

DIAGNOSTICO Y CLASIFICACION DE LOS CURSOS Y CUERPOS DE AGUA SEGUN OBJETIVOS DE CALIDAD

CUENCA DEL RIO AYSEN

DICIEMBRE 2004

<u>INDICE</u>

<u>ITEM</u>	<u>DESCRIPCION</u>	<u>PAGINA</u>
1.	ELECCION DE LA CUENCA Y DEFINICION DE CAUCES	1
2.	RECOPILACION DE INFORMACION Y CARACTERIZACION CUENCA	
2.1	Cartografía y Segmentación Preliminar	3
2.2	Sistema Físico Natural	
2.2.1	Clima	
2.2.2	Geología y volcanismo	
2.2.3	Hidrogeología	
2.2.4 2.2.5	Geomorfología	
2.3	Flora y Fauna de la Cuenca del Río Aysén	
2.3.1	Comunidades vegetales	
2.3.2	Fauna acuática	13
2.4	Sistemas Humanos	17
2.4.1	Asentamientos humanos	
2.4.2	Actividades económicas	18
2.5	Usos del Suelo	20
2.5.1	Uso agrícola	20
2.5.2	Uso forestal	21
2.5.3	Uso urbano	
2.5.4	Áreas bajo protección oficial y conservación de la biodiversidad	22
3.	ESTABLECIMIENTO DE LA BASE DE DATOS	24
3.1	Información Fluviométrica	24
3.2	Usos del Agua	26
3.2.1	Usos in – situ	26
3.2.2	Usos extractivos	27
3.2.3	Biodiversidad	31
3.2.4	Usos Ancestrales	32
325	Conclusiones	33

INDICE

<u>ITEM</u>	<u>DESCRIPCION</u>	<u>PAGINA</u>
3.3 3.3.1	Descargas	
3.3.2	Residuos industriales líquidos	39
3.4	Datos de Calidad de Agua	43
3.4.1	Fuentes de información	
3.4.2	Aceptabilidad de los programas de monitoreos	45
4.	ANALISIS Y PROCESAMIENTO DE LA INFORMACION	47
4.1	Analisis de Información Fluviométrica	47
4.1.1	Análisis por estación fluviométrica	47
4.1.2	Conclusiones	61
4.2	Análisis de la Calidad del Agua	62
4.2.1	Selección de parámetros	62
4.2.2	Análisis de Tendencia Central	65
4.2.3	Programa de Muestreo Puntual CADE-IDEPE	68
4.2.4	Base de Datos Integrada (BDI)	
4.2.5	Procesamiento de datos por período estacional	70
4.3	Análisis de Factores Incidentes en la Calidad del Agua	78
5.	CALIDAD ACTUAL Y NATURAL DE LOS CURSOS SUPERI	FICIALES . 92
5.1	Análisis Espacio Temporal en Cauce Principal	92
5.2	Caracterización de la Calidad del Agua a Nivel de la Cuenca	97
5.3	Asignación de Clases de Calidad Actual por Parámetro a Nivel de	e la Cuenca 99
5.4	Calidad Natural	109
5.4.1	Boro	111
5.4.2	Cobre	111
5.4.3	Cromo	111
5.4.4	Hierro	112
5.4.5	Manganeso	
5.4.6	Aluminio	113

INDICE

ITEM	<u>DESCRIPCION</u>	PAGINA
5.4.7 5.4.8	Falencias de información Conclusiones	
6.	PROPOSICION DE CLASES OBJETIVOS	115
6.1	Establecimiento de Tramos	115
6.2	Requerimientos de Calidad según Usos del Agua	117
6.3	Grado de Cumplimiento de la Calidad Objetivo	123
7.	OTROS ASPECTOS RELEVANTES	124
7.1 7.1.1 7.1.2 7.1.3	Indice de Calidad de Agua Superficial Antecedentes Estimación del ICAS Estimación de ICAS objetivo	124 124
7.2	Programa de Monitoreo Futuro	126
7.3	Sistema de Información Geográfico	130
7.4	Referencias Bibliográficas	130
ANEXOS		
Anexo 3.1:	Estadísticas de Caudales Medios Mensuales Cuenca del Río Aysén	
Anexo 3.3:	Base de Datos Depurada (Archivo Magnético)	
Anexo 4.1:	Tendencia Central	
Anexo 4.2:	Base de Datos Integrada (Archivo Magnético)	
Anexo 6.1:	Asignación de Clase Actual y Objetivo de la Cuenca del Río Aysén	
Anexo 7.1:	Indice de Calidad Actual Cuenca del Río Aysén	
$\Delta nevo 72$	Indice de Calidad Objetivo Cuenca del Río Avsén	

1. <u>ELECCION DE LA CUENCA Y DEFINICION DE CAUCES</u>

La cuenca hidrográfica del Río Aysén pertenece a la XI Región y se extiende entre los paralelos 45° y 46°16' latitud sur y meridianos 71°20' y 73° longitud oeste. Abarca una superficie de 11.456 Km². Cubre parcialmente el territorio de las Provincias de Aysén y Coyhaique.

La cuenca se caracteriza por abundancia de precipitaciones y gran disponibilidad de recursos hídricos que se manifiesta en la presencia de numerosos lagos y ríos. Las principales actividades económicas se relacionan con los rubros agropecuario, silvícola, industrial y turístico.

Dentro de la cuenca, se pueden distinguir tres sistemas hidrográficos. En la parte norte de la cuenca destaca el río Mañihuales, que tiene, en su primer tramo, un escurrimiento norte-sur, virando luego hacia el poniente. En su recorrido recibe como afluentes principales el río Ñirehuao y el río Emperador Guillermo.

En la parte central de la cuenca se ubica el río Coyhaique, con un escurrimiento en dirección este-oeste. Este río entrega sus aguas en el río Simpson, el cual escurre desde la parte sur de la cuenca.

En su nacimiento, el río Simpson recibe tres afluentes principales, que son el río Oscuro, río Blanco Chico y río Blanco Este. Más hacia el norte, el río Simpson recibe como afluente el río Claro, que tiene un escurrimiento en sentido oeste-este.

De la confluencia del río Simpson con el río Manuales, nace el río Aysén, que desemboca en el mar. Antes de su desembocadura, este río recibe como afluente el río Blanco Oeste, que escurre de sur a norte y que desagua el lago Caro.

Los cauces seleccionados para el estudio de la arena del río Aysén son:

- Río Aysén
- Río Mañihuales
- Río Ñirehuao
- Río Emperador Guillermo
- Río Simpson
- Río Claro

<u>Aysén</u>

2.

- Río Oscuro
- Río Blanco Chico
- Río Blanco Este
- Río Blanco Oeste

2. <u>RECOPILACION DE INFORMACION Y CARACTERIZACION DE LA CUENCA</u>

2.1 <u>Cartografía y Segmentación Preliminar</u>

a) Cartografía

La cartografía utilizada en la Cuenca del río Aysén incluye una amplia variedad de información vectorial la que procede de las siguientes fuentes:

- Bases cartográficas del SIGIRH, del MOP-DGA. Escala 1:250.000.
- Bases del Sistema de Información Ambiental Regional (SIAR) de CONAMA.
- Bases del Catastro de Bosque Nativo de la CONAF, reclasificado por CONAMA.
- Sistema de información integrado de riego (SIIR), de la Comisión Nacional de Riego (CNR.)

Dado que las fuentes de información son diversas y que se ha definido como parámetro de referencia el sistema desarrollado por la DGA, se ha aplicado el proceso de análisis establecido en la Metodología. Además ha sido necesario verificar las codificaciones para generar la unión de bases de datos.

b) Segmentación preliminar

La segmentación adoptada en la cuenca del río Aysén es la indicada en la Tabla 2.1, la que se muestra en la lámina 1940-AYS-02.

Tabla 2.1: Segmentación adoptada en los Cauces Seleccionados de la Cuenca del río Aysén

•	CUENCA RIO AYSEN				Límites de los segmentos	
SubCuenca	Cauce	REF	SubSeg	Código	Inicia en:	Términa en:
1130	Río EMPERADOR GUILLERMO	EM	1	1130 - EM - 10	Naciente río Emperador Guillermo	Conf. Rio Mañihuales
1130 1130 1130	RÍO MAÑIHUALES RÍO MAÑIHUALES RÍO MAÑIHUALES	MA MA MA	1 2 3	1130 - MA - 10 1130 - MA - 20 1130 - MA - 30	Límite de Cuenca Conf. Río Ñirehuao Conf. Río Emperador Guillermo	Conf. Río Ñirehuao Conf. Río Emperador Guillermo Conf. Río Simpson
1130 1130	Río ÑIREHUAO Río ÑIREHUAO	NI NI	1 2	1130 - NI - 10 1130 - NI - 20	Naciente río Ñirehuao Conf. Río Norte	Conf. Río Norte Conf. Río Mañihuales
1131	Río BLANCO CHICO	ВС	1	1131 - BC - 10	Naciente río Blanco (chico)	Conf. Río Oscuro
1131	Río BLANCO (este)	BE	1	1131 - BE - 10	Naciente río Blanco (este)	Conf. Río Simpson
1131	Río CLARO	CL	1	1131 - CL - 10	Naciente río Claro	Conf. Río Simpson
1131 1131	Río COYHAIQUE Río COYHAIQUE	co co	1 2	1131 - CO - 10 1131 - CO - 20	Naciente río Coyhaique Est. DGA Río CoyhaiqueTejas Verdes	Est. DGA Río CoyhaiqueTejas Verdes Conf. Río Simpson
1131 1131	Río OSCURO Río OSCURO	os os	1 2	1131 - OS - 10 1131 - OS - 20	Naciente río Oscuro Conf. Río Blanco Chico	Conf. Río Blanco Chico Conf. Rio Simpson
1131 1131 1131 1131 1131	RÍO SIMPSON RÍO SIMPSON RÍO SIMPSON RÍO SIMPSON RÍO SIMPSON	SI SI SI SI	1 2 3 4 5	1131 - SI - 10 1131 - SI - 20 1131 - SI - 30 1131 - SI - 40 1131 - SI - 50	Naciente Río Simpson Conf. Río Oscuro Conf. Río Blanco (este) Conf. Río Claro Conf. Río Coyhaique	Conf. Río Oscuro Conf. Río Blanco (este) Conf. Río Claro Conf. Río Coyhaique Conf.Río Mañihuales
1133 1133	Río BLANCO (oeste) Río BLANCO (oeste)	BL BL	1 2	1133 - BL - 10 1133 - BL - 20	Desague Lago Caro Est. DGA Desague Lago Riesco	Est. DGA Desague Lago Riesco Conf.Rio Aysen
1134 1134	Río AYSEN Río AYSEN	AY AY	1 2	1134 - AY - 10 1134 - AY - 20	Conf. Río Simpson y Mañihuales Conf. Río Blanco (oeste)	Conf. Río Blanco (oeste) Desembocadura

2.2 <u>Sistema Físico Natural</u>

2.2.1 Clima

El clima característico de la cuenca, es el clima frío oceánico de bajas temperaturas, con abundantes precipitaciones, fuertes vientos y mucha humedad. Las características del relieve provocan una diferencia de climas en el sector Oriental, formado por islas y archipiélagos, y en el sector Oriental de la Cordillera Patagónica.

El sector costero de la cuenca, está influenciado por el clima frío oceánico del sector de archipiélagos e islas y vertiente Occidental de los Andes Patagónicos. Esta zona se caracteriza por abundantes precipitaciones, fuertes vientos del Oeste y altísima humedad. Los promedios de agua caída anuales fluctúan entre los 3.000 y 4.000 mm. Un caso a citar es Puerto Aysén con una precipitación de 2.940 mm anuales. Las temperaturas son muy bajas obteniéndose una media anual de 8 a 9°C, donde los valores máximos se dan en Enero.

El sector centro de la cuenca se ve influenciado por el clima de estepa fría el que se presenta en la vertiente oriental de los Andes Patagónicos o transandinos. Esta zona se diferencia de la anterior porque esta protegida por el cordón montañoso de la Cordillera, la que permite una disminución notable de las precipitaciones, en comparación con el sector de archipiélagos que se encuentran en la misma latitud. En el lado Oriental los valores de las precipitaciones bajan hasta 621 mm anuales en Balmaceda, en la ciudad de Coyhaique la precipitación es de 1.385 mm anuales. Las temperaturas son generalmente bajas siendo Enero el de temperaturas más altas y Julio mas bajas. En Puerto Aysén, la precipitación media anual, alcanza los 2.940 mm, registrándose los montos máximos de agua caída en los meses de mayo, julio y agosto.

Con respecto a la escorrentía superficial en la cuenca, los mayores valores se registran en el sector de río Blanco después de la junta con río Riesco (3.006 mm/año). El sector comprendido entre río Simpson antes de la junta con río Mañihuales, alcanza valores de escorrentía no superiores a 900 mm/año. Por último, entre el río Mañihuales antes de la junta con río Simpson, los valores registrados de escorrentía son de 1.383 mm/año.

De acuerdo a las pérdidas de agua producto de la evaporación, las mayores pérdidas de la cuenca registradas anualmente, se presentan en el sector río Oscuro, localidad de Balmaceda con 1500 mm/año. El sector que comprende el río Simpson antes de la junta con río Mañihuales, la evaporación registrada es de 1.000 mm/año [Ref. 2.1].

2.2.2 Geología y volcanismo

La geología de la cuenca de Aysén presenta rocas pertenecientes al cuaternario, cretácico y del jurásico superior- cretácico inferior.

Entre las formaciones presentes en la cuenca las que inciden en la calidad de agua están [Ref. 2.2]:

- Rocas volcánicas, del cuaternario; estrato volcanes y complejos volcánicos; lavas basálticas a riolíticas, domos y depósitos piroclásticos andesíticos basálticos a dacíticos; principalmente calcoalcalinos; ubicados en la parte alta del río Simpson y parte baja del río Coyhaique.
- Rocas sedimentarias del jurásico superior- cretácico inferior; secuencias sedimentarias marinas litorales o plataformales, calizas, lutitas, areniscas calcáreas, arseniscas y coquinas; su influencia se podría percibir en la parte baja de río Aysén y su desembocadura.

En el sector de río Oscuro y el primer tramo del río Simpson, se observa una influencia volcánica y de formaciones calcoalcalinas, las que debido a las características de permeabilidad e infiltración en la roca, no produce una influencia significativa en la calidad del agua. En río Ñirehuao, Emperador Guillermo y Mañihuales, predominan las formaciones sedimentarias; sin intervenir en la calidad del cuerpo hídrico; en el río Aysén propiamente tal se observa una influencia de formaciones volcánicas calcoalcalinas, las que no realizan variaciones en la calidad del recurso.

En el área de la cuenca no se encuentran volcanes, pero si existe una influencia de estos, debido a su cercanía y actividad.

2.2.3 Hidrogeología

El comportamiento hidrogeológico de esta cuenca ha sido poco estudiado. Por tanto, la hidrogeología se describe según las características de permeabilidad que posee la roca en el área de la cuenca.

Al oriente de la cordillera de los Andes se encuentra mayoritariamente terrenos con baja permeabilidad y un área de menor dimensión con una alta permeabilidad ubicada en el sector alto del río Ñirehuao y otra en la parte superior del río Coyhaique; la cordillera de los Andes presenta una muy baja permeabilidad.

Los acuíferos subterráneos, se ubican solamente alrededor del cauce del Río Aysén. El resto de la cuenca, no presenta este tipo de formaciones ya que la permeabilidad en esta zona es nula o muy baja [Ref. 2.3].

2.2.4 Geomorfología

La cuenca del río Aysén se ubica en la región Patagónica y Polar del Inlandsis Antártico, desde el punto de vista geomorfológico. Zona sometida a una tectónica de hundimiento a escala geológica, donde el mar ha penetrado por el llano central, los valles inferiores de los ríos andinos y la cordillera de la costa. Esto ha originando una variada morfología litoral, compuesta de golfos, canales, estuarios, fiordos, etc. La tectónica indica una tendencia general del territorio al hundimiento en el extremo austral, presentando manifestaciones de respuestas glacioeustáticas al solevantamiento, debido a la pérdida de peso que ha experimentado el continente liberado de la capa de hielos cuaternarios.

Las zonas ubicadas en bloques levantados manifiestan una activa e intensa erosión geológica, con enérgico desarrollo de sistemas torrenciales, movimientos en masa, etc. En cambio, en las zonas ubicadas en bloques hundidos prevalece la sedimentación. Esto explica la actividad de relleno que presentan los cursos inferiores de los ríos patagónicos, como el caso del Simpson. También se encuentran cadenas transversales en la zona de Puerto Aysén y Coyhaique.

El sector que ocupa la cuenca del río Aysén, ha sido descrito como una zona de lagos y ríos de control tectónico, cuya característica principal es encontrarse sobre la cordillera de Los Andes. Los sistemas hidrográficos de esta zona se orientan en dos sentidos: este – oeste como es el caso del río Simpson y norte – sur como los ríos Mañihuales y Blanco, que drenan en dirección del río Aysén. Asimismo, predomina el drenaje de carácter rectangular, estableciendo el dominio de una morfología de erosión que dificulta las comunicaciones terrestres. Al sur del río Simpson, existen numerosas y extensas depresiones lacustres y una compleja red ortogonal de ríos, cuya activa erosión nivofluvial determina un relieve segmentado, que tiende al desarrollo de cuencas que sólo tiene comunicación entre sí por dichos conductos fluviales como es el caso de Coyhaique, Puerto Aysén y Balmaceda, intercomunicadas por la morfología del Simpson [Ref. 2.4].

2.2.5 Suelos

Los suelos más representativos de la cuenca, son de tipo volcánico, en los cuales dominan los materiales de origen, es decir, los vidrios volcánicos. Estos suelos se ubican en las áreas más escarpadas del paisaje y se caracterizan por tener una textura gruesa (arenosa franca a muy arenosa), ser marcadamente estratificados, con bajos niveles de fertilidad y baja retención de humedad.

Dentro de estos suelos de origen volcánico, uno de los grupos más representativos en el área son los "trumaos" (pertenecientes a los inceptisoles en la taxonomía de suelos), formados sobre cenizas volcánicas, en condiciones de drenaje moderadamente bueno a excelente, de topografía plana a ligeramente ondulada Poseen estructuras bien desarrolladas, alta capacidad de retención de humedad, un pH ligeramente ácido y altos contenidos de materia orgánica.

La caracterización de los suelos de la cuenca del río Aysén se realiza de manera distinta a las otras por lo complejo de su estructura, así como la fuente de información. De acuerdo a SIREN – CORFO (1979) se puede establecer sectorialmente la siguiente caracterización:

Tabla 2.2: Caracterización de los suelos de la Cuenca del río Aysén

Asociación Suelo	Ubicación	Textura	Escorrentía	Permeabilidad	Grado de erosión
Balmaceda	Norte aeropuerto internacional hasta río Simpson, por el este a la altura río Oscuro	Finas (muy arcillosa, arcillo limosa, arcillo arenosa)	Alta	Baja	Alto
Balseo	Sector El Balseo, al sur confluencia río Mañihuales y Emperador Guillermo	Media (franca, franco limosa, muy limosa) a gruesa (arenosa franca, muy arenosa)	Lenta	Media - alta	Bajo
Coyhaique	Alrededores de Coyhaique	Moderadamente gruesa (franco arenosa) a moderadamente finos (franco arcilloso, franco arcillo limos, franco arcillo arenoso)	Media	Media	Moderado
Elizalde	Oeste del valle del río Simpson	Moderadamente gruesa (franco arenosa)	Media	Media	Moderado
Emperador Guillermo	Entre ambos márgenes del río Emperador Guillermo	Media (franca, franco limosa, muy limosa)	Media	Media	Moderado
Mano Negra	A ambos lados del camino a villa Ortega	Gruesa (arenosa franca, muy arenosa)	Lenta	Alta	Bajo

Tabla 2.2 (Continuación): Caracterización de los suelos de la Cuenca del río Aysén

Asociación Suelo	Ubicación	Textura	Escorrentía	Permeabilidad	Grado de erosión
Ñirehuao	Ambos costados camino villa Ortega – villa Ñirehuao	Gruesa (arenoso franca, muy arenosa) a media (franca, franca limosa, muy limosa)	Lenta - media	Alta - media	Bajo – moderado
Puerto Aysén	Alrededores ciudad Pto. Aysén	Fina (muy arcillosa, arcillo limosa, arcillo arenosa)	Alta	Baja	Alto
Simpson	Sector oeste valle Simpson; sur ciudad de Coyhaique	Moderadamente gruesa (franco arenosa)	Media	Media	Moderado
Villa Manuales	Desde confluencia río Emperador Guillermo y Mañihuales hacia Villa Mañihuales	Moderadamente gruesa (franco arenosa)	Media	Media	

[Ref. 2.2]

2.3 Flora y Fauna de la Cuenca del Río Aysén

2.3.1 Comunidades vegetales

De acuerdo a la clasificación realizada por Gajardo, la cuenca del río Aysén presenta cuatro formaciones vegetacionales con sus respectivas comunidades. Estas formaciones pertenecen a 3 regiones vegetacionales del país: el Bosque Andino patagónico, el Bosque Siempreverde y de Turberas y la Estepa Patagónica. Esta clasificación se muestra esquemáticamente en la tabla 2.3. Para cada formación se detallan las comunidades vegetacionales con sus especies características.

Tabla 2.3: Clasificación Vegetacional de la Cuenca del río Aysén

Región	Subregión	Formación
Bosque andino patagónico	Cordilleras Patagónicas.	Bosque caducifolio de Aysén.
Bosque Siempreverde y de turberas.	Bosque siempreverde con coníferas.	Bosque siempreverde de Puyuhuapi.
	Bosque siempreverde micrófilo.	Bosque Siempreverde Montano.
Estepa patagónica	Matorral y de la estepa patagónica de	Estepa patagónica de Aysén
	Aysén	

[Ref. 2.5]

a) Región del Bosque Andino Patagónico

Corresponde al territorio de la Cordillera Andina austral cubierto con bosques, que se extiende desde los 37° de latitud sur, hasta el extremo sur, ocupando el límite altitudinal superior de la vegetación en su área norte y señalando en el extremo sur su límite con la estepa patagónica hacia el este. Una de sus características ecológicas esenciales es recibir generalmente la precipitación bajo la forma de nieve.

El paisaje vegetal se caracteriza por la presencia dominante de lenga (Nothofagus pumilio), que es una especie de tipo caducifolio micrófilo, la cual participa en mayor o menor medida en las distintas comunidades presentes en el territorio de la región.

La Sub Región De Las Cordilleras Patagónicas se extiende en el sector de la cordillera de los Andes Australes donde existe una muy fuerte gradiente de precipitaciones oeste este, en el área donde las temperaturas y las precipitaciones tienden a ser inferiores; además a menudo se encuentra limitando cordones montañosos donde los fenómenos glaciares son actuales. Su distribución principal se sitúa en las vertientes orientales de la cordillera, cubriendo las laderas y los grandes valles.

El paisaje vegetal, que se encuentra muy alterado por los grandes incendios de bosques ocurridos en el pasado, es homogéneo y se presenta con una fisionomía boscosa, conformada por una estrata arbórea mono específica, con un sotobosque ralo y una estrata herbácea muy pobre en especies. Hay un mosaico de interpenetración hacia el oeste con la estepa patagónica y hacia el oeste con el bosque siempre verde y las turberas. El patrón de distribución de las comunidades vegetales responde primariamente a altitud y precipitación, alcanzando en ciertos casos gran importancia el relieve local.

b) Región del Bosque siempre verde y de las Turberas

Se caracteriza por presentar muy altas precipitaciones y temperaturas relativamente bajas y estables, lo cual constituye una limitaste para el desarrollo de la vegetación. Además, el relieve físico que la sostiene es muy complejo y diversificado, incluyendo sectores montañosos de las laderas occidentales de las cordilleras patagónicas, los campos de hielo y los innumerables archipiélagos que se encuentran desde el sur de la isla de Chiloé hasta el Cabo de Hornos.

Los paisajes vegetales de esta región también manifiestan una fisionomía compleja, alternando formaciones y comunidades de bosque, con matorrales muy húmedos y turberas. Pero, se puede considerar que existe un patrón de distribución homogéneo determinado por las características propias de altitud, relieve y posición latitudinal.

Comprende dos subregiones:

- Sub región del Bosque Siempreverde Con Coníferas
- Sub región del Bosque Siempreverde Micrófilo

La primera presenta bosque poco diversificado en cuanto a su estructura; presenta un dosel relativamente abierto y una densa estrata arbustiva. Las especies dominantes son generalmente Coníferas: alerce (Fitzroya cupressoides) o ciprés de Guaytecas (Pilgerodendron uvifera), acompañadas por alguna de las especies de Coihue, Nothofagus de hojas pequeñas y perennes. En ciertos sectores hay una fuerte penetración de elementos laurifolios, en especial en el área más boreal de la sub región.

La Sub Región Del Bosque Siempreverde Micrófilo comprende el extenso territorio donde los bosques dominados por coihue de Magallanes (Nothofagus betuloides), son el elemento principal en el paisaje vegetal. Su posición ambiental está definida por temperaturas generalmente bajas y precipitaciones intermedias del gradiente climático este oeste. Respecto del relieve, son bosques típicamente montanos, aunque en el área norte de la sub región ocupan los sectores medios de los valles de los grandes ríos.

c) Región de la Estepa Patagónica

Se encuentra ubicada en el extremo árido frío de la gradiente climática oeste este que rige la distribución de la vegetación en el extremo sur del continente sudamericano. Corresponde a una fisionomía altamente homogénea de estepas con gramíneas en mechón ("coirones") y arbustos bajos; en su margen occidental, ocurre una fuerte penetración de elementos florísticos de los bosques andino patagónicos.

La Sub Región del Matorral y de La Estepa Patagónica de Aysén corresponde a una estrecha franja de territorio situado al oriente de los macizos patagónicos, aproximadamente entre los 44° 30' y los 47° 30' de latitud sur, donde la gradiente ambiental muestra sus características más licitantes. Aunque cumple con la fisionomía general de la región ecológica patagónica, presenta peculiaridades en su composición florística que

permiten delimitarla como unidad, sin desmedro de considerar su proyección en la vertiente Argentina.

Entre sus elementos florísticos, destaca la presencia del neneo (Mulinum spinosum) y del duraznillo (Colliguaja integerrima); aparte de la participación dominante de diferentes especies de coirón (Festuca spp. y Stipa spp.) y de los cadillos (Acaena spp.). La limitada extensión territorial de esta sub región permite definir sólo una formación vegetal comprensiva de las distintas formas fisionómicas del paisaje vegetal [Ref. 2.5].

2.3.2 Fauna acuática

La biota acuática de estos ríos corresponde a la clasificación de los ríos transandinos septentrionales de la Patagonia. Este es un grupo de ríos que se forman al este del macizo andino en profundos glaciares. De acuerdo a Campos et al (1984 a y b) la fauna íctica correspondería a los peces descritos para las zonas ritrónicas de los ríos con regulación lacustre. El río Aysén es el más representativo de este grupo de ríos.

Las especies descritas aquí se refieren principalmente a los ríos Blanco y Simpson que son parte de esta cuenca y se detallan en la tabla mas abajo. Los antecedentes fueron obtenidos principalmente del Estudio de Impacto Ambiental de Alumysa (2002), publicaciones científicas (Vila et al. 1999), Campos (1999) y los estudios de la fauna bentónica realizados para la introducción del salmón del pacifico en Chile (SERNAPESCA-JICA, 1983).

Tabla 2.4: Flora y Fauna Acuática en Cuenca del río Aysén

Grupo	Clase	Orden	Familia	Nombre Científico
		FLO	ORA	·
Fitoplancton		Bacillariophyceae		Achantes sp
	Bacillariophyceae			Navicula sp
	Chlorophyceae			Chlamydomonodal nd
				Sphaerocystis sp
	Chrysophyceae	Chrysophyceae	Ocrhomodae	Dinobryon sp
	Dinophyceae			Peridinium sp
	Microflagelados			Varias especies
		Bacillariophyceae		Asterionella sp
				Cocconeis sp.
				Cyclotella meneghiniana
				Cyclotella stelligera
				Fragillaria sp.
				Gomphonema aff. Gracile
				Melosira distans
				Navicula sp.
				Nitzchia sp.
				Synedra ulna
				Urosolenia eriensis
		Cyanophyceae	Nostocaceae	Anabaena sp.
				Aulacoseira granulata
		Chlorophyceae		Crucigeniella apiculata
				Cryptomonas sp.
				Elakatothrix gelatinosa
				Oocystis lacustris
		Chryptophyceae		Mallomonas sp.
				Rhodomonas lacustris

Tabla 2.4 (Continuación): Flora y Fauna Acuática en Cuenca del río Aysén

Grupo	Clase	Orden	Familia	Nombre Científico
		Chrysophyceae	Ocrhomodae	Dinobryon divergens
				Sphaerocystis schroeteri
Perifiton		Bacillariophyceae		Achantes lanceolata
				Asterionella formosa
				Cyclotella meneghiniana
				Cyclotella stelligera
				Cymbella affinis
				Fragillaria sp.
				Frustulia sp.
				Gomphonema aff. Gracile
				Gomphonema herculeanum
				Hannea arcus
				Navicula sp.
				Nitzchia aff. Kutzingiana
				Nostoc sp.
				Stauroneis sp.
				Synedra ulna
		Cyanophyceae	Nostocaceae	Anabaena sp.
		Chrysophyceae	Ocrhomodae	Dinobryon divergens
Macrófitas		Dicotyledonae	Haloragaceae	Myriophilum aquaticum
		-	Polygonacea	Polygonum sp
		Liliopsida	Poaceae	Agrostis capillaris
		Monocotyledonae	Potamogetonaceae	Potamogeton sp
			Acanthaceae	Blechnum penna-marina.
			Amblistegiaceae	Calliergon sp.
			Compositae	Hypochaeris radicata
				Drepanocladus sp
				Juncus spp
				Plantago lanceolata
				Scirpus californicus
			Fabaceae	Lotus pedunculatus
		FAU	UNA	
Zooplancton	Crustacea	Cladocera		Eubosmina hagmanni
Bentos	Annelida	Oligochaeta	Hirudinea	Mesobdella sp.
	Crustacea	Amphipoda	Hiallelidae	Hyalella sp.
		Copepoda	Calanoidea	Boeckella gracilipes
				Copepodos Calánidos nd
		Decapada	Aeglidae	Aegla sp.
				Eubosmina hagmanni
				Harpacticoide sp.
				Nauplius
	Diptera	Chironomidae		Orthocladius sp
	Ephemeroptera	Leptophlebiidae		Meridialaris sp

Tabla 2.4 (Continuación): Flora y Fauna Acuática en Cuenca del río Aysén

Grupo	Clase	Orden	Familia	Nombre Científico
	Insecta	Aracnida		Collembolla sp1
		Diptera	Blephariceridae	Blephariceridae sp1
			Chironomidae	Chironomonidae nd
				Diptera sp 1
				Diptera sp 2
		Ephemeroptera	Leptophlebiidae	Meridialaris sp.
			Ephemeroptera	Baetis sp.
	Rotifera			Chonochilus unicornis
				Filinia longiseta
				Gastropus sp.
				Keratella cochlearis
				Lecane luna
				Phylodina sp.
				Polyarthra vulgaris
				Trichocerca similis
			Elmidae	Aphrophila bidentata
				Araucanioperla sp.
		Coleoptera	Curculionidae	Curculionidae sp1
		Diptera	Chiromonidae	Chironomidae nd
		Gastropoda	Chilinidae	Chilina dombeyana
		Plecoptera	Autroperlidae	Antarctoperla michaelseni
		riccoptoru	ranopernane	Acari sp1
				Asellus sp.
				Athericidae sp1
				Brachycentodes sp.
				Dasyheleinae sp1
				Demoullineus sp.
				Dicrotendipes sp
				Ecnomidae sp1
				Elmidae sp1
				Empididae sp1
				Forcipomyiinae sp1
				Gripopterygiidae sp1
				Helicophidae sp1
				Helodidae sp1
				Hydraenidae sp1
				Hydrobiosidae sp1
				Hydroptilidae sp1
				Klapopterix armillata
				Limnichidae sp1
				Limnoperla jaffueli
				Limoniidae sp1
				Littoridina sp.
				Massartelopsis sp.

Tabla 2.4 (Continuación): Flora y Fauna Acuática en Cuenca del río Aysén

Grupo	Clase	Orden	Familia	Nombre Científico
				Mecoptera sp1
				Meridialaris spp.
				Nais sp.
				Nousia sp.
				Oligochaeta sp1
				Ormosia sp.
				Penaphlebia sp.
				Pseudocleon sp.
				Senzilloides sp.
				Simuliidae sp1
				Smicridea chilensis
				Tabanidae sp1
				Tipula sp.
				Udamocercia sp.
auna íctica	Peces	Ciclostomata	Geotridae	Geotria australis
		Salmoniformes	Galaxidae	Galaxias maculatus
				Galaxias platei
			Salmonidae	Salmo trutta
				Oncorhynchus mykiss

2.4 <u>Sistemas Humanos</u>

2.4.1 Asentamientos humanos

La cuenca abarca las comunas de Coyhaique y puerto Aysén, pertenecientes a las provincias del mismo nombre, en la XI Región de Chile. Posee 33 entidades pobladas de las cuales dos son ciudades, Coyhaique, capital regional y puerto Aysén. De importancia son también, según el número de habitantes, las localidades de Villa Mañihuales, Balmaceda, Villa Simpson y El Blanco. Las restantes localidades son asentamientos rurales.

La distribución espacial de las localidades anteriores, se da principalmente entorno a las vías de acceso, las que se distribuyen junto a los principales cursos fluviales.

Tabla 2.5: Población total cuenca del río Aysén

Nombre Asentamiento	Nº Habitantes	Cauces asociados
Coyhaique	50.041	Río Simpson
*Puerto Aysén	15.865	Río Aysén
*Villa Mañihuales	1.665	Río Mañihuales
*Balmaceda	624	Río Oscuro
*Villa Simpson	497	Río Simpson
*El Blanco	418	Río Blanco

[Ref. 2.6]

Fuente: INE, Censo de 2002.

Los datos de población dada por el censo 2002 corresponden a datos a nivel comunal y no de ciudad.

En el centro de la cuenca se emplaza la ciudad más importante, Coyhaique. Esta se localiza en la ribera sur del río Coyhaique. En el sector costero de la cuenca, desembocadura del río Aysén, se ubica la ciudad de Puerto Aysén.

2.4.2 Actividades económicas

La región de Aysén presenta una de las mayores tasas de crecimiento del Producto Interno Bruto entre los años 1960 y 1998 (superada por las regiones de Antofagasta y Atacama). Durante la década de los 90 el promedio de crecimiento anual regional estuvo por debajo del crecimiento del país, alcanzando 7,5% anual, lo que equivale a un crecimiento promedio de 5% para un período de 38 años. Esto determina un dinamismo económico destacable.

Tabla 2.6: Tasas de Crecimiento del PIB Regional

REGIÓN	1960/1970	1970/1980	1980/1990	1990/1998	1960/1998
Aysén	8.21%	1.73%	3.18%	7.50%	5.00%
Región Metropolitana	5.78%	1.91%	3.09%	7.94%	4.48%
PAÍS	4.22%	2.15%	3.08%	7.76%	4.10%

[Ref. 2.7]

Dicho crecimiento económico regional ha sido producto de una reconversión del aparato productivo. En 1960 los sectores de pesca, minería e industria representaban el 1.1% del PIB regional; mientras en 1997 este porcentaje aumentó a un 26%. En igual período el sector agropecuario disminuyó de 32,1% a 8,8%. Considerando tasas anuales de variación en el periodo 1997 –1970, se produjo una disminución anual promedio de 0,4% en el sector

^{*}Cifra corresponde a una estimación realizada para el año 2002 según datos del censo de 1992.

agropecuario. Los sectores de pesca, minería e industria, en cambio, aumentaron en un 22,5%; 17,3% y 9,3% respectivamente.

Tabla 2.7: Participación Regional en el PIB 1960-1997

REGIÓN	1960	1970	1980	1990	1997
Aysén	0.4%	0.5%	0.5%	0.5%	0.6%
Región Metropolitana	41.5%	47.6%	44.9%	44.8%	48.1%

[Ref 2.7]

En el cuadro anterior, basado en las participaciones regionales del PIB sobre los totales nacionales para distintos años, se observa una mayor concentración económica de la Región Metropolitana que incrementa su participación de 41.5% en 1960 a un 48% en 1997. En cambio, la Región de Aysén, pasa de un 0.4% de participación en el PIB nacional en 1960 a un 0.6% en 1997. Es decir, la región sigue siendo muy pequeña en términos de participación económica, con una participación muy inferior al 1%, pero que si se la compara con respecto a sí misma indica que ella ha incrementado su ponderación en un 50% en el período considerado.

Las exportaciones regionales se han incrementado significativamente en la década de los 90, aumentando de US\$ 70 millones en 1990 a más de US\$ 162 millones en 1999, lo que significa una tasa promedio anual de crecimiento del 9.8%, superior al 6.7% del país en su conjunto. Esto significa que la participación de la región sobre el total de exportaciones se incrementó hasta el 1,1%; prácticamente el doble de la ponderación que la región tiene sobre el PIB nacional.

Tabla 2.8: Aysén. Exportaciones por Sector (1999) (Miles de dólares FOB)

Sector	XI	(%)
Agricultura	8	0
Ganadería	801	0.5
Madera en Pie	2	0
Resto de Min. Metálica	24.758	15.2
Ind. Alimentos	128.378	78.9
Alimentos Forrajeros	0	0
Textiles	27	0
Forestales	8.720	5.4
Ref. Petróleo y Prod. Deriv.	19	0
Vidrio y Manuf. De Vidrio	2	0
Material Eléctrico	6	0
Material Transporte	2	0
Total Región	162.723	100.0

Por sector económico, el mayor porcentaje de exportación lo tiene la industria de alimentos, asociada a la gran producción de salmones y otros productos marinos. En segundo lugar se encuentra la minería y mucho más atrás la actividad forestal.

2.5 <u>Usos del Suelo</u>

Los usos del suelo se ilustran en la lámina 1940-AYS-01 y se resumen en la siguiente tabla.

Tabla 2.9: Clasificación	Usos del Suelo Ci	uenca del Río Aysén
--------------------------	-------------------	---------------------

Cuenca del río Aysén (Ha)	Usos del Suelo	Superficie (Ha)	Superficie de la cuenca destinada para cada uso (%)
1.145.600	Praderas	190.404	17
	Terrenos agrícolas y agricultura de riego	1.607	0,1
	Plantaciones forestales	6.121	1
	Áreas urbanas e industriales	1.232	0,1
	Minería Industrial	60	0,01
	Bosque nativo y bosque mixto	482.014	42
	Otros Usos*	382.080	33
	Áreas sin vegetación	83.689	7

^{*} Referidos a los siguientes usos: matorrales, matorral – pradera, rotación cultivo – pradera, áreas no reconocidas, cuerpos de agua, nieves – glaciares y humedales. [Ref. 2.8].

2.5.1 Uso agrícola

Si bien el uso agrícola no es muy representativo de la zona, entre 1960 y 1997 se redujo la participación del sector agropecuario en el PIB de la región de Aysén, de un 32,1% a un 8,8%, en desmedro de otras actividades que han tenido crecimientos sostenidos como la minería, industria y pesca.

La superficie agrícola de la cuenca, contempla sólo 1.607 Ha de terrenos agrícolas. En al comuna de Coyhaique, se dan cultivos principales de cereales, chacras, hortalizas y plantas forrajeras. Mientras cultivos como viñas, frutales, cultivos industriales entre otros no se producen.

Por su parte en la comuna de Aysén, los principales son los cereales, chacras, hortalizas y plantas forrajeras.

De acuerdo a lo anterior, el uso agrícola del suelo está caracterizado por la predominancia de plantaciones forrajeras en ambas comunas. Sin embargo Coyhaique ha desarrollado más este uso en comparación con la comuna de Aysén.

2.5.2 Uso forestal

El uso forestal en la cuenca, se da solo en algunos sectores. Las plantaciones forestales (6.121 Ha), distribuidas en las comunas de Coyhaique y Aysén, representan un porcentaje bajo en comparación a la explotación de especies nativas. De esta manera, la undécima región sólo aporta con el 0,6% de la producción nacional de madera aserrada (principalmente pino radiata). Otras plantaciones forestales existentes en la zona y de origen nativo, corresponden al bosque de Lenga.

Un ejemplo de uso forestal desarrollado en la cuenca del río Aysén, es el que llevó a cabo la Compañía Manufacturera de Papeles y Cartones (CMPC) a 137 kilómetros al sur de la ciudad de Coyhaique, en una zona completamente devastada por la erupción del Volcán Hudson. Se desarrolló el Proyecto Aysén, cuyo propósito es forestar más de 30 kilómetros de longitud, cubriendo más de 1.800 hectáreas.

Las especies que se han establecido a un ritmo de poco más de mil hectáreas por año son Pino oregón (Pseudotsuga menziessi), Pino ponderosa (Pinus ponderosa) y Pino contorta.

Según CEPAL/CORFO; en sectores de Aysén, es posible la utilización de especies de coníferas originarias del hemisferio norte (costa oeste de USA y Canadá) para el establecimiento de plantaciones productivas, entre las cuales están se encuentran Pino oregón y Pino ponderosa. El Pino oregón presenta los mejores desarrollos en las zonas con mayor influencia marítima donde las condiciones climáticas son más estables y suaves. En cambio Pino ponderosa presenta los óptimos crecimientos en zonas de menor humedad, en la zona intermedia a este de la Región.

2.5.3 Uso urbano

La vastedad del territorio y el volumen de población concluyen en una muy baja densidad, de sólo 0.9 habitantes por km², a nivel regional. La población urbana alcanza al 75% en la región, situándose en unas pocas localidades, destacando Coyhaique y Puerto Aysén (además de Cochrane), las que concentran el 77,6 % de la población del territorio. El uso urbano está representado por ciudades, pueblos y zonas industriales, abarcando 1.232 Ha. La superficie destinada a la minería industrial, es de 60 Ha.

Coyhaique se presenta como una depresión rodeada de un conjunto de nevados montañosos. Su población, al año 1992 era de 36.376 habitantes. Se caracteriza por ser el centro poblado más importante de la cuenca y de la región, no sólo por concentrar el mayor número de habitantes, sino también por ser el centro de convergencia desde el punto de vista de la accesibilidad. Concentra además los servicios de salud, educación, financieros, comercio los que definen el uso del suelo. Así como el uso residencial e industrial siendo este último no muy significativo.

Puerto Aysén se sitúa a 67 km al oriente de Coyhaique, cerca de la desembocadura del río Aysén. Se trata de una localidad costera, que antiguamente fue el puerto de entrada a la región y que luego del maremoto de los años sesenta quedó más al interior, siendo reemplazada en esta función por Puerto Chacabuco. Tiene un total de 15.865 habitantes (según estimación al año 2002) y junto a Coyhaique poseen sobre el 80% de su población urbana. Destacan los usos del suelo residencial e industrial.

En la cuenca, la superficie destinada al uso del suelo de tipo minero, corresponde a 60 Ha (0,01%) y está representada por la minera El Toqui. Esta mina está ubicada a 180 km al noreste de Coyhaique, produce zinc, oro y plata. Esta propiedad minera, incluye las propiedades San Antonio (Zn-Pb), Mallín Mónica (Zn), Doña Rosa (Zn-Pb-Au).

2.5.4 Áreas bajo protección oficial y conservación de la biodiversidad

Las Áreas bajo Protección Oficial que se emplaza en la cuenca, corresponden al Monumento Natural Dos Lagunas y las Reservas Nacionales de Mañihuales, Trapananda, río Simpson, Coyhaique y Cerro Castillo. La superficie total que ocupan estas áreas bajo Protección Oficial pertenecientes al Sistema Nacional de Áreas Silvestres Protegidas por el

Estado (SNASPE), alcanza las 138.356 Ha equivalentes al 12% de la superficie total de la cuenca.

Las Áreas de conservación de la biodiversidad en la cuenca de Aysén, corresponden al Monumento Natural Dos Lagunas por la presencia de Bagres y Puyes; Reserva Nacional Coyhaique por la presencia de bosque caducifolio de Aysén (musgos y líquenes de interés) y Reserva Nacional río Simpson [Ref. 2.9].

3. <u>ESTABLECIMIENTO DE LA BASE DE DATOS</u>

3.1 <u>Información Fluviométrica</u>

La información utilizada para la realización del presente estudio hidrológico ha sido proporcionada por el Centro de Información de Recursos Hídricos (CIRH) de la Dirección General de Aguas. El detalle para la cuenca del Aysén es el siguiente:

Tabla 3.1: Estaciones Fluviométricas de la Cuenca del río Aysén

Nombre	Período de Registro
RÍO ÑIREHUAO EN VILLA MAÑIHUALES	1980 – 2001
RÍO EMPERADOR GUILLERMO ANTES JUNTA CON MAÑIHUALES	1980 – 2001
RÍO MAÑIHUALES ANTES JUNTA CON SIMPSON	1970 – 2001
RÍO HUEMULES FRENTE CERRO GALERA	1979 – 2001
RÍO OSCURO EN CAMINO CERRO PORTEZUELO	1979 – 2001
RÍO BLANCO CHICO ANTES JUNTA CON OSCURO	1979 – 2001
RÍO BLANCO ANTES JUNTA CON HUEMULES	1979 – 2001
RÍO COYHAIQUE EN TEJAS VERDES	1979 – 2001
RÍO SIMPSON BAJO JUNTA CON COYHAIQUE	1969 – 2001
RÍO BLANCO EN DESAGÜE LAGO CARO	1985 – 2001
RÍO AYSÉN EN PUERTO AYSÉN	1995 – 2001

Las subcuencas del río Aysén presentan un régimen pluvio-nival, pudiéndose en principio escoger una estación patrón que represente toda la cuenca y utilizarla para completar los caudales de todo el resto de las estaciones de la cuenca. Se consideró que si bien todas las estaciones de la cuenca tienen en común este régimen, se pueden distinguir matices en sus comportamientos, ya que hay estaciones que tienen una influencia pluvial en proporción a la nival mucho mayor que otras, y existen estaciones con influencia de derretimiento de glaciares y regulación por lagos. De esta manera se efectuó la diferenciación de tres regímenes pluvio nivales con ligeras diferencias, los cuales definen también los grupos en los que se separarán los cauces (en este caso representados por las estaciones) con el objetivo de completar caudales. Los grupos escogidos son los siguientes:

Grupo 1; Régimen Mixto Nivo - Pluvial de cauces trasandinos: Se separó
esta zona por sus particulares características orográficas con gran influencia
en la cantidad de precipitaciones. Para esta zona, el caudal provocado por
los deshielos es considerablemente más grande que el provocado por

precipitaciones. Como estación patrón para este régimen se escogió Coyhaique en Tejas Verdes, con una precipitación media para la zona (aproximadamente 700 mm).

- Grupo 2; Régimen Mixto nivo pluvial: Esta zona tiene características nivo pluviales en las cuales la característica pluvial es mucho más marcada que en las estaciones ubicadas en la región trasandina, ya que la precipitación en esta zona es mucho más alta que ella. La precipitación media anual es del orden de los 3500 mm, gran parte de ella debido a factores orográficos, los cuales provocan que los peaks de invierno sean mayores, especialmente para años húmedos. Para años secos son comparables a los peaks de deshielo.
- Grupo 3; Régimen nivo pluvial regulado por lagos y glaciares: El cauce del río Blanco es el único dentro de esta clasificación. En su hoya existen 10 lagos de consideración, lo cual produce un aumento de los caudales en época de estiaje y una disminución en los periodos de deshielos y mayores precipitaciones. Además en el extremo sudoeste de la cuenca del Aysén, lugar perteneciente a la subcuenca del Blanco, se encuentra parte del glaciar de Huemules y una serie de cumbres con hielos eternos, que disminuyen la variación de los caudales de deshielo de año a año.

Tabla 3.2: Grupos de Estaciones Fluviométricas

	Régimen	Nombre Estación
1		RÍO COYHAIQUE EN TEJAS VERDES
2		RÍO HUEMULES FRENTE A ECRRO LA GALERA
3	Mixto	RÍO OSCURO EN CAMINO A CERRO PORTEZUELO
4	Trasandino	RÍO BLANCO CHICO ANTES DE JUNTA CON OSCURO
5		RÍO BLANCO ANTES DE JUNTA CON HUEMULES
6		RÍO SIMPSON BAJO JUNTA CON COYHAIQUE
7		ÑIREHUAO EN VILLA MAÑIHUALES
8	Mixto	RÍO EMPERADOR GUILLERMO ANTES DE JUNTA CON MAÑIHUALES
9		RÍO MAÑIHUALES NTES DE JUNTA CON SIMPSON
10		RÍO AYSÉN EN PUERTO AYSÉN
11	Mixto regulado por lagos	BLANCO EN DESAGÜE LAGO CARO

<u>Aysén</u>

26.

Para los grupos anteriormente expuestos, las estaciones patrones seleccionados son:

- Coyhaique en Tejas Verdes
- Ñirehuao en Villa Mañihuales
- Blanco en desagüe Lago Caro

La estadística completada y extendida utilizada para el análisis de frecuencia de esta cuenca se encuentra en el anexo 3.1, donde se señalan los datos calculados para completar la estadística.

3.2 <u>Usos del Agua</u>

Las aguas superficiales presentes en una cuenca hidrográfica pueden ser utilizadas de distintas maneras. Se han diferenciado tipos de usos del agua, los cuales se han agrupado en usos in-situ, usos extractivos, usos para la biodiversidad y usos ancestrales.

Las fuentes utilizadas en este capítulo corresponden a:

- Sistema de Información Integral de Riego (SIIR).
- Catastro Bosque Nativo CONAF CONAMA.
- "Estrategia y Plan de Acción para la Biodiversidad en la XI Región de Aysén", CONAMA-CONAF-SAG-INIA-DGA-SERNAP
- "Análisis Uso Actual y Futuro de los Recursos Hídricos de Chile", IPLA Ltda. para DGA, MOP enero 1996.

3.2.1 Usos in – situ

Los usos de agua in-situ corresponden a aquellos que ocurren en el ambiente natural de la fuente de agua. A continuación se mencionan los usos in-situ en esta cuenca que se relacionan con la calidad del agua:

a) Acuicultura

La acuicultura es la actividad organizada por el hombre que tiene por objeto la producción de recursos hidrobiológicos, cualquiera sea su finalidad. Tratándose de las aguas continentales superficiales, corresponde a la Subsecretaría de Pesca informar sobre la existencia de zonas destinadas a la acuicultura. En este acápite se consideran sólo las actividades de acuicultura que se realizan en el cauce mismo (uso del agua in-situ). La acuicultura que se realiza fuera del cauce se incluye como uso extractivo de tipo industrial.

Para esta cuenca, no existen zonas de acuicultura informadas por la Subsecretaría de Pesca.

b) Pesca deportiva y recreativa

Este uso es el que se destina a la actividad realizada con el objeto de capturar especies hidrobiológicas sin fines de lucro y con propósito de deporte, recreo, turismo o pasatiempo.

En esta cuenca se desarrolla esta práctica principalmente en los lagos: Caro, Elizalde (truchas), Atravesado, Frío (truchas), Riesco, Los Palos, Portales, Pólux y Castor. Por otra parte, los ríos que presentan aptitudes para desarrollar dicha actividad, son los ríos Ñirehuao, Simpson, Cóndor, Aysén, Blanco (este), entre otros. Sin embargo, en el caso de los ríos, no se dispone de información acerca de los puntos específicos de pesca a lo largo de éstos, razón por la que no se pueden asignar a segmentos.

3.2.2 Usos extractivos

Los usos extractivos son los que se extraen o consumen en su lugar de origen. A continuación se mencionan los usos extractivos en esta cuenca que se relacionan con la calidad del agua:

a) Riego

El uso del agua para riego es aquel que incluye la aplicación del agua desde su origen natural o procedente de tratamiento. Se distingue riego irrestricto y restringido. El primero es el que contempla agua, cuyas características físicas, químicas y biológicas la hacen apta para su uso regular en cada una de las etapas de desarrollo de cultivos agrícolas,

plantaciones forestales o praderas naturales. En el riego restringido, en cambio, la aplicación se debe controlar, debido a que sus características no son las adecuadas para utilizarlas en todas las etapas de cultivos y plantaciones. En este acápite, sin embargo, no se desagregan estas clasificaciones de riego, porque no existen antecedentes para hacerlo.

Razones de geografía, clima y vegetación configuran una intervención en los cursos de agua naturales casi inexistente, por lo que no existe infraestructura de riego asociada a derechos de aguas o extracción de caudales. Sólo se ha detectado una bocatoma para este usos en las Bases de Datos de la DGA, al norte de Coyhaique, la cual no es posible asignar a un segmento.

b) Captación para agua potable

El uso para la captación de agua potable es aquel que contempla la utilización en las plantas de tratamiento para el abastecimiento tanto residencial como industrial.

Las demandas más relevantes de agua potable corresponden a las localidades de Coyhaique, Aysén, Villa Mañihuales y Balmaceda. Así, las demandas brutas estimadas para el año 2007 se muestran a continuación:

Tabla 3.3: Demandas brutas de agua potable (l/s) estimadas al año 2017

Localidad	Demanda (l/s)
Coyhaique	150,94
Aysén	78,8
Villa Mañihuales	6,82
Balmaceda	5,02

[Ref. 3.1]

Por otra parte, las fuentes de agua potable se indican en la siguiente tabla:

Tabla 3.4: Fuentes de agua potable (l/s)

Localidad	Fuente
Coyhaique	Estero Seguel
	Estero La Cascada
	Río Coyhaique
	Estero El Carbón I
	Estero El Carbón, Escuela Agrícola
Puerto Aysén	Río Arredondo

[Ref. 3.1]

No es posible asignar las bocatomas del río Coyhaique, estero La Cascada y estero Carbón a segmentos específicos, por no disponer de la información suficiente.

c) Generación de energía eléctrica

Con respecto a la generación de energía eléctrica, la cuenca de Aysén está fuera del Sistema Interconectado Central (SIC) y se ubica en el Sistema Interconectado de Aysén (SIA) que abastece las localidades de Villa Mañihuales, Ñirehuao, Puerto Chacabuco, Aysén, Coyhaique, Balmaceda, Villa Cerro Castillo y Puerto Ingeniero Ibáñez. En este momento existen 4 centrales hidroeléctricas en la zona, todas de pasada. [Ref. 3.1]

- Central El Toqui: Pertenece a la Sociedad Minera el Toqui. Utiliza las aguas del río Toqui, afluente del río Mañihuales. Tiene una capacidad instalada de 2500 kW.
- Central Río Claro: Abastece la planta faenadora de un particular. Se ubica en el río Claro al oeste de Coyhaique. Su capacidad instalada es de 370 kW. No se dispone de su localización con exactitud.
- Central Puerto Aysén: Pertenece a la Empresa Eléctrica Aysén (EDELAYSEN S.A.) Aprovecha las aguas del río Arredondo en una central de pasada instalada el año 1962. No obstante sus dos turbinas pueden utilizar un caudal máximo de 6,9 m³/s para generar 5527 kW, sólo se utilizan 4m³/s, que es la capacidad máxima del canal de captación. En promedio el caudal extraído del río es de 3,4 m³/s.
- Central Lago Atravesado¹: Cuenta con derechos concedidos a la Empresa Eléctrica de Aysén Ltda., a través de la Resolución DGA N°202 del 06 de mayo de 1987. La fuente del recurso concedido corresponde a las aguas del río que desagua al lago Atravesado. El caudal del derecho correspondiente es de 25100 l/s.

_

¹ Actualmente en construcción

d) Actividad industrial

Las demandas industriales actuales del recurso hídrico de la cuenca están realizadas principalmente por las industrias de los siguientes rubros y se muestran en la tabla que continúa:

- Frigoríficos
- Mataderos
- Procesamiento de carnes
- Pesqueras

Tabla 3.5: Demandas industriales netas estimadas al año 2017

Río Si	Río Simpson Río Aysén		Río Aysén		otal
(m³/año)	(1/s)	(m³/año)	(l/s)	(m³/año)	(l/s)
813.000	26	5.691.000	180	6.504.000	206

[Ref. 3.1]

No se dispone de información acerca de la localización de estas bocatomas.

e) Actividad minera

Las demandas mineras corresponden a los derechos de agua oficialmente otorgados a las empresas mineras, de acuerdo a lo indicado en la siguiente tabla:

Tabla 3.6: Demandas Mineras

Nombre	Año	Fuente	Derechos (l/s)
Minera Lac-Chile S.A.	1990	Río Ñirehuao	150
Empresa Minera Aysén LTDA.	1985	Río L. Maqui	500
Soc. Contractual Minera Toqui	1984	Río Blanco	2000

[Ref. 3.1]

Sólo se ha podido localizar la bocatoma de la Minera Toqui.

3.2.3 Biodiversidad

La protección y conservación de comunidades acuáticas, a la que hace referencia el Instructivo, son abordadas en el presente estudio desde el punto de vista del Sistema Nacional de Áreas Protegidas del Estado (SNASPE), de la Estrategia de Biodiversidad y algunos otros sitios de interés que pudieran sobresalir de la información recopilada (sitios CONAF, etc).

En la cuenca del río Aysén existen los siguientes sitios contemplados en el SNASPE:

- Reserva Nacional Castillo: silvestre Cerro En esta área predomina la lenga, árbol nativo que es posible encontrarlo formando bosques entre los 600 y los 1.200 m s.n.m. Con el fin de proteger el suelo, se reforestaron alrededor de mil hectáreas con especies exóticas. Entre los animales y aves que viven en ella, están huemules, guanacos, zorros, pumas, cóndores, cachañas, águilas, etc. Los sitios que destacan por su belleza son el Cerro castillo (2.320 m s.n.m.) y el cerro Iglesia (1.750 m s.n.m.), y la piedra Conde, que es una roca modelada por los elementos como un perfil humano.
- Reserva Nacional Coyhaique: La vegetación se encuentra representada por el Bosque mixto de coigüe común y lenga siendo la formación vegetacional predominante la del Bosque Caducifolio de Aysén. Respecto de la fauna, es posible encontrar puma, zorro colorado, chingue de la Patagonia y algunas especies introducidas como la liebre y visón. Entra las aves las más abundantes son las peseriformes, como chucao, zorzal y tordo, entre las rapaces son comunes el águila y el carancho. La reserva cuenta con varios senderos peatonales que recorren un grupo de lagunas, entre las que destaca la Laguna Venus con un bosque nativo.
- Reserva Nacional Trapananda: Las especies vegetales predominantes corresponden a las de la formación vegetacional bosque caducifolio de Aysén, cuya especie arbórea característica es la lenga. Este bosque ha sido intervenido desde hace muchos años, por lo que su estructura y estado de desarrollo actuales obedecen a dichas intervenciones, predominando los individuos sobremaduros y una escasa regeneración. Respecto de la fauna,

las especies más frecuentes son águila, cernícalo, zorzal, tordo, cachaña y carpintero patagónico; entre las aves, puma, zorro colorado, chingue patagónico, piche y especies introducidas como la liebre y ciervo rojo.

• Reserva Nacional Río Simpson: Se caracteriza por un relieve accidentado y con cumbres superiores a los 1.600 m s.n.m., lo que da origen a valles y angostos cañadones por los que bajan los ríos. También destacan los ríos Correntosos y Cascada de la Virgen, afluentes del Simpson, ambos rodeados de bellos paisajes y exuberante vegetación. Esta última está conformada principalmente por bosques compuestos por coigües, tepas, mañío, ciruelillo, canelo y tepú, además del chilco, que es el arbusto más abundante de la zona.

En cuanto a la fauna, el huemul habita en el sector oriental, donde el relieve es pedregoso y las faldas de los cerros, Cordillerano y Huemules, son escarpadas. El puma, por otro lado, vive en zonas de mediana altura, pasando el verano a mayor altura y el invierno en las llanuras. Otras especies que habitan la reserva son el pudú, zorro, güiña, bandurrias, queltehues y una gran variedad de patos silvestres.

- Monumento Natural Dos Lagunas: Es un sector de transición entre el bosque caducifolio de Aysén y la estepa patagónica. Entre las especies arbóreas características están el ñirre, calafate, lenga, frutilla y pasto miel. Dentro de la fauna del lugar destacan las aves como el carpintero negro, pitío, cachaña, zorzal, el pato real y el cisne de cuello negro. Entre los mamíferos destacan el zorro colorado, chingüe y el armadillo o peludo.
- Reserva Nacional Mañihuales.

En cuanto a la "Estrategia y Plan de Acción para la Biodiversidad en la XI Región de Aysén", en esta cuenca no se han detectado áreas incluidas en este documento.

3.2.4 Usos Ancestrales

Para esta cuenca no se han detectado derechos de agua otorgados a comunidades indígenas.

3.2.5 Conclusiones

En la lámina 1940-AYS-02: "Estaciones de Medición y Usos del Agua" se muestran los cauces seleccionados para el presente estudio, con su respectiva segmentación y los distintos usos asociados a cada cauce. Esta misma información se presenta en la tabla 3.7, la cual contiene el tipo de uso del agua por segmento.

La tabla 3.7 ha sido concebida como una matriz, ubicando los segmentos en las filas y los usos de agua en las columnas. Para definir las columnas se han considerado los usos prioritarios establecidos en el Instructivo, complementándolos con otros usos (hidroelectricidad, actividad industrial, etc.) que si bien no aparecen en él, permiten tener una visión más global de la cuenca.

Tabla 3.7: Usos de agua por segmento en la cuenca del Aysén

		Usos	in situ			Extractivos				
Cauce	Segmento	Acuicultura	Pesca Deportiva Y Recreativa	Riego	Captación A.P.	Hidroelectricidad	Actividad Industrial	Actividad Minera	Biodiversidad*	Ancestrales
Río Aysén	1134AY10		+							
Kio 71 ysen	1134AY20		·							
Río Emperador	1130EM10									
Guillermo										
	1130MA10									
Río Mañihuales	1130MA20									
	1130MA30									
Río Ñirehuao	1130NI10		+							
Nio Mienuao	1130NI20		'							
Río Blanco Chico	1131BC10								•	
Río Blanco (este)	1131BE10								•	
Río Blanco (oeste)	1133BL10									
Kio Bianco (oeste)	1133BL20									
Río Claro	1131CL10	•				•			•	
Río Coyhaique	1131CO10				•					
Kio Coynaique	1131CO20								•	
Río Oscuro	1131OS10								•	
Kio Osculo	1131OS20									

^{*}En esta columna se incluye sitios SNAPE, sitios priorizados, santuarios, etc.

⁺ Con los antecedentes disponibles no es posible asignar los usos a un segmento específico.

Tabla 3.7 (Continuación): Usos de agua por segmento en la cuenca del Aysén

		Usos	in situ			Extractivos				
Cauce	Segmento	Acuicultura	Pesca Deportiva Y Recreativa	Riego	Captación A.P.	Hidroelectricidad	Actividad Industrial	Actividad Minera	Biodiversidad*	Ancestrales
 	1131SI10									
	1131SI20									
Río Simpson	1131SI30		+							
1	1131SI40									
	1131SI50								•	

[Ref 3.1]

 * En esta columna se incluye sitios SNAPE, sitios priorizados, santuarios, etc.

⁺ Con los antecedentes disponibles no es posible asignar los usos a un segmento específico.

3.3 <u>Descargas</u>

3.3.1 Aguas servidas

Con respecto a la situación actual que presentan las aguas servidas en la cuenca, la ciudad de Coyhaique actualmente (Noviembre de 2002), posee una planta de tratamiento que depura las aguas servidas de esta ciudad, la cual vierte al Río Simpson un caudal de 6610 [m³/día]. En tanto, la ciudad de Puerto Aysén vierte al río del mismo nombre, un caudal de 2218,56 [m³/día] sin tratamiento previo, con una carga orgánica de DBO₅ 555 [kg/día].

A continuación, en la tabla 3.8, se incluye información referente a las empresas de servicios sanitarios que operan actualmente en la cuenca; el cuerpo receptor de las aguas servidas; el porcentaje de cobertura de tratamiento de aguas servidas y población total estimada (urbana y saneada) para cada localidad. Además, se incluye el porcentaje de cobertura de tratamiento (referida a la población) al año 2002. Los valores de concentración de los parámetros característicos de las aguas servidas, son aquellos estipulados en el Decreto Nº 90/00, en el cual se incluyen como límite máximo permisible.

Tabla 3.8: Descargas de Aguas Servidas

Localidad	Segmento Asociado a La Descarga	Cuerpo Receptor	Empresa de Servicios Sanitarios	Cobertura de Tratamiento de Aguas Servidas (%)	Población Estimada Total (Hab)	Población Estimada Saneada (Hab)	Planta de Tratamiento y/o Tipo de Tratamiento	Nombre de la Planta	Caudal (L/s)	DBO ₅ (mg/l)	рН	Sólidos Suspendidos Totales (mg/L)	Aceites y Grasas (mg/l)	Cu Total (mg/l)	Fe disuelto (mg/l)	Colif. Fecales (NMP/100 ml)
COYHAIQUE	1131SI40	Río Simpson	EMSSA S.A.	97,1	42,.554	41.333	SI	Zanjas de Oxidación	76,5	35	6,0 - 8,5	80	20	0,1	2	<1,0E+03
PUERTO AYSÉN	1134AY20	Río Aysén	EMSSA S.A.	0	15,.389	13,.866	NO		25,7	35	6,0 - 8,5	80	20	0,1	2	<1,0E+03
VILLA MAÑIHUALES	1130MA20	Río Mañihuales	Nd	Nd	Nd	Nd	Nd		ND	35	6,0 - 8,5	80	20	0,1	2	< 1,0E+03
BALMACEDA	1131OS10	Río Oscuro	EMSSA S.A.	Nd	580	Nd	NO			35	6,0 - 8,5	80	20	0,1	2	< 1,0E+03
VILLA SIMPSON	1131SI30	Río Simpson	Nd	Nd	Nd	Nd	Nd		ND	35	6,0 - 8,5	80	20	0,1	2	< 1,0E+03
EL BLANCO	Sin Ubicación	ND	Nd	Nd	Nd	Nd	Nd		ND	35	6,0 - 8,5	80	20	0,1	2	<1,0E+03

Nd: Información no disponible.

Las concentraciones de los parámetros característicos de las aguas servidas debe ser proporcionada por la empresa sanitaria EMSSA S.A. Si los efluentes de aguas servidas cumplen con el Decreto Nº90/00, las concentraciones de éstos parámetros son inferiores a aquellas incluidas en la tabla anterior (límite máximo permisible por el Decreto Nº90).

3.3.2 Residuos industriales líquidos

La contaminación puntual industrial en la cuenca, no es significativa de acuerdo al número de establecimientos industriales existentes. La única industria que se encuentra en esta zona, corresponde a Salmones Antártica S.A. la cual descarga sus riles directamente al curso superficial. La información anterior, se presenta en la tabla 3.9.

Tabla 3.9: Descargas Industriales

Industria	Segmento (Ubicación Industria)	Comuna	Cuerpo Receptor	CIIU	Caudal (L/s)	рН	T (°C)	SS	S.D.	Aceites y Grasas	НС	DBO ₅	As	Cd	CN ⁻	Cu	Cr	P	Hg	Ni	NH ₄ ⁺	Pb	SO ₄ =	Zn	PE	В	Al	Mn
SALMONES ANTÁRTICA	1134AY20	Puerto Aysén	Río Aysén	31141	277,8	*	*	370	*	*		440									*				*			

NOTA:

Las unidades de concentración de los parámetros físico – químicos están expresados en mg/L.

Las celdas con asterisco representan los parámetros típicos que se deberían encontrar en efluentes de cada industria de acuerdo a su clasificación CIIU según Decreto Nº 90/00 MOP.

3.4 <u>Datos de Calidad de Agua</u>

3.4.1 Fuentes de información

A continuación, se indican las características de los programas de monitoreo que se han utilizado como referencia para el análisis de la calidad de agua en la cuenca del Aysén. Las fuentes de información sobre de calidad de aguas utilizadas en este estudio para el análisis de la cuenca del río Aysén, son las siguientes:

a) Monitoreo de Calidad de aguas de la DGA

Sus características son:

REGISTE	O DE PROG	RAMA DE MO	NITOREO DG	ŀΑ	
Cuenca	Río Aysén				
Cauces monitoreados	Medición de Caudal	N° Parámetros Medidos	N° Parámetros Medidos en Instructivo	Periodo de Registro	N° de Registros
Río Aysén					
En Puente Presidente Ibañez	SI	32	21	1983-2002	36
Río Simpson					
Bajo junta río Coyhaique (*)	SI	32	21	1991-1992 1997 <i>-</i> 2000	3 11
Antes de junta río Coyhaique (Pte. Mondaca) (*)	NO	32	13	1983-1986 1989-1993	11 13
Río Emperador Guillermo	I	l	l		
Antes junta río Mañihuales	SI	32	21	1983-2002	36
Río Manuales					
Antes junta río Simpson	SI	32	21	1983-2002	36
Río Ñirehuao					
En Villa Mañihuales	SI	32	21	1983-2002	36
Río Coyhaique		l	l		
En Tejas Verdes	SI	32	21	1983-2002	36
	l .	1	1		l

REGISTR	O DE PROG	RAMA DE MO	NITOREO DG	iΑ	
Cuenca	Río Aysén				
Cauces monitoreados	Medición de Caudal	N° Parámetros Medidos	N° Parámetros Medidos en Instructivo	Periodo de Registro	Nº de Registros
Río Blanco		l			
Antes junta río Aysén Desembocadura	SI	32	21	1991-2002	13
Antes río Huemules (*)	NO	32	21	1989-1993	12
En sección de aforos (*)	NO	32	13	1984-1985	5
En desagüe lago Caro (*)	NO	32	21	1989-1991	6
Río Claro					
En Piscicultura	NO	32	21	1983-2002	35
En central hidroeléctrica (*)	NO	32	21	1983-1986 1989-1993	11 12
En Pte. Ramón Osses (*)	NO	32	21	1983-1986 1989-1993	23
Antes estero Perdido (*)	NO	32	12	1991	1
En camino a Portezuelo (*)	NO	32	12	1990	1
Río Huemules					
Frente al cerro Galera (*)	NO	32	21	1989-1993	12
Río Oscuro					
En Camino a Portezuelo	SI	32	21	1983-2002	35
Parámetros medidos según Instructiv	o	I	I		
• Indicadores físico- químicos	SI	• Orgá	inicos plaguicida	as	NO
 Inorgánicos 	SI	• Micr	obiológicos		NO
Metales esenciales	SI	• Orgá	inicos		NO
Metales no esenciales	SI	• Otro	s parámetros no	normados	SI

^(*) Estación de monitoreo suspendida

b) Muestreos SAG

El Servicio Agrícola Ganadero, SAG inició a partir de 1999 la medición de 32 puntos de muestreo en 17 ríos de la región con el objeto de evaluar la contaminación antrópica o natural en diferentes subcuencas de interés agropecuario. El monitoreo realizado en las subcuencas del río Cisnes, Mañihuales y Simpson tiene un período de registro de cuatro años (1999-2002). Los parámetros medidos son: conductividad eléctrica, pH, sólidos disueltos, RAS, sodio, potasio, calcio, magnesio, cobre, manganeso, arsénico, molibdeno, zinc y cadmio.

c) Programa de Muestreo Puntual CADE-IDEPE

El detalle se presenta en el acápite 4.2.3

3.4.2 Aceptabilidad de los programas de monitoreos

Conforme al procedimiento metodológico para la aceptabilidad de los programas de monitoreo, corresponde validar automáticamente los datos de calidad de aguas contenidos en la red de monitoreos de la DGA. Sin embargo, se presenta la aplicación completa de la metodología para definir la Base de Datos Depurada (BDD).

Las etapas básicas para estructurar la BDD para la cuenca son las siguientes:

Análisis de outliers

Cada vez que, en una estación de monitoreo, un registro o valor de un parámetro aparentemente difiere notoriamente del resto de los valores registrados, se procede a someter estos puntos discordantes al test de Dixon para la detección de outliers. Una vez realizado este proceso de revisión de la información existente en la cuenca del río Aysén, se llegó a eliminar un porcentaje inferior al 0,1 % de los datos. Todo esto permite confirmar la validez de los datos contenidos en la red de monitoreo de la DGA para esta cuenca.

46.

Análisis de límites físicos

Los límites físicos para los diferentes parámetros contenidos en la red de monitoreo no se vieron sobrepasados, por lo que no se eliminaron datos producto de este análisis

• Análisis de límites de detección (LD)

Una vez analizados los puntos anteriores, se procede a revisar, en cada estación de monitoreo, aquellos parámetros cuyo valor se repite permanentemente como resultado del análisis de laboratorio.

En la cuenca del río Aysén se encontró que la información de los siguientes parámetros es equivalente al límite de detección por repetirse constantemente en los registros existentes: mercurio (<1 μ g/l); níquel y cadmio (<10 μ g/l); molibdeno y plomo (<0.01 μ g/l). Por lo tanto, estos parámetros no son posibles de considerar en posteriores análisis de la calidad del agua de la cuenca.

Debido a la escasa información proveniente del monitoreo del SAG, no se justifica la aplicación de algún método de aceptabilidad de los datos.

La Base de Datos Depurada que contiene la información disponible para análisis de la cuenca del río Aysén, se presenta en forma de archivo digital en el anexo 3.2.

4. ANALISIS Y PROCESAMIENTO DE LA INFORMACION

- 4.1 Analisis de Información Fluviométrica
- 4.1.1 Análisis por estación fluviométrica
- a) Subcuenca del río Mañihuales
- Nirehuao en Villa Mañihuales

Esta estación se encuentra en el río Ñirehuao, antes de la junta con el río Mañihuales.

La estación Ñirehuao en Villa Mañihuales se encuentra en el valle del río Mañihuales, en los Andes Patagónicos a 188 m s.n.m. Su área de drenaje es de 1910 km² y presenta un régimen nivo pluvial para años normales o secos (probabilidad de excedencia mayor o igual al 50%) en que el caudal medio más alto se presenta en el mes de Octubre, debido al derretimiento de nieves ubicadas en cotas mas bajas y que se acumulan durante el invierno. En años húmedos (probabilidad de excedencia menor o igual al 20%) los registros de caudales más altos son producidos por las lluvias invernales, tal como se muestra en la tabla 4.1 y figura 4.1.

El área aportante pluvial se concentra en la parte baja de la cuenca y recibe las lluvias de las precipitaciones orográficas de las masas de aire que entran a través del valle de Mañihuales. La isoyeta en este lugar es de aproximadamente 2500 mm. En Ñirehuao Alto o Goichel existe un clima de estepa fría con bajas precipitaciones, similar al de Balmaceda (621mm anuales). La escorrentía nival corresponde a parte baja de la cuenca en los cerros Huemules, Negro y Colorado (1500 m s.n.m). El aporte nival del Ñirehuao Alto o Goichel proviene de las vertientes que nacen en el límite internacional, en el nordeste de la cuenca (cerro Katterfeld 1600 m s.n.m). El río Norte, afluente en la parte media del Ñirehuao también conduce caudales de deshielo provenientes del norte de la cuenca, ya que drena el sector de la Meseta Pedregosa, donde se encuentran los cerros Catedral y Trinchera, y los ubicados al sur de las lagunas de La Plata y Fontana, ubicadas al otro lado del límite internacional. De la curva hipsométrica se obtiene que las zonas descritas que aportan con escorrentía de deshielos sean aproximadamente el 25% de la cuenca.

Tabla 4.1: Estación Ñirehuao en Villa Mañihuales²

Pex (%)	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Ene	Feb	Mar
5	28.90	52.86	69.05	91.56	121.28	78.15	78.62	66.48	44.75	24.41	18.62	22.53
10	24.04	47.26	61.84	74.89	91.72	69.00	71.03	59.94	39.06	22.04	15.99	19.10
20	19.23	40.47	53.10	58.71	66.60	59.35	62.82	52.48	33.13	19.17	13.30	15.52
50	12.55	27.49	36.41	36.87	38.92	44.50	49.66	39.87	24.18	13.69	9.35	10.12
85	7.42	11.51	15.84	20.79	23.92	31.21	37.18	27.33	16.41	6.94	6.06	5.32
95	5.45	2.12	3.76	14.85	19.76	25.34	31.37	21.41	13.07	2.98	4.69	3.15
Dist	L2	N	N	L2	L3	L2	L2	G2	L2	N	L2	G

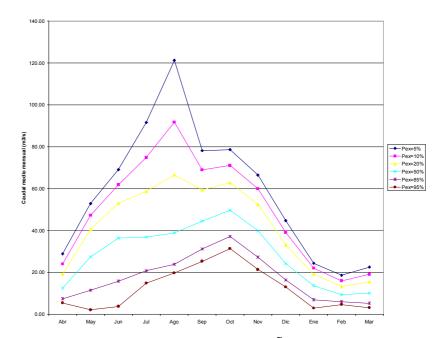


Figura 4.1: Curva de Variación Estacional en Ñirehuao en Villa Mañihuales

² Donde: Pex (%) corresponde a la probabilidad de excedencia, y la fila Dist entrega la abreviatura de la distribución a la que el mes tuvo un mejor ajuste, la abreviatura corresponde a la siguiente:

Distribución		Abreviatura
Normal	:	N
Log-Normal 2 parámetros	:	L2
Log-Normal 3 parámetros	:	L3
Gumbel o de Valores Extremos Tipo I	:	G
Gamma 2 parámetros	:	G2
Pearson Tipo III	:	P3
Log-Gamma de 2 parámetros	:	LG
Log-Pearson tipo III	:	LP

• Emperador Guillermo antes de junta con Mañihuales

Esta estación se ubica en el valle del río Emperador Guillermo, antes de su junta con el Mañihuales. Drena un área de 651.3 km². Es muy similar a la subcuenca del Ñirehuao, tanto en su morfología como en su comportamiento hidrológico, presentando los caudales más altos en octubre y noviembre para los años normales o secos (se refiere a un año normal o seco cuando la curva de variación estacional es de un 95, 85 o 50% de probabilidad de excedencia), y en junio para los años lluviosos (año lluviosos cuando las curva de variación estacional es de un porcentaje menor al 50% de probabilidad de excedencia). Su caudal es menor que el de los ríos Ñirehuao y Mañihuales.

Esta estación recibe aguas drenadas de la meseta boscosa en su ribera sur, de origen principalmente nival. También hay aportes nivales de las 2 cadenas de cerros que rodean la parte baja del cauce.

El área aportante nival es aproximadamente del 25% de la cuenca. Las características de esta subcuenca son muy similares a las de la definida por la estación Ñirehuao en Villa Mañihuales, en lo que respecta a áreas aportantes de nieves en la sección superior e inferior de la cuenca, y aportes de lluvias en las secciones media e inferior.

Pex (%)	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Ene	Feb	Mar
5	25.30	35.38	34.54	43.59	49.84	40.39	33.81	35.67	27.22	15.41	14.09	26.80
10	22.48	30.31	31.15	35.47	38.06	32.42	31.05	32.16	24.42	13.67	12.43	19.19
20	19.06	24.84	27.04	27.63	28.06	25.53	28.18	28.50	21.50	11.86	10.58	13.14
50	12.52	16.23	19.19	17.14	17.07	17.74	23.83	22.96	17.10	9.12	7.56	7.11
85	4.48	8.72	9.52	9.52	11.12	13.34	19.97	18.05	13.19	6.69	4.71	4.30
95	0.00	5.70	3.84	6.74	9.48	12.08	18.22	15.82	11.41	5.58	3.44	3.63
Dist	N	G2	N	L2	L3	L3	G	G	G	G	G2	L3

Tabla 4.2: Estación Emperador Guillermo antes de junta con Mañihuales

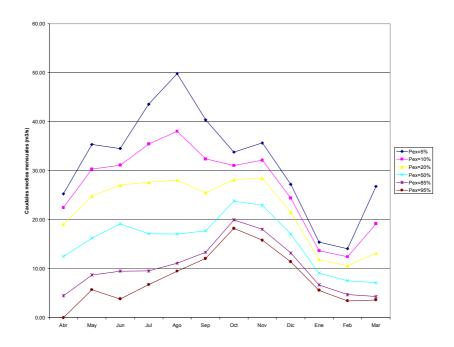


Figura 4.2: Curva de Variación Estacional en Emperador Guillermo antes de junta con Manuales

Mañihuales antes de junta con Simpson

Esta estación se encuentra en el nacimiento del río Aysén, unos 25 km aguas arriba de la ciudad de Puerto Aysén. Drena una superficie de 3821.9 km² correspondiente a un tercio del área total de la cuenca. La estación tiene un comportamiento muy similar al de las estaciones aguas arriba, presentando una mayor preponderancia de la característica nival para años normales o seco y de característica pluvial para los años húmedos, en los mismos meses en que se manifiestan los caudales altos de las estaciones aguas arriba.

El caudal que escurre en la estación es bastante mayor que la suma del escurrido en las dos estaciones fluviométricas aguas arriba. Esto se explica por los aportes no controlados, que consisten en la gran cantidad de quebradas y esteros existentes a lo largo del Mañihuales, el curso superior de este río, aguas arriba de Villa Mañihuales, y el río Cañón. Las áreas drenadas por los ríos Cañón y Mañihuales aguas arriba de Villa Mañihuales son importantes, siendo la primera de unos 400 km² y la segunda aún mayor.

Pex (%)	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Ene	Feb	Mar
5	251.06	294.21	332.15	420.67	486.38	310.58	275.98	309.72	293.34	181.56	151.48	207.06
10	202.08	255.99	300.82	338.18	377.62	270.46	254.21	287.08	268.70	165.36	124.06	163.16
20	155.37	214.06	262.88	259.62	277.92	228.74	231.52	259.67	238.86	145.73	99.64	122.25
50	94.01	146.74	190.35	156.63	154.69	166.07	197.25	207.26	181.82	108.23	70.73	70.42
85	50.63	85.46	101.02	84.06	75.17	111.95	166.80	142.72	111.57	62.03	53.25	35.69
95	35.20	59.39	48.55	58.32	49.20	88.80	152.99	104.81	70.31	34.90	47.88	23.95
Dist	L2	G2	N	L2	L2	L2	G	N	N	N	L3	L2

Tabla 4.3: Estación Mañihuales antes de junta con Simpson

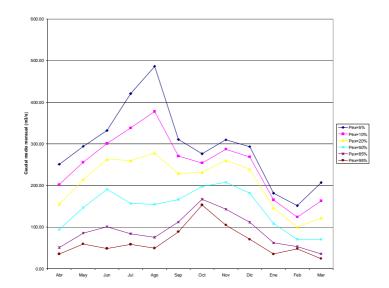


Figura 4.3: Curva de Variación Estacional en Mañihuales antes de junta con Simpson

- b) Subcuenca del río Simpson
- Oscuro en camino a cerro Portezuelo

Se ubica en el río Oscuro, 5 km. aguas arriba de su junta con el río Blanco Chico. Su área es de 106.9 km² y se ubica a 525 m s.n.m. Muestra un régimen nivo pluvial, con un caudal medio mensual máximo en noviembre. En julio se produce el mayor caudal de origen pluvial. En febrero se presenta la menor escorrentía. El área aportante pluvial de la cuenca es sólo una franja de 3 km a cada lado del río a lo largo de su desarrollo después de los cerros. El área que aporta los deshielos es aproximadamente igual al área pluvial, encontrándose casi el 50% de la cuenca por sobre los 1100 m. Las elevaciones más

importantes del sector superior de la cuenca son los cerros Negro, Bandera, Pico Gancho y Bayo.

Pex (%)	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Ene	Feb	Mar
5	2.18	3.52	3.17	4.93	2.94	3.67	4.55	5.90	4.99	2.62	1.73	2.89
10	1.88	2.59	2.77	3.52	2.49	2.92	4.11	5.27	4.44	2.40	1.57	2.23
20	1.58	1.84	2.33	2.42	2.01	2.27	3.64	4.59	3.86	2.13	1.37	1.62
50	1.11	1.06	1.62	1.32	1.29	1.50	2.88	3.53	2.95	1.61	1.00	0.89
85	0.70	0.69	0.97	0.82	0.66	1.06	2.16	2.56	2.11	0.98	0.55	0.42
95	0.51	0.60	0.68	0.70	0.37	0.93	1.83	2.12	1.74	0.61	0.28	0.27
Dist	G	L3	G2	L3	G	L3	L2	L2	L2	N	N	L2

Tabla 4.4: Estación Oscuro en camino a cerro Portezuelo

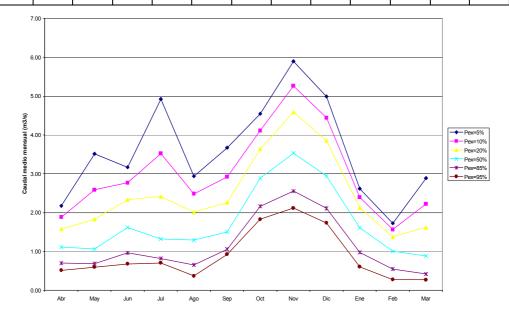


Figura 4.4: Curva de Variación Estacional en Oscuro en camino a cerro Portezuelo

• Blanco Chico antes de junta con Oscuro

Se ubica cerca de la estación de río Oscuro en camino a cerro Portezuelo y controla los caudales del río Blanco Chico. Según lo observado en las curvas de variación, los años normales y secos presentan mayores en los meses de deshielo, de octubre a enero, mostrando el máximo en noviembre, manifestando carácter nivo pluvial. Para años húmedos se invierte la tendencia, siendo mayores los caudales entre los meses de junio y agosto. La gran diferencia de comportamiento entre los ríos Blanco Chico y Oscuro se debe a la diferencia existente entre las áreas aportantes nivales y pluviales de las dos cuencas, siendo en

el caso de Blanco Chico sólo un 20% del total del área la ubicada sobre los 1100 m, a diferencia del 50% del Oscuro.

Pex Abr May Jun Jul Ago Sep Oct Nov Dic Ene Feb Mar (%) 10.39 1.04 1.56 4.15 7.37 9.08 7.36 6.06 6.39 4.57 1.93 1.64 5 10 1.34 3.04 5.58 6.97 8.46 6.77 5.71 5.60 3.63 1.66 0.93 1.32 20 1.12 2.14 3.99 4.87 6.59 6.04 5.28 4.77 2.81 1.39 0.81 1.02 0.78 1.20 2.10 2.10 4.09 4.65 4.47 1.88 0.98 0.62 50 3.51 0.62 85 0.51 0.74 0.95 0.49 2.27 2.95 3.46 2.39 1.35 0.64 0.45 0.34 95 0.39 0.63 0.60 0.16 1.61 1.94 2.88 1.89 1.19 0.50 0.37 0.24 Dist L2 L3 L2 P3M L2 N G L3 L2 L2 L2

Tabla 4.5: Estación Blanco Chico antes de junta con Oscuro

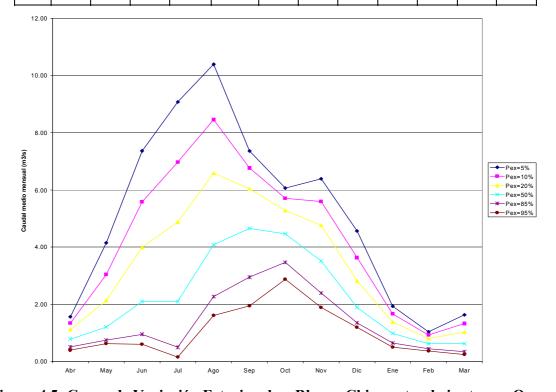


Figura 4.5: Curva de Variación Estacional en Blanco Chico antes de junta con Oscuro

Huemules frente a cerro la Galera

Esta estación fluviométrica se ubica geográficamente en el río Simpson, aguas abajo de la confluencia del río Oscuro. [Ref 4.1 y 4.2].

El régimen de esta estación es controlado casi principalmente por lo que ocurre en los ríos Oscuro y Blanco Chico, ya que el caudal que aporta el Huemules aguas arriba de estos dos afluentes es pequeña. Para años normales o secos, la cuenca se comporta con una mayor influencia nival, mostrando el máximo en el mes de octubre, por lo que se puede inferir que la línea de nieves se encuentra a una cota muy baja durante el invierno. Para años húmedos los mayores caudales se registran en el mes de agosto, siendo más importante en este caso el factor pluvial.

Pex (%)	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Ene	Feb	Mar
5	4.31	14.26	19.44	29.05	30.63	23.47	23.41	19.54	10.64	5.45	4.04	4.00
10	3.75	9.60	13.20	20.50	23.87	21.26	20.57	16.74	9.76	4.92	3.22	3.34
20	3.13	6.14	8.49	13.66	17.64	18.59	17.59	13.87	8.70	4.28	2.45	2.66
50	2.14	3.02	4.16	6.78	9.90	13.47	13.04	9.68	6.66	3.05	1.45	1.63
85	1.25	1.77	2.37	3.53	4.86	7.17	9.02	6.22	4.15	1.54	0.76	0.71
95	0.87	1.52	2.00	2.74	3.20	3.47	7.26	4.80	2.68	0.65	0.52	0.29
Dist	C2	1.2	1.2	1.2	1.2	NI	1.2	1.2	Νī	NI	1.2	C

Tabla 4.6: Estación Huemules frente a cerro La Galera

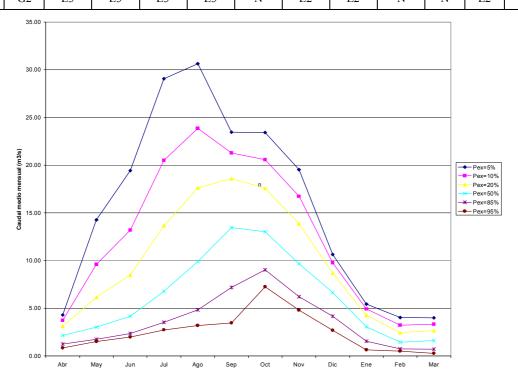


Figura 4.6: Curva de Variación Estacional en Huemules frente a cerro La Galera

Blanco antes de junta con Huemules

Esta estación drena un área de 409 km² y se ubica a una altura de 450 m s.n.m. El régimen que manifiesta la curva de variación estacional es nivo pluvial tanto para años secos como húmedos. La escorrentía nival que produce este marcado régimen tiene sus orígenes en las cumbres de la cordillera Castillo que drenan hacia el cauce, con alturas cercanas a los 1800 m (cerros Aislado, Castillo, y Pico Blanco). De esta manera, más del 50% de la cuenca se ubica a una cota superior a los 1100 m, explicando la importante escorrentía nival.

	ı	ı										1
Pex	Abr	Mav	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Ene	Feb	Mar
(%)	1101	1114	0 011	0 41	1180	очр		1101	2.0	Line	100	11141
5	14.51	17.05	15.93	25.84	18.69	17.60	27.30	37.51	28.33	15.91	8.32	18.50
10	12.00	15.46	14.34	19.43	16.63	16.20	25.42	33.56	24.75	13.31	7.27	12.68
20	9.54	13.53	12.40	13.75	14.13	14.51	23.31	29.33	21.02	10.72	6.19	8.21
50	6.15	9.85	8.70	7.11	9.36	11.27	19.75	22.68	15.37	7.09	4.55	4.00
85	3.58	5.31	4.15	3.15	3.48	7.27	16.11	16.51	10.46	4.26	3.09	2.20
95	2.61	2.65	1.48	1.95	0.03	4.93	14.29	13.71	8.34	3.16	2.43	1.81
Dist	L2	N	N	L2	N	N	L2	L2	L2	L2	G	L3

Tabla 4.7: Estación Blanco antes de junta con Huemules

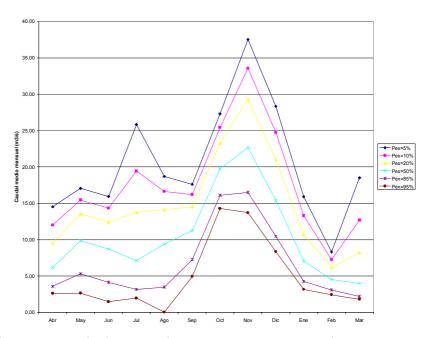


Figura 4.7: Curva de Variación Estacional en Blanco antes de junta con Huemules

• Coyhaique en Tejas Verdes

Se ubica en el extremo nordeste de la ciudad de Coyhaique, en sector de Tejas Verdes. Drena un área de 621.2km² a 621.3 m s.n.m. Esta estación presenta un régimen nivo pluvial, con deshielos entre los meses de septiembre y noviembre, localizándose los caudales más altos en los meses de octubre y noviembre. La gran variación de los caudales entre los meses de abril y agosto se debe a las bajas temperaturas predominantes en la zona en los meses de invierno, que pueden influir en que la precipitación caiga en forma de nieve y se acumule, produciendo alguna lluvia posterior una escorrentía mayor a la normal al derretir y arrastrar las nieves acumuladas.

Pex (%)	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Ene	Feb	Mar
5	6.09	9.75	21.20	17.84	20.67	17.15	18.47	17.27	9.27	3.99	3.01	4.97
10	4.87	8.25	14.74	14.88	18.34	15.72	17.27	14.47	7.01	3.23	2.31	3.54
20	3.72	6.64	9.65	11.75	15.53	14.00	15.81	11.68	5.15	2.50	1.74	2.42
50	2.21	4.16	4.66	7.01	10.14	10.70	13.04	7.76	3.21	1.53	1.14	1.31
85	1.17	2.08	2.39	3.21	3.52	6.64	9.62	4.69	2.23	0.84	0.83	0.81
95	0.80	1.28	1.86	1.84	0.00	4.25	7.61	3.49	1.98	0.59	0.75	0.69
Dist	N	G2	L3	G2	N	N	N	L2	L3	L2	L3	L3

Tabla 4.8: Estación Coyhaique en Tejas Verdes

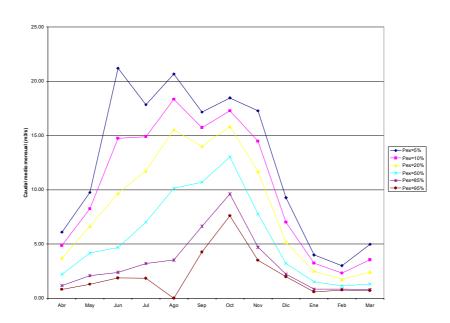


Figura 4.8: Curva de Variación Estacional en Coyhaique en Tejas Verdes

• Simpson bajo junta con Coyhaique

Se ubica al norte de la ciudad de Coyhaique, bajo la junta con el río homónimo, drenando un área de 3043.8 km², correspondientes al 26% de la cuenca. Está a 410 m s.n.m.

Muestra un régimen nivo pluvial para los años normales o seco y pluvio nival para los años húmedos, característica observada en casi todas las estaciones anteriores. Otro patrón que se conserva es la gran variación de los caudales en meses de invierno, y la menor variación de los caudales de deshielo, en comparación con los meses de invierno.

Pex (%)	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Ene	Feb	Mar
5	35.64	89.80	90.82	125.16	116.63	112.58	105.89	100.05	82.76	37.26	26.27	35.68
10	32.11	66.08	81.02	101.15	105.56	98.91	99.68	92.03	65.70	33.16	22.76	26.33
20	27.84	46.81	69.15	78.14	92.14	84.47	92.15	82.31	50.92	28.55	19.10	18.71
50	19.67	26.99	46.47	47.72	66.51	62.20	77.76	63.74	34.18	20.92	13.57	10.84
85	9.62	17.30	18.52	25.99	34.93	42.23	60.04	40.87	24.69	13.55	8.66	6.96
95	3.71	14.87	2.11	18.19	16.38	33.39	49.63	27.43	21.95	10.19	6.44	5.98
Dist	N	L3	N	L2	N	L3	N	N	L3	G2	G	L3

Tabla 4.9: Estación Simpson bajo junta con Coyhaique

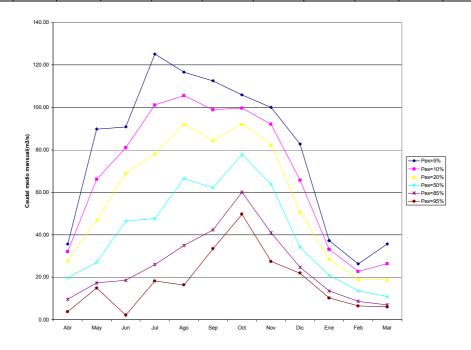


Figura 4.9: Curva de Variación Estacional en Simpson bajo junta con Coyhaique

- c) Subcuenca del Río Blanco (oeste)
- Blanco (oeste) en desagüe de lago Caro

Esta estación se ubica en la salida del lago Caro, lugar donde nace el río Blanco. Drena un área de 1496.8 km², de los cuales más de 100 km² corresponden superficie de lagos. Los aportes a esta cuenca son nivales, pluviales y glaciales. Los aportes nivales se deben a la existencia de cadenas montañosas de importancia como las cordilleras Cumbre Blanca y Cumbre Negra y La Campana, el cordón de Los Barrancos y cerros como el Huemules.

La isoyeta media de la cuenca es de 2500 mm, lo que implica que el aporte pluvial será de importancia. La existencia de varios pero pequeños ventisqueros determina un aporte glacial menor.

Los tres factores anteriores juntos determinan un régimen nivo pluvio glacial, a lo cual se suma la influencia reguladora de la gran cantidad de lagos ubicados aquí.

Los caudales más altos de los periodos de deshielos y lluvias se presentan algo retrasados con respecto a las demás estaciones de la cuenca y los caudales de los meses que para las demás estaciones han sido de estiaje (enero a marzo) en esta cuenca tienen caudales importantes y con poca variación. Esto se debe al efecto regulador de los lagos Caro, Elizalde, Paloma, Atravesado, Azul y Desierto, que amortiguan los grandes caudales y regulan los caudales extremos de la misma manera, aumentando los caudales de los periodos de estiaje y disminuyendo los de los periodos de lluvias. De esta manera, para años secos, el caudal presente para el mes de febrero es semejante al presentado para el mes de mayo o junio de un año seco.

Tabla 4.10: Estación Blanco (oeste) en Desagüe de Lago Caro

Pex (%)	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Ene	Feb	Mar
5	167.63	188.48	152.01	152.25	204.80	113.45	142.88	138.54	211.66	147.23	126.59	116.69
10	133.86	160.77	138.65	124.45	155.40	104.24	129.62	134.34	197.16	139.55	115.96	104.27
20	104.44	130.88	122.47	100.87	113.75	93.09	115.80	129.37	179.58	130.24	104.27	90.98
50	70.77	84.25	91.54	75.02	68.46	71.77	94.93	120.21	146.00	112.47	85.11	70.12
85	51.43	44.14	53.45	61.08	44.37	45.50	76.38	109.52	104.63	90.57	66.28	50.87
95	45.78	28.25	31.07	57.24	37.82	30.08	67.97	103.56	80.34	77.71	57.22	42.13
Dist	L3	G2	N	L3	L3	N	G	LG	N	N	L2	L2

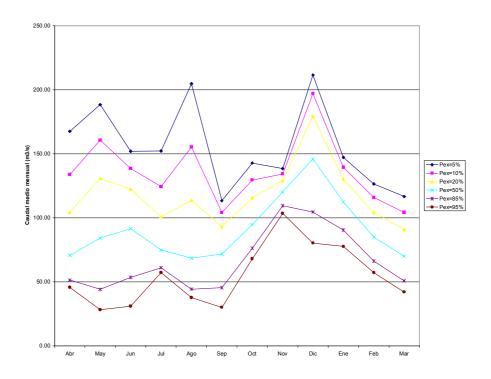


Figura 4.10: Curva de Variación Estacional en Blanco en desagüe de lago Caro

- d) Subcuenca del río Aysén
- Aysén en Puerto Aysén

Drena un área algo menor al total de la cuenca de 11727.4 km² ya que no incluye el caudal aportado por el río Los Palos. Conjuga todos los regímenes presentes en la cuenca, mostrando características comunes a todas las estaciones, como caudales medios mensuales máximos entre los meses de octubre y diciembre para años normales y secos, y en junio para años húmedos.

La menor dispersión entre los caudales de deshielo, relativo a la dispersión de los caudales producidos por las lluvias de invierno, es debida a la presencia estable de nieve en el sector oeste de los Andes Patagónicos, constituido en esta zona por las cordilleras de las Lástimas, Cumbre Blanca, Cumbre Negra y las cadenas de cerros Los Cóndores, El Tronador.

Los caudales de los meses que para otras estaciones son de estiaje, aparecen con caudales importantes debidos principalmente a la regulación producida por la cuenca del río Blanco.

Tabla 4.11: Estación Aysén en Puerto Aysén

Pex (%)	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic	Ene	Feb	Mar
5	722.27	798.33	644.84	1132.94	1293.84	892.64	718.46	705.68	1087.54	628.71	446.84	490.47
10	621.41	728.03	608.76	865.97	988.90	721.71	692.80	676.12	968.30	573.93	421.55	461.73
20	517.92	642.88	565.05	647.15	729.71	573.43	666.05	640.31	841.24	516.82	393.13	426.91
50	365.63	480.14	481.51	419.10	444.28	405.03	625.64	571.88	642.93	430.56	342.94	360.37
85	238.12	279.69	378.62	305.34	289.51	309.35	589.74	487.59	461.69	353.94	287.40	278.41
95	185.09	161.95	318.19	276.26	246.65	281.65	573.46	438.08	380.08	319.17	257.81	230.27
Dist	L2	N	N	L3	L3	L3	G	N	L2	G	G2	N

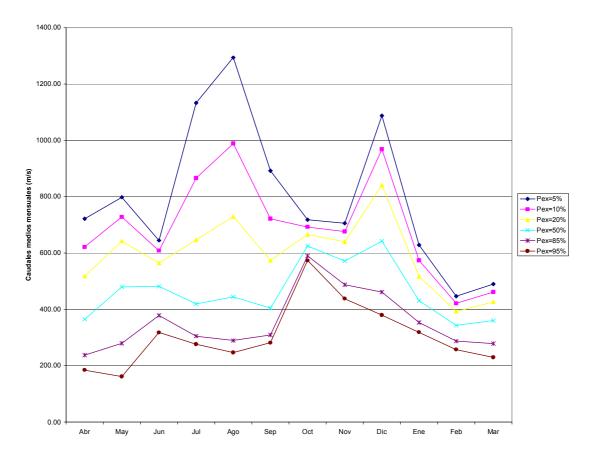


Figura 4.11: Curva de Variación Estacional en Aysén en Puerto Aysén

4.1.2 Conclusiones

A partir de las curvas de variación estacional presentadas en el capítulo anterior se realiza a continuación una caracterización hidrológica de la cuenca del río Aysén, identificando de manera particular los períodos de estiaje.

a) Subcuenca del Mañihuales

Corresponde a la hoya hidrográfica del río Mañihuales y sus dos principales afluentes, los ríos Emperador y Ñirehuao. Esta subcuenca muestra un régimen pluvio – nival, con grandes crecidas en agosto y octubre, producto de precipitaciones invernales y deshielos primaverales respectivamente. El período de estiaje para años secos ocurre en el trimestre febrero, marzo, abril, debido a las bajas precipitaciones en ese período y a que los deshielos ocurren en los meses de primavera.

b) Subcuenca Alta del Simpson

Esta formada por las hoyas hidrográficas de los afluentes del río Simpson; Huemules, Blanco, Blanco Chico y Oscuro. Se aprecia una leve diferencia en los regímenes de estos cauces, teniendo el Oscuro y el Blanco un régimen nivo – pluvial, debido a que sus hoyas se encuentran a mayor altitud, en cambio el Huemules y el Blanco Chico muestran mayor influencia pluvial, teniendo un régimen pluvio – nival. Sin embargo, el período de estiaje es común a estas hoyas, presentándose en el trimestre febrero, marzo, abril, período comprendido entre los deshielos primaverales y las lluvias invernales.

c) Subcuenca Baja del Simpson

Abarca desde la junta de los ríos Huemules y Blanco hasta la junta del río Simpson con el Mañihuales, incluyendo la hoya del río Coyhaique. Esta subcuenca muestra un régimen pluvio – nival, ya que conforme disminuye la altitud de la hoya aumenta la influencia pluvial con respecto a la nival. Las grandes crecidas se observan en junio y agosto, y el período de estiaje ocurre en el trimestre febrero, marzo, abril, debido a las menores precipitaciones con respecto al resto del año.

d) Subcuenca del Aysén

Corresponde al área drenada por el río Aysén, que nace de la unión del Simpson y el Mañihuales, y de la hoya del río Blanco. Esta subcuenca muestra un régimen mixto, con grandes crecidas tanto en invierno como en primavera, producto de lluvias y deshielos respectivamente. Los menores caudales se observan en el trimestre febrero, marzo, abril, período entre deshielos y lluvias invernales.

A continuación se muestra una tabla resumen con los períodos de estiaje para las distintas subcuencas de la cuenca del río Aysén.

Tabla 4.12: Períodos de Estiaje para Subcuencas de la Cuenca del Aysén

Nº	Subcuenca	Subsubcuenca	Período Estiaje
1	Mañihuales		Febrero – Marzo – Abril
2	Simpson	ALTA	Febrero – Marzo – Abril
3	Simpson	BAJA	Febrero – Marzo – Abril
4	Aysén		Febrero – Marzo – Abril

4.2 Análisis de la Calidad del Agua

De acuerdo a la metodología corresponde realizar los siguientes análisis

- Selección de parámetros
- Tendencia central
- Análisis por periodo estacional

4.2.1 Selección de parámetros

De acuerdo a la metodología establecida para la caracterización de la calidad de agua de la cuenca, corresponde seleccionar los parámetros a analizar. Los parámetros seleccionados están formados por: parámetros obligatorios y parámetros principales. Los parámetros obligatorios son 6 y siempre los mismos para todas las cuencas. Los parámetros principales son propios de cada cuenca, por ser significativos desde el punto de vista de la calidad de agua.

a) Parámetros obligatorios

Los parámetros obligatorios definidos en la metodología para el análisis de la calidad de agua en todas las cuencas son: pH, DBO₅, conductividad, oxígeno disuelto, sólidos suspendidos y coliformes fecales. En la tabla 4.13 se denominan como "obligatorios".

b) Parámetros principales

Para seleccionar los parámetros principales se compara el valor que aparece, en el *Instructivo* como límite de la clase 0, con el valor máximo que alcanza el parámetro, incluyendo todos los registros de la Base de Datos Depurada (BDD).

En la tabla 4.13 se indica el rango máximo y mínimo de todos los parámetros del *Instructivo* que poseen datos registrados en la BDD. Aquellos sin datos se señalan como "s/i". Todos los parámetros que tienen valores sobre el límite de la clase 0, señalados con "Si", son seleccionados como parámetros principales para el análisis de la calidad de agua en esta cuenca.

Tabla 4.13: Selección y Rangos de los parámetros de calidad en la cuenca del río Aysén

Parámetros	Unidad	Fuente	Mínimo	Máximo	Clase 0	Selección
FISICO_QUÍMICOS	•	•		•	•	•
Conduc Eléctrica	μS/cm	DGA	18	176.5	<600	Obligatorio
DBO ₅	mg/L	-	s/i	s/I	<2	Obligatorio
Color Aparente	Pt-Co	-	s/i	s/I	<16	No
Oxígeno Disuelto	mg/L	DGA	5.1	20.7	>7.5	Obligatorio
рН	unidad	DGA	7.2	9.1	6.5 - 8.5	Obligatorio
RAS	-	DGA	0.1	0.6	<2.4	No
Sólidos disueltos	mg/L	SAG	11	63	<400	No
Sólidos suspendidos	mg/L	-	s/I	s/i	<24	Obligatorio
ΔTemperatura	°C	-	-	-	< 0.5	No
INORGANICOS		•		•	•	•
Amonio	mg/L	-	s/i	s/i	< 0.5	No
Cianuro	μg/L	-	s/i	s/i	<4	No
Cloruro	mg/L	DGA	0.7	10.1	<80	No
Fluoruro	mg/L	-	s/i	s/i	< 0.8	No
Nitrito	mg/L	-	s/i	s/i	< 0.05	No
Sulfato	mg/L	DGA	0.4	61.5	<120	No
Sulfuro	mg/L	-	s/i	s/i	< 0.04	No
ORGANICOS		-	s/i	s/i		No
ORGANICOS PLAGUICID	AS	-	s/i	s/i		No

Tabla 4.13 (Continuación): Selección y Rangos de los parámetros de calidad en la cuenca del río Aysén

Parámetros	Unidad	Fuente	Mínimo	Máximo	Clase 0	Selección
METALES ESENCIALES	1		l		l .	
Boro	mg/l	DGA	0.02	2.1	< 0.4	Si
Cobre	μg/L	DGA	<1	100	<7.2	Si
Cromo total	μg/L	DGA	<10	130	<8	Si
Hierro	mg/L	DGA	0.01	3.9	< 0.8	Si
Manganeso	mg/L	DGA	< 0.01	0.6	< 0.04	Si
Molibdeno	mg/L	DGA	< 0.01	< 0.01	<0.008	No
Niquel	μg/L	DGA	<10	<10	<42	No
Selenio	μg/L	DGA	<1	<1	<4	No
Zinc	mg/L	DGA	< 0.001	0.16	< 0.096	Si
METALES NO ESENCIAL	LES		•		•	•
Aluminio	mg/L	DGA	< 0.01	1.4	< 0.07	Si
Arsénico	mg/L	DGA	0.001	0.035	< 0.04	No
Cadmio	μg/L	DGA	<10	<10	<1.8	No
Estaño	μg/L	-	s/i	s/i	<4	No
Mercurio	μg/L	DGA	<1	<1	< 0.04	No
Plomo	mg/L	DGA	< 0.01	< 0.01	< 0.002	No
MiCROBIOLOGICOS			•		ı	•
Coliformes Fecales (NMP)	gérmenes/100 ml	-	s/i	s/i	<10	Obligatorio
Coliformes Totales (NMP)	gérmenes/100 ml	-	s/i	s/i	<200	No

De acuerdo a lo anterior los parámetros seleccionados para el análisis de la calidad de agua en la cuenca son los siguientes:

• Parámetros Obligatorios

- Conductividad Eléctrica
- DBO₅
- Oxígeno Disuelto
- nF
- Sólidos Suspendidos
- Coliformes Fecales

• Parámetros Principales

- Boro
- Cobre
- Cromo total
- Hierro
- Manganeso
- Zinc
- Aluminio

De acuerdo al programa de muestreo puntual realizado por CADE-IDEPE (ver 4.2.5), los siguientes parámetros exceden la clase 0, de manera que también son considerados como parámetros seleccionados.

- Color Aparente
- Sólidos Disueltos
- Coliformes Totales

Los parámetros cuyo valor máximo registrado en la BDD no excede el límite de la clase 0 se considera que siempre pertenecen a dicha clase. Estos parámetros son los siguientes: RAS, sólidos disueltos, cloruro, sulfato, selenio, arsénico.

No es posible realizar un análisis para los parámetros molibdeno, níquel, cadmio, mercurio y plomo, ya que los límites de detección (LD) de sus análisis son superiores al valor de la clase 0.

4.2.2 Análisis de Tendencia Central

La tendencia central se expresa a través de la media móvil, filtro lineal destinado a eliminar variaciones estacionales. En la abcisa se representa el periodo de tiempo expresado en años y, en la ordenada el valor del parámetro.

En el anexo 4.1 se presentan las figuras de tendencia central de los parámetros seleccionados en la cuenca del río Aysén: conductividad eléctrica, pH, oxígeno disuelto, boro, cobre, cromo total, hierro, manganeso, zinc y aluminio.

66.

Las observaciones que se derivan de las figuras de tendencia central se incluyen en la tabla 4.14.

Tabla 4.14: Tendencia Central de Parámetros de Calidad de Agua

CUENCA DEL RIO AYSEN

Conductividad Eléctrica:

Río Ñirehuao: La conductividad eléctrica en una serie de tiempo de 19 años, periodo de registro 1993-2002 presenta una tendencia creciente entre 50 a 70 μS/cm, valores extremadamente bajos (clase 0).

Río Emperador Guillermo: Se observa una tendencia creciente, en una serie de tiempo de 19 años, en un valor de 60 μS/cm.

Ríos Coyhaique y Simpson: Se observa un comportamiento constante con una tendencia plana, en una serie de tiempo de 9 años, en un valor aproximado de 80 μS/cm.

Río Mañihuales: Se observa un comportamiento constante con una tendencia creciente, en una serie corta de tiempo (5 años), de 40 a 50 $\mu S/cm$.

Río Aysén: Se observa un comportamiento constante con una tendencia plana, en una serie de tiempo de 19 años, en un valor aproximado de 40 μS/cm.

pH:

Ríos Ñirehuao y Emperador Guillermo: Se observa un comportamiento constante con una tendencia plana, en una serie de tiempo de 19 años, en un valor en un rango de 7,0 a 7,5.

Río Coyhaique: Se observa un comportamiento disímil en una serie de tiempo de 19 años, en un valor en un rango de 7,0 a 7,5.

Río Simpson: En la última serie de tiempo (1999-2002) de 4 años, se observa una tendencia creciente con un valor que va desde 7.0 a 7.5.

Ríos Mañihuales y Aysén: En la última serie de tiempo (1998-2002) de 5 años, se observa una tendencia creciente con un valor de va desde 7,0 a 7,5.

Todos los ríos, con información en la cuenca, tienen un pH entre un rango de 7,0 a 7,5.

Oxigeno Disuelto:

Río Ñirehuao: Se observa un comportamiento constante con una tendencia plana en un valor de 12 mg/L.

Ríos Emperador Guillermo-Simpson-Coyhaique-Mañihuales: La serie de tiempo registrada esta interrumpida, no permite análisis de la tendencia a largo plazo.

Río Aysén: Se observa un comportamiento constante con una tendencia plana en un valor de 11 mg/L

Tabla 4.14 (Continuación): Tendencia Central de Parámetros de Calidad de Agua

CUENCA DEL RIO AYSEN

Boro:

<u>Ríos Ñirehuao-</u> <u>Emperador Guillermo-Coyhaique-Simpson-Mañihuales-Aysén</u>: Para_el boro las series de tiempo están interrumpidas, en la última serie de tiempo de 4 años la tendencia es creciente a un valor de 0.5 mg/L.

Cobre:

<u>Ríos Ñirehuao-</u> <u>Emperador Guillermo y Simpson:</u> Se observan series de tiempo interrumpidas con los últimos registros correspondientes a una serie de tiempo de cinco años, esta serie presenta una tendencia decreciente con un valor de 13 µg/L.

Ríos Coyhaique-Mañihuales: Se observan series de tiempo interrumpidas con los últimos registros correspondientes a una serie de tiempo de cinco años, esta serie para ambos ríos presenta una tendencia plana con un valor de 15 μ g/L en el río Coyhaique y 10 μ g/L en el río Mañihuales.

Río Aysén: Se observa un comportamiento constante con una tendencia decreciente en un valor de 40 μg/L.

Cromo total

<u>Ríos Ñirehuao- Emperador Guillermo-Mañihuales y Aysén:</u> Se observan una tendencia decreciente en series de tiempo de cinco años con un comportamiento homogéneo un valor de 13 μg/L en los ríos Ñirehuao, Emperador Guillermo y Mañihuales, y de 15 μg/L en el río Aysén.

Ríos Coyhaique-Simpson: Se observa un comportamiento constante con una tendencia plana en un valor de 10 μg/L.

Hierro

<u>Ríos Ñirehuao Coyhaique Simpson</u>: Para los ríos Ñirehuao y Coyhaique, la tendencia es inicialmente creciente para luego descender levemente hasta 0,3 mg/L.

Ríos Emperador Guillermo y Aysén: Se observa un comportamiento homogéneo con una tendencia decreciente 0.45 mg/L.

Río Mañihuales: Se observa un comportamiento constante en la serie de tiempo de cinco años desde 1998 a 2002, con una tendencia fuertemente decreciente con un valor aproximado de 0.25 mg/L.

Manganeso

Ríos Ñirehuao, Emp.Guillermo y Mañihuales: Se observa un comportamiento constante y creciente similar entre ambos ríos en una serie de tiempo de 5 años se observa una tendencia creciente en los últimos años con un valor de plana con un valor de 0.019 mg/L.

Río Coyhaique: Se observa un comportamiento disímil con una tendencia decreciente 0.019 mg/L.

Río Simpson: No presenta tendencia.

<u>Río Aysén:</u> Se observa un comportamiento homogeneo en la serie de tiempo de cinco años desde 1998 a 2002, con una tendencia decreciente fuerte con un valor aproximado de 0.04 mg/L.

Tabla 4.14 (Continuación): Tendencia Central de Parámetros de Calidad de Agua

CUENCA DEL RIO AYSEN

Zinc

<u>Ríos Ñirehuao</u>, <u>Emperador</u>, <u>Guillermo</u>, <u>Coyhaique</u>: Se observa un comportamiento idéntico en estos ríos con una tendencia creciente con un valor de 0.008 mg/L.

Ríos Simpson, Mañihuales y Aysén: Se observa una tendencia decreciente con valores de 0.015, 0.002 y 0.005 mg/L respectivamente, en series de tiempo restringidas.

Aluminio

Ríos Ñirehuao, Emperador Guillermo, Mañihuales y Aysén: Se observa un comportamiento homogéneo en estos ríos con una tendencia creciente con un valor de 0.2 mg/L, en una serie de tiempo de cinco años.

Río Coyhaique: Se observa una tendencia decreciente con un valor de 0.48 mg/L.

Río Aysén: No presentan tendencia, serie de tiempo muy restringida.

4.2.3 Programa de Muestreo Puntual CADE-IDEPE

Este programa está orientado a complementar la información existente en la base de datos disponible y considera tres aspectos claves: en primer lugar, la red actual de monitoreo existente está orientada a medir parámetros inorgánicos de tal modo que no se dispone de información orgánica; en segundo término, la información complementaria está enfocada verificar la clase actual en algunos segmentos de los cauces seleccionados y en tercer lugar, se requiere contar con una información puntual en cauces en los cuales se carece de toda otra información. En el caso de esta cuenca, se ha privilegiado las mediciones en aquellos puntos donde se sitúan estaciones de calidad de la DGA para completar los datos faltantes en esas estaciones: Ñirehuao en Villa Mañihuales, Simpson abajo junta río Coyhaique, Emperador Guillermo a/j río Mañihuales, Blanco a/j río Aysén y río Aysén aguas abajo de Puerto Aysén. Adicionalmente se tomaron muestras en el río Toqui aguas abajo de la C.M. Toqui y en el río Mañihuales aguas abajo de Villa Mañihuales, como factores incidentes donde no se contaba con suficiente información.

Es importante señalar que el muestreo es puntual y, por lo tanto, debe considerarse como tal en cuanto a la validez y representatividad del resultado, siendo el objetivo principal de este monitoreo entregar orientaciones de parámetros inexistentes en la base de datos (nivel de información tipo 4), o bien datos que requieren ser corroborados.

Considerando estos aspectos, en Octubre 2003 se llevó a cabo el siguiente programa de muestreo:

Tabla 4.15: Programa de Muestreo Puntual CADE-IDEPE

Segmento	Puntos de muestreo	Situación	Parámetros a medir en todos los puntos
1130NI20	Río Ñirehuao en Villa Manuales	Est. DGA vigente	
1130MA20	Río Mañihuales abajo Villa Manuales	Est. DGA vigente	
1131SI20	Río Huemules en Carretera a Balmaceda	No existente	
1131SI50	Río Simpson abajo junta río Coyhaique	Est. DGA suspendida	DBO ₅ , Color, SD, SST, NH ₄ , CN, F, NO ₂ , S ₂ , Sn, CF,
1130EM10	Río Emp.Guillermo a/j Manuales	Est. DGA vigente	СТ
1133BL20	Río Blanco a/j río Aysén	Est. DGA vigente	
1134AY20	Río Aysen aguas abajo Pto. Aysén	Est. DGA vigente	

4.2.4 Base de Datos Integrada (BDI)

Para la caracterización de la calidad de agua de la cuenca, se establece la denominada *Base de Datos Integrada* (BDI), la cual contiene datos recopilados de monitoreos o muestreos realizados a la fecha (información de nivel 1 al nivel 3), datos del Programa de Muestreo Puntual realizado por CADE-IDEPE durante el desarrollo de la presente consultoría (información nivel 4) y estimaciones teóricas (información nivel 5) de los parámetros obligatorios DBO₅, sólidos suspendidos y coliformes fecales, en caso de carecer de información de nivel superior. El método de cálculo de estos parámetros se presenta en la Sección II del Informe Final, la cual está destinada a presentar la metodología general del estudio.

En forma específica, se ha considerado lo siguiente:

- En el caso de disponer de un número de registros > 10 por período estacional, se procede a calcular el percentil 66%, lo que equivale según la metodología a información de nivel 1.
- Cuando se dispone de un número de registros entre 5 y 10 por período estacional, se procede a calcular el promedio de los valores, lo que equivale

a información de nivel 2 y se representa en las tablas de calidad del agua por el valor entre paréntesis. (ejemplo OD = (10,5))

• Si sólo se dispone de un número menor que 5 registros por período estacional, se procede a calcular el promedio de los valores, que equivale a información de nivel 3 y se representa en las tablas de calidad del agua por el valor entre dos paréntesis. (ejemplo OD = ((10,5)))

La información que contiene la *Base de Datos Integrada*, BDI para la cuenca del río Aysén es la siguiente:

Información DGA

Nivel 1, 2, 3 para los periodos estaciónales de invierno, verano, primavera y otoño.

- Programa de Muestreo Puntual CADE-IDEPE: Nivel 4
- Información de Otras Fuentes:
 - Programa de monitoreo del SAG (diciembre 2000).
- Información Estimada por el Consultor: Nivel 5

Para la cuenca del río Aysén, la Base de Datos Integrada (BDI) se presenta en la forma de archivo digital en el anexo 4.2.

4.2.5 Procesamiento de datos por período estacional

En este acápite se realiza el análisis de los parámetros de calidad de agua por periodo estacional: verano, otoño, invierno y primavera.

De acuerdo al nivel de calidad de la información disponible en cada período estacional, se procede a calcular para los parámetros seleccionados en esta cuenca el valor característico de cada uno de ellos.

Para la información proveniente de la DGA, en la tabla 4.16 se presentan los valores característicos por período estacional de los parámetros seleccionados en la cuenca del río Aysén, incluyendo la clase correspondiente para cada uno de ellos de acuerdo al Instructivo.

Tabla 4.16: Calidad de Agua por Períodos Estacionales en la cuenca de Aysén. Información DGA

		Conductividad Eléctrica (µS/cm)									
ESTACIÓN DE MUESTREO	Vera	ano	Oto	oño	Invi	Invierno		avera			
	Valor	Clase	Valor	Clase	Valor	Clase	Valor	Clase			
RIO ÑIREHUAO EN MAÑIHUALES	74,8	0	(74,2)	0	(67,8)	0	65,8	0			
RIO EMP. GUILLERMO ANTES RIO MAÑIHUALES	(54,8)	0	(63)	0	69,6	0	(66,1)	0			
RIO COYHAIQUE EN TEJAS VERDES	(87,7)	0	(87,9)	0	77,4	0	75	0			
RIO OSCURO EN CAMINO A PORTEZUELO	((119,8))	0	(140,9)	0	(94)	0	81,0	0			
RIO BLANCO ANTES RIO HUEMULES	((104,5))	0	((70))	0	((87,5))	0	((71,5))	0			
RIO HUEMULES FRENTE AL CERRO GALERA	((133,2))	0	((130))	0	((152,5))	0	((87,5))	0			
RIO CLARO EN PISCICULTURA	(36,6)	0	(46,5)	0	(49,8)	0	34,6	0			
RIO SIMPSON ANTES JUNTA RIO COYHAIQUE	95,0	0	(97,5)	0	7,4	0	((55,2))	0			
RIO SIMPSON BAJO JUNTA RIO COYHAIQUE	(93,2)	0	(88,6)	0	(88,6)	0	(43,9)	0			
DESAGUE LAGO RIESCO	((24,3))	0	((29,5))	0	((26))	0	((25,6))	0			
RIO BLANCO ANTES JUNTA RIO AYSEN		0	((44,9))	0	((38))	0	((38,9))	0			
RIO MAÑIHUALES A/J RIO SIMPSON	(48,8)	0	((51,7))	0	((60))	0	(32,8)	0			
RIO AYSEN EN PTE. PDTE. IBAÑEZ	39,9	0	(52,8)	0	(4,7)	0	36,0	0			

		Oxígeno Disuelto (mg/l)									
ESTACIÓN DE MUESTREO	Vera	ano	Oto	oño	Invi	erno	Prima	avera			
	Valor	Clase	Valor	Clase	Valor	Clase	Valor	Clase			
RIO ÑIREHUAO EN MAÑIHUALES	((11,2))	0	((13,1))	0	((12,5))	0	(10,4)	0			
RIO EMP. GUILLERMO ANTES RIO MAÑIHUALES	((11,0))	0	((11,9))	0	((13,8))	0	((9,3))	0			
RIO COYHAIQUE EN TEJAS VERDES	((10,6))	0	((10,9))	0	((11,9))	0	((7,5))	0			
RIO OSCURO EN CAMINO A PORTEZUELO	((10,2))	0	((12,0))	0	((12,4))	0	((10,6))	0			
RIO BLANCO ANTES RIO HUEMULES											
RIO HUEMULES FRENTE AL CERRO GALERA											
RIO CLARO EN PISCICULTURA	((10,7))	0	((10,9))	0	((11,5))	0	(7,6)	0			
RIO SIMPSON ANTES JUNTA RIO COYHAIQUE	(9,3)	0	((11,9))	0	((12,2))	0	((10,4))	0			
RIO SIMPSON BAJO JUNTA RIO COYHAIQUE	((8,2))	0	(11,1)	0	((11,1))	0	((12,0))	0			
DESAGUE LAGO RIESCO	((10,3))	0	((10,8))	0	((11,2))	0	((8,6))	0			
RIO BLANCO ANTES JUNTA RIO AYSEN			((12,3))	0	((11,0))	0	((11,5))	0			
RIO MAÑIHUALES A/J RIO SIMPSON	((10,1))	0	((12,2))	0			((13,0))	0			
RIO AYSEN EN PTE. PDTE. IBAÑEZ	((12,2))	0	((13,1))	0	((11,9))	0	((10,8))	0			

		pH									
ESTACIÓN DE MUESTREO	Ver	ano	Ote	oño	Invi	Invierno		avera			
	Valor	Clase	Valor	Clase	Valor	Clase	Valor	Clase			
RIO ÑIREHUAO EN MAÑIHUALES	7,2	0	(7,6)	0	(7,7)	0	7,4	0			
RIO EMP. GUILLERMO ANTES RIO MAÑIHUALES	(7,3)	0	(7,3)	0	7,0	0	(7,5)	0			
RIO COYHAIQUE EN TEJAS VERDES	(7,3)	0	(7,5)	0	(7,6)	0	7,7	0			
RIO OSCURO EN CAMINO A PORTEZUELO	7,6	0	(7,5)	0	(7,8)	0	7,5	0			
RIO BLANCO ANTES RIO HUEMULES	((6,6)	0	(7,2)	0	((7,1))	0	((7,2))	0			
RIO HUEMULES FRENTE AL CERRO GALERA	((6,9))	0	((7,2))	0	((7,2))	0	((6,8))	0			
RIO CLARO EN PISCICULTURA	(7,5)	0	(7,2)	0	(7,7)	0	7,5	0			
RIO SIMPSON ANTES JUNTA RIO COYHAIQUE	7,7	0	(7,3)	0	7,4	0	((7,4))	0			
RIO SIMPSON BAJO JUNTA RIO COYHAIQUE	(7,5)	0	(7,1)	0	(7,1)	0	(7,4)	0			
DESAGUE LAGO RIESCO	((7,0))	0	((7,2))	0	((7,1))	0	((7,6))	0			
RIO BLANCO ANTES JUNTA RIO AYSEN			((7,6))	0	((7,6))	0	((7,6))	0			
RIO MAÑIHUALES A/J RIO SIMPSON	(7,0)	0	((7,6))	0	((7,7))	0	(7,1)	0			
RIO AYSEN EN PTE. PDTE. IBAÑEZ	7,5	0	(7,3)	0	(7,6)	0	7,5	0			

Tabla 4.16 (Continuación): Calidad de Agua por Períodos Estacionales en la cuenca de Aysén. Información DGA

				Cobre (μg/l)							
ESTACIÓN DE MUESTREO	Ver	ano	Otoño		Invierno		Primavera				
	Valor	Clase	Valor	Clase	Valor	Clase	Valor	Clase			
RIO ÑIREHUAO EN MAÑIHUALES	(<10)	<2	(13)	2	(<10)	<2	<10	<2			
RIO EMP. GUILLERMO ANTES RIO MAÑIHUALES	(<10)	<2	16	2	<10	<2	(20)	2			
RIO COYHAIQUE EN TEJAS VERDES	(<10)	<2	(15)	2	(<10)	<2	<10	<2			
RIO OSCURO EN CAMINO A PORTEZUELO	(<10)	<2	(12)	2	((<10))	<2	<10	<2			
RIO BLANCO ANTES RIO HUEMULES	((<10))	<2	((<10))	<2	((<10))	<2	((20))	2			
RIO HUEMULES FRENTE AL CERRO GALERA	((20))	2	((<10))	<2	((<10))	<2	((20))	2			
RIO CLARO EN PISCICULTURA	(<10)	<2	(14)	2	(<10)	<2	<10	<2			
RIO SIMPSON ANTES JUNTA RIO COYHAIQUE	<10	<2	(20)	2	<10	<2	(<10)	2			
RIO SIMPSON BAJO JUNTA RIO COYHAIQUE	((18))	2	((<10))	<2	(<10)	<2	(16)	2			
DESAGUE LAGO RIESCO	(<10)	<2	((17))	2	((<10))	<2	((<10))	<2			
RIO BLANCO ANTES JUNTA RIO AYSEN			((16))	2	((<10))	<2	((<10))	<2			
RIO MAÑIHUALES A/J RIO SIMPSON	((20))	2	((<10))	<2	((<10)	<2	(<10)	<2			
RIO AYSEN EN PTE. PDTE. IBAÑEZ	(<10)	<2	(13)	2	(<10)	<2	12	2			

		Hierro (mg/l)								
ESTACIÓN DE MUESTREO	Verano		Otoño		Invierno		Primavera			
	Valor	Clase	Valor	Clase	Valor	Clase	Valor	Clase		
RIO ÑIREHUAO EN MAÑIHUALES	0,26	0	(0,26)	0	(0,35)	0	0,30	0		
RIO EMP. GUILLERMO ANTES RIO MAÑIHUALES	(0,05)	0	(0,23)	0	0,10	0	(1,50)	2		
RIO COYHAIQUE EN TEJAS VERDES	(0,15)	0	(0,43)	0	(0,39)	0	0,30	0		
RIO OSCURO EN CAMINO A PORTEZUELO	0,09	0	(0,20)	0	((0,20))	0	0,20	0		
RIO BLANCO ANTES RIO HUEMULES	((0,13))	0	((<0,01))	0	((0,10))	0	((0,40))	0		
RIO HUEMULES FRENTE AL CERRO GALERA	((0,4))	0	((0,18))	0	((0,80))	0	((0,90))	1		
RIO CLARO EN PISCICULTURA	(0,09)	0	(0,17)	0	(0,20)	0	0,10	0		
RIO SIMPSON ANTES JUNTA RIO COYHAIQUE	0,16	0	(0,42)	0	1,30	2	(0,40)	0		
RIO SIMPSON BAJO JUNTA RIO COYHAIQUE	((0,35))	0	(0,50)	0	(0,50)	0	(0,60)	0		
DESAGUE LAGO RIESCO	((0,10))	0	((0,05))	0	((0,30))	0	((0,06))	0		
RIO BLANCO ANTES JUNTA RIO AYSEN			((0,16))	0	((0,10))	0	((0,10))	0		
RIO MAÑIHUALES A/J RIO SIMPSON	(0,23)	0	((0,35))	0	((0,21))	0	(0,30)	0		
RIO AYSEN EN PTE. PDTE. IBAÑEZ	0,61	0	(0,31)	0	(0,29)	0	0,30	0		

			Cromo (μg/l)							
ESTACIÓN DE MUESTREO	Verano		Otoño		Invierno		Primavera			
	Valor	Clase	Valor	Clase	Valor	Clase	Valor	Clase		
RIO ÑIREHUAO EN MAÑIHUALES	((<10))	<1	((<10))	<1	((<10))	<1	((<10))	<1		
RIO EMP. GUILLERMO ANTES RIO MAÑIHUALES	((<10))	<1	20	2	((<10))	<1	((20))	2		
RIO COYHAIQUE EN TEJAS VERDES	((<10))	<1	((<10))	<1	((<10))	<1	((<10))	<1		
RIO OSCURO EN CAMINO A PORTEZUELO	((20))	2	((<10))	<1	((<10))	<1	<10	<1		
RIO BLANCO ANTES RIO HUEMULES										
RIO HUEMULES FRENTE AL CERRO GALERA										
RIO CLARO EN PISCICULTURA	((20))	2	((<10))	<1	((<10))	<1	((<10))	<1		
RIO SIMPSON ANTES JUNTA RIO COYHAIQUE	(<10)	<1	((<10))	<1	((<10))	<1	((<10))	<1		
RIO SIMPSON BAJO JUNTA RIO COYHAIQUE	((<10))	<1	((<10))	<1	((<10))	<1	((<10))	<1		
DESAGUE LAGO RIESCO	((30))	2	((<10))	<1	((<10))	<1	((<10))	<1		
RIO BLANCO ANTES JUNTA RIO AYSEN			((<10))	<1	((<10))	<1	((<10))	<1		
RIO MAÑIHUALES A/J RIO SIMPSON										
RIO AYSEN EN PTE. PDTE. IBAÑEZ	((<10))	<1	((20))	2	((<10))	<1	((20))	2		

Tabla 4.16 (Continuación): Calidad de Agua por Períodos Estacionales en la cuenca de Aysén. Información DGA

	Manganeso (mg/l)								
ESTACIÓN DE MUESTREO	Verano		Otoño		Invierno		Primavera		
	Valor	Clase	Valor	Clase	Valor	Clase	Valor	Clase	
RIO ÑIREHUAO EN MAÑIHUALES	((0,02))	0	((<0,01))	0	((0,02))	0	((0,02))	0	
RIO EMP. GUILLERMO ANTES RIO MAÑIHUALES	((<0,01))	0	((<0,01))	0	((<0,01))	0	((0,03))	0	
RIO COYHAIQUE EN TEJAS VERDES	((0,02))	0	((0,03))	0	((0,02))	0	((<0,01))	0	
RIO OSCURO EN CAMINO A PORTEZUELO	((<0,01))	0	((<0,01))	0	((<0,01))	0	((<0,01))	0	
RIO BLANCO ANTES RIO HUEMULES									
RIO HUEMULES FRENTE AL CERRO GALERA									
RIO CLARO EN PISCICULTURA	((<0,01))	0	0,03	0	((<0,01))	0	((<0,01))	0	
RIO SIMPSON ANTES JUNTA RIO COYHAIQUE	((<0,01))	0	((0,04))	1	((0,20))	2	((<0,01))	0	
RIO SIMPSON BAJO JUNTA RIO COYHAIQUE	((<0,01))	0	((<0,01))	0	((<0,01))	0	((<0,01))	0	
DESAGUE LAGO RIESCO	((<0,01))	0	((<0,01))	0	((<0,01))	0	((<0,01))	0	
RIO BLANCO ANTES JUNTA RIO AYSEN			((<0,01))	0	((<0,01))	0	((<0,01))	0	
RIO MAÑIHUALES A/J RIO SIMPSON									
RIO AYSEN EN PTE. PDTE. IBAÑEZ	((0,02))	0	((0,1))	2	((0,02))	0	((0,02))	0	

		Boro (mg/l)								
ESTACIÓN DE MUESTREO	Verano		Otoño		Invierno		Primavera			
	Valor	Clase	Valor	Clase	Valor	Clase	Valor	Clase		
RIO ÑIREHUAO EN MAÑIHUALES	(0,55)	2	((0,44))	1	((0,50))	1	(0,50)	1		
RIO EMP. GUILLERMO ANTES RIO MAÑIHUALES	(0,39)	0	(0,53)	2	(0,40)	1	((0,50))	1		
RIO COYHAIQUE EN TEJAS VERDES	(0,51)	2	((0,35))	0	(0,40)	1	(0,40)	1		
RIO OSCURO EN CAMINO A PORTEZUELO	(0,59)	2	((0,38))	0	((0,49))	1	(0,40)	1		
RIO BLANCO ANTES RIO HUEMULES	((0,06))	0	((0,20))	0	((0,02))	0	((0,20))	0		
RIO HUEMULES FRENTE AL CERRO GALERA	((0,22))	0	((0,20))	0	((0,02))	0	((0,20))	0		
RIO CLARO EN PISCICULTURA	(0,06)	0	((0,30))	0	((0,40))	1	((0,40))	1		
RIO SIMPSON ANTES JUNTA RIO COYHAIQUE	(0,48)	1	((0,51))	2	(0,40)	1	((0,50))	1		
RIO SIMPSON BAJO JUNTA RIO COYHAIQUE	((0,51))	2	((0,30))	0	((0,30))	0	((0,90))	4		
DESAGUE LAGO RIESCO	((<1))		((<1))		((<1))		((<1))			
RIO BLANCO ANTES JUNTA RIO AYSEN			((<1))		((<1))		((<1))			
RIO MAÑIHUALES A/J RIO SIMPSON	((0,48))	1	((0,02))	0	((0,14))	0	((0,30))	0		
RIO AYSEN EN PTE. PDTE. IBAÑEZ	(0,62)	2	((0,38))	0	(0,45)	1	((0,20))	0		

	Zinc (mg/l)								
ESTACIÓN DE MUESTREO	Verano		Otoño		Invierno		Primavera		
	Valor	Clase	Valor	Clase	Valor	Clase	Valor	Clase	
RIO ÑIREHUAO EN MAÑIHUALES	((<0,01))	0	((<0,01))	0	((<0,01))	0	((<0,01))	0	
RIO EMP. GUILLERMO ANTES RIO MAÑIHUALES	((<0,01))	0	((<0,01))	0	((<0,01))	0	((<0,01))	0	
RIO COYHAIQUE EN TEJAS VERDES	((0,02))	0	((<0,01))	0	((<0,01))	0	((<0,01))	0	
RIO OSCURO EN CAMINO A PORTEZUELO	((0,03))	0	((<0,01))	0	((<0,01))	0	((<0,01))	0	
RIO BLANCO ANTES RIO HUEMULES									
RIO HUEMULES FRENTE AL CERRO GALERA									
RIO CLARO EN PISCICULTURA	((<0,01))	0	((<0,01))	0	((<0,01))	0	((<0,01))	0	
RIO SIMPSON ANTES JUNTA RIO COYHAIQUE	(<0,01)	0	((<0,01))	0	((<0,01))	0	((<0,01))	0	
RIO SIMPSON BAJO JUNTA RIO COYHAIQUE	((<0,01))	0	((0,03))	0	0,03	0	((<0,01))	0	
DESAGUE LAGO RIESCO	((0,02))	0	((<0,01))	0	((<0,01))	0	((<0,01))	0	
RIO BLANCO ANTES JUNTA RIO AYSEN			((<0,01))	0	((<0,01))	0	((<0,01))	0	
RIO MAÑIHUALES A/J RIO SIMPSON				•		•			
RIO AYSEN EN PTE. PDTE. IBAÑEZ	((0,02))	0	((<0,01))	0	((<0,01))	0	((<0,01))	0	

		Aluminio (mg/l)							
ESTACIÓN DE MUESTREO	Ver	Verano Otoño		Invie	Invierno		vera		
	Valor	Clase	Valor	Clase	Valor	Clase	Valor	Clase	
RIO ÑIREHUAO EN MAÑIHUALES	((0,31))	2	((0,14))	2	((0,20))	2	((0,30))	2	
RIO EMP. GUILLERMO ANTES RIO MAÑIHUALES	((0,15))	2	((0,14))	2	((0,20))	2	((0,60))	2	
RIO COYHAIQUE EN TEJAS VERDES	((0,16))	2	((0,90))	2	((0,30))	2	((0,30))	2	
RIO OSCURO EN CAMINO A PORTEZUELO	((0,22))	2	((0,13))	2	((0,30))	2	((0,20))	2	
RIO BLANCO ANTES RIO HUEMULES									
RIO HUEMULES FRENTE AL CERRO GALERA									
RIO CLARO EN PISCICULTURA	((0,15))	2	((0,51))	2	((0,20))	2	((0,40))	2	
RIO SIMPSON ANTES JUNTA RIO COYHAIQUE			((0,48))	2	((0,70))	2	((0,30))	2	
RIO SIMPSON BAJO JUNTA RIO COYHAIQUE	((0,50))	2	(0,20)	2	((0,20))	2	((0,20))	2	
DESAGUE LAGO RIESCO	((0,25))	2	((0,14))	2	((0,60))	2	((0,30))	2	
RIO BLANCO ANTES JUNTA RIO AYSEN			((0,16))	2	((0,30))	2	((0,10))	2	
RIO MAÑIHUALES A/J RIO SIMPSON									
RIO AYSEN EN PTE. PDTE. IBAÑEZ	((0,33))	2	((0,14))	2	((0,30))	2	((0,10))	2	

Respecto a los registros proporcionados por el programa de monitoreo del SAG, cabe señalar que aporta información adicional respecto de los sólidos disueltos en la cuenca, tal como se presenta en la tabla 4.17.

Tabla 4.17: Calidad de Agua por Períodos Estacionales en la cuenca de Aysén. Información SAG 1999-2002

•			•	Sólidos Dis	ueltos (mg/l)		•								
ESTACIÓN DE MUESTREO	Ver	ano	Oto	Otoño		Invierno		avera							
	Valor	Clase	Valor	Clase	Valor	Clase	Valor	Clase							
Río Aysen	((17,0))	0	-		((14,0))	0	((20,0))	0							
Río Simpson	((27,0))	0	-		((51,3))	0	((36,0))	0							
Río Emperador Guillermo	((23,0))	0	-		((23,0))	0	((35,0))	0							
Río Mañihuales	((18,0))	0	-		((12,0))	0	((28,0))	0							
Río Ñirehuao	((23,0))	0	-		((24,0))	0	((38,0))	0							
Río Blanco	((14,0))	0	-		((11,0))	0	((16,0))	0							
Río Claro	((10,0))	0	-		((18,0))	0	((22,0))	0							
Río Huemules	((33,0))	0	-		((63,0))	0	((51,0))	0							

Durante el mes de octubre del presente año (primavera 2003), con el fin de completar la información existente de la cuenca y corroborar la asignación de clase propuesta, se llevó a cabo el Programa de Muestreo Puntual CADE-IDEPE (información nivel 4) informado en el capítulo 4.2.3. A continuación se presenta el resultado de los análisis para la cuenca del Aysén.

Tabla 4.18: Calidad de Agua Cuenca del río Aysén Muestreo Puntual CADE-IDEPE Primavera 2003

Punto de Muestreo	DBO ₅ (mg/L)			
Tunto de ividestreo	Valor	Clase		
Río Ñirehuao en Villa Mañihuales	2.5	1		
Río Mañihuales abajo Villa Mañihuales	1.4	0		
Río Huemules en Carretera a Balmaceda	1.3	0		
Río Simpson abajo junta río Coyhaique	1.6	0		
Río Emp.Guillermo a/j Mañihuales	1.4	0		
Río Blanco a/j río Aysén	1.8	0		
Río Toqui aguas abajo Mina Toqui	2.0	1		
Río Aysen aguas abajo Pto. Aysén	1.0	0		

Tabla 4.18 (Continuación): Calidad de Agua Cuenca del río Aysén Muestreo Puntual CADE-IDEPE Primavera 2003

Punto de Muestreo	Color Aparente (Pt-Co)				
runto de Muestreo	Valor	Clase			
Río Ñirehuao en Villa Manuales	10	0			
Río Mañihuales abajo Villa Manuales	5	0			
Río Huemules en Carretera a Balmaceda	25	2			
Río Simpson abajo junta río Coyhaique	20	1			
Río Emp.Guillermo a/j Manuales	5	0			
Río Blanco a/j río Aysén	15	0			
Río Toqui aguas abajo Mina Toqui	<5	0			
Río Aysen aguas abajo Pto. Aysén	15	0			

Punto de Muestreo	Sólidos Disueltos (mg/L)				
I unto de ividestreo	Valor	Clase			
Río Ñirehuao en Villa Manuales	45	0			
Río Mañihuales abajo Villa Manuales	28	0			
Río Huemules en Carretera a Balmaceda	62	0			
Río Simpson abajo junta río Coyhaique	40	0			
Río Emp.Guillermo a/j Manuales	26	0			
Río Blanco a/j río Aysén	16	0			
Río Toqui aguas abajo Mina Toqui	28	0			
Río Aysen aguas abajo Pto. Aysén	22	0			

Punto de Muestreo	Sólidos Suspendidos Totales (mg/L)				
i unto de Muestreo	Valor	Clase			
Río Ñirehuao en Villa Manuales	<10	0			
Río Mañihuales abajo Villa Manuales	<10	0			
Río Huemules en Carretera a Balmaceda	14	0			
Río Simpson abajo junta río Coyhaique	14	0			
Río Emp.Guillermo a/j Manuales	<10	0			
Río Blanco a/j río Aysén	<10	0			
Río Toqui aguas abajo Mina Toqui	<10	0			
Río Aysen aguas abajo Pto. Aysén	<10	0			

Punto de Muestreo	Amonio (mg/L)		
i unto de ividestreo	Valor	Clase	
Río Ñirehuao en Villa Manuales	< 0.05	0	
Río Mañihuales abajo Villa Manuales	< 0.05	0	
Río Huemules en Carretera a Balmaceda	< 0.05	0	
Río Simpson abajo junta río Coyhaique	< 0.05	0	
Río Emp.Guillermo a/j Manuales	< 0.05	0	
Río Blanco a/j río Aysén	< 0.05	0	
Río Toqui aguas abajo Mina Toqui	< 0.05	0	
Río Aysen aguas abajo Pto. Aysén	< 0.05	0	

Tabla 4.18 (Continuación): Calidad de Agua Cuenca del río Aysén Muestreo Puntual CADE-IDEPE Primavera 2003

Punto de Muestreo	Cianuro (μg/L)		
T unto de Muestreo	Valor	Clase	
Río Ñirehuao en Villa Mañihuales	<50	<3	
Río Mañihuales abajo Villa Mañihuales	<50	<3	
Río Huemules en Carretera a Balmaceda	<50	<3	
Río Simpson abajo junta río Coyhaique	<50	<3	
Río Emp.Guillermo a/j Mañihuales	<50	<3	
Río Blanco a/j río Aysén	<50	<3	
Río Toqui aguas abajo Mina Toqui	<50	<3	
Río Aysen aguas abajo Pto. Aysén	<50	<3	

Punto de Muestreo	Fluoruro (mg/L)		
I unto de Muestreo	Valor	Clase	
Río Ñirehuao en Villa Mañihuales	<0.1	0	
Río Mañihuales abajo Villa Mañihuales	<0.1	0	
Río Huemules en Carretera a Balmaceda	0.1	0	
Río Simpson abajo junta río Coyhaique	<0.1	0	
Río Emp.Guillermo a/j Mañihuales	<0.1	0	
Río Blanco a/j río Aysén	<0.1	0	
Río Toqui aguas abajo Mina Toqui	<0.1	0	
Río Aysen aguas abajo Pto. Aysén	<0.1	0	

Punto de Muestreo	Nitrito (mg/L)		
Tunto de ividestreo	Valor	Clase	
Río Ñirehuao en Villa Mañihuales	< 0.05	0	
Río Mañihuales abajo Villa Mañihuales	< 0.05	0	
Río Huemules en Carretera a Balmaceda	< 0.05	0	
Río Simpson abajo junta río Coyhaique	< 0.05	0	
Río Emp.Guillermo a/j Mañihuales	< 0.05	0	
Río Blanco a/j río Aysén	< 0.05	0	
Río Toqui aguas abajo Mina Toqui	< 0.05	0	
Río Aysen aguas abajo Pto. Aysén	< 0.05	0	

Punto de Muestreo	Sulfuro	Sulfuro (mg/L)	
Tunto de Muestreo	Valor	Clase	
Río Ñirehuao en Villa Mañihuales	<0.5		
Río Mañihuales abajo Villa Mañihuales	<0.5		
Río Huemules en Carretera a Balmaceda	<0.5		
Río Simpson abajo junta río Coyhaique	<0.5		
Río Emp.Guillermo a/j Mañihuales	<0.5		
Río Blanco a/j río Aysén	<0.5		
Río Toqui aguas abajo Mina Toqui	<0.5		
Río Aysen aguas abajo Pto. Aysén	<0.5		

Tabla 4.18 (Continuación): Calidad de Agua Cuenca del río Aysén Muestreo Puntual CADE-IDEPE Primavera 2003

Punto de Muestreo	Estaño (μg/L)		
T unto de l'illestreo	Valor	Clase	
Río Ñirehuao en Villa Manuales	<10	<2	
Río Mañihuales abajo Villa Manuales	<10	<2	
Río Huemules en Carretera a Balmaceda	<10	<2	
Río Simpson abajo junta río Coyhaique	<10	<2	
Río Emp.Guillermo a/j Manuales	<10	<2	
Río Blanco a/j río Aysén	<10	<2	
Río Toqui aguas abajo Mina Toqui	<10	<2	
Río Aysén aguas abajo Pto. Aysén	<10	<2	

Punto de Muestreo	Coliformes Fecales (NMP/100ml)		
1 unto de ividestreo	Valor	Clase	
Río Ñirehuao en Villa Manuales	17	1	
Río Mañihuales abajo Villa Manuales	13	1	
Río Huemules en Carretera a Balmaceda	23	1	
Río Simpson abajo junta río Coyhaique	80	1	
Río Emp.Guillermo a/j Manuales	80	1	
Río Blanco a/j río Aysén	20	1	
Río Toqui aguas abajo Mina Toqui	23	1	
Río Aysén aguas abajo Pto. Aysén	900	1	

Punto de Muestreo	Coliformes Totales (NMP/100ml)		
Tunto de Muestreo	Valor	Clase	
Río Ñirehuao en Villa Manuales	26	0	
Río Mañihuales abajo Villa Manuales	23	0	
Río Huemules en Carretera a Balmaceda	170	0	
Río Simpson abajo junta río Coyhaique	300	1	
Río Emp.Guillermo a/j Manuales	80	0	
Río Blanco a/j río Aysén	80	0	
Río Toqui aguas abajo Mina Toqui	30	0	
Río Aysén aguas abajo Pto. Aysén	900	1	

Al realizarse el programa de muestreos, se verificó una inconsistencia en el Instructivo, respecto a los límites de la Clase de excepción y la metodología de análisis de ciertos parámetros de calidad. Esta inconsistencia consiste en que los límites de detección de esas metodologías de análisis no pueden llegar a los valores límites de la clase de excepción. Por lo tanto, los siguientes parámetros: plomo (Pb), hidrocarburos totales (HC), mercurio (Hg) y estaño (Sn), no pueden ser clasificados en clase de excepción.

En la tabla antes presentada, se han incluido los resultados entregados por el laboratorio externo contratado para llevar a cabo los análisis. En los casos en que el límite de detección analítico es superior al valor correspondiente a la clase de excepción, correspondería verificar si existe otra metodología de análisis, o bien redefinir el valor a fijar en la clase de excepción. Por otra parte, cuando el análisis de laboratorio entrega un valor en límite de detección analítico que se encuentra entre los límites definidos para dos clases de calidad, por el momento sólo es posible señalar que el parámetro podría ser clasificado en una clase de calidad "menor" a aquella correspondiente al límite superior entre ambas. Por ejemplo, a una concentración de estaño de $< 20~\mu g/l$ se le debería asignar, tal como está definido actualmente el Instructivo, una clase de calidad < 2. Se estima que, en casos como éste, el Instructivo debería definir un criterio de modo tal que fuese posible asignar siempre una clase de calidad en particular y no dejar su clasificación sin definir.

4.3 Análisis de Factores Incidentes en la Calidad del Agua

El análisis de los factores incidentes que afectan la calidad del agua se realiza mediante una tabla de doble entrada en la cual se identifica en la primera columna el segmento en estudio, mediante la estación de calidad asociada a éste. La segunda identifica los factores tanto naturales como antropogénicos que explican los valores de los parámetros contaminantes. La tercera identifica aquellos parámetros seleccionados que sobrepasan la clase de excepción del Instructivo asociados al segmento correspondiente y de los cuales se dispone de información ya sea proveniente de la red de monitoreo de la DGA y/o de muestreos puntuales realizados por otra entidad. La última columna fundamenta y particulariza los factores incidentes.

La tabla 4.19 explica los factores incidentes en el río Aysén.

Tabla 4.19: Factores Incidentes en la Calidad del Agua en la Cuenca del Río Aysén

ESTACION DE CALIDAD /	FACTORES INCIDENTES	PARÁMETROS QUE PUEDEN VERSE CARACTERIZACIÓN DEL FACTOR
SEGMENTO	NATURALES ANTROPOGENICOS	AFECTADOS CARGO CARGO DEL TRETER
Río Aysén en Pte. Pdte. Ibáñez 1134-AY-20	 Lixiviación superficial y subterránea de formaciones geológicas Escorrentía de aluminosilicatos en forma de sedimentos Descarga de RILES Descargas difusas de vertedero municipal 	 B, Cu, Cr, Mn, Al Geología: Formaciones geológicas compuestas por rocas intrusivas e hipoabisales de los periodos jurásico, compuestos por rocas graníticas Clima: Temperatura media anual 9,1°C y precipitación media anual de 2973 mm, evapotranspiración real anual: 500 mm Hidrogeología: Confluencia de acuíferos proveniente desde el río Aysén y río Los Palos Geomorfología: Valle glacial con planicies fluviales encajonada por cerros de la cordillera andina Centros Poblados: Ciudad de Aysén (sin pta de tratamiento, vertedero municipal) Cubierta Vegetal: Bosque siempreverde de Puyuhuapi, matorral caducifolio alto montano. Praderas en el valle glacial Industrias: Pesquera Antártica

Tabla 4.19 (Continuación): Factores Incidentes en la Calidad del Agua en la Cuenca del Río Aysén

ESTACION DE CALIDAD /	FACTORES	INCIDENTES	PARÁMETROS QUE PUEDEN VERSE	CARACTERIZACIÓN DEL FACTOR
SEGMENTO	NATURALES	ANTROPOGENICOS	AFECTADOS	CARACTERIZACION DEL L'ACTOR
Río Simpson antes río Coyhaique 1131-SI-40	 Lixiviación superficial y subterránea de formaciones geológicas Escorrentía de aluminosilicatos en forma de sedimentos Dilución de parámetros por adición río Claro y Pollux 	Contaminación difusa por ganadería	 B, Cu, Cr, Fe, Mn, Al Posiblemente: CT, CF y DBO₅ 	 Geología: Formación geológica de rocas de origen volcánicas del período jurásico, compuestas por coladas y depósitos piroclásticos, riolírticos, dacíticos, andesíticos y basálticos. Rocas sedimentaroias en los alrededores de Coyhaique Clima: Precipitación anual de 2.000 mm. Evapotranspiración real anual 450 mm, temperatura media anual: 8,2°C alrededores de Coyhaique Hidrogeología: Acuífero drena paralelo al río Simpson por depósitos no consolidados o rellenos Geomorfología: Encajonamiento del río en un valle glacial sin planicies fluviales Hidrología: Aporte del río Claro y río Pollux (emisario de los lagos: Frío, Pollux y Cástor) Conservación de recursos naturales: Reserva Nacional Coyhaique Centros Poblados: Ciudad de Coyhaique (con pta de tratamiento de a.s.) Ganadería: Ganadería Ovina Cubierta vegetal: Bosque siempreverde montano, matorral peri glacial

Tabla 4.19 (Continuación): Factores Incidentes en la Calidad del Agua en la Cuenca del Río Aysén

ESTACION DE CALIDAD / SEGMENTO	FACTORES INCIDENTES NATURALES ANTROPOGENICOS	PARÁMETROS QUE PUEDEN VERSE AFECTADOS	CARACTERIZACIÓN DEL FACTOR
Río Simpson bajo río Coyhaique (Pte. Entel) 1131-SI-50	 Lixiviación superficial y subterránea de formaciones geológicas Escorrentía de aluminosilicatos en forma de sedimentos Dilución de contaminantes por aportes de aguas del río Coyhaique 	• B, Cu, Cr, Mn, Al • Posiblemente: CT, CF y DBO ₅	 Geología: Formación geológica de rocas de origen volcánicas del período jurásico, compuestas por coladas y depósitos piroclásticos, riolírticos, dacíticos, andesíticos y basálticos. Rocas sedimentaroias en los alrededores de Coyhaique Hidrogeología: Acuífero drena paralelo al río Simpson por depósitos no consolidados o rellenos Geomorfología: Encajonamiento del río en un valle glacial sin planicies fluviales Clima: Precipitación anual de 2.000 mm. Evapotranspiración real anual 450 mm, temperatura media anual: 8,2°C Hidrología: Aporte del río Coyhaique Conservación de recursos naturales: Reserva Nacional Coyhaique Cubierta vegetal: Bosque siempreverde montano, matorral peri glacial

Tabla 4.19 (Continuación): Factores Incidentes en la Calidad del Agua en la Cuenca del Río Aysén

ESTACION DE CALIDAD /	FACTORES	INCIDENTES	PARÁMETROS QUE PUEDEN VERSE	CARACTERIZACIÓN DEL FACTOR
SEGMENTO	NATURALES	ANTROPOGENICOS	AFECTADOS	CHICACTEREZACION DELTACTOR
Río Emperador Guillermo antes río Mañihuales 1130-EM-10	Lixiviación superficial y subterránea de formaciones geológicas Escorrentía de aluminosilicatos en forma de sedimentos	Contaminación difusa por ganadería	 B, Cu, Cr, Fe, Mn, Al Posiblemente: CT, CF y DBO₅ 	 Geología: Formación geológica de rocas de origen volcánicas del período jurásico, con intercambio de rocas intrusivas e hipoabisales cerca de la confluencia con el río Mañihuales. Clima: Precipitación anual de 3.000 mm. Evapotranspiración real anual 450 mm Hidrogeología: Acuífero drena paralelo al río Emp. Guillermo por depósitos no consolidados o de relleno del período cuaternario Geomorfología: Valle de origen glacial, encajonados por cerros de la cordillera de los andes desde el Cerro Mano Negra hasta su confluencia con el Mañihuales. Destaca una gran erosión Conservación de recursos naturales: Reserva Nacional Coyhaique Ganadería: Ganadería Ovina Escorrentías que favorecen la solubilización de aluminosilicatos Existencia de rocas con alto contenido de metales que lixivian producto de la intensa lluvia Cubierta vegatal: Escasa, gran proceso erosivo. Bosques quemados

Tabla 4.19 (Continuación): Factores Incidentes en la Calidad del Agua en la Cuenca del Río Aysén

ESTACION DE CALIDAD /	FACTORES INCIDENTES		PARÁMETROS QUE PUEDEN VERSE	CARACTERIZACIÓN DEL FACTOR		
SEGMENTO	NATURALES	ANTROPOGENICOS	AFECTADOS	CARACTERIZACION DEL L'ACTOR		
Río Mañihuales a/j Simpson 1130-MA30	Lixiviación superficial y subterránea de formaciones geológicas Escorrentía de aluminosilicatos en forma de sedimentos	1	· ·	por rocas graníticas		

Tabla 4.19 (Continuación): Factores Incidentes en la Calidad del Agua en la Cuenca del Río Aysén

ESTACION DE CALIDAD /	FACTORES	INCIDENTES	PARÁMETROS QUE PUEDEN VERSE	CARACTERIZACIÓN DEL FACTOR
SEGMENTO			erna terzatzaten era	
Río Ñirehuao en Mañihuales 1130-NI-20	Lixiviación superficial y subterránea de formaciones geológicas Escorrentía de aluminosilicatos en forma de sedimentos	Contaminación difusa por ganadería	• B, Cu, Cr, Al • Posiblemente: CT, CF y DBO ₅	 Geología: Formación geológica de rocas de origen volcánicas del período jurásico, con intercambio de rocas intrusivas e hipoabisales cerca de la confluencia con el río Mañihuales Clima: Precipitación anual de 2.000 mm. Evapotranspiración real anual 450 mm Hidrogeología: En la parte alta – limítrofe con la Rep. De Argentina, se encuentra un gran depósito de agua subterránea en un lecho de depósitos no consolidados del período cuaternario. Geomorfología: Valle de origen glacial, encajonados por cerros de la cordillera de los andes, destaca el comportamiento altamente dendrítico. La parte alta que drena hasta el límite con la Rep. Argentina es de tipo estepa magallánica Ganadería: Ganadería Ovina en la parte alta Cubierta vegetal: Matorral caducifolio alto montano, Bosque siempre verde de Puyuhuapi, estepa patagónica de Aysén

Tabla 4.19 (Continuación): Factores Incidentes en la Calidad del Agua en la Cuenca del Río Aysén

ESTACION DE CALIDAD /	FACTORES	INCIDENTES	PARÁMETROS QUE PUEDEN VERSE	CARACTERIZACIÓN DEL FACTOR
SEGMENTO	NATURALES	ANTROPOGENICOS	AFECTADOS	CHICACTERED TO THE FOR
Río Coyhaique en Tejas Verdes 1131-CO-20	Lixiviación superficial y subterránea de formaciones geológicas Escorrentía de aluminosilicatos en forma de sedimentos	Contaminación difusa por ganadería Descargas difusas de plaguicidas y fertilizantes	• B, Cu, Cr, Al • Posiblemente: CT, CF y DBO ₅	 Geología: Formación geológica de rocas de origen volcánicas del período jurásico, compuestas por coladas y depósitos piroclásticos, riolírticos, dacíticos, andesíticos y basálticos Clima: Precipitación anual de 1.000 mm. Evapotranspiración real anual 400 mm Hidrogeología: No existe acuífero asociado que drene paralelo al río Geomorfología: Valle de origen glacial con planicies fluviales encajonado por cerros de baja altura Conservación de recursos naturales: Reserva Nacional Trapananda Silvicultura: Plantaciones de <i>pinus radiata</i> Ganadería: Ganadería Ovina Cubierta Vegetal: Matorral periglacial, estepa patagónica de Aysén

Tabla 4.19 (Continuación): Factores Incidentes en la Calidad del Agua en la Cuenca del Río Aysén

ESTACION DE CALIDAD /	FACTORES	INCIDENTES	PARÁMETROS QUE PUEDEN VERSE	CARACTERIZACIÓN DEL FACTOR
SEGMENTO	NATURALES	ANTROPOGENICOS	AFECTADOS	CARACTERIZACION DEL L'ACTOR
Río Coyhaique antes junta río Simpson 1130-CO-10	Lixiviación superficial y subterránea de formaciones geológicas Escorrentía de aluminosilicatos en forma de sedimentos	_	 B, Cu, Cr, Posiblemente Mn Posiblemente: CT, CF y DBO₅ 	 Geología: Formación geológica de rocas de origen volcánicas del período jurásico, compuestas por coladas y depósitos piroclásticos, riolírticos, dacíticos, andesíticos y basálticos. Rocas sedimentaroias en los alrededores de Coyhaique Clima: Precipitación anual de 2.000 mm. Evapotranspiración real anual 450 mm, temperatura media anual: 8,2°C Hidrogeología: Cruzamiento con acuífero proveniente del río Simpson. Existe un pozo de la DGA de 4,9 m de nivel freático Industria: Planta de extracción de áridos Geomorfología: Valle de origen glacial con planicies fluviales encajonado por cerros de baja altura Reserva Nacional Río Coyhaique Ganadería: Ganadería Ovina Cubierta Vegetal: Matorral periglacial

Tabla 4.19 (Continuación): Factores Incidentes en la Calidad del Agua en la Cuenca del Río Aysén

ESTACION DE CALIDAD /	FACTORES	INCIDENTES	PARÁMETROS QUE PUEDEN VERSE	CARACTERIZACIÓN DEL FACTOR
SEGMENTO	NATURALES	ANTROPOGENICOS	AFECTADOS	CHICACIENTE FOR DELINETOR
Río Blanco (oeste) antes río Aysén 1133-BL-20	 Lixiviación superficial y subterránea de formaciones geológicas Escorrentía de aluminosilicatos en forma de sedimentos Sedimentación natural de sólidos en lagos 		• B, Cu, Cr, Mn, Al	 Geología: Formaciones geológicas compuestas por rocas intrusivas e hipoabisales de los periodos jurásico, compuestos por rocas graníticas Clima: Temperatura media anual 9,1°C y precipitación media anual de 2973 mm, evapotranspiración real anual: 500 mm Hidrogeología: Paralelo al río existe un acuífero que drena hacia el río Aysén probablemente de filtraciones subterráneas del lago Riesco Geomorfología: Valle de origen glacial con planicies fluviales encajonado por cerros de la cordillera andina Hidrología: Río emisario de los Lagos Caro, Riesco Precipitaciones sobre 2940 mm anuales Cubierta Vegetal: Bosque siempreverde de Puyuhuapi, matorral caducifolio alto montano
Río Blanco (este) antes río Huemules 1131-BE-10	Lixiviación superficial y subterránea de formaciones geológicas Escorrentía de aluminosilicatos en forma de sedimentos	Contaminación difusa por ganadería	 B, Cu, Cr, Al Posiblemente Mn, Al Posiblemente: CT, CF y DBO₅ 	 Geología: Formación geológica de rocas de origen volcánicas del período jurásico, compuestas por coladas y depósitos piroclásticos, riolírticos, dacíticos, andesíticos y basálticos Clima: Temperatura media anual de 6°C y una precipitación anual de 723 mm Hidrogeología: No existen acuíferos asociados a esta hoya Geomorfología: Estepa magallánica con baja pendiente Ganadería: Ganadería Ovina Cubierta Vegetal: Matorral periglacial

Tabla 4.19 (Continuación): Factores Incidentes en la Calidad del Agua en la Cuenca del Río Aysén

ESTACION DE CALIDAD /	FACTORES	INCIDENTES	PARÁMETROS QUE PUEDEN VERSE	CARACTERIZACIÓN DEL FACTOR
SEGMENTO	NATURALES	ANTROPOGENICOS	AFECTADOS	CARACTERIZACION DEL L'ACTOR
Río Claro en piscicultura 1131-CL-10	Lixiviación superficial y subterránea de formaciones geológicas Escorrentía de aluminosilicatos en forma de sedimentos		B, Cu, Cr, Al	 Geología: Formación geológica de rocas de origen volcánicas del período jurásico, compuestas por coladas y depósitos piroclásticos, riolírticos, dacíticos, andesíticos y basálticos Clima: Precipitación media anual de 2.000 mm y evapotranspiración real anual de 450 mm Hidrogeología: No existen acuíferos asociados a esta hoya Geomorfología: Valle de origen glacial con planicies fluviales encajonado por cerros de la cordillera andina Conservación de recursos naturales: Reserva Nacional Río Coyhaique Industrias: Piscicultura Cubierta vegetal: Bosque siempreverde montano

Tabla 4.19 (Continuación): Factores Incidentes en la Calidad del Agua en la Cuenca del Río Aysén

ESTACION DE CALIDAD /	FACTORES	INCIDENTES	PARÁMETROS QUE PUEDEN VERSE	CARACTERIZACIÓN DEL FACTOR
SEGMENTO	NATURALES	ANTROPOGENICOS	AFECTADOS	erna terzitazion azarrieren
Río Huemules frente al Cerro Galera 1131-SI-20	Lixiviación superficial y subterránea de formaciones geológicas Escorrentía de aluminosilicatos en forma de sedimentos Lixiviación de cenizas volcánicas	Contaminación difusa por ganadería	 B, Cu, Fe Posiblemente Cr, Mn, Al Posiblemente: CT, CF y DBO₅ 	piroclásticos, riolírticos, dacíticos, andesíticos y basálticos

Tabla 4.19 (Continuación): Factores Incidentes en la Calidad del Agua en la Cuenca del Río Aysén

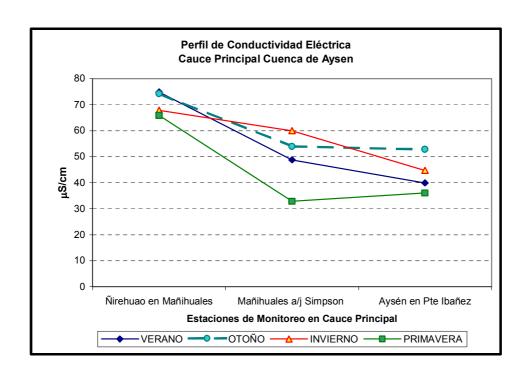
ESTACION DE CALIDAD /	FACTORES	INCIDENTES	PARÁMETROS QUE PUEDEN VERSE	CARACTERIZACIÓN DEL FACTOR		
SEGMENTO	NATURALES	ANTROPOGENICOS	AFECTADOS	CARACTERIZACION DEL L'ACTOR		
Río Oscuro en camino a Portezuelo 1131-OS-10	Lixiviación superficial y subterránea de formaciones geológicas Escorrentía de aluminosilicatos en forma de sedimentos Lixiviación de cenizas volcánicas	Descargas de aguas servidas Contaminación difusa por ganadería	 B, Cu, Cr, Mn, Al Posiblemente: CT, CF y DBO₅ 	 Geología: Formación geológica de rocas de origen volcánicas del período jurásico, compuestas por coladas y depósitos piroclásticos, riolírticos, dacíticos, andesíticos y basálticos Clima: Temperatura media anual de 6°C y una precipitación anual de 723 mm Volcanismo: Volcán Hudson Edafología: Suelo con ceniza volcánica Geomorfología: Estepa magallánica con baja pendiente Centros Poblados: Balmaceda – Aeropuerto comercial Hidrogeología: No existen acuíferos asociados a esta hoya Ganadería: Ganadería Ovina Cubierta vegetal: Matorral periglacial, estepa patagónica de Aysén 		

Tabla 4.19 (Continuación): Factores Incidentes en la Calidad del Agua en la Cuenca del Río Aysén

ESTACION DE CALIDAD /	FACTORES	INCIDENTES	PARÁMETROS QUE PUEDEN VERSE	CARACTERIZACIÓN DEL FACTOR			
SEGMENTO	NATURALES ANTROPOGEN		AFECTADOS	CHARLE LEADING DELTACION			
Río Blanco (oeste) desagüe lago Riesco 1133-BL-10	 Lixiviación superficial y subterránea de formaciones geológicas Escorrentía de aluminosilicatos en forma de sedimentos Sedimentación natural de sólidos en lagos 		• B, Cu, Cr, Mn, Al	 Geología: Formaciones geológicas compuestas por rocas intrusivas e hipoabisales de los periodos jurásico, compuestos por rocas graníticas Hidrogeología: Paralelo al río existe un acuífero que drena hacia el río Aysén probablemente de filtraciones subterráneas del lago Riesco Clima: Precipitación media anual de 3.000 mm y una evapotranspiración real de 500 mm Geomorfología: Valle de origen glacial con planicies fluviales encajonado por cerros de la cordillera andina Cubierta vegetal: Bosque siempreverde de Puyuhuapi, matorral caducifolio alto montano 			

5. <u>CALIDAD ACTUAL Y NATURAL DE LOS CURSOS SUPERFICIALES</u>

5.1 <u>Análisis Espacio Temporal en Cauce Principal</u>


En la cuenca del río Aysén, para el estudio del perfil longitudinal de calidad, se ha optado por representarla siguiendo el cauce de los ríos Ñirehuao, Mañihuales y Aysén. Cabe señalar que la excepcional calidad de agua que existe en la cuenca es común a todos los cauces con algunas diferencias menores que se originan en las influencias de los factores naturales.

Para el análisis del cauce principal, se cuenta con 3 estaciones de monitoreo a lo largo del río, que son:

- Ñirehuao en Mañihuales
- Mañihuales antes junta Río Simpson
- Aysén en Puente Ibáñez

En la Figura 5.1, con información proveniente de la DGA, se incluye el perfil longitudinal sólo de aquellos parámetros seleccionados que exceden la Clase 0 a lo largo del río, para los 4 períodos estacionales. Dichos parámetros son los siguientes: cobre, hierro, manganeso y aluminio. La información presentada corresponde al Percentil 66%.

No se incluyen las representaciones de los siguientes parámetros: manganeso, zinc, cromo y aluminio, por no contar con suficiente información de nivel 1 en las estaciones de monitoreo del cauce principal.

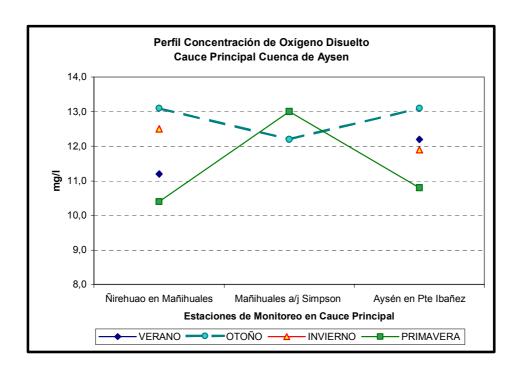
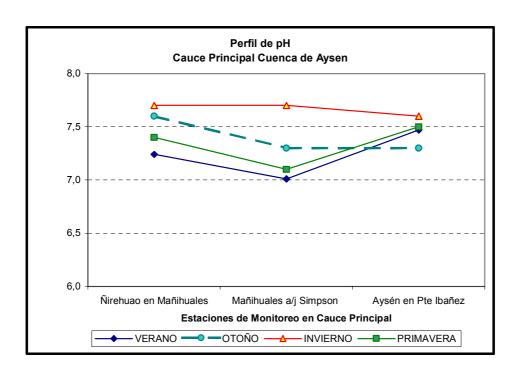



Figura 5.1: Perfil Longitudinal de Calidad de Agua en la Cuenca del río Aysén. Información DGA

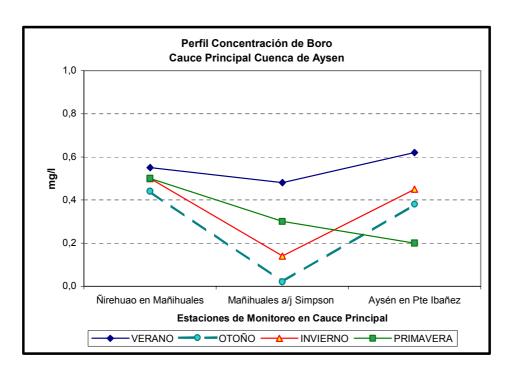
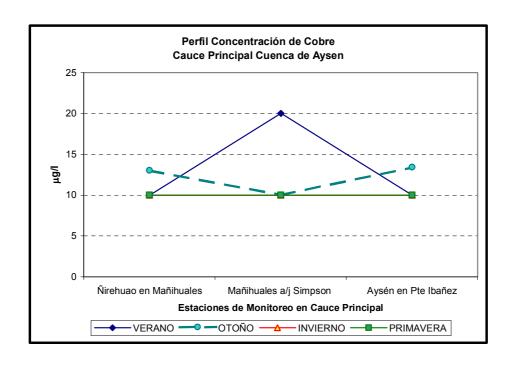



Figura 5.1 (Continuación): Perfil Longitudinal de Calidad de Agua de la Cuenca del Río Aysén. Información DGA

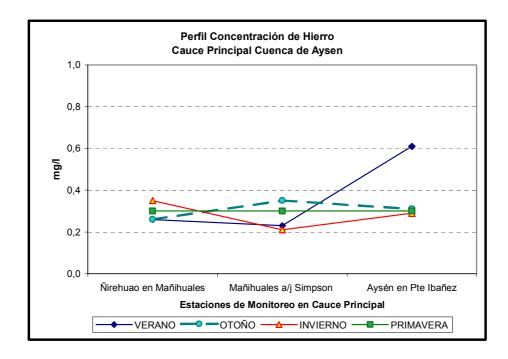


Figura 5.1 (Continuación): Perfil Longitudinal de Calidad de Agua en la Cuenca del Río Aysén. Información DGA

Respecto de cada parámetro y considerando los perfiles mostrados en las figuras 5.1, se desprende lo siguiente:

- CE: Los perfiles longitudinales permiten observar que se presenta una envolvente superior en verano-otoño, asignable a la Clase 0. Como el perfil es muy menor y sólo representa una parte de la cuenca, no es posible extrapolar este análisis, sin embargo los registros de calidad de agua en la cuenca muestran resultados similares, de excelente calidad. Lo mismo sucede con los demás parámetros cuya situación se comenta a continuación.
- pH: Los perfiles longitudinales permiten observar que este parámetro es de perfil plano, con una envolvente superior de carácter básica en invierno, valores que disminuyen en otras estaciones del año. Todos los valores son de la Clase 0.
- OD: todos los valores son de Clase 0, indicador de la excelente calidad de agua en la cuenca.
- B: Los perfiles longitudinales permiten observar que el boro presenta una envolvente superior en verano, asignable a la Clase 1 a 2, mientras que en el resto de los valores se tiene mayor cercanía a la Clase 1. Como el perfil es muy menor y sólo representa una parte de la cuenca, no es posible extrapolar este análisis, sin embargo los registros de calidad de agua en la cuenca muestran resultados similares. Lo mismo sucede con los demás parámetros cuya situación se comenta a continuación.
- Cu: Se tienen valores que pertenecen a la Clase 2, y varios de los registros son de la Clase 1. El periodo estacional de valores más altos es el otoño, mientras que los valores bajos corresponden al verano, situación que es el inverso del boro.
- Fe: No es un parámetro relevante, ya que en general corresponde a la Clase 0.

5.2 <u>Caracterización de la Calidad del Agua a Nivel de la Cuenca</u>

En la tabla 5.1 se comentan las características principales de la calidad actual del río Aysén presentada por grupos de parámetros y por parámetro según el *Instructivo*. Este análisis esta basado en la información presentada en el punto 4.2.4.

Tabla 5.1: Análisis de los Parámetros de Calidad Actual

CUENCA RÍO AYSÉN

Parámetros físico-Químicos (FQ): Conductividad Eléctrica, DBO₅, Color, OD, pH, RAS, SDT, SST.

CE: Valores en clase 0 sin variación estacional en todas las estaciones de monitoreo de la cuenca.

<u>DBO₅</u>: El dato del muestreo puntual-2003, en primavera está asignado a la clase 0 en los ríos Mañihuales, Simpson, Emperador Guillermo, Blanco y Aysén, y en clase 1 en el río Ñirehuao.

<u>Color Aparente</u>: El dato del muestreo puntual en primavera 2003 está asignado a la clase 0 en los ríos Ñirehuao, Mañihuales, Emperador Guillermo, Blanco y Aysén, en clase 1 en el río Simpson.

OD: Valores en clase 0 sin variación estacional en todas las estaciones de monitoreo de la cuenca.

pH: Valores en clase 0 sin variación estacional en todas las estaciones monitoreo de los ríos.

<u>RAS</u>: Los registros históricos permiten clasificarlo siempre en clase 0.

<u>SD</u>: Valores en clase 0 en los ríos Aysén, Simpson, Emperador Guillermo, Mañihuales, Ñirehuao, Blanco y Claro de acuerdo al estudio realizado por el SAG. El dato del muestreo puntual en primavera está asignado a la clase 0 en los ríos Ñirehuao, Mañihuales, Emperador Guillermo, Blanco, Simpson y Aysén.

<u>SST</u>: El dato del muestreo puntual en primavera 2003 está asignado a la clase 0 en los ríos Ñirehuao, Mañihuales, Emperador Guillermo, Blanco, Simpson y Aysén.

Inorgánicos (IN): NH₄⁺, CN⁻, Cl, F⁻, NO₂⁻, SO₄²⁻, S²⁻

CI : Los registros históricos permiten clasificarlo siempre en clase 0.

 SO_4^2 -: Los registros históricos permiten clasificarlo siempre en clase 0.

<u>CN</u> : El dato del muestreo puntual en primavera 2003 corresponde a los límites de detección superior al de la clase 0, no permite clasificarlo.

<u>NH4</u>⁺: El dato del muestreo puntual en primavera está asignado a la clase 0 en los ríos Ñirehuao, Mañihuales, Emperador Guillermo, Blanco, Simpson y Aysén.

Tabla 5.1 (Continuación): Análisis de los Parámetros de Calidad Actual

CUENCA RÍO AYSÉN

 \underline{F} : El dato del muestreo puntual en primavera está asignado a la clase 0 en los ríos \tilde{N} irehuao, Mañihuales, Emperador Guillermo, Blanco, Simpson y Aysén.

NO₂. : El dato del muestreo puntual en primavera está asignado a la clase 0 en los ríos Ñirehuao, Mañihuales, Emperador Guillermo, Blanco, Simpson y Aysén.

 \underline{S}^2 : Sin información

Orgánicos (OR): Aceites y grasas, PCBs, SAAM, fenol, HCAP, HC, tretracloroeteno, tolueno

No se dispone de información para los parámetros orgánicos.

Orgánicos Plaguicidas (OP): Ácido 2,4-D, aldicarb, aldrín, atrazina, captán, carbofurano, clordano, clorotalonil, Cyanazina, demetón, DDt, diclofop-metil, dieldrín, dimetoato, heptaclor, lindano, paratión, pentaclorofenol, siazina, trifluralina.

No se dispone de información para los parámetros orgánicos plaguicidas.

Metales Esenciales (ME): B, Cu, Cr total, Fe, Mn, Mo, Ni, Se, Zn

B: En los ríos Aysén y Oscuro se clasifica en case 2 en verano con variación estacional. En el río Simpson se asigna a la clase 2 en otoño a/j río Coyhaique y en clase 4 en primavera b/j río Coyhaique. El río Emperador Guillermo presenta valores en clase 2 en otoño con variación estacional. El río Mañihuales presenta valores en clase 0 sin variación durante el año, excepto en verano en clase 1. En el río Ñirehuao tampoco se observa variación estacional con los valores clasificados en clase 1 a excepción del verano en clase 2. El río Coyhaique en la estación Tejas Verdes presenta valores en clases 2 y 1, con variación estacional entre los periodos de verano en clase 0, en la estación a/j río Simpson no presenta variación estacional entre los periodos de verano-otoño-invierno en clase 0, en primavera varía a clase 1. En el río Blanco antes del río Huemules no se observa variación estacional con los valores en clase 0. En río Claro se observa variación estacional entre los periodos de verano-otoño en clase 0 y primavera- invierno en clase 1.

<u>Cu</u>: Los valores asignados a la clase 2 en los ríos Blanco, Oscuro, Claro, Aysén en Presidente Ibañez, Simpson bajo junta río Coyhaique y a/j río Coyhaique, Emperador Guillermo a/j Mañihuales, Mañihuales a/j Simpson, Ñirehuao en Mañihuales, Coyhaique en la estación Tejas Verdes y a/j río Simpson. Un gran número de los valores registrados corresponden al límite de detección analítico superior al valor de la clase 0 lo que no permite asignar una clase.

<u>Cr</u>_{total}: La gran mayoría de los valores registrados corresponden al límite de detección analítico superior al valor de la clase 0 lo que no permite asignar una clase. Sin embargo se observan valores en clase 2 en verano en los ríos Blanco, Oscuro y en el desagüe Riesco, y en otoño-primavera en los ríos Aysén y Emperador Guillermo.

<u>Fe</u>: Todos los valores en clase 0, excepto en invierno en los ríos Simpson a/j río Coyhaique y río Coyhaique a/j río Simpson en clases 2 y 1 respectivamente, y en primavera en el río Emperador Guillermo en clase 2.

Tabla 5.1 (Continuación): Análisis de los Parámetros de Calidad Actual

CUENCA RÍO AYSÉN

Mn: Todos los valores en clase 0, excepto los ríos Aysén en otoño y Simpson a/j río Coyhaique en invierno en clase 2, y Simpson a/j río Coyhaique en otoño en clase 1.

<u>Mo</u>: Los valores registrados corresponden al límite de detección analítico superior al valor de la clase 0 lo que no permite asignar una clase.

Ni, Se: Los registros permiten clasificarlos siempre en clase 0.

Zn: Todos los valores están clasificados en clase 0.

Metales no Esenciales (MN): Al, As, Cd, Sn, Hg, Pb

Al: Todos los valores en clase 2, salvo en el río Coyhaique a/j río Simpson en otoño en clase 0.

As: Los registros permiten clasificarlos siempre en clase 0.

<u>Cd</u>, <u>Hg y Pb</u> : Los valores registrados corresponden al límite de detección analítico superior al valor de la clase 0 lo que no permite asignar una clase.

<u>Sn</u>: El dato del muestreo puntual en primavera 2003 corresponden al límite de detección analítico superior al valor de la clase 0 lo que no permite asignar una clase.

Indicadores Microbiológicos (IM): CF, CT

<u>CF</u>: El dato del muestreo puntual en primavera 2003 está asignado a la clase 1 en los ríos Ñirehuao, Mañihuales, Emperador Guillermo, Blanco, Simpson y Aysén.

<u>CT</u>: El dato del muestreo puntual en primavera 2003 está asignado a la clase 0 en los ríos Ñirehuao, Mañihuales, Emperador Guillermo y Blanco, y en clase 1 en los ríos Simpson y Aysén.

5.3 <u>Asignación de Clases de Calidad Actual por Parámetro a Nivel de la Cuenca</u>

El análisis realizado en los acápites anteriores permite elaborar la tabla 5.2, en la cual se clasifican los distintos parámetros según la clase a la que pertenecen en un segmento específico.

Esta tabla integra todos los niveles de información disponibles. Esto implica que en el futuro, en la medida que se vaya extendiendo y mejorando la información de algunos parámetros la clase asignada para ellos podría sufrir modificaciones.

Para la asignación de clases se utiliza la información de mejor nivel (la de niveles inferiores se emplea como verificación).

Teniendo en cuenta lo anterior, el criterio de asignación es el siguiente:

- Para aquellos parámetros que poseen información de nivel 1, se utiliza el valor correspondiente al percentil 66% para el periodo estacional más desfavorable.
- Para aquellos parámetros que poseen información de nivel 2 ó 3, se utiliza el valor promedio para el periodo estacional más desfavorable.
- Respecto a aquellos parámetros que fueron incluidos en el programa de muestreo de CADE-IDEPE y que no cuentan con información de nivel superior (niveles 1 a 3), se utilizan los datos puntuales obtenidos (información nivel 4). Para la cuenca del río Aysén, estos parámetros son: DBO₅, color aparente, SD, SST, NH₄⁺, CN⁻, F⁻, S²⁻, NO₂⁻, Sn, CF y CT.
- En el caso de los parámetros DBO₅, sólidos suspendidos y coliformes fecales, si no se dispone de ninguna información de nivel superior, se emplea como valor de referencia la estimación del consultor (información nivel 5). El método de estimación de dichos parámetros se presenta en el capítulo 4 de la Sección II del Informe Final, destinada a describir la Metodología empleada.
- Cuando se disponer de información de distintas fuentes para un mismo parámetro, se le asigna a éste en la tabla 5.2 la clase correspondiente a la fuente de información que contenga un mayor número de registros (mejor nivel de información de acuerdo a la metodología).

Tabla 5.2: Asignación de Clases de Calidad Actual Tabla 5.2a: Cauce Principal: Río Aysén

			Clases	Instructivo			Parámetro	Parámetros		
Estación de calidad	Código de segmentos	0	1	2	3	4	con valor en límite de detección seleccionados sin información		Observación	
Río Aysén en Puente Presidente Ibáñez	1134AY20	CE, pH, Fe, OD, Zn, RAS, Cl, Se, As SO ₄ ² , SD, DBO ₅ , Color Aparente, SST, NH ₄ ⁺ , F, NO ₂ ⁻	CT	B, Cu, Cr total, Mn, Al			Mo, Hg, Ni, Cd, Pb	Todos los demás parámetros seleccionados	Información nivel 2 y 3, datos DGA: Cr total , Mn, Al . Información nivel 3 SAG: (río Aysén) SD Información nivel 4 muestreo puntual CADE- IDEPE primavera, 2003: DBO ₅ , Color Aparente, SST, SD corrobora clase 0, NH ₄ ⁺ , F ⁻ , NO ₂ ⁻ , CF, CT (río Aysén aguas abajo Puerto Aysén)	

<u>Parámetros seleccionados de la cuenca del río Aysén</u>: Conductividad eléctrica, DBO₅, Oxígeno Disuelto, pH, Sólidos Suspendidos, Coliformes Fecales, Boro, Cobre, Cromo total, Hierro, Manganeso, Zinc, Aluminio, Color aparente, Coliformes Totales.

Tabla 5.2b: Cauces Secundarios: Simpson

Estación de calidad	Código de segmento	0	Clase	s Instructivo	3	4	Parámetro con valor en límite de detección	Parámetros seleccionadossi n información	Observación
Río Huemules frente a cerro Galera	1131SI20	CE, pH, B, DBO ₅ , SD, SST, NH ₄ ⁺ , F, NO ₂ ⁻ , CT	Fe, CF	Color, Cu				Todos los demás parámetros seleccionados	Información nivel 3, datos DGA Información nivel 4 muestreo puntual primavera, 2003: DBO ₅ , Color Aparente, SST, SD, NH ₄ ⁺ , F, NO ₂ ⁻ , CF, CT
Río Simpson antes junta río Coyhaique (Puente Mondaca)	1131SI40	CE, OD, pH, Zn,		Cu, B, Fe, Mn, Al,			Mo, Hg, Ni, Cd, Pb, Cr total	Todos los demás parámetros seleccionados	Información nivel 1, 2 y 3, datos DGA.
Río Simpson bajo junta río Coyhaique	1131SI50	CE, OD, pH, Mn, Fe, SD, Zn, DBO ₅ , SST, NH ₄ ⁺ , F ⁻ , NO ₂ ⁻	Color Aparente, CF, CT	Al, Cu		В	Mo, Hg, Ni, Cd, Pb, Cr total, CN ⁻ , Sn	Todos los demás parámetros seleccionados	Información nivel 2,: pH, Cu, y nivel 3 datos DGA Información nivel 3 dato SAG (río Simpson): SD Información nivel 4 muestreo puntual CADE-IDEPE primavera, 2003: DBO ₅ , Color Aparente, SST, SD corrobora clase 0, NH ₄ ⁺ , F ⁻ , NO ₂ ⁻ , CF, CT

Obs: La estación de calidad río Huemules frente a cerro Galera, se encuentra ubicada geográficamente en el río Simpson [Ref.4.1][Ref.4.2].

Tabla 5.2c: Cauces Secundarios: Emperador Guillermo

Estación de	Código de		Clases Insti	ructivo Preside	ncial		Parámetro con	Parámetros	
calidad	segmentos	0	1	2	3	4	valor en límite de detección	seleccionados sin información	Observación
		CE, OD,	CF	B, Cu,			Mo, Hg, Ni, Cd,		Información nivel 3 y 2: CE, pH, B,
	1130EM10	pH, RAS, Cl,		Cr total,			Pb	Todos los demás	Cu, Fe datos DGA.
Día Emmaradar		Se, As SO_4^{2} ,		Al, Fe				parámetros	
Río Emperador Guillermo		SD, Mn, Zn,						seleccionados	Información nivel 3, dato SAG :SD
		DBO ₅ , Color							
antes junta río Mañihuales		Aparente, SST,							Información nivel 4 muestreo
Maninuales		NH_4^+ , F, NO_2^- ,							puntual primavera, 2003: DBO ₅ ,
		CT							Color Aparente, SST, SD corrobora
									clase 0, NH ₄ ⁺ , F ⁻ , NO ₂ ⁻ , CF, CT

Tabla 5.2d: Cauces Secundarios: Mañihuales

			Clases Ins	structivo Presidenc	cial	Parámetro con	metro con Parámetros		
Estación de calidad	Código de segmento	0	1 2 3 4 valor en límite de detección seleccionados sin información		Observación				
Río Mañihuales en Puente Nº 2 ó antes de junta río Simpson.	1130MA30	CE, OD, pH, Fe, Zn, RAS, Cl ⁻ , Se, As SO ₄ ²⁻ , SD, Mn, DBO ₅ , Color Aparente, SST, NH ₄ ⁺ , F ⁻ NO ₂ ⁻ , CT		Cu		Mo, Hg, Ni, Cd, Pb	Al, Cr _{total}	Información nivel 2, CE, pH, B, Cu, Fe y nivel 3, datos, DGA. Información nivel 3, dato SAG (río Mañihuales) :SD Información nivel 4 muestreo puntual CADE-IDEPE primavera, 2003: DBO ₅ , Color Aparente, SST, SD corrobora clase 0, NH ₄ ⁺ , F, NO ₂ ⁻ , CF, CT (río Mañihuales abajo Villa Mañihuales)	

Tabla 5.2e: Cauces Secundarios: Ñirehuao

	Código de segmento		Clases Instr	uctivo Presidencial	Parámetro	Parámetros			
Estación de calidad		0	1	2	3	4	con valor en límite de detección	seleccionados sin información	Observación
Río Ñirehuao en Villa Mañihuales	1130NI20	CE, OD, pH, Fe, RAS, Cl, Se, As SO ₄ ² , SD, Mn, Zn, Color Aparente, SST, NH ₄ ⁺ , F, NO ₂ ⁻ , CT	DBO ₅ , CF	Cu, Al, B			Mo, Hg, Ni, Cd, Pb, Cr total	Todos los demás parámetros seleccionados	Información nivel 2, CE, pH, B, Cu, Fe y nivel 3, datos DGA. Información nivel 3, dato SAG :SD (río Ñirehuao) Información nivel 4 muestreo puntual CADE-IDEPE primavera, 2003: DBO ₅ , Color Aparente, SST, SD corrobora clase 0, NH ₄ ⁺ , F, NO ₂ ⁻ , CF, CT

Tabla 5.2f: Cauces Secundarios: Coyhaique

	Código de	(Clases Insti	ructivo Presid	encial		Parámetro con	Parámetros	
Estación de calidad	segmento	0	1	2	3	4	valor en límite	seleccionados sin	Observación
	518	•		_	,	•	de detección	información	
		CE,OD, pH,	DBO_5	Cu, B, Al			Mo, Hg, Ni,		Información nivel 2: CE, pH, B, Cu,
11	131CO10	RAS, Cl ⁻ , Se,					Cd, Pb, Cr total	Todos los demás	Fe y nivel 3 datos DGA.
Río Coyhaique en Tejas Verdes		As SO_4^{2-} , Zn, Mn, SST, CF						parámetros	Información nivel 5 estimada por CADE IDEPE para DBO ₅ , SST, CF

Tabla 5.2g: Cauces Secundarios: Oscuro

Estación de calidad	Código de segmento		Clases In	structivo Presid	encial		Parámetro con valor en	Parámetros seleccionados	Observación
		0	1	2	3	4	límite de	sin	O OSCI VICTORI
					_		detección	información	
		CE, OD, pH,	DBO ₅	Cu , B, Al,			Mo, Hg, Ni,		Información nivel 2:CE, pH, Cu, Fe y
Río Oscuro	1131OS10	Fe, Zn, Mn,		Cr total			Cd, Pb	Todos los	nivel 3, datos DGA.
		RAS, Cl,						demás	
camino a Portezuelo		Se, As						parámetros	Información nivel 5 estimada por
Poltezuelo		SO ₄ ² -, SST,						seleccionados	CADE IDEPE para DBO ₅ , SST, CF
		CF							_

Tabla 5.2h: Cauces Secundarios: Blanco (oeste)

	Código de segmento		Clases Instruc	ctivo Presidencia	1	Parámetro con	Parámetros		
Estación de calidad		0	1	2	3	4	valor en límite de detección	seleccionados sin información	Observación
Desagüe Lago Riesco	1133BL10	CE, OD, pH, Fe, Zn, Mn, RAS, Cl, Se, As SO ₄ ² , SD, SST, CF		Cu , Al, Cr total			Mo, Hg, Ni, Cd, Pb, B	Todos los demás parámetros seleccionados	Información nivel 3, datos DGA. Información nivel 5 estimada por CADE IDEPE para DBO ₅ , SST, CF
Río Blanco antes junta río Aysén	1133BL20	CE, OD, pH, Fe, Zn, Mn RAS, CI, Se, As SO ₄ ² , SD, DBO ₅ , Color Aparente, SST, NH ₄ ⁺ , FNO ₂ , CT	CF	Cu, Al			Mo, Hg, Ni, Cd, Pb	Todos los demás parámetros seleccionados	Información nivel 3, datos DGA. Información nivel 4 muestreo puntual CADE-IDEPE primavera, 2003: DBO ₅ , Color Aparente, SST, SD corrobora clase 0, NH ₄ ⁺ , F ⁻ , NO ₂ ⁻ , CF, CT

Tabla 5.2i: Cauces Secundarios: Blanco (este)

			Clases Ins	tructivo Pres	sidencial				
Estación de calidad	Código de segmentos	0	1	2	3	4	Parámetro con valor en límite de detección	Parámetros seleccionados sin información	Observación
Río Blanco (este) antes río Huemules	1131BE10	CE, pH, B, RAS, Cl ⁻ , Se, Fe As SO ₄ ²⁻ , SD, SST, CF		Cu			Mo, Hg, Ni, Cd, Pb	Todos los demás parámetros seleccionados	Información nivel 3, datos DGA Información nivel 5 estimada por CADE IDEPE para DBO ₅ , SST, CF

Tabla 5.2j: Cauces Secundarios: Claro

	Código de	Cla	ses Instructi	vo Presiden	icial		Parámetro con	Parámetros	
Estación de calidad	Segmento	0	1	2	3	1	valor en límite	seleccionados sin	Observación
	Segmento		1	2	3	7	de detección	información	
Río Claro en		CE, pH, OD, Fe, Mn, RAS, Cl, Se,		Cu, Al, Cr			Mo, Hg, Ni, Cd, Pb	Todos los demas	Información nivel 3, datos DGA
Psicultura	1131CL10	As, SO ₄ ²⁻ , SD, SST, CF, Zn						parámetros seleccionados	Información nivel 5 estimada por CADE IDEPE para DBO ₅ , SST, CF

5.4 <u>Calidad Natural</u>

La calidad del agua del Aysén se ve alterada de la clase de excepción debido al contenido de compuestos existentes en la litología y los suelos, los cuales se incorporan al agua por los siguientes mecanismos:

- Acidificación del agua meteórica por CO₂ y SO₂ atmosférico.
- Meteorización de las formaciones rocosas por intemperización, lo que lleva a un aumento de la superficie específica y por tanto mayor intensidad de la reacción de lixiviación.
- Lixiviación superficial de rocas meteorizadas por escorrentía o derretimiento de nieve ácida.
- Lixiviación volumétrica de rocas subterráneas por contacto roca agua infiltrada ácida.
- Solifluxión deslizamiento de laderas por sobrehumedad y posterior lixiviación y dilución del material deslizado.
- Solubilización de compuestos presentes en los suelos.
- Concentración de solutos por evaporación de agua
- Arrastre de sólidos por escorrentías y pérdida de cobertura vegetal.

Los siguientes mecanismos si bien no son naturales, son en gran parte irreversibles y por tanto seguirán modificando la calidad del curso de agua independiente del tiempo.

- Lixiviación de depósitos de estériles mineros por precipitaciones pluviales y nivales.
- Incendios forestales y pérdida de cobertura vegetal.
- Drenaje de aguas de minas producto de las actividades de extracción minera. Aguas que se acidifican por la reacción pirita agua –aire.
- Drenajes de aguas de relaves.

En la Tabla 5.3 se identifican los parámetros que exceden la clase 0 en los diferentes cursos de agua de la cuenca del río Aysén, basada en la información estadística por períodos estacionales que se presenta en la Tabla 4.13.

Tabla 5.3: Valores estacionales máximos de los parámetros en la cuenca del río Aysén

Estación	Segmento	B (mg/L)	Cu (µg/L)	Cr (μg/L)	Fe (mg/L)	Mn (mg/L)	Al (mg/L)
Río Aysén en pte. Pdte. Ibáñez	1134AY20	(0,62)	(13)	((20))	(mg/L) Clase 0	((0,1))	((0,33))
Río Huemules frente al Cerro Galera	1131SI20	Clase 0	((20))	s/i	((0,9))	s/i	s/I
Río Simpson antes río Coyhaique	1131SI40	((0,51))	(20)	((<10))	1,3	((0,2))	((0,7))
Río Simpson bajo río Coyhaique (pte. Entel)	1131SI50	((0,9))	((18))	((<10))	Clase 0	Clase 0	((0,5))
Río Emp. Guillermo antes río Mañihuales	1130EM10	(0,53)	(20)	(20)	(1,5)	Clase 0	((0,6))
Río Mañihuales a/j Simpson	1130MA30	((0,48))	((20))	s/i	Clase 0	s/i	s/i
Río Ñirehuao en Manuales	1130NI20	(0,55)	(13)	((<10))	Clase 0	Clase 0	((0,31))
Río Coyhaique en Tejas Verdes	1131CO10	(0,51)	(15)	((<10))	Clase 0	Clase 0	((0,9))
Desagüe lago Riesco	1133BL10	((<1))	((17))	((30))	Clase 0	Clase 0	((0,6))
Río Blanco antes río Aysén (desembocadura)	1133BL20	((<1))	((16))	((<10))	Clase 0	Clase 0	((0,3))
Río Blanco antes río Huemules	1131BE10	Clase 0	((20))	((<10))	Clase 0	s/i	s/I
Río Claro en piscicultura	1131CL10	((0,4))	(14)	((20))	Clase 0	Clase 0	((0,51))
Río Oscuro en camino a Portezuelo	1131OS10	(0,59)	(12)	((20))	Clase 0	Clase 0	((0,3))

Fuente: Elaboración propia s/i: sin información
Valores sin paréntesis: Percentil 66% (información nivel 1); Valores con 1 paréntesis: Promedios (información nivel 2); Valores con 2 paréntesis: Promedios (información nivel 3).

De la inspección de la tabla, se infieren las siguientes conclusiones:

- El aluminio es el único parámetro que excede la clase de excepción en todos los cauces.
- El hierro sólo aparece en el Simpson aguas abajo de la ciudad de Coyhaique por lo cual se infiere que este es de origen antropogénico.
- El cobre aparece bastante uniformemente distribuido.
- El boro tiene una presencia importante en la cuenca del Aysén.

5.4.1 Boro

Los valores de boro procedentes de la campaña de monitoreo de la DGA presentan valores inferiores a 0,9 mg/L (Est DGA río Simpson bajo río Coyhaique -otoño).

La presencia de boro en las aguas superficiales se debería a la existencia en precipitados químicos interestratificados con arcillas, tobas, calizas y sedimentos lacustres, existentes en la cuenca del Aysén, los que al ser lixiviados por las aguas superficiales y subterráneas se adicionan a los cursos de agua.

5.4.2 Cobre

Los valores de cobre procedentes de la campaña de monitoreo de la DGA presentan valores comprendidos entre los 12 μ g/L (Est DGA río Oscuro en camino a Portezuelo) a 20 μ g/L (Est DGA río Huemules frente cerro Galera y Mañihuales antes junta Simpson).

El cobre se encuentra presente en la litología de las formaciones geológicas de la cordillera de los Andes (formaciones volcánicas) las cuales por procesos de lixiviación de filones de mineral adicionan cobre a las corrientes de agua.

5.4.3 Cromo

Los valores de cromo procedentes de la campaña de monitoreo de la DGA presentan valores comprendidos entre los <10 $\mu g/L$ a 30 $\mu g/L$ (máximo en Blanco en desagüe Lago Riesco).

La aparición del cromo en el agua se debe a su presencia en la litología de las formaciones rocosas volcánicas y sedimentarias existentes en la geología de la cuenca. Procesos de meteorización y lixiviación de las formaciones rocosas en conjunto con las variaciones de pH extraen el metal de su matriz hacia el curso de agua.

5.4.4 Hierro

Los valores de hierro procedentes de la campaña de monitoreo de la DGA presentan valores comprendidos entre los 0,9 mg/L (Est DGA río Huemules frente a cerro La Galera) a 1,5 mg/L (Est DGA río Emperador Guillermo antes río Mañihuales- otoño), estos superan la clase de excepción en aproximadamente 88%.

La presencia de hierro en la parte alta de la cuenca se deben a la litología propia de la cuenca compuesta por formaciones volcánicas andinas, las cuales son lixiviadas por las aguas subterráneas y que aparecen posteriormente cuando recargan los cursos de agua especialmente del río Emperador Guillermo.

5.4.5 Manganeso

Los valores de manganeso procedentes de la campaña de monitoreo de la DGA presentan valores comprendidos entre los <0,01 mg/L a 0,2 mg/L (Est DGA río Simpson a/j río Mañihuales - invierno).

Estos valores medidos en la parte baja de la cuenca se deben a la litología del lugar compuesta por formaciones volcánicas andinas, las cuales son lixiviadas por las aguas subterráneas y que aparecen posteriormente cuando recargan los cursos de agua especialmente del río Simpson.

En la sección más baja en cambio el efecto edafológico pasa a ser el relevante, pues los suelos presentan cantidades de manganeso que se hacen más presentes cuando ocurren escorrentías.

5.4.6 Aluminio

Los valores de aluminio procedentes de la campaña de monitoreo de la DGA presentan valores comprendidos entre los 0,3 mg/L (Est DGA río Oscuro en Portezuelo) a 0,9 mg/L (Est DGA río Coyhaique en Tejas Verdes).

La aparición del aluminio disuelto en el agua superficial se debe a la interacción de dos factores: las escorrentías de sedimentos compuestos principalmente de alumínico silicatos (arcillas) y el pH (6,6 a 8,0), los cuales forman naturalmente complejos de aluminio en solución.

5.4.7 Falencias de información

Debido a la presencia en tiempos pasados de incendios forestales permanentes, se ha producido pérdida continua y persistentemente de la cobertura vegetal, por lo cual se ha provocado un aumento de los procesos erosivos por pérdida de cobertura vegetal.

Debido a esto, es que se espera que en ciertos cauces específicos del Aysén, como los ríos Simpson y Emperador Guillermo deberían presentar mayores concentraciones de carga sólida y por tanto de sólidos en suspensión y sedimentables.

Informaciones del SAG que no cuentan con un monitoreo continuo sino que son resultados de mediciones puntuales han detectado presencia de zinc, cadmio y arsénico debido a la existencia de filones de mineral, por el río Mañihuales.

En el muestreo realizado por CADE-IDEPE en Noviembre del 2003, se encontró el color aparente en clase 2 en la estación río Huemules, el cual se debería a la presencia de turbales que drenan sus aguas hacia el río, adicionando compuestos húmicos que modifican su color.

5.4.8 Conclusiones

La calidad natural del agua superficial de la cuenca está influenciada fuertemente por las siguientes características que explican la calidad actual del río Aysén y sus tributarios:

- Como conclusión general puede afirmarse que en el río Aysén en cuanto a contaminación natural, los siguientes parámetros de calidad exceden la clase de excepción: aluminio, manganeso, cromo, boro y cobre.
- La calidad natural de la cuenca del Aysén es buena a excepción de los ríos Emperador Guillermo y Aysén en su tramo inferior.
- El aluminio se encuentra omnipresente en toda la cuenca del Aysén, ya que éste se encuentra formando parte de las arcillas que escurren en las escorrentías. Al presentar un pH alto los compuestos de aluminio se solubilizan permaneciendo en la columna de agua.
- La regular calidad natural del río Emperador Guillermo, se debe a la situación irreversible de quema de la capa vegetacional arbórea, la cual lo hace vulnerable a las cargas de lavado de escorrentías.

6. PROPOSICION DE CLASES OBJETIVOS

6.1 <u>Establecimiento de Tramos</u>

Como se definió en la Metodología, la unidad básica para la definición de la red fluvial es el segmento. De esta manera, toda la Base de Datos de la cuenca está referenciada a los segmentos.

La segmentación preliminar de la cuenca del río Aysén fue presentada en el capítulo 2. En éste capítulo se presentan los tramos, los cuales se forman por la sumatoria de segmentos adyacentes de calidad similar. El tramo se caracteriza por tener una misma clase de calidad objetivo a lo largo de toda su extensión.

En la siguiente tabla se presentan los tramos utilizados en la caracterización de los cauces de la cuenca.

Tabla 6.1: Tramos de la Cuenca del río Aysén

Cauces	Código Segmento	Tramo	Límites Tramos		
Río Aysén	1134AY10	AY-TR-10	De: Confluencia río Simpson y Mañihuales		
Rio riysen	1134AY20	711 110 10	Hasta: Desembocadura		
Río Emperador Guillermo	1130EM10	EM-TR-10	De : Naciente río Emp. Guillermo Hasta : Confluencia río Mañihuales		
	1130MA10				
Río Mañihuales	1130MA20	MA-TR-10	De : Límite de cuenca Hasta : Confluencia río Simpson		
	1130MA30		riasa . Connaciona no Simpson		
Río Ñirehuao	1130NI10	NI-TR-10	De: Naciente río Ñirehuao		
Nio iviiciidao	1130NI20	NI-1 K-10	Hasta: Confluencia río Mañihuales		
Río Blanco (chico)	1131BC10	BC-TR-10	De: Naciente río Blanco chico Hasta : Confluencia río Oscuro		
Río Blanco (este)	1131BE10	BE-TR-10	De: Naciente río Blanco este Hasta: Confluencia río Simpson		
Río Claro	1130CL10	CL-TR-10	De: Naciente río Claro Hasta: Confluencia río Simpson		
5. G 1 :	1131CO10	GO TP 40	De: Naciente río Coyhaique		
Río Coyhaique	1131CO20	CO-TR-10	Hasta: Confluencia río Simpson		
	1133BL10		De: Naciente río Blanco oeste		
Río Blanco (oeste)	1133BL20	BL-TR-10	Hasta: Confluencia río Aysén		
	1131OS10		De: Naciente río Oscuro		
Río Oscuro	1131OS20	OS-TR-10	Hasta: Confluencia río Simpson		

Tabla 6.1 (Continuación): Tramos de la Cuenca del Aysén

Cauces	Código Segmento	Tramo	Límites Tramos			
	1131SI10		D. N / G.			
	1131SI20	SI-TR-10	De: Naciente río Simpson Hasta: Confluencia río Claro			
	1131SI30					
Río Simpson	1131SI40	SI-TR-20	De: Confluencia río Claro Hasta: Confluencia río Coyhaique			
	1131SI50	SI-TR-30	De: Confluencia río Coyhaique Hasta: Confluencia río Mañihuales			

6.2 Requerimientos de Calidad según Usos del Agua

En la tabla 6.2 que se muestra se identifican los tramos de los cauces seleccionados con la siguiente información:

- *Usos de agua:* se reservan tres columnas para indicar los usos de agua en el tramo especificado.
- Clase actual más característica: corresponde a la clase de calidad de agua del Instructivo que agrupa la mayor parte de los valores de los parámetros representados por sus estadígrafos. Para este efecto se selecciona la clase de tal modo que aproximadamente no más del 10% de los parámetros quede con valores excedidos de la clase seleccionada (no más de 8 parámetros).
- Clase de uso a preservar: en función de los usos del agua en el tramo, en esta columna se trata de identificar la clase que es necesario preservar. Esta determinación no es automática, sino que requiere de un análisis en profundidad, el cual se explica detalladamente en la sección destinada a la Metodología (Volumen 1, Sección II).
- Clase Objetivo del tramo: es una proposición que toma en cuenta diversos aspectos, como son: usos del agua, calidad natural, calidad actual de los parámetros, y valores a lograr en un futuro cercano, entendido como el

plazo de validez de la calidad objetivo propuesta. En principio esta proposición considera que hay parámetros determinados por las características naturales de la cuenca o subcuenca, mientras que otros están condicionados, en distintos grados, por las acciones antrópicas. En particular, los parámetros afectados por aguas servidas son corregidos y asignados a clase 0, ya que ellos corresponden a acciones que se espera corregir dentro del plazo de validez de la calidad objetivo propuesta en este informe. En otros casos, se analiza el comportamiento del parámetro en función del conocimiento de la cuenca o subcuenca, ya sea a través de los factores incidentes o por evidentes acciones perturbadoras, a fin de dilucidar si es mejorable o no la calidad respecto de dicho parámetro. Aún así, cabe señalar que en la mayoría de los parámetros ajenos a las aguas servidas no existe suficiente información para establecer qué parte del valor medido corresponde a efectos antrópicos y cual a situaciones naturales, de tal modo que no se modifica su asignación de la clase actual. Para aquellos parámetros en que no existe información, se establece que la Calidad Objetivo será la definida para el tramo. Para el grueso de los parámetros, se trata de mejorar o al menos mantener la calidad natural del agua.

- Excepciones en el tramo, corresponde a los parámetros cuyos estadígrafos muestran que sus valores corresponden a clases de calidad distinta de la objetivo, ya sea con calidades mejores o peores. En cada situación se indican los parámetros con la clase correspondiente. Se ha considerado que estos parámetros tendrán las clases que por condiciones naturales le corresponden.
- Parámetros seleccionados que requieren más estudios, donde se incluyen los que tengan escasa o nula información, como asimismo los que por límites de detección de las mediciones existentes presentan problemas para su asignación de clases. Algunos de ellos no disponen de información de tal modo que la asignación de clase objetivo deberá ser ratificada con monitoreos posteriores.

Tabla 6.2: Requerimientos de Calidad según Usos del Agua en la Cuenca del río Aysén

	Acuicultura y pesca Diodiversidad Dioce Clase actual más Cla		Clase de uso a	Clase objetivo	Excepcio	ones en el tramo Parámetros	Parámetros seleccionados			
Cauce	Tramo	deportiva	Biodiversidad	Riego	característica	preservar	del tramo	Clase Excep.	que difieren de la clase Objetivo	que requieren más estudios
								1		
Βίο Ανγούμ	AY-TR-10				0	No hou	0	2	B, Cu, Cr, Mn, Al	Otros parámetros
Río Aysén	A1-1K-10				0	No hay	0	3		seleccionados
								4		-
					0	No hay	0	1		Otros parámetros seleccionados
D. E. G.II	EM TD 10							2	B, Cu, Cr, Fe, Al	
Río Emp. Guillermo	EM-TR-10							3		
								4		
								1	В	Otros parámetros seleccionados
D/ M 21 1	MA TD 10					No hay	0	2	Cu, Cr, Al	
Río Mañihuales	MA-TR-10				0			3		
								4		

<u>Parámetros seleccionados de la cuenca del río Aysén</u>: Conductividad eléctrica, DBO₅, Oxígeno Disuelto, pH, Sólidos Suspendidos, Coliformes Fecales, Boro, Cobre, Cromo total, Hierro, Manganeso, Zinc, Aluminio, Color aparente, Coliformes Totales.

<u>Aysén</u> 120.

Tabla 6.2 (Continuación: Requerimientos de Calidad según Usos del Agua en la Cuenca del río Aysén

Cauce	Tramo	Acuicultura y pesca deportiva	Biodiversidad	Riego	Clase actual más característica	Clase de uso a preservar	Clase objetivo del tramo	Excepcion	nes en el tramo	Parámetros seleccionados que requieren más estudios
Río Ñirehuao	NI-TR-10				0	No hay	0	2	B, Cu, Al	Otros parámetros
			4		seleccionados					
Río Blanco (chico)	BC-TR-10		(*)	-	s/i	No hay	0 (Ver Nota)	Otras clases	s/i	Todos los parámetros seleccionados
								1		
Río Blanco (este)	BE-TR-10		(*)		0	No hay	0	2	Cu	Otros parámetros seleccionados
Rio Dianco (este)	Kito Bianco (este)	E-1 K-1V						3		
					4		-			

Tabla 6.2 (Continuación): Requerimientos de Calidad según Usos del Agua en la Cuenca del río Aysén

		A . 1			Cl 1 .	Cl. 1	CI 1: t	Excepcione	s en el tramo	Parámetros seleccionados que requieren más estudios
Cauce	Tramo	Acuicultura y pesca deportiva	Biodiversidad	Riego	Clase actual más característica	Clase de uso a preservar	Clase objetivo del tramo	Clase Excep.	Parámetros que difieren de la clase Objetivo	
								1	В	
D. GI	GT TTD 40		(4)					2	Cu, Al, Cr	Otros parámetros
Río Claro	CL-TR-10	2	(*)		0	2	0	3		seleccionados
								4		
				1						
D. G. L.	GO FFD 40		(*)		0	No hay	0	2	Cu, B, Al	Otros parámetros seleccionados
Río Coyhaique	CO-TR-10							3		
								4		
					0	No hay		1		Otros parámetros seleccionados
	D						0	2	Cu, Cr, Al	
Río Blanco (oeste)	BL-TR-10							3		
								4		
								1		
DV. O	00 770 40	S-TR-10	(*)		0	No hay	0	2	Cu, B, Al, Cr	Otros parámetros seleccionados
Río Oscuro	OS-TR-10							3		
								4		

^(*) No se asignan clases de calidad a la biodiversidad por falta de antecedentes respecto de la relación biodiversidad-habitat en los segmentos correspondientes. Nota: Aplicando el principio de continuidad y solidaridad, a este tramo se le asigna una clase objetivo igual a la del primer tramo del río Simpson (SI-TR-10).

Tabla 6.2 (Continuación): Requerimientos de Calidad según Usos del Agua en la Cuenca del río Aysén

		A aviaultura v pagas					Cl. 1: t:	Excepcione	es en el tramo	
Cauce	Tramo	Acuicultura y pesca deportiva	Biodiversidad	Riego	Clase actual más característica	Clase de uso a preservar	Clase objetivo del tramo	Clase Excep.	Parámetros que difieren de la clase Objetivo	
								1	Fe	
	SI-TR-10				0	No hou	0	2	Color, Cu	Otros parámetros
	SI-1K-10				0	No hay	0	3		seleccionados
								4		
					0	No hay	0	1		Otros parámetros seleccionados
Dr. G								2	Cu, Al, B, Fe, Mn	
Río Simpson	SI-TR-20							3		
								4		
								1	Color	Otros los parámetros seleccionados
	ar en ao		(*)		0	No hay	0	2	Cu, Al	
	SI-TR-30							3		
								4	В	

6.3 <u>Grado de Cumplimiento de la Calidad Objetivo</u>

Con el fin de presentar el Grado de Cumplimiento de la Calidad Objetivo, se elabora para todos los parámetros obligatorios y para aquellos parámetros principales que poseen información que permite hacer una distinción estacional, una tabla que contiene la siguiente información:

- Nombre de la Estación de Monitoreo
- Valor estacional del parámetro
- Clase asignada estacionalmente
- Tramo en el que se ubica la estación de monitoreo
- Clase Objetivo del Tramo (obtenida desde Tabla 6.2)
- Valor del parámetro según el Instructivo para la Clase Objetivo del Tramo

Las tablas generadas en éste punto, para la cuenca del río Aysén se presentan en el anexo 6.1.

7. <u>OTROS ASPECTOS RELEVANTES</u>

7.1 <u>Indice de Calidad de Agua Superficial</u>

7.1.1 Antecedentes

La aplicación del ICAS para esta cuenca, se realiza según lo propuesto en la metodología.

El ICAS de la cuenca del Aysén, estará compuesto por 6 parámetros obligatorios (Conductividad Eléctrica, DBO₅, Oxígeno Disuelto, pH, Sólidos Suspendidos y Coliformes Fecales) y 6 parámetros que han sido seleccionados para esta cuenca.

Consecuentemente, los parámetros relevantes son:

- Boro
- Cobre
- Cromo total
- Hierro
- Manganeso
- Zinc
- Aluminio

7.1.2 Estimación del ICAS

Los resultados que se muestran en la tabla adjunta, son una estimación basada en la información de calidad de agua que se presenta en éste documento. Para aquellos parámetros obligatorios de los cuales no se dispone de información se utiliza para ciertas estaciones críticas de la cuenca información nivel 4 (muestreo descrito en el punto 4.2.3) y para las restantes, información nivel 5 (estimaciones realizadas por el consultor).

Tabla 7.1: Indice de Calidad de Aguas Superficiales para Calidad Actual

Estación de Muestreo	ICAS
Río Aysén en Pdte Ibáñez	95
Río Simpson bajo junta Río Coyhaique	98
Río Simpson a/J Río Coyhaique	97
Río Emp Guillermo a/j Mañihuales	96
Río Mañihuales a/j Río Simpson	98
Río Ñirehuao en villa Mañihuales	98
Río Coyhaique en tejas verdes	97
Río Coyahique a/j Río Simpson	99
Río Blanco a/j Río Aysén	94
Río Blanco a/j río Huemules	99
Río Claro en piscicultura	98
Río Huemules frente a cerro La Galera	98
Río Oscuro Camino a Portezuelo	98
Desagüe Lago Riesco	95

De los resultados de esta, se puede observar que el agua del río Aysén presentan índice de calidad de aguas muy buena. La memoria de cálculo de esta tabla se encuentra en el Anexo 7.1

7.1.3 Estimación de ICAS objetivo

El Indice de Cumplimiento se basa en la estimación de un ICAS para la calidad objetivo asignada a cada tramo del río. La clase objetivo asignada a los segmentos donde se ubican las estaciones de muestreo aparece en la siguiente tabla:

Tabla 7.2: Clases Objetivos para cada Estación de Muestreo

Estación de Muestreo	Clase Objetivo
Río Aysén en Pdte Ibañez	0
Río Simpson bajo junta Río Coyhaique	0
Río Simpson a/J Río Coyhaique	0
Río Emp Guillermo a/j Mañihuales	0
Río Mañihuales a/j Río Simpson	0
Río Ñirehuao en villa Mañihuales	0
Río Coyhaique en tejas verdes	0
Río Coyahique a/j Río Simpson	0
Río Blanco a/j Río Aysén	0
Río Blanco a/j río Huemules	0
Río Claro en piscicultura	0
Río Huemules frente a cerro La Galera	0
Río Oscuro Camino a Portezuelo	0
Desagüe Lago Riesco	0

El cumplimiento de los valores de la clase objetivo por todos los parámetros permite el cálculo de un nuevo ICAS. Para ello, se consideran todos los parámetros que exceden el valor correspondiente a la clase objetivo y que son de origen antrópico. Partiendo de la premisa que es factible lograr el cumplimiento de la clase objetivo, se recalcula el ICAS tal como se muestra en la tabla 7.3.

Tabla 7.3: Indice de Calidad de Aguas Superficiales para Calidad Objetivo

Estación de Muestreo	ICAS
Río Aysén en pte Pdte Ibañez	96
Río Emp Guillermo a/j Mañihuales	97
Río Blanco a/j Río Aysén	95

Sólo se realizó las estimaciones correspondientes a la estación de muestreo en que será necesario implementar una estrategia de cumplimiento. Las memorias de cálculo para el ICAS de calidad objetivo se encuentran en el anexo 7.2.

7.2 <u>Programa de Monitoreo Futuro</u>

La base del programa de monitoreo futuro (estándar) considera que su objetivo es la verificación de la norma secundaria y que las mediciones se efectuarán como complemento de la actual red de monitoreo de la DGA, situación que se materializa en definir

los parámetros adicionales en cada estación existente y en agregar otras estaciones, si es estrictamente necesario. La metodología se encuentra descrita en la sección correspondiente y abarca desde la toma de muestras hasta el tratamiento de la información.

En conformidad a lo dispuesto en el Instructivo la frecuencia mínima de muestreo corresponderá a los cuatro periodos estacionales: Verano, Otoño, Invierno y Primavera.

El programa de monitoreo considera una primera fase, cuya duración es de tres años, en la frecuencia mínima, destinada a completar la Base de Datos Integrada (BDI), en aquellos parámetros que no disponen de suficiente información, midiendo simultáneamente parámetros seleccionados en todos los puntos de la red. Es decir, los parámetros incluyen a los seleccionados, los que no tienen datos y los que están condicionados por los límites de detección analíticos. En particular, el alto costo de los análisis de compuestos orgánicos y orgánicos plaguicidas, obliga a plantear un monitoreo algo más restringido. Se proponen medir Grasas y Aceites, Detergentes e Hidrocarburos, y respecto de los plaguicidas cumplir con las recomendaciones del Anexo A9, sección 6.5.

Sobre la base de estos criterios esta cuenca incluye un monitoreo inicial con los siguientes parámetros:

- Parámetros Obligatorios: Conductividad Eléctrica, DBO₅, Oxigeno Disuelto, pH, Sólidos Suspendidos; Coliformes Fecales
- Parámetros Principales: Color Aparente, RAS, Boro, Cobre, Cromo Total, Hierro, Manganeso, Zinc, Aluminio, Coliformes Totales
- Parámetros con Límite de Detección: Molibdeno, Níquel, Cadmio, Mercurio, Plomo
- Parámetros Sin Información: Sólidos Disueltos, Amonio, Cianuro, Fluoruro, Nitrito, Sulfuro, Estaño
- Parámetros Orgánicos: Grasas y Aceites, Detergentes, Hidrocarburos
- Parámetros Orgánico Plaguicidas: No se incluyen

<u>Aysén</u> 128.

Para los parámetros con límites de detección se deberá tomar especial cuidado de utilizar métodos analíticos compatibles con los límites de la clase excepcional del instructivo.

Dependiendo de los resultados de esta fase inicial, se procederá a actualizar la lista de parámetros seleccionados, que ya cuentan con una proposición basada en la información que el estudio ha analizado, continuando el monitoreo con estos parámetros en la frecuencia mínima en las estaciones de la siguiente tabla.

Tabla 7.4: Programa de Monitoreo Futuro

		1		1	ı	1	1	1		1	1
	Puntode Muestreo	Río Aysén en Pte. Presidente Ibáñez	Rio Aysénen Desemb	Rio Huerrules er Carretera a Balmacecta	Rio Simpsona/j rio Coyhaique (Pla Mondaca)	Rio Simpson b'j rio Coyhaique	RioEmperador Guillemo <i>al</i> j Mañihuales			Rio Coyhaique en Tejas Verdes	Rio Blanco a/j río Aysén
	<u>aæ</u>	1134AY20	1134AY20	11315120	11315140	1131950	1130EM10	1130MA30	113 0N 20	11310010	1133 B L20
INDICADOR	UNDAD	FrecuenciaMinima	Fiecuencia Minima	Frecuencia Mnima	FrecuenciaMinima	Frecuencia Minima	Frecuencia Minima	Frecuencia Minima	FrecuenciaMnima	Frecuencia Minima	Frecuencia Minima
INDICADORES FÉSICO QUÍMICOS											
Condudividad Bédrica	⊧ 6 ′om	0	0	0	0	0	0	0	0	0	0
DBC05	mgl	0	0	О	0	0	0	0	O	О	О
Color Aparente	Pt-Co	PPL.	FFL.	PPL	PPL	FFL.	FFL.	PPL	FFL.	FFL.	FPL.
Oxígeno Disuelto	mgl	0	0	0	0	0	0	0	0	0	О
рН	uridad	0	0	0	0	0	0	0	0	0	0
RAS		FFL.	FPL	PPL	PPL	FFL.	FPL	EPL.		EFFL.	EPL.
Sá dsuetos	mgl	SI	SI	S1	SI	SI	SI	SI	SI	S1	SI
Sá Suspendidos	mgl	0	0	0	0	0	0	0	0	0	0
INÓRGANOOS	+ Ť	! -	-	<u> </u>	-	<u> </u>	!-	! -	-	<u> </u>	<u> </u>
Antario	mgl	SI	SI	SI	SI	SI	SI	SI	SI	SI	SI
Clanuro	μgl	SI	SI	S1	SI	SI	SI	SI	31 S1	SI	SI
Clauro	mgl	JI .	SI .	SI.	31	31	JI .	JI .	31	OI.	JI .
Fluguro	mgl	SI	S1	SI	SI	SI	SI	S1	SI	SI	CI
Ntrito	mgl	SI	SI	S1	SI	SI	SI	SI	SI SI	SI	SI SI
Sulfato	mgl	JI .	SI .	SI.	SI .	Si	Ji	JI	JI	OI.	JI .
Sulfuro	mgl	SI	SI	SI	SI	SI	SI	S1	SI	S1	SI
METALES ESCENCIALES	5	OI .	OI .	OI .	OI .	OI .	OI .	OI .	OI .	OI .	OI .
Baro	mgl	PFL	FFL.	PPL	PFL	FFL.	FFL.	PPL P	FFL.	FFL.	PPL
Cobre	μgl	FFL	FFL	PPL	PFL	FFL	FFL	FFL	FFL	FFL	FFL
Conotdal	μg/l	FFL	FFL		PFL		FFL			FFL	
Herro	mgl			FFL		FFL		FFL	FFL TS		FFL
Manganeso	mgl	FFL	FFL 	PPL	PPL	FFL	FPL	FPL	FPL	FFL	FPL
Maliboteno	mgl	FFL 	FFL.	PPL	PPL	FFL.	FFL 	FFL	FPL 	PPL	FPL
Nguel Nguel	_	Ю	Ю	Ю	Ш 		Ш 	Ю	Ш 	Ю	Ю
Nque Selenio	ήgl	Ю	Ю	Ю	Ю	Ю	Ю	Ю	Ю	ம	Ю
	μgl										
Znc Metales no escendales	mgl	PPL	FFL.	PPL	PPL	PPL	PPL PPL	PPL	PPL PPL	PPL	PPL
	T	ı		ı	ı	ı	1	F		ı	ı
Aluminio América	mgl	FFL.	FFL.	PPL PPL	PPL	PPL	FPL.	PPL PPL	PPL	FFL.	PPL
Arsérico	mgl										
Cadhio	μgl	Ю	Ю	ம	Ю	Ю	Ш	Ю	Ш	Ю	Ю
Estaño	μ g l	SI	S1	SI	SI	SI	SI	SI	SI	SI	SI
Mercurio	ί g l	Ю	Ю	ம	ம	Ю	Ш	Ю	Ю	ம	Ю
Plamo	mgl	Ю	Ю	Ю	Ю	ID	ID	Ш	Ш	Ю	ID
INDICADORES MORCEIOLOGICOS		1		1	1	_		_		1	1
CFecales (NMP)	gémenes/100ml	O	0	0	0	0	0	0		0	0
CTotales (NMP)	gémenes/100ml	FFL.	PPL	PPL P	PPL	PPL	FFL.	PPL	FFL.	FFL.	PPL

Parámetro	Smbología			
Obligatario	О			
Principal	PPL			
Sininformación	91			
Enlímitededetección	Ю			

láminas:

7.3 <u>Sistema de Información Geográfico</u>

La Base de Datos que ha sido integrada al SIG es representada en las siguientes

• 1940-AYS-01: Usos del suelo

• 1940-AYS-02: Estaciones de medición y usos del agua

• 1940-AYS-03: Calidad objetivo

7.4 <u>Referencias Bibliográficas</u>

Referencia	Título del Informe				
2.1	MOP, Ministerio de Obras Públicas. Dirección General de Aguas. Balance				
	Hídrico de Chile. 1987.				
2.2	SERNAGEOMIN, Servicio Nacional de Geología y Minería. Mapa Geológico				
	de Chile. Escala 1:1.000.000. 2002.				
2.3	MOP, Ministerio de Obras Públicas. Dirección General de Aguas. Mapa				
	Hidrogeológico de Chile.				
2.4	IGM, Instituto Geográfico Militar. Geografía de Chile. Tomo II:				
	Geomorfología. 1983.				
2.5	GAJARDO, Rodolfo. La Vegetación Natural de Chile, Clasificación y				
	Distribución Geográfica. CONAF. Editorial Universitaria. 1994.				
2.6	INE, Instituto Nacional de Estadísticas. http://www.censo2002.cl				
2.7	CEPAL/ILPES/CORFO 2002.				
2.8	CONAF - CONAMA. Catastro de Bosque Nativo.				
2.9	SINIA, Sistema Nacional de Información Ambiental. http://www.sinia.cl				
3.1	IPLA Ltda. Análisis uso actual y futuro de los recursos hídricos de Chile,				
	1996.				
3.2	CH2MHILL, EIA Proyecto Alumysa.				
4.1	MOP, Ministerio de Obras Públicas - Dirección General de Aguas.				
	Bases Cartográficas del SIGIRH (Sistema de Información para la				
	gestión Integrada de los Recursos Hídricos). Escala 1:250.000 Chile.				
4.2	BALMACEDA. Cartas Instituto Geográfico Militar (Chile), escala				
	1:50.000. Chile, Instituto Geográfico Militar.				