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Abstract An effective data mining system lies in the
representation of pattern vectors. For many bioinfor-
matic applications, data are represented as vectors of
extremely high dimension. This motivates the research
on feature selection. In the literature, there are plenty
of reports on feature selection methods. In terms of
training data types, they are divided into the unsuper-
vised and supervised categories. In terms of selection
methods, they fall into filter and wrapper categories.
This paper will provide a brief overview on the state-
of-the-arts feature selection methods on all these
categories. Sample applications of these methods for
genomic signal processing will be highlighted. This
paper also describes a notion of self-supervision. A
special method called vector index adaptive SVM
(VIA-SVM) is described for selecting features under
the self-supervision scenario. Furthermore, the paper
makes use of a more powerful symmetric doubly super-
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vised formulation, for which VIA-SVM is particularly
useful. Based on several subcellular localization exper-
iments, and microarray time course experiments, the
VIA-SVM algorithm when combined with some filter-
type metrics appears to deliver a substantial dimension
reduction (one-order of magnitude) with only little
degradation on accuracy.
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1 Introduction: Why Feature Selection?

In genomic applications, features usually correspond
to genes, proteins (sequences), or signal motifs. Let
N denote the number of training data samples, M the
original feature dimension, the full raw feature can be
expressed as a set of M-dimensional vectors:

x(t) = [
x1(t), x2(t), . . . , xM(t)

]T
, t = 1, . . . , N.

The subset feature can be denoted as an m-dimensional
vector process

y(t) = [
y1(t), y2(t), · · · , ym(t)

]T (1)

= [
xs1(t), xs2(t), · · · , xsm(t)

]T (2)

where m ≤ M and si stands for index of a selected
feature.

For many genomic applications, the feature dimen-
sion can be extremely high. For example, the feature
dimension of gene expression data is often in the order
of thousands. This motivates exploration into feature
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selection and representation, both aiming at reducing
the feature dimensionality to facilitate the training and
prediction of genomic data. The challenge lies in how
to reduce feature dimension while conceding minimum
sacrifice on accuracy.

The traditional dimension reduction involves projec-
tion which maps high-dimensional feature spaces into
low dimension by finding some optimal linear combi-
nations of the features. As an alternative, dimension
reduction may also be accomplished by feature selec-
tion which involves retaining selectively the most useful
features.

1.1 Computational Perspectives: Reduction
of Dimensionality

The extreme dimension of features motivates (if not
necessitates) feature selection process because high
dimensionality in feature spaces increases uncertainty
in classification. Two serious adverse effects are:

• Data over-fitting. It is well known that data over-
fitting may happen when the vector dimension is
relatively too large when compared with the size
of training data. An excessive dimensionality could
severely jeopardize the generalization capability
due to over-fitting and unpredictability of the nu-
merical behavior. Feature reduction is an effective
way to alleviate the overtraining problem.

• Suboptimal search. Relatively, the computational
resources available for genomic processing are
never sufficient, given the astronomical amounts
of genomic data needing to be processed. High
dimensionality in feature spaces increases uncer-
tainty in the numerical behaviors. As a result, a
computational process often converges to a solu-
tion far inferior to the true optimum, which may
compromise the prediction accuracy.

• Computation loads. Such an extreme dimensional-
ity has a serious and adverse effect on the compu-
tation loads. First, high dimensionality in feature
spaces increases the computational cost in both the
(1) learning phase and (2) prediction phase.

Here, let us use a subcellular localization example as
an evidence to support such a non-monotonic perfor-
mance curve and highlight the importance of feature
selection.

Example 1 Subcellular Localization. Profile alignment
SVMs [1] are applied to predict the subcellular lo-
cation of proteins in an eukaryotic protein dataset

provided by Reinhardt and Hubbard [2]. The dataset
comprises 2427 annotated sequences extracted from
SWISSPROT 33.0, which amounts to 684 cytoplasm,
325 extracellular, 321 mitochondrial, and 1097 nuclear
proteins. 5-Fold cross validation was used to obtain the
prediction accuracy. The accuracy and testing time for
different number of features selected by a Fisher-based
method [3] are shown in Fig. 1. This example offers an
evidence of the non-monotonic performance property
based on real genomic data.

1.2 Biological Perspectives: Feature Selection

There are genomic applications where feature extrac-
tion methods that rely on combinations of features do
not apply. In this case, feature selection has a special
appeal. Some are exemplified as follows.

1. Presence of co-expressed genes: The presence of
co-expressed genes implies that there exists abun-
dant redundancy among the genes. Such redun-
dancy plays a vital role and has a great influence on
how to select features as well as how many to select.

2. Plenty of irrelevant genes: From the biological view
point, only a small portion of genes are strongly
indicative of a targeted disease. The remaining
“housekeeping” genes would not contribute rele-
vant information. Moreover, their participation in
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Figure 1 Real data supporting the Monotonic increasing prop-
erty. Upper curve: Performance reach a peak by selecting an
optimal size instead of the full set of the features available. Lower
curve: the computational time goes up (more than linear rate) as
the number of features increases.
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the training and prediction phases could adversely
affect the classification performance.

3. Identification of biomarkers The selective genes
may pave a way to identify those genes most rel-
evant to a targeted disease, known as bio-markers.
Concentrating on such a compact subset of selected
genes would facilitate a better interpretation and
understanding of the cause-effect pertaining to the
disease. A plausible application example is selec-
tion of critical genes or sequences for discriminat-
ing cancer/non-cancer cases. Because the size of the
selected genes is small, it is more affordable to go
through more advanced dry or wet experiments for
further validation.

2 Genomic Applications: Overview

2.1 Feature Selection for Microarray Data

In genomic applications, to facilitate analysis, interpre-
tation, and classification, it is advantageous to convert
biological data into an M × N matrix Z ∈ RM×N :

Z =

⎡

⎢
⎢
⎣

z11 z12 · · · z1N

z21 z22 · · · z2N

· · · · · · · · · · · ·
zM1 zM2 · · · zMN

⎤

⎥
⎥
⎦ =

⎡

⎢⎢
⎢
⎣

yT
1

yT
2
...

yT
M

⎤

⎥⎥
⎥
⎦

= [
x1 x2 · · · xN

]
. (3)

In this paper, depending on the data types and clas-
sification tasks, features can be selected either along
the x-direction of (i.e., selecting columns) or along the
y-direction (i.e., selecting rows).

1. Regular supervised scenario: For clinical applica-
tions of microarrays, M in Eq. 3 is the number of
genes and N is the number of samples. In other
words, the M-dimensional column vector x j repre-
sents j-th clinical sample. Typically, the number of
genes is significantly larger than the number of sam-
ples. This could cause the curse of dimensionality
problem if the goal is to classify the samples. One
approach to alleviating this problem is to select
m out of M features along the y-direction of the
matrix, where m � M (see Fig. 2a). The feature
selection problem now becomes:

Given differential signal levels over the
x-direction (e.g. over different classes of sam-
ples/conditions), find the relevant features
along the y-direction (e.g. critical genes).
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Figure 2 Different prior knowledge of a regular supervised,
b self-supervised, c regular unsupervised, and d self-unsupervised
data. In the regular training data, the assignment of class labels
(either known a priori in the supervised case or through class dis-
covery in the unsupervised case) are done to the column vectors
(in the x-direction). In the self-supervised or self-unsupervised
situation, the assignment of class labels (either known a priori
or through class discovery) are done to the features (in the
y-direction), instead of the column vectors.

2. Self-supervised (SS) scenario: Suppose the expres-
sion level of M genes are measured at N time
points. Given a gene expression matrix Z and the
class labels of the M genes in the matrix, a gene
classifier can be created. However, among the
genes in Z, many of them may show little varia-
tion across the time points. Therefore, it is impor-
tant not to use these irrelevant genes for training
the classifier. In this scenario, the class labels are
known in the y-direction (e.g., ribosomal vs. non-
ribosomal genes), but not in the x-direction, as
shown in Fig. 2b. This is called self-supervised
learning. The feature selection problem now
becomes:

Given differential signal levels over the y-
direction (e.g. over different classes of genes),
find the relevant features along the y-direction
(e.g. critical genes).
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3. Regular Unsupervised scenario: Like its supervised
counterpart, we have N samples in the x-direction
and M genes (or features) in the y-direction. How-
ever, in this case, the class labels for the samples are
not known ahead of time, and we wish to perform
class discovery and uncover biologically significant
groupings of the samples into similar classes (e.g.
different types of cancers). (See Fig. 2c)

4. Self-Unsupervised scenario: Similar to its super-
vised counterpart, we once again have time-course
microarray data, with the time points in the x-
direction and the genes (or features) in the y-
direction (see Fig. 2d). We don’t have the labels of
the genes ahead of time, and we want to group the
genes which display similar time-course expression
levels together and attempt to find the biological
significance of these groupings (e.g. genes that are
active in the same cell cycle).

2.2 Feature Selection for Sequence Data

Because the elements of biological sequences are repre-
sented by alphabets (20 amino acids for proteins and 4
nucleotides for DNA) instead of numerical values and
most machine learning tools can only process data in
vectorial forms, it is necessary to convert biological se-
quences to vectors for classification—a process known
as vectorization.

The most prominent approach to vectorization is the
one that uses k-mers and motif counts. Its advantage
lies in the fact that there is now a matrix data repre-
sentation. In particular, the approach converts a set of
M sequences into an M × N matrix, where N is the
number of k-mers patterns or motif counts.

For this paper, we will reserve the y-direction of the
matrix Z for the sequence indices, and the x-direction of
the matrix represents different k-mer or motif patterns.
Depending on the direction along which the features
are selected, we have two kinds of feature selection for
sequence data. The first is selection of the most relevant
k-mers along the x-direction, and the other is selection
of the most relevant sequences along the y-direction.
This is to be elaborated below:

1. Selection of k-mers and motif counts. Each feature
in a vector represents the frequency of occurrences
of a particular alphabet combinations in that se-
quence [4, 5]. The features are derived from the
sequences independently, i.e., for each sequence, its
corresponding vector is derived from the contents
of the sequence only. For large k or long motifs,
the feature dimension will be too large for reli-
able classification and therefore feature selection is

imperative. For this type sequence representation,
selection is along the x-direction of the data matrix
Z in Eq. 3, and only n out of N features will be
selected.1

2. Selection of Sequences. In some applications, we
are given M sequences together with their class
labels. The goal is to train a sequence classifier
to predict the classes of query sequences. Among
these M training sequences, some of them may
be redundant and some may not be relevant to
the classification task. Therefore, it is important
to weed them out. Selection is therefore along the
y-direction of Z, and m out of M sequences are to
be selected.

Research has shown that feature selection is an
important step in many biological applications of se-
quence analysis, including enzyme classification [6],
motif finding [6, 7], remote homology detection [5,
7], subcellular localization [8–10], and protein fold
prediction [11].

In the context of sequence classification, reducing
the dimensionality along the x-direction of Z or se-
lecting relevant sequences along the y-direction are
strategies to achieve two goals.

1. Improve classification performance. From the x-
direction perspective, removing irrelevant k-mers
patterns can help the classifier to capture the most
discriminative characteristics of the sequences for
classification. From the y-direction perspective, re-
moval of redundant sequences can help the training
of classifiers because it avoids the redundant se-
quences from dominating the decision boundaries.

2. Reduce retrieval time. From the x-direction perspec-
tive, reducing the number of k-mers patterns and
motif counts means reducing the number of inputs
to the classifier and reducing the time to create a
feature vector from a query sequence. From the
y-direction perspective, computation saving occurs
when the pairwise approach (see Section 6.3.4)
is adopted because constraining the training se-
quences to a small but relevant set means reducing
the number of pairwise alignments, which repre-
sents a significant computation saving.

Note that for sequence data, feature selection along
the x-direction produces some relevant motifs as a

1For such a huge dimensionality, a preliminary Signal-to-Noise
ratio (SNR)-based filtering method can be applied to weed out
those k-mers patterns (i.e. columns) that are below certain low
threshold.
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by-product because for k-mers and motif counts, the
selected features represent the biologically relevant
k-mers and motif patterns.

3 Criteria and Approaches

3.1 Feature Selection Criteria

Two criteria are often considered in feature selection:

1. Relevance and Signal Strength: The ranking of
an individual feature hinges upon its relevance.
For example, in microarray data, a particular gene
that exhibits very distinctive responses across all
the samples or experimental conditions is consid-
ered highly relevant. For unsupervised learning,
the variance can be used as a measurement of
relevance. For supervised learning, a feature’s SNR
across classes can be used as a score for its rele-
vance. Typically, the metric is defined as:

SNR = signal
noise

,

where signal and noise represent inter-class distinc-
tion and intra-class perturbation respectively.

2. Redundancy: Optimal feature selection depends
not only on the individual ranking scores but
also inter-feature relationships, i.e. the mutual re-
dundancy among features. Data redundancy is
prevalent in genomic data. These can include co-
expressed genes which exhibit very similar behav-
iors across different classes. If we wish to obtain
computational savings, then redundant genes can
be removed from our feature set. Another common
scenario includes instances where data entries are
replicated across different databases. If any of these
entries contain errors, the problem of noisy/bad
data is compounded even further by the repetition
of error. Thus, removing redundancies can alleviate
the problem of erroneous annotations.

3.2 Individual vs. Group Ranking Approaches

Suppose we have M features available. Feature selec-
tion techniques which only take into account individual
feature rankings are computationally efficient, on the
order of O(M). However, they fail to take into account
the inter-feature redundancy that abound in genomic
data. For example, it is very possible that the two
highest-rank individual features share a great degree
of similarity. As a result, the selection of both features
would amount to a waste of resources.

This problem can be fully resolved (possibly over-
done) by adopting a group ranking view of the selected
features, where the overall relevance of an entire group
is considered together, taking into account mutual re-
dundancies and similarities. The price of group ranking,
however, is its excessively high computational cost.
In order to find the best combination of features, an
exhaustive search would consider every one of the 2M

possible combinations. It is clear, then, that we need
to find a compromise between minimizing the compu-
tational cost and maximizing the effectiveness of the
features selected.

3.3 Consecutive Search Approaches

One such compromise is consecutive search, which has
two main approaches:

1. Forward Search: Such a search usually begins at
an empty feature set, and iteratively adds features
based on how much added value it brings to the
existing subset, instead of purely on its individual
merit or strength.

2. Backward Elimination: This approach begins with
the full feature set, and iteratively removes features
in a way such that it minimizes the information loss
with respect to the remaining set. In short, at each
step, it removes the feature whose absence has the
smallest negative impact.

The consecutive search approach offers improved
accuracy by taking into account both relevance and
redundancy. It also offers substantial computational
saving when compared with the comprehensive and
exhaustive evaluation of the group scores. However,
the downside is clear too. The order of feature selection
can significantly affect the inter-feature redundancy
revealed, which in turns affects the final outcome of
the selection. In other words, the decision on selecting
or eliminating any feature will depend on whether it is
evaluated earlier or later in the process.

3.4 Filter vs. Wrapper Approaches

There are two main approaches used in selecting and
evaluating features: filter and wrapper [12]:

• Filter Approach The filter method selects features
using a mathematical score on the data set, inde-
pendent of any classification algorithm applied to
the data afterwards. It has computational simplicity
and is less prone to overfitting, which makes it



8 J Sign Process Syst (2010) 61:3–20

a promising and popular selection approach. For
example, an SNR-type criterion based on the Fisher
discriminant analysis [13] is often used.

• Wrapper Approach The wrapper method incorpo-
rates the actual learning algorithm into its feature
selection decision, by feeding a set of features into
the algorithm and evaluating their quality from the
learner’s output. An exhaustive search is compu-
tationally prohibitive, so common approaches to
implementing the wrapper method include making
use of a linear classification assumption, or per-
forming consecutive search as above.

3.5 Other Approaches

There are also many other approaches available that
seek a compromise between individual rankings and
group rankings. For a detailed study of these ap-
proaches, such as branch and bound, floating sequential
search, the reader is referred to [14].

4 Unsupervised Feature Selection

4.1 PCA-Type and Clustering-Type Algorithms

Traditional unsupervised learning algorithms are ba-
sically divided into two types: principal component
analysis (PCA) and cluster discovery (e.g. k-means).
Conceptually speaking, both types are very useful for
unsupervised feature selection.

4.1.1 PCA-Type Algorithms

Traditional feature representation techniques such as
PCA have been used successfully for reducing dimen-
sionality in unsupervised data. The downside is that the
newly extracted features from PCA are combinations
of the original features. If we want to make predictions
on new data in clinical applications, using the principal
components would require that we measure all the
genes (i.e. the original features) [15]. Obtaining a subset
of the original features, on the other hand, will allow
us to measure a smaller subset of genes for clinical
applications; in addition, these subsets also retain their
original biological meaning and lend themselves to
more intuitive analysis.

For unsupervised feature selection, PCA can still be
used as an intermediate step, however. For example,
[16–18] use the results from PCA or PCA-related meth-
ods to select features, where the numerical execution of
PCA is often performed by SVD [19].

4.1.2 Clustering-Type Algorithms

Clustering algorithms are frequently used for class dis-
covery in genomics. In these cases, class labels (e.g.
particular types of cancers) are not known a priori, and
our goal is to discover biologically significant group-
ings of samples that capture some “natural” structure
inherent in the data. For unsupervised data, dimension
reduction is important since data points become more
sparse in high dimensions and “distances between data
points become relatively uniform” [20]. This makes it
difficult for clustering algorithms that depend on mini-
mizing Euclidian distances (such as k-means) to create
meaningful clusters.

Just as feature selection and dimensionality reduc-
tion are essential for clustering, conversely clustering
algorithms have been found instrumental for unsuper-
vised feature selection. For example, we can perform
feature selection by clustering time-course microarray
data along the y-direction and select the most repre-
sentative gene in each cluster. We can also use the
clustering algorithm along the x-direction to evaluate
the quality of the chosen features (i.e. see Section 4.2.2
for the unsupervised wrapper approach).

4.2 Filter and Wrapper Approaches

Like their supervised counterpart, unsupervised fea-
ture selection can be thought of as either filter or
wrapper type approaches. Although there are some
exceptions, the filter and PCA/SVD approaches usually
go hand in hand (for example, see Eq. 4). So do the
clustering and wrapper approaches (see Fig. 4).

4.2.1 Filter Approaches

Filter approaches to unsupervised feature selection
are computationally simple approaches that attempt to
rank features (in either a univariate way or a multivari-
ate way) based on only the data distributions. Examples
of ranking features in unsupervised data include utiliz-
ing the variance, entropy, density, or reliability of each
feature [21].

In most problems (supervised and unsupervised),
unsupervised gene filtering is often performed as a pre-
processing step, where genes with flat expression levels
over time or with low absolute values are removed
[23]. For example, Fig. 3 shows the histogram of the
variances of the gene profiles before and after the
filtering for the yeast cell cycle data [22]. Note that a
large number of low-variance genes have been removed
after the filtering process. Beyond that, however,
more sophisticated unsupervised gene selection tech-
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Figure 3 Histogram of the
variances of the gene profiles
of Tamayo et al.’s [22] yeast
cell cycle data
(un-normalized). a Before
filtering. b After filtering.
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niques have also been developed. Here, we will high-
light a selection of techniques developed for genomic
applications.

One of the earlier methods developed was “gene
shaving” [16], which sought subsets of genes with large
variations across samples (or conditions) that have
similar expression patterns by iteratively discarding
(“shaving off”) the genes with the smallest variations.
At each iteration, it finds a subset of genes and finds
the largest principal component of the subset (called
the eigen gene). Then, it calculates inner products of
all the genes with this eigen gene and a fraction of the
genes with the smallest absolute inner product values
are removed from the subset.

The two-way ordering method proposed in [17] also
used an iterative process to discard genes. It calculates
the similarity between the genes using wij = exp cij/c,
where cij is the Pearson correlation coefficients, and
c is the average correlation. This similarity value was
used to produce a weighted bipartite graph from the
microarray data. The graph is then ordered in a way
to simultaneously move the most similar genes and
samples closer and the dissimilar genes and sampler
further away from each other. The irrelevant genes with
little discriminative power will be moved towards the
middle and can then be discarded.

In [18], SVD-Entropy was used to select features.
Suppose we have a matrix A that has singular values
σ j. Then the dataset entropy of the matrix is defined as:

E(A) = − 1

log N

N∑

j=1

Vj log Vj (4)

where Vj = σ 2
j /

∑
k σ 2

k . A value of E(A) = 0 (low en-
tropy) indicates an extremely ordered set and a value
of E(A) = 1 indicates a highly disordered set. Then,
leave-one-out comparison is used to define the contri-
bution of each feature as the difference between the

original dataset entropy E(A) and the dataset entropy
with feature i removed, E(A′). This can then facilitate
a ranking system, where simple ranking (individual
features), forward selection and backwards elimination
can be used for feature selection.

4.2.2 Wrapper Approaches

Wrapper approaches in unsupervised feature selection
work through an iterative process described in Fig. 4.
Several difficulties arise in the wrapper approach for
unsupervised feature selection. We must optimize the
number of clusters at the same time as the feature
space. In addition, if we use the quality of the clusters as
a way of selecting the best feature subset, then finding

Cluster Discovery Selection
labels

feature subset

final feature
subset

unsupervised “supervised”

Figure 4 Typical procedure for the unsupervised wrapper ap-
proach, where a feature subset is fed into a clustering algorithm
whose results are used to perform feature selection. At the left
side, an unsupervised cluster discovery procedure is performed,
generating “class labels” for each cluster. Once we have these
class labels, we can solve the feature selection problem using a
“supervised” feature approach (as shown in the right side). For
example, the label information can be used for a ranking criterion
such as Eq. 5. The dashed feedback line represents the possibility
of using an iterative process, such as [24], where the features can
be further pruned.
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the “best” objective function or separatibility measure
is also not immediately obvious.

An application of the wrapper approach in genomics
is CLIFF [24], which alternates feature filtering using
independent feature evaluation, information gain and
Markov blanket filtering and a clustering algorithm
based on normalized cuts. In the independent feature
evaluation phase, the feature vectors are modelled as
a mixture of Gaussians, and the features are ranked us-
ing the Bayesian error, εBayes = π0 P(h(x) = 1|zx = 0) +
π1 P(h(x) = 0|zx = 1). To measure information gain,
the probabilities are measured by empirical proportion.
For example, for a given clustering that produces a
partition, Sc, out of the entire set, S, the probability
P(Sc) = |Sc|/|S|. Suppose a feature induces a partition-
ing, E1, · · · , EK. Then the information gain is

Igain = H
(
P(S1), · · · , P(Sc)

)

−
K∑

k=1

P(Ek)H
(
P(S1|Ek), · · · , P(Sc|Ek)

)
(5)

where H is defined as the entropy. Both independent
feature evaluation and information gain are used to se-
lect the most relevant features. Then, Markov Blanket
filtering is used to remove the redundant features, by
finding a subset G of the features F such that for any
clustering C, P(C|F = f ) and P(C|G = fG) are very
similar. Here, fG is simply the projection of f onto the
variables in G.

Another application is the Bayesian Class Discovery
method proposed in [25]. Here, the clustering algo-
rithm is the EM (Expectation Maximization) algorithm,
where the M step was replaced with LDA (Linear
Discriminant Analysis). During this new M-Step, auto-
matic feature selection is then performed by using ridge
regression using the l1 penalty, also known as the Least
Absolute Shrinkage and Selection Operator (LASSO).
With LASSO, many of the regression coefficients are
shrinked to 0, which correspond to features that should
be removed. Finally, resampling-based stability analysis
is used to determine the parameters for optimizating
the regression problem. This method takes into account
difficulties in unsupervised feature selection that arise
with multiple highly-ranked hypotheses on how to clus-
ter the data.

While wrapper approaches typically follow Fig. 4,
explicit clustering is not always required. For exam-
ple, recently, [26] proposed Laplacian Linear Discrim-
inant Analysis-based Recursive Feature Elimination
(LLDA-RFE), which is a multivariate feature selection
technique closely related to the Laplacian Score [27]
and based on similar principles as the Q-α algorithm

[28]. They extend the supervised LDA approach to
work for the unsupervised case and wrap their feature
selection algorithm around the unsupervised LDA ap-
proach, rather than performing an explicit clustering
step.

Suppose for a moment that the labels of the train-
ing vectors are actually known (i.e. under supervised
assumption), then the between-class scatter matrix Sb

and the within-class scatter matrix Sw can be defined
as:

Sb = 1

n

c∑

k=1

nk
(
m(k) − m

) (
m(k) − m

)T

and

Sw = 1

n

c∑

k=1

nk∑

j=1

(
x(k)

j − m(k)
) (

x(k) − m(k)
)T

where c is the number of classes, nk is the number of
samples in class k, and n is the total number of samples.

The goal of the classical Fisher’s discriminant (also
known as LDA) finds the projection matrix W that
maximizes the Fisher criterion:

J(W) = trace
{

WTSb W
WTSwW

}
, (6)

subject to the orthogonality constraint: WTW = I.
In many genomic applications, such as microarray

experiments, the feature dimensionality is greater than
the number of samples. In this case, Sw becomes singu-
lar. Such a singularity problem is usually regarded to be
a serious liability of the classical LDA. To overcome
this problem, the maximum margin criterion (MMC)
was proposed by Li et al. [29]. In the MMC approach,
one maximizes

JMMC(W) = traceWT�W :

where

� = Sb − Sw.

Denote the total scatter matrix defined as:

St = 1

n

n∑

i=1

xixT
i
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where it is assumed (WLOG) that the total mean vector
c = 0. According to [30], St = Sb + Sw, therefore,

� = Sb − Sw = St − 2Sw

Thus the matrix � can be expressed as

� = St − 2Sw = 1

n
X

{
I − 2(I − WL)

}
XT : (7)

where WL is a matrix describing the intra-class rela-
tionship. For more details, the reader is referred to
[26]. Here we shall treat the two-class case only. In this
case, the entries WL are is either 1

n1
, 1

n2
or zero. More

importantly, all the column entries must sum into 1,
making it a probability-like distribution. (Likewise for
all the row entries.)

For unsupervised case, just like Eq. 7, all the column
entries again sum into 1. However, the entries of WL

are function of the distance between xi and x j. By this
approach, the explicit clustering is no longer necessary,
which is the major advantage of the LLDA approach.
The basic idea of LLDA may be applied to visualiza-
tion or classification. For the visualization case, W is a
3 × n matrix and for classification, W is a 1 × n vector,
denoted as w.

Let δ1, · · · , δn be the eigenvalues of �. Then, the
weight of each feature j is defined as:

d∑

i=1

√
δi

∣
∣W ji

∣
∣ (8)

where d is the number of positive eigenvalues. Once
the weights are obtained, the features with the lowest
weights are removed recursively. Even though both
algorithms use the word RFE to describe the feature
selection process, there is a critical difference. The
process described in Fig. 6 finds an optimal decision
boundary vector w whose coefficients are used for fea-
ture selection. LLDA-RFE never explicitly produces
an optimal decision boundary vector before selection
and instead ranks the features using weights in Eq. 8.

4.3 Application to Microarray Data

Unsupervised feature selection methods have been suc-
cessfully applied to a variety of microarray data and
yielded biologically relevant results. In [16], gene shav-
ing was applied to data from patients with diffuse large
B-cell lymphoma and was able to identify a cluster
of genes highly indicative of survival. The two-way
ordering method [17] was applied to the colon cancer
dataset [31] and the leukemia dataset [13], and the

features selected resulted in improved cluster accuracy
and in the case of the colon cancer dataset, showed
considerable overlap with the features selected using
supervised methods. The SVD-Entropy method [18]
was applied to two leukemia datasets [13, 32] and a
virus dataset [33], where improved performance was
found over variance selection methods and gene shav-
ing. For the dataset in [13], significant GO enrichment
was found as well.

When applied to the leukemia dataset [13], CLIFF
[24] improved performance over clustering without fea-
ture selection and produced results close to the original
labelling of the data. Bayesian class discovery [25] has
been shown to find biologically relevant partitions on
the leukemia dataset [13]. In experiments on seven
microarray datasets [13, 31, 32, 34–37], LLDA-RFE
[26] was found to outperform Laplacian Score and have
favorable performance against SVD-Entropy, and on
some datasets, even outperforms the supervised Fisher
score.

5 Supervised Feature Selection

Traditional supervised feature selection methods can
be divided into filter and wrapper approaches.2

5.1 Filter Approach

The predominant type of filter criterion in supervised
feature selection is the SNR-type score [13]:

Signed-SNR = μ+ − μ−

σ+ + σ− , (9)

where μ+, μ−, σ+, and σ− represent the class-
conditional means and standard derivations of any sin-
gle feature, respectively. Another example of the SNR
metric is the symmetric divergence (SD) [41]:

SD = 1

2

(
(σ+)2

(σ−)2
+ (σ−)2

(σ+)2

)
+ 1

2

( (
μ+ − μ−)2

(σ+)2 + (σ−)2

)

− 1.

(10)

There are also other filter approaches—such as
the t-test [42], Fisher discriminative ratio (FDR) [3],
Bayesian technique [43, 44], BSS/WSS [45], and TNom

2In addition to the SNR-type filter and SVM-RFE, there exist
an extremely large number of application studies based on mi-
croarray data. Two recent ones are the MRMR [38] and Markov
blanket [39], which are based on the Multivariate techniques.
Another recent approach is the VIA-SVM [40], which is more
amendable to the self-supervised scenario explained in Section 6.
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[46]—that have been applied for gene selection. All
these methods select a small group of features based on
whether or not the genes are significantly differentially
expressed (as measured by their chosen criterion). Al-
though some are based on statistical tests, factoring in
multiple testing or false positive issues are not essential,
since no claims are made on the statistical significance
of the genes; the metrics are only used to decide on the
inclusion of the genes for classification [15].

Because all of these methods are based on the notion
of SNR, they produce comparable performance. In fact,
it has been shown that the performance of signed-SNR,
SNR, and FDR are fairly close [47].

5.2 Wrapper Approach

In the wrapper approach, the classification method is
predetermined and the selected features are bounded
to the type of linear classifier adopted [48, 49].

• The earliest and well-known example of a linear
classifier is Fisher-type approaches such as Fisher’s
discriminant [30]. The goal of the classical Fisher’s
discriminant (also known as LDA) is to find the
vector projection w that maximizes the Fisher cri-
terion:

J(w) = trace
{

wTSb w
wTSww

,

}
(11)

If the numerical (singularity) problem is of grave
concern, the MCC criterion may be used instead:

JMMC(w) = trace
{
wT�w

} = wT�w.

In this case, w is the normalized eigenvector cor-
responding to the largest eigenvalue. Once the op-
timal decision (slope) vector w is found, the best
features can be readily determined by the wrapper
method.

• One prominent method in this category is the SVM
approach with recursive feature elimination (RFE)
proposed by Guyon et al. [48]. The RFE algorithm
eliminates unimportant features recursively based
on the weights of linear SVMs, hence the name
SVM-RFE. More precisely, the algorithm begins
with using the full-feature training vectors y ∈ �M

to train a linear SVM. Briefly, the features are
ranked by sorting the square of the SVM’s weights
{w2

i }M
i=1 in descending order, where the weight vec-

tor is given by

w = [w1, . . . , wM]
∑

k∈S αklkyk, w ∈ �M (12)

where αk are the Lagrange multipliers, S contains
the indexes of support vectors (SVs), and lk ∈

××
× ×
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×
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>

Figure 5 Selecting one out of two features by SVM-RFE. A
linear SVM will use Boundary A for classification and therefore
feature x2 will be selected by ranking the square of SVM weights
{w2

1, w2
2} in descending order.

{+1, −1} is the class label of SV yk. Note that the
decision boundary is controlled by w, which is in
turn controlled by α. The features corresponding to
the larger |wi| are selected first, as exemplified in
Fig. 5.

The RFE flowchart is shown in Fig. 6. The wrapper
approach uses classification accuracies to rank the dis-
criminative power of all of the possible feature subsets
so that the selected subset is likely to produce the
best performance. This conventional wrapper approach
will be referred to as the reflexive type of wrapper
approaches. For example, in the case of clinical applica-
tions of microarray data, features are selected along the
y-direction and classification is along the x-direction,
thus the name “reflexive”.

The idea of SVM-RFE can be intuitively explained
by considering a two-feature case as shown in Fig. 5.
The figure shows two possible ways of separating the
two classes of data. Boundary B (with weight vector
w′) is undesirable because of the small margin. On the
other hand, Boundary A (with weight vector w) is more
desirable because of the large margin. In fact, a linear
SVM will use Boundary A to classify the data. Notice
that the weight vector w = [w1 w2]T in Fig. 5 has the
property w2

2 > w2
1 , which suggests that x2 is a more

discriminative feature.

5.3 Applications to Microarray Data

Supervised feature selection has been applied to mi-
croarray data extensively. Here, we use the cancer
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Linear Classifier
Training

Training Vectors
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No. features
> 1?

StopN

Repack Training
Vectors

Y

Figure 6 Flowchart for RFE. The procedure is applicable to any
types of linear classifiers, including the Fisher-type and the SVM-
type discussed in this section.

classification problem provided by Golub et al. [50] as
an illustrative example.

In [50], the microarray data contains 47 samples of
acute lymphoblastic leukemia (ALL) and 25 samples of
acute myeloid leukemia (AML). For each sample, the
expression level of 7192 genes (of which 6817 human
genes are of interest, the other are the controls) are
measured, forming an expression matrix of size 7192 ×
72. The matrix is further divided into a training set
(containing 27 ALL and 11 AML cases) and test set
(containing 20 ALL and 14 AML cases). This dataset3

has now become a benchmark for gene selection algo-
rithms and microarray cancer classification algorithms.

5.3.1 Gene Pre-Filtering

Among the 7129 genes in Golub’s dataset, a majority
of them are irrelevant to the classification task. In fact,
many genes have expression value well beyond mean-
ingful level. Therefore, it is imperative to weed out
quickly those genes with small variation and extremely
large expression values. Following [51], we removed
gene i if it meets any of the following conditions:

(1) max j gij − min j gij ≤ 500

(2) max j gij > 16, 000

(3)
∣∣
∣
∣
max j gij

min j gij

∣∣
∣
∣ ≤ 5

3Downloadable from the official site http://www.genome.wi.mit.
edu/mpr
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Figure 7 Procedures for building a cancer classification system
based on gene expression data. The normalized gene expression
matrices at various stages of the system building process are also
shown.

where gij is the expression level of gene i at training
sample j. The gene expression image in Fig. 7 and the
correlation matrix in Fig. 8b show that after this pre-
filtering step, the two-class pattern begins to emerge.
After this step, 2,729 genes remain in the training
expression matrix, i.e., the matrix size is reduced to
2, 729 × 38.

Correlation Matrix (raw data)
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Figure 8 Correlation matrix of Leukemia dataset based on a raw
data, b genes after filtering, c genes after signed-SNR selection,
and d genes after SVM-RFE selection.
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5.3.2 Gene Selection

Because the pre-filtering step does not make use of the
class labels for selecting genes, there remain many irrel-
evant genes in the expression matrix. More irrelevant
genes can be weeded out by using a supervised feature
selection approach, which can be divided into filter and
wrapper types (c.f. Section 5.1):

Following Golub’s work [50], we selected 50 out of
2,729 genes. The two-class pattern in Fig. 7 becomes
apparent, suggesting that the selected features are rele-
vant for the classification task.

5.3.3 Training and Evaluation of Classifiers

Fifty-input linear SVMs were used to classify the AML
against ALL patterns, i.e., one SVM for classifying fea-
tures selected by signed-SNR and another for classify-
ing features selected by SVM-RFE. Figure 9 shows the
scores obtained by the SVMs together with the decision
thresholds that lead to maximum accuracy. Confirming
Golub’s result, the accuracy is 100% for the SVM that
bases on signed-SNR selected genes. The accuracy for
SVM-RFE, however, is 97.1%.

To have a more detailed comparison between the
capability of signed-SNR and SVM-RFE in selecting
relevant genes, Fig. 10 plots the accuracy against the
number of selected genes. Evidently, signed-SNR is
superior to SVM-RFE for a wide range of feature
dimension.

It is important to know the ranking of individual
genes in case the number of allowable genes is very
limited. To this end, signed-SNR and SVM-RFE were
used to find the top five genes for the classification
task. The accession number of the selected genes are
shown in Table 1. Although the genes found by both
selection methods are very different, these two sets of
genes lead to the same prediction accuracy, which is
94.1%. It was also noticed that all of the genes found
by signed-SNR are part of the 50 genes used in Golub
et al’s experiments. The SVM-RFE, on the other hand,
has one gene not found by Golub et al.

6 Self-Supervised Scenario

6.1 Why is SS Formulation Biologically Appealing?

The SS formulation naturally arises in many genomic
applications. For example, in time-course microarray
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Figure 9 Prediction scores and decision threshold (blue horizon-
tal line) of SVM classifiers based on 50 genes selected by a signed-
SNR and b SVM-RFE. On the left (right) of the vertical dashed
line are 20 ALL (14 AML) test samples. Incorrect predictions are
highlighted by black circles.

data, the expression levels of M genes are measured
over N time points. Therefore, the i-th row in Eq. 3 is

yT
i = [

yi(1), yi(2), . . . , yi(N)
]

i = 1, . . . , M (13)

Each of these vectors is assigned a class label. One
interesting question is “Among these M genes, which
are the most representatives for differentiation into
different gene groups?” This question leads to a self-
supervised formulation for feature selection, where fea-
tures are genes.
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Figure 10 Prediction accuracy of SVM classifiers based on
different numbers of genes selected by signed-SNR and SVM-
RFE.

Example 2 (SS Formulation for Yeast Expression
Data) In http://genomics.stanford.edu:16080/yeast_cell_
cycle/cellcycle.html, the genes in the yeast data
provided by [22] are divided into five stages of a cell
cycle: Early G1, Late G1, S phase, G2 phase, and
M phase. This results in the SS formulation with a
421 × 16 expression matrix (421 genes at 16 time
points).

Example 3 (SS Formulation for Sequence Selection)
As mentioned in Section 2.1, a sequence can be con-
verted into a vector via the k-mers or motif counts. As
an example, a protein sequence can be represented by
a 20-dimensional vector when k = 1 or by a 3,200,000-
dimensional vector when k = 5. Then, referring to
Eq. 3, M sequences can be represented by an M × N
matrix. Suppose that the sequences have known class
labels and that the goal is to select m relevant sequences
out of the M sequences, we have basically a self-
supervised problem.

Table 1 The accession numbers of the genes selected by signed-
SNR and SVM-RFE when the maximum number of genes to be
selected is set to 5.

Rank Signed-SNR SVM-RFE

1 U22376 X04085
2 M55150 M19507∗
3 U50136 M28130
4 X95735 U46751
5 U82759 X17042

All genes are part of Golub et al.’s gene set, except for the one
with an asterisk.

6.2 Supervised Versus Self-Supervised Approaches

The two different supervision scenarios naturally re-
quire different kinds of filter and wrapper approaches.

• Regular Supervised Scenario:

1. Filter approaches. SNR-based criteria are used
for ranking features, see Section 5.1.

2. Reflexive wrapper approach. The class labels
along the x-direction of Z in Eq. 3 are used to
guide the selection along the y-direction of Z.
One important example is the SVM-RFE, see
Section 5.2.

• Self-Supervised Scenario:

1. Filter Approaches. The relevance of each row
vector, say yi, in Z is ranked by the vari-
ance of its element. Because the labels of the
row vectors are not used, this is equivalent
to unsupervised feature selection discussed in
Section 4.2. However, if we can convert the SS
scenario into a symmetric doubly supervised
(SDS) one (see Section 6.3.4), the differential
expression of individual features along the y-
direction offers an effective SNR metric for
feature selection.

2. Direct Wrapper Approach. This is a rela-
tively new approach in that classification and
selection are both along the y-direction of
the data matrix, i.e., class labels along the
y-direction of Z are used to guide the selection
of features (e.g., sequences or genes) along
the y-direction. This approach will be more
natural and appropriate for sequence selec-
tion mentioned earlier. One implementation
is the VIA-SVM, which is to be elaborated in
Section 6.3 below.

6.3 The VIA-SVM Scheme

The vector-index-adaptive SVM (VIA-SVM) [10], de-
signed specifically for the self-supervised formulation,
selects a subset of critical vectors from a pool of SVs.
For simplicity, we shall consider the two-class case first,
as shown in Fig. 11a.

First, the SVs are deemed to be a good candi-
date pool. The reason is mainly due to the proxim-
ity/importance of the SVs to the decision boundary.
The next phase is to select a subset of “critical vectors”
from the pool of SVs. To this end, the SVs are further
subdivided into two groups, according to whether the

http://genomics.stanford.edu:16080/yeast_cell_cycle/cellcycle.html
http://genomics.stanford.edu:16080/yeast_cell_cycle/cellcycle.html
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Figure 11 SVs are divided into two types: correctly classified
(0 ≤ ξi < 1 and incorrectly classified (ξi > 1). For clarity of pre-
sentation, only the SVs correspond to Class 1 (marker square)
are highlighted.

slack variables ξi are above or below certain threshold
θ , i.e., if ξi < θ then the corresponding SVs will be
selected.

6.3.1 Feature Selection Based on Adaptive Threshold

Sometimes, it is desirable to have some flexibility on
the number of selected SVs. This can be achieved by
adjusting the threshold θ . The smaller the threshold
the less SVs will be selected. This adaptive scheme is
well supported by our simulation study in [10], which
showed that correctly classified SVs performed well
except when the SVs are very close to the decision
boundary (i.e. these SVs had a much higher averaged
value of ξ than the rest of the group).

6.3.2 Feature Selection Based on Correctly Classified
SVs

An important special case is to set the selection thresh-
old to 1, i.e., θ = 1, which corresponds to the decision
boundary as shown in Fig. 11.

1. Correctly Classified SVs: The selected SVs corre-
spond to 0 ≤ ξi < 1. They are situated on the cor-
rect side of the decision boundary.

2. Incorrectly Classified SVs: The removed SVs are in
the region ξi ≥ 1.

6.3.3 VIA-SVM for Multiclass Training and Testing

Assume that the data have M training samples and R
classes. The row vectors of Z are used to train R SVMs
from which R sets of SV indexes Sr (r = 1, . . . , R) are
determined. This results in a set of SVs z j for each class,
where j ∈ Sr. Then, for the r-th class, the indexes in Sr

are used as a candidate pool for selecting the rows of Z.
(This process is repeated for all classes.)

6.3.4 Extension from SS to SDS

For vectorial data, one can apply the VIA-SVM directly
to the original SS matrix, cf. Eq. 3. However, our the-
oretical and experimental studies suggest that the real
usage of VIA-SVM hinges upon an extension of the
original SS formulation to the so-called SDS formula-
tion. Moreover, the SDS formulation also copes very
well with nonvectorial data, such as sequence data.

Let us now further describe how to convert the
SS formulation into a SDS formulation by a pairwise
approach. Mathematically, a symmetric score matrix
Syy ∈ �M×M can be obtained as follows:

Syy =

⎡

⎢
⎢
⎣

S(y1, y1) S(y1, y2) · · · S(y1, yM)

S(y2, y1) S(y2, y2) · · · S(y2, yM)

· · · · · · · · · · · ·
S(yM, y1) S(yM, y2) · · · S(yM, yM)

⎤

⎥
⎥
⎦ , (14)

where S(yi, y j) represents a similarity score between yi

and y j.4

For example, for sequence data, we can use an align-
ment score such as the Smith-Waterman [52] score.
The SDS formulation for sequence data then allows us
to convert variable-length sequences into fixed-length
vectors with dimension equal to the number of se-
quences (M) in the training set. Then, feature selection
can be applied to select m (where m � M) features
along the y-direction of the matrix to form M training
vectors of m dimensions. These m-dimensional vectors
are then used to train a classifier, e.g., an m-input
SVM. During the retrieval phase, a query sequence
is compared with the m selected sequences to form
an m-dimensional test vector which is to be fed to
the classifier. Because sequence alignment can be time
consuming, reducing the number of inputs from M to m
represents a significant computation saving during the
retrieval phase.

4Here, we use bold face to represent both vectorial data such
as gene expression profiles and non-vectorial data such as
sequences.
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Rich Information Pertaining to SDS Formulation. Un-
der the SDS formulation, the data matrix is symmetric.
Therefore, the class labels are known for rows and
columns of the symmetric matrix (i.e. the class labels
exist not only for the y-direction but also for the x′-
direction due to the symmetry property).

A promising approach is to design a fusion strategy
which may fully take advantages of the rich and diver-
sified information embedded in the SDS matrix. Two
prominent examples are:

1. In the original SS formulation, only VIA-SVM can
be applied to do feature selection. Now that the
class labels are available also for the x′-direction,
the reflexive wrapper approach such as SVM-RFE
can also be applied.

2. It is now possible to combine VIA-SVM and filter
approaches such as SNR to improve the selection.
This motivates us to propose an SVM-filtering fu-
sion scheme to combine various information made
available by the SDS formulation. For this, an
overselect-and-prune strategy is proposed, which is
discussed below.

To fuse the information pertaining to the SDS for-
mulation, the following overselect-and-prune strategy
is adopted:

1. Over-Selection Phase. This phase involves a quick
and coarse (suboptimal) evaluation. This phase can
be implemented by filtering or by selecting more
SVs in VIA-SVM.

2. Pruning Phase. This phase serves as a fine-tuning
process. It can be achieved by relevance filtering
based on features’ SNR.

With SDS, feature selection via SNR-based filtering is
now allowed.

The theoretical justification on why VIA-SVM and
SNR complement well with each other is briefly
explained here. Note that SNR is an individual mea-
surement whose score is independently computed.
However, the SNR metric fails to take the inter-feature
interaction into account. On the other hand, VIA-SVM
is based on a collective decision after considering all the
training vectors (features). Therefore, the two types of
information are inherently different and can comple-
ment each other.

6.3.5 Simulation Studies Using VIA-SVM

Our VIA-SVM algorithm was applied to both microar-
ray data and sequence data in [10]. Here, we will high-
light the significant results from our studies.

In our finding, VIA-SVM performs well on the mi-
croarray yeast cell cycle data [22] over a wide range
of feature size, even when the number of features is
reduced to a single digit. Compared to the performance
clustering the data in its original self-supervised (time-
course) formulation using k-means as a method of
feature selection with a nearest-neighbor classifier, our
SDS formulation using VIA-SVM and SVM-RFE con-
sistently and noticeably outperform the SS formulation.

On the other hand, our sequence data provided by
Huang and Li [53] starts with more than 3000 features,
and VIA-SVM can successfully reduce the dimension
by more than one order of magnitude (i.e. 10 times).
In our simulations, VIA-SVM is superior to SVM-
RFE in two aspects: (1) It outperforms SVM-RFE at
almost all feature dimension, particularly at low feature
dimensions and (2) it automatically bounds the number
of selected features within a small range. A drawback of
SVM-RFE is that it requires a cutoff point for stopping
the selection. On the other hand, VIA-SVM is insensi-
tive to the penalty factor in SVM training and can avoid
the need to set a cutoff point for stopping the feature
selection process.

When the over-select-and-prune cascaded fusion ar-
chitecture was adopted, the strategy produced more
compact feature subsets without significant reduction in
prediction accuracy. We also note that although VIA-
SVM is inferior to SVM-RFE for large feature-set size,
the combination of SD (a filtering metric) and VIA-
SVM performs better at small feature-set size.

7 Conclusion and Future Work

This paper reviews the applications and techniques of
feature selection for genomic signal processing. Many
prominent techniques for unsupervised, supervised,
and self-supervised scenarios. The paper also provides
a number of experimental results primarily on microar-
ray (sample and time-course) data and gene/protein
sequence selection. More works will be needed on
motif selection applications before any concrete results
can be included. Other areas to explore the benefits
of feature selection may include text/literature mining,
SNPs (Single Nucleotide Polymorphisms), and inte-
grating different data sources [54].
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