows a Double EMG distribution, DEMG(µ, σ2, λL, λR)

with parameters scaled by the elasticity of substitution, εk, and described by the following

cumulative distribution function:12

G(ϕ) = Φ

(
ϕ− µ
σ

)
− λL

λL + λR
e−λR(ϕ−µ)+σ2

2
λ2RΦ

(
ϕ− µ
σ
− λRσ

)
+

λR
λL + λR

eλL(ϕ−µ)+σ2

2
λ2LΦ

(
−ϕ− µ

σ
− λLσ

)
, (18)

where Φ(.) is the cumulative distribution function of the standard normal distribution.13

The Double EMG distribution provides a very flexible generalization of common distri-

butional assumptions used in the literature. From equation (18), for example, as σ → 0 and

λL → 0, the Double EMG distribution converges to an Exponential (Pareto) distribution,

as assumed in Chaney (2008). As λL → +∞ and λR → +∞, the Double EMG distribution

converges to a Normal distribution, as assumed in Bas et al. (2017) and Fernandes et al.

(2015). As σ → 0, the Double EMG converges to a Double Exponential (Pareto) distribu-

tion. By assuming the Double EMG distribution we, therefore, allow the data to recover

the best fit of distribution between the Exponential, Normal, Double Exponential or the

10Export weight is used as a measure of export quantity in a number of studies including Bastos et al.
(Forthcoming).

11The thresholds of 100 firms ensures that an empirical distribution can be accurately described by per-
centiles. This threshold is also consistent with the literate. See Fernandes et al. (2015), Sager and Timo-
shenko (2017).

12The parameters of the productivity versus log-export quantity are related as follows: µ = εkm, σ2 = ε2kυ
2,

λL = ξL/εk, and λR = ξR/εk.
13For notational compactness we drop the ijk subscripts in this section.
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corresponding convolutions.14

For each destination-year-industry observation, we choose distribution parameters (µ, σ2, λL, λR)

so that the percentiles of the theoretical log-quantity distribution match the percentiles of

the empirical log-quantity distribution. We follow Sager and Timoshenko (2017) in estimat-

ing the parameters of the Double EMG distribution using a Generalized Method of Moments

(GMM) procedure that minimizes the sum of squared residuals,

min
(µ,σ2,λL,λR)

NP∑
i=1

(
qdatai − qi(µ, σ2, λL, λR)

)2
,

where qdatai is the i-th percentile of the empirical quantity distribution for a given destination-

year-industry, qi(µ, σ
2, λL, λR) is the model implied i-th quantity percentile for given param-

eters (µ, σ2, λL, λR), and NP is the number of percentiles used in estimation. We use the 1st

through 99th percentiles of the empirical quantity distribution to estimate parameters. In

practice, this choice eases computational burden compared to using each data point, without

significantly changing the parameter estimates we recover. Furthermore, note that choosing

parameters to minimize the sum of squared residuals is equivalent to Head et al.’s (2014)

method of recovering parameters from quantile regressions.

Table 2 summaries distribution parameter estimates across 190 observations. As can be

seen from the Table, the average sample value of σ is 1.97, rejecting a common assumption

of Exponentially or Double Exponentially distributed productivity shocks. Furthermore, as

can be inferred from the values of the left and right tail parameters, λL and λR, distribu-

tions exhibit substantial heterogeneity in the fatness of both tails. The value of the right

tail parameter, λR varies between 0.34 and 20.61, with about 72 percent of observations

exhibiting a fat right tail, i.e. λR < 2. This finding is consistent with the previous empirical

research documenting fatness in the right tail of sales or employment distributions across

firms.15 Furthermore, we also find that distributions exhibit fatness in the left tail (λL < 2)

in approximately 38 percent of observations.16

3.2.2 Entry Threshold

Next, we use the fitted distribution to recover the productivity entry thresholds. For

each destination-year-industry observation we solve equation (17) for the productivity entry

threshold using the data on the corresponding average-to-minimum ratio of export quantity

and the distribution parameter estimates.

Figure 1 provides a scatter plot of the entry threshold estimates and the corresponding

14See Sager and Timoshenko (2017) for a more thorough characterization of the Double EMG distribution.
15See Axtell (2001) and di Giovanni et al. (2011).
16 Sager and Timoshenko (2017) document fat left tails in the context of export sales distributions.
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average-to-minimum ratios of log-export quantity. Each dot in the Figure corresponds to

a destination-year-industry observation. The values of the thresholds are demeaned by a

corresponding estimate of µ of the Double EMG distribution. Hence, the values represent

deviations from the mean of the distribution. Figure 1 shows that the greater is the deviation,

i.e. the more negative is the value on the y-axis, the lower is the entry threshold. A lower

entry threshold relative to the mean implies a smaller size of a marginal exporter relative to

an average exporter.

3.3 Trade Elasticities

3.3.1 Elasticity Estimates

Given estimated distribution parameters and entry thresholds from Section 3.2, we compute

the partial trade elasticity, ηijk, and the extensive margin contribution to the trade elasticity

from equation (15). Notice that computation requires estimates of the elasticity of sub-

stitution across varieties, εk. We use estimated elasticities of substitution from Soderbery

(2015), which refines estimates in Feenstra (1994) and Broda and Weinstein (2006).17 Table

3 summarizes average values for and heterogeneity in elasticity estimates.

From Table 3, observe that an average contribution of the extensive margin to trade

elasticity is 0.04. In the context of the volume of aggregate trade flows, this magnitude can

be understood as follows. Suppose, for example, that a decline in trade costs leads to an

increase in trade flows by a million dollars. For an average observation, the new exporters

would account for approximately $38,000 out of a million dollars of the newly created trade.18

3.3.2 Comparison to Complete Information

To compare the estimates of trade elasticity between the two information environments, we

first re-estimate the partial trade elasticity under the assumption of complete information.

As discussed in Section 2.2, in a model with complete information the partial trade elasticity

depends on the distribution of export sales. Hence, we re-fit the Double EMG distribution

to match the distribution of log-export sales, and further use the average-to-minimum ratio

of export sales to impute the value of the profitability entry threshold. Panel A in Table 3

provides summary statistics of the elasticity estimates.

17Soderbery (2015) estimates the elasticity of substitution values at the HS-10 digit level using the U.S.
import data. To use Soderbery (2015) estimates aggregate the elasticities to the HS-6 digit level equally
weighing corresponding HS-10 sub-categories for each HS-6 category.

18 Sager and Timoshenko (2017) show that this magnitude is a result of an abundance of small exporters
in export sales distributions. Other frequently used trade data sets exclude these small firms and, hence,
generate much higher extensive margin elasticities.
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Result 1: Under demand uncertainty, the extensive margin contribution to the trade elas-

ticity is larger relative to the complete information environment.

As can be seen from Panel A in Table 3, the complete information economy yields lower

values for the extensive margin elasticity.19 In a complete information environment, the

average contribution of the extensive margin is smaller by two orders of magnitude relative

to a model with demand uncertainty. Panel B in Table 3 compares the elasticity estimates

across the same observations. In particular, it reports summary statistics of the ratio of the

quantity implied trade elasticity relative to the sales implied trade elasticity. We call this

ratio the amplification effect because demand uncertainty produces a higher contribution of

the extensive margin to trade, an order of magnitude of 104.

To motivate this magnitude, consider the following example. Suppose trade increases by

a million dollars due to a decline in trade costs. Then, a trade elasticity estimate from a

complete information model would attribute approximately $170 out of a million dollars of

new trade to trade generated by entrants. In a model with incomplete information, $38,000

out of a million dollars can be attributed to trade by entrants. Hence, complete information

dampens the (already small) contribution of new exporters to trade. Conversely a model

with uncertainty amplifies the contribution of the extensive margin to trade.20

3.3.3 Role of Demand Uncertainty

The magnitude of the uncertainty amplification effect is tightly linked to the extent of varia-

tion arising from the demand shocks. Substituting equation (3) into equation (5) and taking

the logarithm we obtain

log rijk =
εk − 1

εk
log qijk + FEjk +

θijk
εk
, (19)

where FEjk = log

(
Y

1
εk
jk P

εk−1

εk
jk

)
. Notice that the distribution of the demand shocks generates

a wedge between the distributions of log-export sales and log-export quantity. This wedge is

larger when the variance of demand shocks is higher. If the variance of the demand shocks

is zero, then the distributions of log-export sales and log-export quantity would coincide,

yielding no amplification effect. As the variance of the demand shock rises, the distributions

19In both models, however, the average partial trade elasticity is around 4 as a result of the overall small
contribution of the extensive margin to that elasticity.

20While the extensive margin contribution to the partial trade elasticity is larger in the complete information
than uncertainty economy, note that the magnitudes are partially generated by our generally small esti-
mates of the extensive margin contribution. The magnitude of the estimates is a feature of our data, which
includes the universe of customs declarations and therefore contains smaller firms than most standard
datasets. See Sager and Timoshenko (2017) for a discussion of the potential biases that may contaminate
estimation on truncated data.
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of log-export sales and log-export quantities are more dissimilar. Hence we would expect a

larger amplification effect.

Given equation (19), we measure the extent of demand variation in a given destination-

year-industry as the difference between the variance of log-export sales and the variance of

log-export quantities. Assuming for simplicity that the demand shocks are uncorrelated with

log-export quantities and applying the variance operator to both side of equation (19), we

obtain

V

(
θjk
εk

)
= V (log rjk)−

(
εk − 1

εk

)2

V (log qjk). (20)

We first compute the variance of log-export sales, V (log rjk), and the variance of log-export

quantity, V (log qjk), across firms within a given destination-year-industry observation.We

then use equation (20) to back out the value of the variance of the demand shocks, V (θjk/εk)

for each destination-year-industry observation.

Result 2: The difference in the trade elasticity estimates between environments with demand

uncertainty and complete information is larger in more uncertain economies.

Figure 2 depicts the relationship between the variance of the demand shocks and the am-

plification effect. The x-axis measures the variance of the demand shocks, while the y-axis

measures the ratio of the export quantity implied relative to the export sales implies esti-

mate of the extensive margin elasticity. The figure confirms that the difference in elasticity

estimates between the complete information and uncertainty economies increases with an

increase in demand uncertainty. In the data, exporters do not have full information about

product demand in destination markets and introducing uncertainty into the model leads to

a larger extensive margin adjustment.

4 Conclusion

Recently, models of learning along the lines of Jovanovic (1982) have been embedded in trade

models with heterogeneous firms to analyze firm behavior such as growth (Arkolakis et al.,

2018), export participation (Timoshenko, 2015a), product switching (Timoshenko, 2015b),

and pricing decisions (Bastos et al., Forthcoming). This paper is the first to examine the

impact of information structure on measuring the partial trade elasticity with respect to

variable trade costs.

In this paper, we study the implications of demand uncertainty for the partial trade elas-

ticity. We introduce uncertainty with respect to product demand to an otherwise standard

new trade model with heterogeneous firms, as in Melitz (2003). With demand uncertainty,
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firms must choose how much of their product to export prior to observing the destination

specific demand shock. As a result, firms make export decisions based on their productivity

and, hence, selection into exporting and the extensive margin of adjustment are driven by

firms’ productivity.

In a model with complete information, firms know their product demand in destination

markets. Firms can choose how much of their product to export with complete informa-

tion about their profitability. Profitability is a measure of productivity and demand that

characterizes idiosyncratic profit across firms.

We quantify the effect of uncertainty by comparing the trade elasticity in model environ-

ments with and without product demand uncertainty. To compute the trade elasticity, we

reformulate the structural estimation approach in Bas, Mayer, and Thoenig (2017) for use in

an environment with incomplete information. We discipline the distribution of productivity

separately from that of profitability by using Brazilian microdata on export quantities and

export sales. Upon measuring trade elasticities, we find that under demand uncertainty

the extensive margin adjustments to changes in variable trade costs is larger relative to

the complete information economy. Furthermore, the effect is stronger in economies with

higher demand uncertainty (e.g., higher variance in sales distributions relative to variance

in quantity distributions).

This paper shows that the information structure faced by firms is important for mea-

suring the extensive margin response to a decline in trade costs. In countries or industries

in which exporters face high demand uncertainty, by assuming away information asymme-

tries, trade elasticity estimates will likely understate the true magnitude of extensive margin

adjustments.
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Figures and Tables

Table 1: Properties of the log-export quantity and
log-export sales distributions across destination-year-
industry observations over 1997-2000.

Statistic Mean Standard

Deviation

Min Max

Panel A: Properties of log-quantity

Standard Deviation 2.46 0.48 1.24 3.38

Skewness 0.09 0.40 -1.00 0.96

Interquartile Range 3.48 0.82 1.88 5.50

Kelly Skew 0.02 0.13 -0.36 0.27

Panel B: Properties of log-sales

Standard Deviation 2.28 0.41 1.30 3.19

Skewness -0.13 0.27 -0.88 0.57

Interquartile Range 3.09 0.62 1.74 4.47

Kelly Skew -0.04 0.11 -0.32 0.28

Note: the statistics are reported across 190
destination-year-industry observations where at least 100
firms export. An industry is defined as a 6-digit HS code.
Export quantity is measured as export weight in kilograms.
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Table 2: Double EMG distribution parameter es-
timates.

Statistic Mean Standard

Deviation

Min Max

σ 1.97 0.63 0.02 3.21

λL 7.91 6.33 0.40 26.26

λR 4.03 5.65 0.34 20.61
a The summary statistics are reported across 190

destination-year-industry observations. An industry is
defined as a 6-digit HS code.

Table 3: Trade elasticity estimates.

Extensive Margin Partial Trade

Elasticity Elasticity, ηijk

Measure Mean Std. Dev. Mean Std. Dev.

Panel A: Estimates of trade elasticity

Quantity baseda 0.04 0.13 3.88 3.79

Sales basedb 1.7 · 10−4 8.8 · 10−4 3.82 3.86

Panel B: Amplification effect

Amplification effectc 2.2 · 104 8.9 · 104 1.04 0.13
a The quanity based measure of trade elasticity is based on a model with

demand uncertainty. The summary statistics are reported across 84
destination-year-industry observations for which an estimates of the
Double EMG tail parameter λR > 1. The elasticities are not defined for
λR ≤ 1.

b The sales based measure of the trade elasticity is based on a model with
complete information. The summary statistics are reported across 124
destination-year-industry observations for which an estimates of the
Double EMG tail parameter λR > 1. The elasticities are not defined for
λR ≤ 1.

c The amplification effect is computed as the ratio of the quantity based
relative to the sales based estimate of trade elasticity. The summary
statistics are reported across 73 destination-year-industry observations
for which the elasticity is defined in terms of both quantity and sales
based measures.
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Figure 1: The entry threshold and average-to-minimum ratio.
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Notes: The figure depicts a scatter plot of the entry threshold estimates and the corresponding average-

to-minimum ratios of export quantity for observation with an estimate of the Double EMG tail parameter

λR > 1. The threshold is not defined for λR ≤ 1. Each dot corresponds to a destination-year-industry

observation. Values of the thresholds are demeaned by a corresponding estimate of µ of the Double EMG

distribution.
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Figure 2: Amplification effect and demand uncertainty.
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Notes: The figure depicts a scatter plot of the amplification effect and demand uncertainty. The amplification

effect is defined as the ratio of the extensive margin elasticity estimates between the quantity based and the

sales based measures. Demand uncertainty is defined as the variance of the demand shocks estimated using

equation (20). Each dot corresponds to a destination-year-industry observation. The solid line is an OLS

best fit line.
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A Theoretical Appendix

A.1 A Model with Demand Uncertainty

In this section we provide derivations for the theoretical results in Section 2. We consider

a monopolistically competitive environment as in Melitz (2003) with exogenous entry as in

Chaney (2008). We further introduce information asymmetries by constructing a stylized

version of the learning model in Timoshenko (2015b).

A.1.1 Supply

For each destination and industry firms maximize expected profits given by

E[π(ϕ)] = max
qijk

Eθijk

(
pijkqijk −

wiτij
eϕ

qijk

)
− wifijk, (21)

subject to the demand equation (2). The expectation over the demand draw, θijk, is given by

the distribution from which the demand parameter is drawn, hijk(.). Substituting equation

equation (2) into the objective function and applying the expectation operator yields the

problem of the firm,

max
qijk(ϕ)

qijk(ϕ)
εk−1

εk Eθ

(
e
θijk
εk

)
Y

1
εk
jk P

εk−1

εk
jk − wiτij

eϕ
qijk(ϕ)− wifijk. (22)

The first order conditions with respect to quantity yield the optimal quantity,

qijk(ϕ) =

(
εk − 1

εk

)εk
eεkϕ

(
Eθ

(
e
θijk
εk

))εk
(τijwi)

−εkYjkP
εk−1
jk . (23)

A firm’s realized revenue is then given by

rijk(θijk, ϕ) =

(
εk − 1

εk

)εk−1

e
(εk−1)ϕ+

θijk
εk

(
Eθ

(
e
θijk
εk

))εk−1

(τijwi)
1−εk YjkP

εk−1
jk ,

or equivalently

rijk(θijk, ϕ) = Br
ijke

(εk−1)ϕ+
θijk
εk ,

were Br
ijk =

(
εk−1
εk

)εk−1
(
Eθ

(
e
θijk
εk

))εk−1

(τijwi)
1−εk YjkP

εk−1
jk .
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A.1.2 Entry

Firms enter the market as long as expected profit is positive. Hence, the optimal productivity

entry threshold, ϕ∗ijk, is a solution to the zero-expected profit condition given by

Eθ[π(ϕ∗ijk)] = 0. (24)

Substituting equation (23) into equation (22) and solving equation (24) for ϕ∗ijk yields

e(εk−1)ϕ∗
ijk =

εkwifijk(wiτij)
εk−1(

εk−1
εk

)εk−1

YjkP
εk−1
jk

(
Eθ

(
e
θijk
εk

))εk , (25)

or equivalently

e(εk−1)ϕ∗
ijk =

Bϕ
ijk(

Eθ

(
e
θijk
εk

))εk ,

where Bϕ
ijk = (εkwifijk(wiτij)

εk−1) /

((
εk−1
εk

)εk−1

YjkP
εk−1
jk

)
.

A.1.3 Trade Elasticity

The aggregate trade flow from country i to country j in industry k is defined as

Xijk = Mijk

∫ +∞

ϕ∗
ijk

∫ +∞

−∞
rijk(θ, ϕ)gθijk(θ)

gϕijk(ϕ)

Probijk(ϕ > ϕ∗ijk)
dθdϕ, (26)

where Mijk is the mass of firms exporting from country i to country j in industry k. Given

the exogenous entry assumption, the mass of firms is given by

Mijk = Ji × Probijk(ϕ > ϕ∗ijk), (27)

where Ji is the exogenous mass of entrants. Equation (26) can then be simplified as follows:

Xijk = Ji

∫ +∞

ϕ∗
ijk

∫ +∞

−∞
qijk(ϕ)pijk(θ, ϕ)gθijk(θ)g

ϕ
ijk(ϕ)dθdϕ =

= Ji

∫ +∞

ϕ∗
ijk

qijk(ϕ)
εk

εk − 1

wiτij

eϕEθ

(
e
θ
εk

) (∫ +∞

−∞
e
θijk
εk gθijk(θ)dθ

)
gϕijk(ϕ)dϕ =

= Ji

∫ +∞

ϕ∗
ijk

qijk(ϕ)
εk

εk − 1

wiτij
eϕ

gϕijk(ϕ)dϕ =
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= Ji

(
εk − 1

εk

)εk−1(
Eθ

(
e
θijk
εk

))εk
(τijwi)

1−εkYjkP
εk−1
jk

∫ +∞

ϕ∗
ijk

e(εk−1)ϕgϕijk(ϕ)dϕ.

Define φk = (εk− 1)ϕ with the corresponding probability density function denoted by gφijk(.)

and φ∗ijk = (εk − 1)ϕ∗ijk. Then, the aggregate trade flow can be equivalently written as

Xijk = Ji

(
εk − 1

εk

)εk−1(
Eθ

(
e
θijk
εk

))εk
(τijwi)

1−εkYjkP
εk−1
jk

∫ +∞

φ∗ijk

eφgφijk(φ)dφ. (28)

Differentiate the logarithm of equation (28) with respect to log τij to obtain

∂ logXijk

∂ log τij
= (1− εk)−

eφ
∗
ijkgφijk(φ

∗
ijk)∫ +∞

φ∗ijk
eφgφijk(φ)dφ

∂φ∗ijk
∂ log τijk

. (29)

Differentiate equation (25) with respect to τij to obtain

∂φ∗ijk
∂ log τij

= εk − 1. (30)

Combine equations (29) and (30) to obtain the partial elasticity of trade flows with respect

to the variable trade costs being given by

ηijk ≡
∂ lnXijk

∂ ln τij
= (1− εk)

1 +
gφijk(φ

∗
ijk)e

φ∗ijk∫ +∞
φ∗ijk

eφgφijk(φ)dφ

 . (31)

A.1.4 Estimation Approach

Consider the following change of notation: let ϕ̃ ≡ εkϕ. Denote by gϕ̃(.) the probability

distribution function of ϕ̃. Given the change in notation, gϕ̃(.) is the distribution of ϕ,

gϕijk(.), scaled by the elasticity of substitution, εk.

With the change in notation, equations (25) and (28) can be written as

e
εk−1

εk
ϕ̃∗

=
εkwifijk(wiτij)

εk−1(
εk−1
εk

)εk−1

YjkP
εk−1
jk

(
Eθ

(
e
θijk
εk

))εk (32)

Xijk = Ji

(
εk − 1

εk

)εk−1(
Eθ

(
e
θijk
εk

))εk
(τijwi)

1−εkYjkP
εk−1
jk

∫ +∞

ϕ̃∗
ijk

e
εk−1

εk
φ
gϕ̃(ϕ)dϕ.(33)

Differentiating equation (32) and (33) with respect to τij, the partial trade elasticity can be
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expressed as

ηijk = (1− εk)

1 +
εk

εk − 1

gϕ̃ijk(ϕ̃
∗
ijk)e

εk−1

εk
ϕ̃∗
ijk∫ +∞

ϕ̃∗
ijk
e
εk−1

εk
ϕ
gϕ̃ijk(ϕ)dϕ

 .

The distribution gϕ̃ijk(.) can be directly recovered from the empirical distribution of the log-

export quantity. From equation (23), the optimal quantity can we written as

qijk(ϕ̃) =

(
εk − 1

εk

)εk
eϕ̃
(
Eθ

(
e
θijk
εk

))εk
(τijwi)

−εkYjkP
εk−1
jk . (34)

Hence, the distribution of log-export quantity is given by the distribution of ϕ̃. Given the

distribution of gϕ̃ijk(.), the scaled productivity entry threshold, ϕ̃∗ijk, can be recovered from

matching the empirical to the theoretical average-to-minimum ratio of export quantities.

From equation (34) the average export quantity, q̃ijk, and the minimum export quantity,

qmin
ijk , are given by

q̃ijk =

(
εk − 1

εk

)εk (
E

(
e
θijk
εk

))εk
(τijwi)

−εkYjkP
εk−1
jk

∫ +∞

ϕ̃∗
ijk

eϕgϕ̃ijk(ϕ)

Probϕ̃ijk(ϕ > ϕ̃∗ijk)
dϕ

qmin
ijk =

(
εk − 1

εk

)εk (
Eθ

(
e
θijk
εk

))εk
(τijwi)

−εkYjkP
εk−1
jk eϕ̃

∗
ijk .

Hence, the average-to-minimum ratio, q̃ijk/q
min
ijk , is given by

Average-to-Minimum Ratio = e−ϕ̃
∗
ijk

∫ +∞

ϕ̃∗
ijk

eϕgϕ̃ijk(ϕ)

Probϕ̃ijk(ϕ > ϕ̃∗ijk)
dϕ. (35)

A.2 A Model with Complete Information

In this section, for comparison purposes, we develop theoretical results in a model with

complete information. The information structure only affects the supply side of the economy.

Hence, on the demand side, the utility of a representative consumers is still given by equation

(1), and the demand for a given variety is given by equation (2).

A.2.1 Supply

In contrast to a model with uncertainty, in a model with complete information firms make

their market participation and quantity decisions after observing their productivity and

demand shocks.
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For each destination and industry firms maximize profits given by

max
qijk

pijkqijk −
wiτij
eϕ

qijk − wifijk, (36)

subject to the demand equation (2). The first order conditions with respect to quantity yield

the optimal quantity being given by

qijk(θijk, ϕ) =

(
εk − 1

εk

)εk
eεkϕ+θijk(τijwi)

−εkYjkP
εk−1
jk . (37)

Notice that in contrast to equation (23), in a complete information environment the quantity

choice is determined by a combination of a supply and a demand shocks, i.e. by a firm’s

profitability. Using equations (2) and (37), a firm’s optimal sales are further given by

rijk(θijk, ϕ) =

(
εk − 1

εk

)εk−1

e(εk−1)ϕ+θijk(τijwi)
1−εkYjkP

εk−1
jk , (38)

or equivalently

rijk(θijk, ϕ) = Bijke
(εk−1)ϕ+θijk

rCIijk(zijk) = Bijke
zijk ,

where Bijk =
(
εk−1
εk

)εk−1

(τijwi)
1−εkYjkP

εk−1
jk , zijk = (εk − 1)ϕ + θijk, and ‘CI’ stands for

Complete Information.

A.2.2 Entry

Given the optimal profits, firms enter the market as long as the profit is positive. Hence,

the optimal any demand draw, θijk, productivity entry threshold, ϕ∗ijk(θijk), is a solution to

the zero-profit condition given by

π(ϕ∗ijk(θijk)) = 0. (39)

Substituting equation (37) into equation (36) and solving equation (39) for ϕ∗ijk(θijk) yields

e(εk−1)ϕ∗
ijk(θijk) =

εkwifijk(wiτij)
εk−1(

εk−1
εk

)εk−1

YjkP
εk−1
jk eθijk

. (40)

Notice that in contrast to the incomplete information environment discussed in Section A.1.1

and equation (25), the productivity entry threshold depends on the realized value of demand

parameter, θijk. Firms with a higher demand parameter have a lower productivity entry

threshold.

Equation (40) can be viewed as defining an entry boundary in the space of (θijk, ϕ) or as
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defining the profitability entry threshold z∗ijk. The profitability entry thresholds is given by

the sum of (εk − 1)ϕijk and θijk such that equation (40) holds:

ez
∗
ijk =

εkwifijk(wiτij)
εk−1(

εk−1
εk

)εk−1

YjkP
εk−1
jk

≡ Bϕ
ijk. (41)

Hence, in a model with complete information, selection into exporting occurs based on

profitability rather than productivity as is the case in a model with uncertainty.

A.2.3 Trade Elasticity

The aggregate trade flow from country i to country j in industry k is given by

Xijk = Ji

∫ +∞

ϕ∗
ijk(θijk)

∫ +∞

−∞
qijk(θ, ϕ)pijk(θ, ϕ)gθijk(θ)g

ϕ
ijk(ϕ)dθdϕ (42)

= Ji

(
εk

εk − 1

τijwi
Pjk

)1−εk
Yjk

∫ +∞

ϕ∗
ijk(θijk)

∫ +∞

−∞
e(εk−1)ϕ+θijkgθijk(θ)g

ϕ
ijk(ϕ)dθdϕ

Define zijk = (εk − 1)ϕ + θijk. From equation (41) the entry into exporting occurs when

zijk > z∗ijk. Using this change of variables, equation (42) can be be written as

Xijk = Ji

(
εk − 1

εk

)εk−1

(τijwi)
1−εkYjkP

εk−1
jk

∫ +∞

z∗ijk

ezgzijk(z)dz, (43)

where gzijk(.) is the distribution of profitability zijk.

Compare the expressions for the aggregate trade flow between the two information en-

vironments, equation (28) versus equation (43). Notice, that in the incomplete information

environment, the aggregate trade flows are determined by the distribution of productivity,

gϕijk(ϕ), while in the complete information environment the aggregate trade flows are deter-

mined by the distribution of profitability, gzijk(z).

Following the same differentiation steps as in Section A.2.3, the partial elasticity of trade

flows with respect to the variable trade costs is given by

ηijk ≡
∂ lnXijk

∂ ln τij
= (1− εk)

1 +
gzijk(z

∗
ijk)e

z∗ijk∫ +∞
z∗ijk

ezgzijk(z)dz

 =

= (1− εk)

1 +
gzijk(z

∗
ijk)

Probzijk(z > z∗ijk)

(
r̃ijk
rmin
ijk

)−1
 .

The last equality hold due to equation (45) below.
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A.2.4 Estimation Approach

The distribution gzijk(.) can be directly recovered from the empirical distribution of the log-

export sales. From equation (38), the optimal sales can we written as

rijk(zijk) =

(
εk − 1

εk

)εk−1

ezijk(τijwi)
1−εkYjkP

εk−1
jk . (44)

Hence, the distribution of log-export sales is given by the distribution of zijk. Given the dis-

tribution of gzijk(.), the profitability entry threshold, z∗ijk, can be recovered from matching the

empirical to the theoretical average-to-minimum ratio of export quantities. From equation

(34) the average export sales, r̃ijk, and the minimum export sales, rmin
ijk , are given by

r̃ijk =

(
εk − 1

εk

)εk−1

(τijwi)
1−εkYjkP

εk−1
jk

∫ +∞

z∗ijk

ez
gzijk(z)

Probzijk(z > z∗ijk)
dz

rmin
ijk =

(
εk − 1

εk

)εk−1

(τijwi)
1−εkYjkP

εk−1
jk ez

∗
ijk .

Hence, the average-to-minimum ratio, r̃ijk/r
min
ijk , is given by

Average-to-Minimum Ratio = e−z
∗
ijk

∫ +∞

z∗ijk

ezgzijk(z)

Probzijk(z > z∗ijk)
dz. (45)

To contrast the two information environments, notice that while equations for estimating the

entry thresholds are similar, equation (35) versus (45), different data are used for estimation.

In the environment with demand uncertainty the relevant distributions and entry thresholds

are identified from the empirical export quantity distributions, while in the complete infor-

mation framework, log export sales identify the necessary parameters.

B Proofs of Propositions

Proposition 1 Let g(x) be a probability density function satisfying A1. Then the following
hold.

(i) γ(x) ≡ [exg(x)]/
∫ +∞
x

ezg(z)dz is an increasing function of x.

(ii) Denote the extensive margin elasticity associated with g(x) as γ(x). Let g̃(x) be a mean
preserving spread of g(x), with extensive margin elasticity γ̃(x). There exists x∗ such
that γ̃(x) < γ(x) for all x > x∗, γ̃(x) = γ(x) if x = x∗, and γ̃(x) > γ(x) for all x < x∗.

Proof of Proposition 1

Part (i) First, define h(x) = (exg(x))/E, where E =
∫ +∞
−∞ exg(x)dx. Notice that h(x) is

positive for all x and that
∫ +∞
−∞ h(x)dx = 1. Hence, h(x) is a probability density function.
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The corresponding cumulative density function is given by H(x) =
∫ x
−∞ e

zg(z)dz/E. The

corresponding survival function is given by 1−H(x) =
∫ +∞
x

ezg(z)dz/E.

Next, function γ(x) can then be written as

γ(x) =
exg(x)∫ +∞

x
ezg(z)dz

=
h(x)

1−H(x)
.

Hence, γ(x) is a hazard rate associated with the distribution H(x). By Theorem 10 in Rinne

(2014), the hazard rate γ(x) is monotonically increasing in x if and only if its logarithmic

survival function, log(1 −H(x)), is concave. Notice that by part (iii) of A1, log(1 −H(x))

is a concave function of x. Hence, γ(x) is increasing in x. For completeness, we reproduce

the proof of this result below.

Notice that

γ(x) = −d log(1−H(x))

dx
.

Hence,

dγ(x)

dx
= −d

2 log(1−H(x))

dx2
.

Since log(1 − H(x)) is a concave function of x, d2 log(1 − H(x))/dx2 < 0. Therefore,

dγ(x)/dx > 0.

Part (ii) Function γ̃(x) is given by

γ̃(x) =
exg̃(x)∫ +∞

x
ezg̃(z)dz

=
h̃(x)

1− H̃(x)
,

where g̃(.) is a mean preserving spread of g(.), h̃(x) = [exg̃(x)]/
∫ +∞
−∞ exg̃(x)dx, and H̃(x) is

the corresponding cumulative distribution function.

γ(x) > γ̃(x) if and only if H(x) > H̃(x) as follows for the following set of equivalent
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inequalities:

γ(x) > γ̃(x)

−d log(1−H(x))

dx
> −d log(1− H̃(x))

dx
−d log(1−H(x)) > −d log(1− H̃(x))

d log(1−H(x)) < d log(1− H̃(x))∫
d log(1−H(x)) <

∫
d log(1− H̃(x))

log(1−H(x)) < log(1− H̃(x))

(1−H(x)) < (1− H̃(x))

−H(x) < −H̃(x)

H(x) > H̃(x).

We will now show in three steps that H(x) crosses H̃(x) once from below, and therefore

there exists x∗ such that H(x) > H̃(x) holds for x > x∗, and therefore (ii) holds.

Step 1: Denote by X and X̃ random variables distributed according to g(x) and g̃(x)

respectively. Since g̃(x) is a mean preserving spread of g(x), it holds that X̃ = X+X̂, where

X̂ is distributed according to ĝ(x) with mean zero, and X̂ is independent from X. Hence,

g̃(.) is a convolution of g(.) and ĝ(.) and can be written as

g̃(x) =

∫ +∞

−∞
g(x− u)ĝ(u)du.

Step 2: Denote by Xh, X̃h, X̂h random variables distributed according to h(x), h̃(x),

and ĥ(x) respectively, where ĥ(x) = [exĝ(x)]/
∫ +∞
−∞ exĝ(x)dx. Similarly, it can be show that

h̃(.) is a convolution of h(.) and ĥ(.):∫ +∞

−∞
h(x− u)ĥ(u)du =

∫ +∞
−∞ ex−ug(x− u)euĝ(u)du[∫ +∞

−∞ exg(x)dx
]
·
[∫ +∞
−∞ exĝ(x)dx

] =

=

∫ +∞
−∞ exg(x− u)ĝ(u)du[∫ +∞

−∞ exg(x)dx
]
·
[∫ +∞
−∞ exĝ(x)dx

] =

=
exg̃(x)[∫ +∞

−∞ exg(x)dx
]
·
[∫ +∞
−∞ exĝ(x)dx

] = h̃(x).

Thus, it hold that X̃h = Xh + X̂h, where X̃h and X̂h are independent.

Step 3: Consider a random variable X̄ = Xh + X̂h − E(X̂h) with the cumulative dis-
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tribution function denoted by H̄(x). X̄ is a mean preserving spread of Xh and therefore

the two corresponding cumulative distribution functions satisfy the single-crossing property

whereby H(x) = H̄(x) if x = E(Xh); H(x) < H̄(x) for x < E(Xh), and H(x) > H̄(x) for

x > E(Xh).

Next, notice that X̃h = X̄ + E(X̂h). Therefore the cumulative distribution function of

X̃h is a shift of the cumulative distribution function of X̄ along the x-axis, namely H̃(x) =

H̄(x−E(X̂h)). Hence H̃(x) preserves the same single-crossing property with respect to H(x).

Namely ∃x∗ that that H(x) = H̃(x) if x = x∗; H(x) < H̃(x) for x < x∗, and H(x) > H̃(x)

for x > x∗. �

Corollary 1 Let g(x) be a probability density function satisfying A1. ∀a ∈ R there exists

x∗(a) such that γ(x) > γ̃(x+a) if x > x∗(a); γ(x) = γ̃(x+a) if x = x∗(a), and γ(x) < γ̃(x+a)

if x < x∗(a).

Proof of Corollary 1

Notice that part (ii) of Proposition 1 implies a single crossing property of γ(.) and γ̃(.).

This property is preserved under an affine transformation of the abscissa for either of the

functions. Therefore, γ(x) also crosses γ̃(x+ a) from above for some x∗(a).�

C Robustness

In this section we demonstrate the robustness of our theoretical and quantitative results to

the way we choose to model a firm’s decision under uncertainty. In the main text we assume

that in a model with uncertainty, firms choose export quantities before demand shocks are

realized. This assumption is consistent with the majority of the literature on learning such

as Timoshenko (2015b), Arkolakis et al. (2018), Berman et al. (Forthcoming). In contrast

to this literature, in this section we assume that firms choose prices before demand shocks

are realized. Below, we present an alternative representation of the model with uncertainty

in line with this assumption. In this model, given that firms choose prices, the price data

contain information necessary to identify the partial elasticity of trade flows with respect to

variable trade costs. We subsequently quantify trade elasticities according to this insight.

Our quantitative results are unaffected by the change in the firm’s choice variable.

The intuition for this equivalence lies in the fact that the price and quality are inversely

related through sales. In a model with uncertainty where firms choose quantities, the empiri-

cal distribution of quantity identifies the underlying theoretical distribution of productivities.

In a model with uncertainty where firm choose prices, the optimal price equals to the inverse

of productivity. Therefore, theoretical productivity distribution is identified by the empirical
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distribution of the inverse of the prices, which is proportional to the empirical distribution

of quantities through the equation quantity = sales/price.

C.1 Alternative Model of Demand Uncertainty

The economic environment and demand are the same as in Section 2.

cijk(ω) = eθijk(ω)pijk(ω)−εkYjkP
εk−1
jk , (46)

C.1.1 Supply

For each destination and industry firms maximize expected profits given by

E[π(ϕ)] = max
pijk

Eθijk

(
pijkqijk −

wiτij
eϕ

qijk

)
− wifijk,

subject to the demand equation (46). The expectation over the demand draw, θijk, is given by

the distribution from which the demand parameter is drawn, hijk(.). Substituting equation

equation (46) into the objective function and applying the expectation operator yields the

problem of the firm,

max
pijk(ϕ)

pijk(ϕ)1−εkE
(
eθijk

)
YjkP

εk−1
jk − wiτij

eϕ
E
(
eθijk

)
pijk(ω)−εkYjkP

εk−1
jk − wifijk.

The first order conditions with respect to price yield the optimal price,

pijk(ϕ) =

(
εk

εk − 1

)
wiτij
eϕ

. (47)

A firm’s realized revenue is then given by

rijk(θijk, ϕ) = eθijk(ω)

(
εk

εk − 1

wiτij
eϕ

)1−εk
YjkP

εk−1
jk .

C.1.2 Entry

Firms enter the market as long as expected profit is positive. Hence, the optimal productivity

entry threshold, ϕ∗ijk, is a solution to the zero-expected profit condition given by

E[π(ϕ∗ijk)] = 0,

and is given by

e(εk−1)ϕ∗
ijk =

εεkk wifijk(wiτij)
εk−1

(εk − 1)εk−1 YjkP
εk−1
jk E (eθijk)

. (48)
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C.1.3 Trade Elasticity

The aggregate trade flow from country i to country j in industry k is defined as

Xijk = Mijk

∫ +∞

ϕ∗
ijk

∫ +∞

−∞
rijk(θ, ϕ)hijk(θ)

gijk(ϕ)

Probijk(ϕ > ϕ∗ijk)
dθdϕ, (49)

where Mijk is the mass of firms exporting from country i to country j in industry k. Given

the exogenous entry assumption, the mass of firms is given by

Mijk = Ji × Probijk(ϕ > ϕ∗ijk),

where Ji is the exogenous mass of entrants. Equation (49) can then be simplified as follows:

Xijk = Ji

∫ +∞

ϕ∗
ijk

∫ +∞

−∞
rijk(ϕ)hijk(θ)gijk(ϕ)dθdϕ = (50)

= Ji

(
εk − 1

εk

)εk−1

E
(
eθijk

)
(τijwi)

1−εkYjkP
εk−1
jk

∫ +∞

ϕ∗
ijk

e(εk−1)ϕgijk(ϕ)dϕ.

Differentiate equation (50) with respect to τij to obtain

∂Xijk

∂τij
= (1− εk)

Xijk

τijk
− Xijk∫ +∞

ϕ∗
ijk
e(εk−1)ϕgijk(ϕ)dϕ

e(εk−1)ϕ∗
ijkgijk(ϕ

∗
ijk)

∂ϕ∗ijk
∂τijk

. (51)

Differentiate equation (48) with respect to τij to obtain

∂ϕ∗ijk
∂τij

=
1

τij
. (52)

Combine equations (51) and (52) to obtain the partial elasticity of trade flows with respect

to the variable trade costs being given by

ηijk ≡
∂ lnXijk

∂ ln τij
= (1− εk)

1 +
gijk(ϕ

∗
ijk)e

(εk−1)ϕ∗
ijk

(εk − 1)
∫ +∞
ϕ∗
ijk
e(εk−1)ϕgijk(ϕ)dϕ

 . (53)

C.1.4 Estimation Approach

From equation (47), the distribution gijk(.) can be directly recovered from the empirical

distribution of the logarithm of the inverse of export price as follows:

log (1/pijk(ϕijk)) = Bp
ijk + ϕijk. (54)

Hence, the distribution of the logarithm of the inverse of export price is given by the dis-

tribution of ϕijk. Given the distribution of gijk(.), the productivity entry threshold, ϕ∗ijk,
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can be recovered from matching the empirical to the theoretical average-to-minimum ratio

of the inverse of export prices. From equation (47) the average of the inverse of export price,

1̃/pijk, and the minimum of the inverse of export price , (1/p)min
ijk , are given by

1̃/pijk =
εk − 1

εk
(τijwi)

−1

∫ +∞

ϕ∗
ijk

eϕgijk(ϕ)

Probϕijk(ϕ > ϕ∗ijk)
dϕ

(1/p)min
ijk =

εk − 1

εk
(τijwi)

−1eϕ
∗
ijk .

Hence, the average-to-minimum ratio, 1̃/pijk/(1/p)
min
ijk , is given by

Average-to-Minimum Ratio = e−ϕ
∗
ijk

∫ +∞

ϕ∗
ijk

eϕgijk(ϕ)

Probϕijk(ϕ > ϕ∗ijk)
dϕ. (55)

C.2 Trade Elasticity Estimates

Table C1 replicates results in Table 3 and shows that the quantitative magnitude of the

trade elasticities and the amplification effect remains robust to the alternative firm-level

choice variable under uncertainty.
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Table C1: Trade elasticity estimates, the log of the inverse of prices.

Extensive Margin Partial Trade

Elasticity Elasticity, ηijk

Measure Mean Std. Dev. Mean Std. Dev.

Panel A: Estimates of trade elasticity

Price based a 0.03 0.13 2.88 3.51

Sales basedb 1.7 · 10−4 8.8 · 10−4 3.82 3.86

Panel B: Amplification effect

Amplification effect c 1.1 · 104 5.1 · 104 1.03 0.15
a The summary statistics are reported across 109 destination-year-industry

observations for which an estimates of the Double EMG tail parameter
λR > 1. The elasticities are not defined for λR ≤ 1.

b The sales based measure of the trade elasticity is based on a model with
complete information. The summary statistics are reported across 124
destination-year-industry observations for which an estimates of the
Double EMG tail parameter λR > 1. The elasticities are not defined for
λR ≤ 1.

c The amplification effect is computed as the ratio of the quantity based
relative to the sales based estimate of trade elasticity. The summary
statistics are reported across 77 destination-year-industry observations
for which the elasticity is defined in terms of both quantity and sales
based measures.
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