ON THE RATIO-CORRELATION REGRESSION METHOD ${ }^{1}$

David A. Swanson
Department of Sociology and
Center for Sustainable Suburban Development
University of California Riverside
(David.swanson@ ucr.edu)
Jeff Tayman
Department of Economics
University of San Diego San Diego
(jtayman@san.rr.com)

Introduction

Regression-based methods for estimating population date back to E. C. Snow (1911), who published, "The application of the method of multiple correlation to the estimation of post-censal populations" in the Journal of the Royal Statistical Society. Snow's paper represents the first published description of the use of multiple regression in the estimation of population. It also discusses other methods, pointing out their strengths and weaknesses, then describes the model framework and the data used in the regression application, and applies it to districts in the U. K. In addition to being the first published report in English of the use of regression for population estimates, it sets the stage for subsequent papers by discussing it relative to other methods. A discussion is published with the paper that contains many important insights that are today commonplace in the use of multiple regression not only for making population estimates, but for general use.

One of the insights (Snow, 1911: 625) is given by David Heron, who suggests that one of the shortcomings acknowledged by Snow was to "control" the sum of the estimates for individual districts to an estimate for the who country ("Estimate for the whole country/sum of estimates for individual districts). Another is provided by G. Udny Yule, who contributed substantially to the development of multiple regression as a modern analytic technique (Stigler, 1986: 345-361). Yule (Snow, 1911: 621) noted that Snow demonstrated that a multiple regression model built using data over one decade had coefficients that could be used for the subsequent decade with the insertion of the new set of values for the independent variables. Yule also agreed with Snow that the ex post facto tests performed by Snow suggested that using variables constructed on relative (percent) change would perform better than variables constructed on the basis of absolute change (Snow, 1911: 622). Finally, among many comments that are useful still today for those interested in regression based methods for estimating population, are the following: Greenwood' remarks on the
impact of skewed distributions (Snow, 1911: 626); Baines' (Snow, 1911: 626) comments on using ratios, and the importance of data quality by virtually all of the discussants (Snow, 1911: 621-629).

Snow's (1991) seminal paper is based on the premise that the relationship between symptomatic indicators and the corresponding population remains unchanged over time. His work and the insights provided by the discussants of his paper have led to three related but distinct approaches: ratio correlation; difference correlation; and average ratio methods.

Ratio Correlation and Its Variants

The most common regression-based approach data to estimating the total population of a given area is the ratio-correlation method. Introduced and tested by Schmitt and Crosetti (1954) and again tested by Crosetti and Schmitt (1956), this multiple regression method involves relating between changes in several variables known as symptomatic indicators on the one had to population changes on the other hand. The symptomatic indicators that are used reflect the variables related to population change that are available and of them, those that yield an optimal model. Examples of symptomatic variable that have been used for this purpose are births, deaths, school enrollment, tax returns, motor vehicle registrations, employment data, and registered voters. The ratio-correlation method is used where a set of areas (e.g., counties) are structured into a geographical hierarchy (e.g. the populations of counties within a given state sum to the total state population). It proceeds in two steps. The first is the construction of the model and the second is its implementation - actually using it to create estimates for given years.

Because the method looks at change, population data from two successive censuses are needed to construct the model along with data for the same years representing the symptomatic indicators. During its implementation step the ratio-correlation method requires symptomatic data representing
the year for which an estimate is desired and an estimate of the population for the highest level of geography (e.g., the state as a whole) that is independent of the ratio-correlation model.

The ratio-correlation method expresses the relationship between (1) the change over the previous intercensal period (e.g., 1990 to 2000) in an area's share (e.g., a given county) of the total for the parent area (e.g., the state as a whole) for several symptomatic series and (2) the change in an area's share of the population of the parent area. The method can be employed to make estimates for either the primary or secondary political, administrative and statistical divisions of a country (Bryan, 2004). In the U.S., the variables selected usually vary from state to state and because of due the small number of counties in some states, certain states were combined and estimated in one regression equation.

In general terms, the ratio correlation model is formally described as follows (Swanson and Beck, 1994):

$$
\begin{equation*}
P_{\mathrm{i}, \mathrm{t}}=\mathrm{a}_{0}+\sum\left(\mathrm{b}_{\mathrm{j}}\right)^{*} S_{\mathrm{i}, \mathrm{j}, \mathrm{t}}+\varepsilon_{\mathrm{i}} \tag{1a}
\end{equation*}
$$

where
$a_{0}=$ the intercept term to be estimated
$b_{j}=$ the regression coefficient to be estimated
$\varepsilon_{i}=$ the error term
$j=$ symptomatic indicator $(1 \leq j \leq k)$
$i=$ subarea $(1 \leq j \leq n)$
$t=$ year of the most recent census
and

$$
\begin{align*}
& P_{\mathrm{i}, \mathrm{t}}=\left(\mathrm{P}_{\mathrm{i}, \mathrm{t}} / \sum \mathrm{P}_{\mathrm{i}, \mathrm{t}}\right) /\left(\mathrm{P}_{\mathrm{i}, \mathrm{-z}} / \sum \mathrm{P}_{\mathrm{i}, \mathrm{t}-\mathrm{z}}\right) \tag{1b}\\
& S_{\mathrm{i}, \mathrm{j}, \mathrm{t}}=\left(\mathrm{S}_{\mathrm{i}, \mathrm{t}} / \sum \mathrm{S}_{\mathrm{i}, \mathrm{t}, \mathrm{j}} /\left(\mathrm{S}_{\mathrm{i}, \mathrm{t}-\mathrm{z}} / \sum \mathrm{S}_{\mathrm{i}, \mathrm{t}-\mathrm{z}}\right)_{\mathrm{j}}\right. \tag{1c}
\end{align*}
$$

where
$z=$ number of years between each census for which data are used to construct the model

$$
\begin{aligned}
& \mathrm{p}=\text { population } \\
& \mathrm{s}=\text { symptomatic indicator }
\end{aligned}
$$

Once a ratio correlation model is constructed, a set of population estimates for time $\mathrm{t}+\mathrm{k}$ is developed in a series of six steps. First, $\left(\mathrm{S}_{\mathrm{i}, \mathrm{t}+\mathrm{k}} / \sum \mathrm{S}_{\mathrm{i}, \mathrm{t}+\mathrm{k}}\right)_{\mathrm{j}}$ is substituted into the numerator of the right side of Equation [1c] for each symptomatic indicator j and $\left(\mathrm{S}_{\mathrm{i}, \mathrm{t}} / \sum_{\mathrm{S}, \mathrm{t}, \mathrm{t}}\right)_{\mathrm{j}}$ into the denominator of the right side of Equation [1c] for each symptomatic indicator j , which yields $S_{\mathrm{i}, \mathrm{j}, \mathrm{t}+\mathrm{k}}$. Second, the updated model with the preceding substitution of symptomatic data for time $\mathrm{t}+\mathrm{k}$ is used to estimate $P_{\mathrm{i}, t+\mathrm{k}}$. Third, $\left(\mathrm{P}_{\mathrm{i}, \mathrm{t}} / \sum \mathrm{P}_{\mathrm{i}, \mathrm{t}}\right)$ is substituted into the denominator of $P_{\mathrm{i}, t+\mathrm{k}}$, which yields $P_{\mathrm{i}, \mathrm{t}+\mathrm{k}}=\left(\mathrm{P}_{\mathrm{i}, \mathrm{t}+\mathrm{k}} / \sum\right.$ $\left.\mathbf{P}_{i, t+\mathbf{k}}\right) /\left(\mathrm{P}_{\mathrm{i}, t} / \sum \mathrm{P}_{\mathrm{i}, \mathrm{t}}\right.$, where $\left.\sum \mathbf{P}_{\mathrm{i}, \mathrm{t}+\mathbf{k}}\right)$ represents the independently estimated population of the "parent" area of the i subareas for time $\mathrm{t}+\mathrm{k}$ (Note that this estimate is given in boldface and is done by a method exogenous to the ratio-correlation model (e.g., a component method)). Fifth, since $P_{\mathrm{i}, \mathrm{t}+\mathrm{k}}$, $\left(\mathrm{P}_{\mathrm{i}, \mathrm{t}} / \sum \mathrm{P}_{\mathrm{i}, \mathrm{t}}\right)$ and $\sum \mathbf{P}_{\mathrm{i}, \mathrm{t}+\mathrm{k}}$ are all known values, the equation $P_{\mathrm{i}, \mathrm{t}+\mathrm{k}}=\left(\mathrm{P}_{\mathrm{i}, \mathrm{t}+\mathrm{k}} / \sum \mathbf{P}_{\mathrm{i}, \mathrm{t}+\mathrm{k}}\right) /\left(\mathrm{P}_{\mathrm{i}, t} / \sum \mathrm{P}_{\mathrm{i}, \mathrm{t}}\right)$ is manipulated to yield an estimate of the population of area i at time $\mathrm{t}+\mathrm{k}$:

$$
\begin{equation*}
\left(P_{\mathrm{i}, \mathrm{t}+\mathrm{k}}\right) *\left(\mathrm{P}_{\mathrm{i}, t} \sum \mathrm{P}_{\mathrm{i}, \mathrm{t}}\right) *\left(\sum \mathbf{P}_{\mathrm{i}, \mathrm{t}+\mathrm{k}}\right)=\mathrm{P}_{\mathrm{i}, \mathrm{t}+\mathrm{k}} \tag{1d}
\end{equation*}
$$

As Equation [1d] shows, it is important to remember that an independent estimate of the population for the "parent" geography ($\sum \mathbf{P}_{\mathbf{i}, \mathbf{t} \mathbf{k}}$) of the i subarea is required when using the ratiocorrelation model to generate population estimates. The sixth and final step is to effect a final "control" so that the sum of the i subarea population estimates is equal to the independently estimated population for the parent of these i subareas: $\sum \mathrm{P}_{\mathrm{i}, \mathrm{t}+\mathrm{k}}=\sum \mathbf{P}_{\mathrm{i}, \mathrm{t}+\mathrm{k}}$, which is accomplished as follows:

$$
\begin{equation*}
P_{i, t+k}=\left(\mathrm{P}_{\mathrm{i}, \mathrm{t}+\mathrm{k}} / \sum \mathrm{P}_{\mathrm{i}, \mathrm{t}+\mathrm{k}}\right)^{*}\left(\sum \mathbf{P}_{\mathrm{i}, \mathrm{t}+\mathrm{k}}\right) . \tag{1e}
\end{equation*}
$$

As an empirical example of ratio-correlation model, we use data for the 39 counties of Washington State. We used excel to construct a ratio-correlation model using 1990 and 2000 census data in conjunction with three symptomatic indicators: (1) registered voters; (2) registered automobiles, and (3) public school enrollment in grades 1-8. The raw 1990 and 2000 input data for this model are provided in an appendix as tables 2.a through 2.d. We then use 2005 symptomatic indicators to construct a set of county estimates for 2005. The input data for 2000 and 2005, along with the results of the calculations leading to the estimates are shown as tables $2 . \mathrm{e}$ through $2 . \mathrm{h}$ in the appendix.

A summary of the model and its characteristics is provided in Exhibit 1.

Exhibit 1. Example Ratio Correlation Model

Although the coefficient for Voters is not statistically significant, we elected to retain this symptomatic indicator in the model so that we would have a model with three independent variables, a feature that as explained later, can assist in dealing with "model invariance."

The amount of "explained variance" $\left(R^{2}=0.794\right)$ is typical for a ratio-correlation model. Do not be alarmed that this level is not sufficient to have a "good model." That is, neither believe that a good ratio-correlation model should have a very high level of explained variance (e.g., $\mathrm{R}^{2}>0.9$) nor expect one. This is the case because the structure of the ratio-correlation model reflects the "stationarity" achieved by taking ratios over time (Swanson, 2004). Note that the coefficients approximately sum to 1.00 . This also is a universal feature of the ratio-correlation model, one which can be exploited in a model with three symptomatic indicators, as is discussed shortly.

In using this model to construct a set of county population estimates for 2005, we follow the six steps just described. First, we substitute $\left(\mathrm{S}_{\mathrm{i}, 2005} / \sum \mathrm{S}_{\mathrm{i}, 2005}\right)_{\mathrm{j}}$ is substituted into the numerator of the right side of the model for each symptomatic indicator j and $\left(\mathrm{S}_{\mathrm{i}, 2000} / \sum \mathrm{S}_{\mathrm{i}, 2000}\right)_{\mathrm{j}}$ into the denominator of the right side of the model for each symptomatic indicator j , which yields $S_{\mathrm{i}, \mathrm{j}, 2005}$. Second, the updated model with the preceding substitution of symptomatic data for 2005 is used to estimate $P_{\mathrm{i}, 2005}$. Third, $\left(\mathrm{P}_{\mathrm{i}, 2000} / \sum \mathrm{P}_{\mathrm{i}, 2000}\right)$ is substituted into the denominator of $P_{\mathrm{i}, 2005}$, which yields $P_{\mathrm{i}, 2005}=$ $\left(\mathrm{P}_{\mathrm{i}, 2005} / \sum \mathbf{P}_{\mathrm{i}, 2005}\right) /\left(\mathrm{P}_{\mathrm{i}, 2000} / \sum \mathrm{P}_{\mathrm{i}, 2000}\right)$, where $\left.\sum \mathbf{P}_{\mathrm{i}, 2005}\right)$ represents the independently estimated population of the state as a whole, which is the parent area of the 39 counties for 2005. Fifth, since $P_{i, 2005},\left(\mathrm{P}_{\mathrm{i}, 2000} / \sum \mathrm{P}_{\mathrm{i}, 2000}\right)$ and $\sum \mathbf{P}_{\mathrm{i}, 2005}$ are all known values, the equation $P_{\mathrm{i}, 2005}=\left(\mathrm{P}_{\mathrm{i}, 2005} / \sum\right.$ $\left.\mathbf{P}_{\mathrm{i}, 2005}\right) /\left(\mathrm{P}_{\mathrm{i}, 2000} / \sum \mathrm{P}_{\mathrm{i}, 2000}\right)$ is manipulated to yield an estimate of the population of county i in the year 2005:

$$
\left(\mathrm{P}_{\mathrm{i}, 2005}\right) *\left(\mathrm{P}_{\mathrm{i}, 2000} / \sum \mathrm{P}_{\mathrm{i}, 2000}\right) *\left(\sum \mathbf{P}_{\mathrm{i}, 2005}\right)=\mathrm{P}_{\mathrm{i}, 2005}
$$

The sixth and final step is to control the 2005 population estimates of the 39 counties so that they sum to the independently estimated 2005 population for the state of Washington as a whole:

$$
P_{i, 2005}=\left(\mathrm{P}_{\mathrm{i}, 2005} / \sum \mathrm{P}_{\mathrm{i}, 2005}\right)^{*}\left(\sum \mathbf{P}_{\mathrm{i}, 2005}\right)
$$

The final "controlled" population estimates are shown in Table 1. The appendix shows the results of these steps in detail.

Table 1. 2005 County Population Estimates for the state of Washington

County	Estimated 2005 Population
Adams	18,125
Asotin	20,706
Benton	155,792
Chelan	66,727
Clallam	66,870
Clark	393,823
Columbia	4,284
Cowlitz	95,522
Douglas	40,065
Ferry	7,295
Franklin	59,650
Garfield	2,266
Grant	79,475
GHarbor	68,680
Island	74,802
Jefferson	26,994
King	1,793,565
Kitsap	239,943
Kittitas	36,560
Klickitat	18,979
Lewis	69,010
Lincoln	9,982
Mason	53,729
Okanogan	38,740
Pacific	21,099
Pend Oreille	12,093
Pierce	758,454
SanJuan	15,363
Skagit	110,607
Skamania	10,104
Snohomish	652,045
Spokane	442,581
Stevens	41,795
Thurston	230,361
Wahkaikum	4,043
WallaWalla	58,906
Whatcom	180,956
Whitman	40,906
Yakima	235,504
State of Washington	6,256,400

An acute observer may notice that except when $\mathrm{k}=\mathrm{z}$, the use of the model for estimating population corresponds to a shorter length of time than that used to calibrate the model. For example, if one constructs a model using 1990 and 2000 data for the 39 counties in the state of Washington it corresponds to a ten year period of change in both population shares and shares of symptomatic variables. However, in using this same model to estimate the populations of the 39 counties in 2003, the time period now corresponds to a three year period of change in both population shares and shares of symptomatic variables. Swanson and Tedrow (1989) addressed this temporal inconsistency by using a logarithmic transformation. They called the resulting model the "rate-correlation" model. This is one of several variants of the basic ratio-correlation regression technique. Another is known as the "difference correlation" method. Similar in principle to the ratio-correlation method, the difference correlation method differs in its construction of a variable that is used to reflect change over time. Rather than making ratios out of the two proportions at two points in time, the difference correlation method employs the differences between proportions (Schmitt and Grier, 1966; O’Hare 1976; Swanson, 1978a). Another variant was proposed by Namboodiri and Lalu (1971). Known as the "average regression" technique, Namboodiri and Lalu (1971) examined the use of the simple, unweighted average of the estimates provided by a number of simple regression equations, each of which relates the population ratio to one symptomatic indicator ratio (As discussed in Chapter 9, this turns out to be very similar to using an average of several censal ratio estimates). Using the insights provide by Namboodiri and Lalu (1971), Swanson and Prevost (1985) demonstrated that the ratio-correlation model can be interpreted as a demographic form of "synthetic estimation" that is composed of a set of weighted censal-ratio estimates, with the regression coefficients serving as the weights - a topic we cover toward this end of this exposition.

Bryan (2004) observes that one of the shortcomings of the ratio-correlation method and related techniques is that substantial time lags can occur in obtaining the symptomatic indicators needed for
producing a current population estimate. That is, suppose that it is the year 2014 and a current (2014) estimate is desired, but the most current symptomatic indicators are for 2012. What can one do? One answer to this question is "lagged ratio-correlation," which was introduced by Swanson and Beck (1994). In this variant of ratio-correlation, the ratios of proportional symptomatic indicators precede the ratios of population proportions by " m " years in model construction so that:

$$
\begin{equation*}
S_{\mathrm{i}, \mathrm{j}-\mathrm{m}}=\left(\mathrm{S}_{\mathrm{i}, \mathrm{t}-\mathrm{m}} / \sum \mathrm{S}_{\mathrm{i}, \mathrm{t}-\mathrm{m}}\right)_{\mathrm{j}} /\left(\mathrm{S}_{\mathrm{i},(\mathrm{t}-\mathrm{m}) \mathrm{z}} / \sum \mathrm{S}_{\mathrm{i},(\mathrm{t}-\mathrm{m})-\mathrm{z}}\right)_{\mathrm{j}} \tag{1f}
\end{equation*}
$$

where
$\mathrm{m}=$ number of years that symptomatic indicators
precede the population proportions

When the lagged ratio-correlation is used to estimate a population, the only change to the six steps described earlier for the basic form of ratio-correlation is that $\left(\mathrm{S}_{\mathrm{i}, \mathrm{t}+\mathrm{k}} / \sum \mathrm{S}_{\mathrm{i}, \mathrm{tk}}\right)_{\mathrm{j}}$ is substituted into the numerator of the right side of Equation [1c] for each symptomatic indicator j in place of $\left(\mathrm{S}_{\mathrm{i},(\mathrm{t}-\mathrm{m})+\mathrm{k}} / \sum \mathrm{S}_{\mathrm{i},(\mathrm{t}-\mathrm{m})+\mathrm{k}}\right)_{\mathrm{j}}$ and $/\left(\mathrm{S}_{\mathrm{i},(\mathrm{t}-\mathrm{m})} / \sum \mathrm{S}_{\mathrm{i},(\mathrm{t}-\mathrm{m})}\right)_{\mathrm{j}}$ into the denominator of the right side of Equation [1c] for each symptomatic indicator j in place of $\left(\mathrm{S}_{\mathrm{i}, \mathrm{t}} / \sum \mathrm{S}_{\mathrm{i}, \mathrm{t}}\right)_{\mathrm{j}}$.

Because ratio-correlation and its variants are grounded in regression, they are connected to the inferential and other statistical tools that come with it (Swanson, 1989; Swanson and Beck, 1994). In using these tools, it is important to point to keep in mind several important things. The first point is that within this framework, "uncertainty" is generally based on the "frequentist" view of sample error. Thus, as discussed by Swanson and Beck (1994), the construction of confidence intervals around estimated values means, for example, that one perceives (whether implicitly or explicitly) the following: the data used in model construction are a random sample drawn from a universe; the model would fit perfectly were it not for random error; and, any subsequent observations of independent variables placed into the model and used to generate dependent variables are drawn from the same universe. Since a given model is constructed from data using observations from all known cases (e.g., all 39 counties in Washington), the "universe" represented by the county data is a
"superpopulation". This means, as noted by D'Allesandro and Tayman (1980), the observed values are a random manifestation of all the possible observations that could have occurred.

Technically speaking, this makes it difficult to interpret confidence intervals in an actual estimation or projection application or an ex post facto test because we can never observe the regression surface for this superpopulation (specifically, the set of county populations forming the expected values of this regression surface). What we do observe is a census count. This census count has two distinct uses. First, it must be viewed as an estimator during the model construction phase (as are all of the symptomatic indicators). However, when we use a given model to estimate or project the number of persons in a given county, we must view the number that is (or could be) generated by a complete enumeration as a parameter. Thus, in using the term "confidence intervals" one (implicitly or explicitly) assumes that a census count is used to generate an estimate or projection. Consequently, when a confidence band is placed around estimated or projected figures, the band is an interval estimator for a parameter (Swanson and Beck, 1994).

Given these qualification, Swanson and Beck (1994) conducted ex post facto examinations on estimates produced by the lagged ratio-correlation model and their "forecast intervals" for total populations of the 39 counties in Washington State in 1970, 1980, and 1990. For the 1970 set of county population projections, they found that the $2 / 3$ forecast intervals contained the 1970 census figure in more than two-thirds (30 of the 39 counties) as did the 1990 results (31 of 39 counties). For the 1980 set, the $2 / 3$ forecast interval contained the 1980 census figure in just less than twothirds (24 of the 39 counties). Swanson and Beck (1994) argued that these findings are of interest from an application standpoint because if the $2 / 3$ forecast intervals contained substantially less than two-thirds of the actual county populations, one would have a misplaced sense of accuracy in the ability of the given models to accurately estimate and project county populations. Since the intervals did contain more than two-thirds of the actual county population figures in both 1970 and

1990 and nearly two-thirds in 1980, they argued that the results of this case study revealed an intuitively appealing view of the accuracy of these particular models (Swanson and Beck, 1994).

The findings by Swanson and Beck (1994) suggest that, among other useful features, one can construct confidence and "forecast" intervals around the estimates produced by ratio-correlation and its variants that are both statistically and substantively meaningful.

Given that the input data are of good quality, the accuracy of the regression-based techniques largely depends upon the validity of the central underlying assumption: that the observed statistical relationship between the independent and dependent variables in the past intercensal period will persist in the current postcensal period. The adequacy of this assumption (that the model is invariant) is dependent on several conditions (Swanson, 1980; Mandell and Tayman, 1982; McKibben and Swanson, 1997; Tayman and Schafer, 1985).

In an attempt to deal with model invariance, Ericksen $(1973,1974)$ introduced a method of post-censal estimation in which the symptomatic information is combined with sample data by means of a regression format. He considered combining symptomatic information on births, deaths, and school enrollment with sample data from the Current Population Survey. Swanson (1980) took a different approach to the issue of model invariance and presented a mildly restricted procedure for using a theoretical causal ordering and principles from path analysis to provide a basis for modifying regression coefficients in order to improve the estimation accuracy of the ratiocorrelation method of population estimation.

Ridge Regression also represents a method for dealing with model invariance. Swanson (1978b) and D'Allesandro and Tayman (1980) examined this approach to multiple regression and found that it offered some benefits. Ridge Regression also represents a way to deal with another possible problem with the regression approach, which is multi-collinearity, a condition whereby the independent variables are all highly correlated. This condition can result in type II errors (finding that given coefficients are not shown to be statistically significant when in fact they are) when one
evaluates the statistical significance of the coefficients associated with the symptomatic indicators used in a given model. One also can use the stand diagnostic tools associated with regression to evaluate and this issue and overcome it without resorting to ridge regression, if an evaluation suggests it is present (Fox, 1991). Swanson (1989) demonstrated another way to deal with model invariance by using the statistical properties of the ratio-correlation method in conjunction with the Wilcoxon matched-pairs signed rank test and the "rank-order" procedure he introduced (Swanson 1980).

Judgment is also important in the application of ratio-correlation, as the analyst must take into account the reliability and consistency of coverage of each variable (Tayman and Schafer, 1985). The increasing availability of administrative data allows many possible combinations of variables. High correlation coefficients for two past intercensal periods would suggest that the degree of association of the variables is not changing very rapidly. In such a case, the regression based on the last intercensal period should be applicable to the current postcensal period. Furthermore, it is assumed that deficiencies in coverage in the basic data series will remain constant, or change very little, in the present period (Tayman and Schafer, 1985).

In addition to the issue of time lags in the availability of symptomatic indicators, Bryan (2004), notes two other shortcomings of regression-based techniques: (1) the use of multiple and differing variables (oftentimes depending on the place being estimated) and in some instances averaging the results of multiple estimates makes it very difficult to decompose error; and (2) this process may compromise the comparability of estimates between different subnational areas. In regard to decomposing error, this is a feature of all of the estimation methods that do not deal directly with the components of population change. In regard to comparability, we note that this is an issue when different regression models are used (e.g., the ratio-correlation model used to estimate the populations of the 75 counties of Arkansas is different from the ratio-correlation model used to estimate the populations of the 39 counties of Washington state.

In regard to the issue of decomposing error, McKibben and Swanson (1997) argue that at least some of the shortcomings in accuracy of population estimates would be better understood by linking these methods with the substantive socio-economic and demographic dynamics that clearly must be underlying the changes in population that the methods are designed to measure. They provide a case study of Indiana over two periods, 1970-1980 and 1980-1990, which was selected because a common population estimation method exhibits a common problem over the two periods: its coefficients change. The authors link these changes to Indiana's transition to a post-industrial economy and describe how this transition operated through demographic dynamics that ultimately affected the estimation model.

Ratio-Correlation and Synthetic Estimation

Before describing synthetic estimation and its relationship to the ratio-correlation method, it is important to realize that synthetic estimation emerged from the field of survey research, as statisticians grappled with the problem of trying to apply survey results for a large area (e.g., the U.S. as a whole) to subareas (e.g., states) while maintaining validity and avoiding excessive costs. Thus, as Swanson and Pol (2008) observe, there are two distinct traditions in regard to "small area estimates," (1) demographic; and (2) statistical:
"Demographic methods are used to develop estimates of a total population as well as the ascribed characteristics - age, race, and sex - of a given population. Statistical methods are largely used to estimate the achieved characteristics of a population educational attainment, employment status, income, and martial status, for example Among survey statisticians, the demographer's definition of an estimate is generally termed an "indirect estimate" because unlike a sample survey, the data used to construct a demographic estimate are symptomatic indicators of population change (e.g., K-12 enrollment data, births, deaths,) and do not directly represent the phenomenon of interest. Among demographers, the term "indirect estimate" has a different meaning."

So, in the field of demography a direct estimate refers to the measurement of demographic phenomena using data that directly represent the phenomena of interest, while among statisticians, it is used to describe estimates obtained by survey sampling. In terms of an indirect estimate,
demographers, usually use this term in referring to the measurement of demographic phenomena using data that do not directly represent the phenomena of interest (e.g., a child woman ratio instead of a crude birth rate). Among survey statisticians, this term refers to an estimate not based on a sample survey, for example, a model based estimate (Schaible, 1993).

As a bit of history on the emergence of synthetic estimation, Ford (1981) notes that the problem of constructing county or other small area estimates from survey data has been an important topic and large-scale surveys and even complete census counts were often used to solve the problem. Because of the resource needs of this approach, attention turned to possible alternatives for obtaining small area information in the 1970s. (U.S. NCHS, 1968; Ford, 1981). One of the alternatives that gained a lot of attention was synthetic estimation, which according to Ford (1981) emerged because of a 1978 workshop on Synthetic Estimates for Small Area Estimates cosponsored by the National Institute on Drug Abuse (NIDA) and the National Center for Health Statistics (NCHS). This same workshop resulted in a monograph edited by Steinberg (1979).

In the "Introduction" to the NIDA/NCHS monograph, Steinberg (1979) cites "The Radio Listening Survey," discussed in Hansen, Hurwitz and Madow (1953) as an early example of the employment of the synthetic method. In this survey, questionnaires were mailed to about 1,000 families in each of 500 county areas and personal interviews were conducted with a sub-sample of the families in 85 of these count areas who were mailed questionnaires (Hansen, Hurwitz, and Madow (1953: 483-484). Knowing in advance that the mail-out portion would yield a low level of responses (about 20 percent of those mailed questionnaires responded), the data collected in the personal interviews were used to obtain estimates not affected by non-response. The relationships between the data in the 85 county areas that were collected from the personal interviews and the mailed questionnaires were then applied to the county areas for which only mail-out/mail-back was done to improve the estimates for these areas (Hansen, Hurwitz, and Madow (1953: 483). While the
radio listening study did no use the hallmark of synthetic estimation, which is taking information from a "parent" area and applying it to its subareas, the idea behind it is similar.

In most cases, synthetic estimation is used to estimate "achieved characteristics" and often rely on estimates made by demographers of total populations and their achieved characteristics (e.g., age, race, and sex) in developing the estimates (Causey, 1988; Cohen and Zhang, 1988; Gonzalez and Hoza, 1978; Levy, 1979). However, it need not be confined to this use. Before we turn to a demographic interpretation of synthetic estimation, it is useful to spend some time on its statistical interpretation.

Cohen and Zhang (1988) provide an informal statistical definition of a synthetic estimator that we adapt as follows. First, assume that one is interested in obtaining estimates of an unknown characteristic, x_{i} over a set of i sub-regions $(i=1, \ldots, n)$. Second, suppose one has census counts p_{i}, ($\mathrm{i}=1, \ldots, \mathrm{n}$), for each of the sub-regions and both a census count, P , and a "known" value of X , for the parent region, where $\sum \mathrm{p}_{\mathrm{i}} .=\mathrm{P}$ and $\sum \mathrm{x}_{\mathrm{i}} .=\mathrm{X}$, respectively. Third, suppose that the estimated values of x_{i} for the subareas must sum to the known value X for the parent area. In this case, Cohen and Zhang (1988: 2) define the statistical synthetic estimate as:

$$
\begin{equation*}
\mathrm{x}_{\mathrm{i}}=(\mathrm{X} / \mathrm{P})^{*}\left(\mathrm{p}_{\mathrm{i}}\right) . \tag{2}
\end{equation*}
$$

Basically, Equation [2] shows that the estimated characteristic (x_{i}) for a given subarea i is found by multiplying the known value of population for sub-area $\mathrm{i}, \mathrm{p}_{\mathrm{i}}$, by the "known" ratio of the characteristic (X) to population (P) for the parent area. It is inevitably the case that the "known" value of X for the parent area is taken from a sample survey (U.S. NCHS, 1968). Cohen and Zhang (1988) go on to show how the basic idea given in Equation [2] can be extended to include demographic subgroups (e.g., by age, race, and sex). Similar examples are provided by Levy (1979).

As a simple example that shows how Equation [2] would be applied, suppose we have 50,000 people in a parent area $(\mathrm{P}=50,000)$ and 1,000 have a characteristic $(\mathrm{X}=1,000)$ that we are interested in estimating for its three subareas, which have, respectively $30,000,15,000$, and 5,000 people, respectively (Exhibit 2).

Exhibit 2. Example of Synthetic Estimation

		Parent Area	Estimated number with
Sub-area	Population	Ratio (X/P)	Characteristic x
1	30,000	$(1000 / 50000)$	6,000
2	15,000	$(1000 / 50000)$	3,000
3	5,000	$(1000 / 50000)$	1,000

From a statistical perspective, synthetic estimates are generally held to be "biased." That is, there is a difference between the estimator's expected value and the true value of the parameter being estimated (see, e.g., Weisstein, 2011). The bias basically comes from the fact that the ratio of x_{i} to p_{i} in a given subarea i is not the same as the ratio for the parent area. That is, $X / P \neq x_{i} / p_{i}$.

With this simple introduction to systematic estimation, we now turn to how synthetic estimation works from the standpoint of demographers. The key difference for demographers is that unlike statisticians, it is the population of area $\mathrm{i}\left(\mathrm{p}_{\mathrm{i}}\right)$ that is "unknown" rather than some characteristic (x_{i}) of this population. To implement synthetic estimation, demographers find "characteristics" that are available for both the parent area and its subareas. These characteristics
are known to demographers as "symptomatic indicators." So, for demographers, Equation [2] becomes

$$
\begin{equation*}
\mathrm{p}_{\mathrm{i}}=\left(\mathrm{s}_{\mathrm{j}, \mathrm{i}}\right) /\left(\mathbf{S}_{\mathrm{j}} / \mathbf{P}\right) \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathbf{P}=\text { population of the parent area } \\
& \mathbf{S} \mathbf{j}=\text { value of symptomatic indicator } j \text { for the parent area } \\
& \mathrm{S}_{\mathrm{j}, \mathrm{i}}=\text { value of symptomatic indicator } j \text { for subarea } i(1 \leq i \leq n) \\
& \mathrm{p}_{\mathrm{i}}=\text { estimated population for subarea } i(1 \leq i \leq n)
\end{aligned}
$$

and so, we can identify the ratio $\mathrm{S}_{\mathrm{j}} / \mathrm{P}$ as

$$
\mathbf{R}_{\mathbf{j}}=\left(\mathbf{S}_{\mathrm{j}} / \mathbf{P}\right)
$$

As is the case for the synthetic estimators used by statisticians (Equation [2]), the basic form of the synthetic estimator used by demographers (as shown in Equation [3]) can be expanded. One expansion is to put the synthetic estimation process in motion using a regression framework. This can be done as follows.

$$
\begin{equation*}
\mathrm{p}_{\mathrm{i}, \mathrm{t}}=\mathrm{a}_{0} *\left(\mathbf{P}_{\mathrm{t}}\right)^{*}\left(\mathrm{p}_{\mathrm{i}, \mathrm{t}-\mathrm{z}} / \mathbf{P}_{\mathrm{t}-\mathrm{z}}\right)+\mathrm{bj} *\left[\left(\mathrm{~s}_{\mathrm{j}, \mathrm{i}, \mathrm{t}}\right) /\left(\left(\mathrm{s}_{\mathrm{j}, \mathrm{i}, \mathrm{t}-\mathrm{z}} / \mathrm{p}_{\mathrm{i},-\mathrm{z}}\right) *\left(\mathbf{S}_{\mathrm{j}, \mathrm{t}} /\left(\mathbf{S}_{\mathrm{j}, \mathrm{t}-\mathrm{z}} / \mathbf{P}_{\mathrm{t}-\mathrm{z}}\right)\right)\right)\right]+\varepsilon_{\mathrm{i}} \tag{4}
\end{equation*}
$$

where
$\mathrm{a}_{0}=$ the intercept term to be estimated
$\mathrm{bj}=$ the regression coefficient to be estimated using symptomatic
\quad indicator j
$\varepsilon_{\mathrm{i}}=$ the error term
$\mathrm{s}_{\mathrm{j}, \mathrm{i}}=$ symptomatic indicator $(1 \leq \mathrm{j} \leq \mathrm{k})$ in subarea $\mathrm{i}(1 \leq \mathrm{i} \leq \mathrm{n})$
$\mathrm{t}=$ year of the most recent census
$\mathrm{z}=$ number years to the census preceding the most recent census
and
$\mathbf{P}=$ population of the parent area

$$
\begin{aligned}
& \mathbf{S j} \text { = value of symptomatic indicator } j \text { for the parent area } \\
& p_{i}=\text { estimated population for subarea } i(1 \leq i \leq n)
\end{aligned}
$$

Once the preceding regression model is constructed, it can be used to estimate the population of each area i for a year k years subsequent to the last census (time $=t$) as follows:

$$
\begin{equation*}
\mathrm{p}_{\mathrm{i}, t+\mathrm{k}}=\left[\mathrm{a}_{0} *\left(\mathbf{P}_{\mathrm{t}+\mathrm{k}}\right)^{*}\left(\mathrm{p}_{\mathrm{i}, \mathrm{t}} / \mathbf{P}_{\mathrm{t}}\right)\right]+\left[\mathrm{bj}^{*} *\left(\left(\mathrm{~s}_{\mathrm{j}, \mathrm{i}, \mathrm{t}+\mathrm{k}}\right) /\left(\left(\mathrm{s}_{\mathrm{j}, \mathrm{i}, \mathrm{t}} / \mathrm{p}_{\mathrm{i}, \mathrm{t}}\right) *\left(\mathrm{~S}_{\mathrm{j}, t+\mathrm{k}} /\left(\mathrm{S}_{\mathrm{j}, \mathrm{t}} / \mathrm{P}_{\mathrm{t}}\right)\right)\right)\right)\right] \tag{5}
\end{equation*}
$$

Equations [4] and [5] should be familiar. They can be algebraically manipulated to become a bivariate form (i.e., a regression model with only one independent variable) of the ratio-correlation model discussed earlier, which we show here. First, borrowing from Equation [1a], we show here the simple bivariate ratio-correlation regression model that is algebraically equivalent to Equation [5]

$$
\begin{equation*}
P_{\mathrm{i}, \mathrm{t}}=\mathrm{a}_{0}+\left(\mathrm{b}_{\mathrm{j}}\right) * S_{\mathrm{i}, \mathrm{t}}+\varepsilon_{\mathrm{i}} \tag{6}
\end{equation*}
$$

where
$a_{0}=$ the intercept term to be estimated
$b_{j}=$ the regression coefficient to be estimated
$\varepsilon_{i}=$ the error term
$j=$ symptomatic indicator $(1 \leq j \leq k)$
$i=$ subarea $(1 \leq j \leq n)$
$t=$ year of the most recent census
and

$$
\begin{equation*}
P_{\mathrm{i}, \mathrm{t}}=\left(\mathrm{P}_{\mathrm{i}, \mathrm{t}} / \sum \mathrm{P}_{\mathrm{i}, \mathrm{t}}\right) /\left(\mathrm{P}_{\mathrm{i}, \mathrm{t}, \mathrm{z}} / \sum \mathrm{P}_{\mathrm{i}, \mathrm{t}-\mathrm{z}}\right) \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
S_{\mathrm{i}, \mathrm{jt}}=\left(\mathrm{S}_{\mathrm{i}, \mathrm{t}} / \sum \mathrm{S}_{\mathrm{i}, \mathrm{t}}\right)_{\mathrm{j}} /\left(\mathrm{S}_{\mathrm{i}, \mathrm{t}-\mathrm{z}} / \sum \mathrm{S}_{\mathrm{i}, \mathrm{tz}}\right)_{\mathrm{j}} \tag{8}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{z}=\text { number of years between each census for which } \\
& \text { data are used to construct the model } \\
& \mathrm{p}=\text { population } \\
& \mathrm{s}=\text { symptomatic indicator }
\end{aligned}
$$

As was shown earlier, a set of population estimates can be done in a series of six steps, which lead to the estimation version of Equation [6], which is algebraically equivalent to Equation [5]:

$$
\begin{equation*}
\left(P_{\mathrm{i}, \mathrm{t}+\mathrm{k}}\right) *\left(\mathrm{P}_{\mathrm{i}, t} / \sum \mathrm{P}_{\mathrm{i}, \mathrm{t}}\right) *\left(\sum \mathbf{P}_{\mathrm{i}, \mathrm{t}+\mathrm{k}}\right)=\mathrm{P}_{\mathrm{i}, t+\mathrm{k}} \tag{9}
\end{equation*}
$$

As discussed by Swanson and Prevost (1985), these equations show that the ratio-correlation model can be viewed as a regression method that uses synthetic estimation (taking a ratio of change for a given "rate" in a parent area and a "censal-ratio" to estimate a current population for area i). Note that the intercept term, a_{0}, shown in Equation [5] serves as a "weight" applied to an estimate of p_{i} at time $t+k\left(p_{i, t+k}\right)$ based on the proportion of the population in area i at the time of the last census, $t\left(p_{i, t}\right)$ that is multiplied by the total of the parent area at time $t+k\left(\mathbf{P}_{t+k}\right)$. The regression coefficient, bj, shown in Equation [5] also serves as a weight. In this case it is applied to the "synthetic estimate" based on symptomatic indicator s_{j}. As Swanson (1980) and Swanson and Prevost (1985) observe, the regression coefficient in a ratio-correlation model sum to 1.00 (or very nearly so) in virtually every model constructed, which means that as shown in Equation [5] the estimate of p_{i} can be viewed as a weighted average of synthetic estimates based on j symptomatic indicators.

In terms of strengths of the sample based methods that are aimed at generating what the statisticians refer to direct estimates, they offer a well-understood approach that is less costly than
full enumerations along with estimates of their precision. In terms of their weaknesses, the cost of sample surveys often precludes using them to develop usable information for small areas unless they are supplemented by other methods such as synthetic estimation (Ghosh and Rao, 1994; Platek et al., 1987; Rao, 2003). Jaffe (1951: 211) notes that while sample surveys are cheaper than full enumerations, "demographic procedures" are cheaper than sample surveys; however, he also notes that the "direct estimates" resulting from sample surveys can only be used for current estimates since it is impossible to interview a past or future population. He goes to observe that only "demographic procedures" can provide past, current, and future estimates. We note, however, that these same 'demographic procedures' can be improved by using the statistical tools and perspectives that have emerged from sampling, as this discussion of synthetic estimation illustrates.

Summary

Regression-based methods have very limited application in the preparation of estimates of population composition, such as age-sex groups for small geographic areas. It is possible, of course, to apply the age distribution at the last census date to a pre-assigned current total for the area, or to extrapolate the last two census age distributions to the current date and apply the extrapolated distribution to the current total. Spar and Martin (1979) found, for example, that the ratio-correlation method is more accurate than others in estimating the populations of Virginia counties by race and age.

While the ratio-correlation approach has its limitations, as suggested by this overview, it is clear it has strong advantages, given the availability of good quality data to implement and test it. Among its many advantages is the fact that regression has a firm foundation in statistical inference, which leads to the construction of meaningful measures of uncertainty around the estimates it produces, as demonstrated by Swanson and Beck (1994). No other population technique other than those based
on survey samples has this characteristic. Further, as suggested by Snow (1911) and those who discussed his ground-breaking use of multiple regression for population estimation, it is important to use variables that represent some measure of relative change over time, which the ratiocorrelation method does. Although ratio-correlation is inherently a cross-sectional model rather than a time series, Swanson (2004) suggests that one of the reasons for its consistently good performance, may be due to the fact that the formation of the change in ratios provides some of the benefits associated with "stationarity," which is an important characteristic in the development of a good ARIMA model (Smith, Tayman, and Swanson, 2001: 172-176).

The basic assumption underlying the regression methods discussed here is the same as those underlying any trend extrapolation methods-in terms of the change in a variable of interest specified by a particular method-the future will be just like the past. This is the source of model invariance and one must always ask in using a regression-based method what sort of changes are expected to occur over time and how can they be accommodated?

Endnote

${ }^{1}$ This work is a draft of a chapter forthcoming in Subnational Population Estimates (Swanson and Tayman, 2011, Springer)

References

Bryan, T. 2004. "Population Estimates." pp. 523-560 in J. Siegel and D. A. Swanson (eds.) The Methods and Materials of Demography, 2nd Edition. Amsterdam, The Netherlands: Elsevier Academic Press

Causey, B. 1988. Evaluation of Census Ratio Estimation and Synthetic Estimation. Statistical Research Division Report no. Census/SRD/RR/88/15 (available online at http://www.census.gov/srd/papers/pdf/rr88-15.pdf).

Cohen, M. and X. Zhang, 1988. The Difficulty of Improving Statistical Synthetic Estimation.
Statistical Research Division Report no. CENSUS/SRD/RR-88/12. Washington DC: U. S>
Bureau of the Census (available online at http://www.census.gov/srd/papers/pdf/rr88-12.pdf).

Crosetti, A., and R. Schmitt. 1956. "A Method of Estimating the Inter-censal Population of Counties." Journal of the American Statistical Association 51: 587-590.

D'Allesandro, F. and J. Tayman. 1980. "Ridge Regression for Population Estimation: Some Insights and Clarifications." Staff Document No. 56. Olympia, Washington, Office of Financial Management

Erickson, E. 1974. "A Regression Method for Estimating Population Changes of Local Areas." Journal of the American Statistical Association 69: 867-875.

Ericksen, E. 1973. "A Method for Combining Sample Survey Data and Symptomatic Indicators to obtain Population Estimates for Local Areas." Demography 10: 137-160.

Ford, B. 1981. The Development of County Estimates in North Carolina. Staff Report AGES 811119. Agriculture Statistical Reporting Service, Research Division. Washington, DC: U.S. Department of Agriculture.

Fox, J. 1991. Regression Diagnostics. Quantitative Applications in the Social Sciences Series, no. 79. London, England: Sage Publications.

Ghosh, M., nad J. N. K. Rao. 1994. "Small Area Estimation. An Appraisal." Statistical Science 9 (1): 55-76.

Gonzalez, M. and C. Hoza, 1978. "Small Area Estimation with Application to Unemployment and Housing Estimates." Journal of the American Statistical Association 73 no. 361 (March): 7-15

Hansen, M., W. Hurwitz, and W. Madow. 1952. Sample Survey Methods and Theory: Volume I, Methods and Applications. New York, NY: John Wiley and Sons.

Jaffe, A. J. 1951. Handbook of Statistical Methods for Demographers: Selected Problems in the Analysis of Census Data, Preliminary Edition, 2nd Printing (US Bureau of the Census) Washington, DC: U.S. Government Printing Office

Levy, P. 1979. "Small Area Estimation-Synthetic and Other Procedures, 1968-1978." pp 4-19 in J. Steinberg (Ed.) Synthetic Estimates for Small Areas: Statistical Workshop Papers and Discussion. NIDA Research Monograph 24. Rockville, MD: U.S. Department of Health, Education, and Welfare, Public Health Service, Alcohol, Drug Abuse, and Mental Health Administration, National Institute on Drug Abuse

Mandell, M., and J. Tayman. 1982. "Measuring Temporal Stability in Regression Models of Population Estimation." Demography 19 (1): 135-146.

McKibben, J., and D. Swanson. 1997. "Linking Substance and Practice: A Case Study of the Relationship between Socio-economic Structure and Population Estimation." Journal of Economic and Social Measurement 24 (2): 135-147.

Namboodiri, N. K., and N. Lalu. 1971. "The Average of Several Simple Regression Estimates as an Alternative to the Multiple Regression Estimate in Post-censal and Inter-censal Population Estimation: A Case Study." Rural Sociology 36: 187-194.

O'Hare, W. 1980. "A Note on the use of Regression Methods in Population Estimates." Demography 17 (3): 341-343.

Platek, R., J. N. K. Rao, C. E. Särndal, and M. P. Singh (Eds.).1987. Small Area Statistics: An International Symposium. New York, NY: John Wiley and Sons.

Rao, J. N. K. 2003. Small Area Estimation. New York, NY: Wiley-Interscience.
Schaible, W. 1993. "Indirect Estimators, Definition, Characteristics, and Recommendations." Proceedings of the Survey Research Methods Section, American Statistical Association Vol I: 1-10. . Alexandria, VA: American Statistical Association (available online at http://www.amstat.org/sections/srms/proceedings/y1993f.html)

Schmitt, R., and A. Crosetti. 1954. "Accuracy of the Ratio-correlation Method for Estimating Postcensal Population." Land Economics 30: 279-281.

Schmitt, R., and J. Grier. 1966. "A Method of Estimating the Population of Minor Civil Divisions." Rural Sociology 31: 355-361

Snow, E.C. 1911. "The application of the method of multiple correlation to the estimation of postcensal populations." Journal of the Royal Statistical Society 74 (part 6): 575-629 (pp. 621 629 contain the discussion).

Spar, M. and J. Martin. 1979. "Refinements to regression-based estimates of post-censal population characteristics." Review of Public Data Use 7: 16-22.

Steinberg, J. 1979. "Introduction." pp 1-2 in J. Steinberg (Ed.) Synthetic Estimates for Small Areas: Statistical Workshop Papers and Discussion. NIDA Research Monograph 24. Rockville, MD: U.S. Department of Health, Education, and Welfare, Public Health Service, Alcohol, Drug Abuse, and Mental Health Administration, National Institute on Drug Abuse.

Stigler, S. 1986. The History of Statistics: The Measurement of Uncertainty before 1900. Cambridge, MA: The Belknap Press of Harvard University.

Swanson, D. 2004. "Advancing Methodological Knowledge within State and Local Demography: A Case Study." Population Research and Policy Review 23 (4): 379-398

Swanson, D. 1989. Confidence Intervals for Postcensal Population Estimates: A Case Study for Local Areas." Survey Methodology 15 (2): 271-280.

Swanson, D. 1980 "Improving Accuracy in Multiple Regression Estimates of County Populations Using Principles from Causal Modeling. Demography 17 (November):413-427.

Swanson, D. 1978a. "An Evaluation of Ratio and Difference Regression Methods for Estimating Small, Highly Concentrated Populations: The Case of Ethnic Groups." Review of Public Data Use 6 (July):18-27.

Swanson, D. 1978b. "Preliminary Results of an Evaluation of the Utility of Ridge Regression for Making County Population Estimates." Presented at the Annual Meeting of the Pacific Sociological Association, Spokane, WA.

Swanson, D. and D. Beck. 1994. "A New Short-term County Population Projection Method." Journal of Economic and Social Measurement 21:25-50.

Swanson, D. A., and L. Pol. 2008. "Applied Demography: Its Business and Public Sector Components." in Yi Zeng (ed.) The Encyclopedia of Life Support Systems, Demography Volume. UNESCO-EOLSS Publishers. Oxford, England. (with L. Pol).(Online at http://www.eolss.net/).

Swanson, D. and R. Prevost 1985 "A New Technique for Assessing Error in Ratio-Correlation Estimates of Population: A Preliminary Note." Applied Demography 1 (November): 1-4.

Tayman, J., and E. Schafer. 1985. "The Impact of Coefficient Drift and Measurement Error on the Accuracy of Ratio-Correlation Population Estimates." The Review of Regional Studies. 15(2): 3-1
U.S. NCHS (U. S. National Center for Health Statistics). 1968. Synthetic State Estimates of Disability. PHS Publication No. 1759. U.S. Public Health Service. Washington, DC: U.S. Government Printing Office.

Weisstein, Eric W. 2011. "Estimator Bias." From MathWorld--A Wolfram Web Resource. (available online at http://mathworld.wolfram.com/EstimatorBias.htmIU.S. NCHS, 1979

COUNTY	Table 2a. Registered Voters, 1990 and 2000 Data				
	$\begin{gathered} \text { Number } \\ \text { Year }=2000 \end{gathered}$	$\begin{gathered} \text { Number } \\ \text { Year=1990 } \end{gathered}$	Proportion Year =2000	$\begin{aligned} & \text { Proportion Year } \\ & =1990 \end{aligned}$	$\begin{gathered} \text { Ratio of } 2000 \\ \text { Prop/1990 Prop } \end{gathered}$
Adams	6,098	5,553	0.00196738	0.002499767	0.787025521
Asotin	12,987	8,597	0.004189959	0.00387007	1.082657236
Benton	75,315	53,452	0.024298665	0.024062227	1.009826097
Chelan	32,803	24,043	0.010583139	0.010823321	0.977808879
Clallam	39,068	28,085	0.012604398	0.012642888	0.996955607
Clark	167,584	88,903	0.054067151	0.040021032	1.350968445
Columbia	2,671	2,256	0.000861737	0.001015573	0.848523475
Cowlitz	49,643	34,503	0.01601618	0.015532048	1.031169905
Douglas	16,855	11,320	0.005437881	0.005095869	1.067115429
Ferry	3,856	2,486	0.00124405	0.001119111	1.111642059
Franklin	16,321	13,228	0.005265598	0.005954785	0.884263396
Garfield	1,670	1,537	0.000538787	0.000691904	0.778702686
Grant	29,970	21,391	0.009669136	0.009629483	1.004117935
GHarbor	32,038	29,613	0.010336329	0.01333074	0.775375474
Island	38,265	24,325	0.012345329	0.010950267	1.12739976
Jefferson	17,330	11,413	0.005591129	0.005137735	1.088247842
King	1,001,339	765,692	0.323059164	0.344687849	0.937251385
Kitsap	125,219	82,518	0.040399051	0.037146727	1.087553441
Kittitas	16,417	12,836	0.00529657	0.00577832	0.916628084
Klickitat	11,717	7,943	0.003780223	0.003575662	1.057209207
Lewis	40,913	27,990	0.013199645	0.012600122	1.047580719
Lincoln	6,656	5,495	0.002147406	0.002473657	0.868109854
Mason	27,238	18,108	0.008787719	0.00815159	1.078037328
Okanogan	18,159	14,987	0.005858587	0.006746625	0.868372958
Pacific	12,697	9,906	0.004096397	0.004459336	0.918611473
PendOreille	6,903	4,851	0.002227095	0.002183751	1.019848515
Pierce	325,079	229,449	0.104879316	0.103289942	1.015387506
SanJuan	9,228	6,919	0.002977203	0.003114693	0.955857879
Skagit	55,780	38,696	0.017996143	0.01741959	1.033097962
Skamania	5,586	3,946	0.001802195	0.001776352	1.014548749
Snohomish	303,110	196,968	0.09779152	0.088668128	1.102893707
Spokane	209,404	165,189	0.067559419	0.07436233	0.908516708
Stevens	25,481	14,406	0.008220863	0.006485079	1.267658073
Thurston	119,016	79,381	0.038397795	0.035734559	1.074528289
Wahkaikum	2,455	1,944	0.00079205	0.000875121	0.90507445
WallaWalla	24,411	20,614	0.007875652	0.009279704	0.848696416
Whatcom	90,987	60,874	0.029354878	0.027403353	1.071214827
Whitman	25,273	18,842	0.008153756	0.008482012	0.961299834
Yakima	94,011	73,148	0.030330502	0.03292868	0.921096825
check sum	3,099,553	2,221,407	1.0000	1.0000	
STATE	3,099,553	2,221,407			

COUNTY	Table 2b. Registered Autos, 1990 and 2000 Data				
	$\begin{gathered} \text { Number } \\ \text { Year }=2000 \end{gathered}$	$\begin{gathered} \text { Number } \\ \text { Year=1990 } \end{gathered}$	Proportion Year =2000	$\begin{gathered} \text { Proportion Year } \\ =1990 \end{gathered}$	$\begin{aligned} & \text { Ratio of } 2000 \\ & \text { Prop/1990 Prop } \\ & \hline \end{aligned}$
Adams	9,144	7,476	0.002950103	0.003365435	0.876588954
Asotin	10,375	8,964	0.003347257	0.00403528	0.829497968
Benton	80,977	62,203	0.02612538	0.028001622	0.932995226
Chelan	39,153	31,360	0.012631821	0.014117179	0.894783691
Clallam	35,697	29,592	0.011516822	0.013321287	0.864542744
Clark	183,053	139,958	0.059057871	0.063004213	0.937363832
Columbia	2,186	2,226	0.000705263	0.001002068	0.703807786
Cowlitz	52,461	47,555	0.016925344	0.021407603	0.790623007
Douglas	13,008	12,107	0.004196734	0.005450149	0.770021861
Ferry	2,384	1,943	0.000769143	0.000874671	0.879351522
Franklin	27,518	24,762	0.008878054	0.011146989	0.796453117
Garfield	1,263	1,247	0.000407478	0.000561356	0.725881898
Grant	35,188	28,154	0.011352605	0.012673949	0.895743254
GHarbor	33,310	32,097	0.010746711	0.014448951	0.743771032
Island	37,675	28,462	0.012154978	0.0128126	0.94867382
Jefferson	14,459	10,170	0.004664866	0.00457818	1.018934751
King	1,083,380	975,138	0.349527819	0.438973137	0.796239654
Kitsap	125,716	101,075	0.040559397	0.045500442	0.891406658
Kittitas	16,405	13,174	0.005292699	0.005930476	0.892457708
Klickitat	9,820	8,351	0.003168199	0.003759329	0.842756427
Lewis	36,164	34,157	0.011667489	0.015376291	0.758797358
Lincoln	5,566	5,632	0.001795743	0.00253533	0.708287578
Mason	25,701	18,893	0.008291841	0.00850497	0.974940622
Okanogan	18,420	15,046	0.005942792	0.006773185	0.877400015
Pacific	10,214	9,204	0.003295314	0.00414332	0.795331737
PendOreille	5,709	4,486	0.001841878	0.002019441	0.912073511
Pierce	349,476	308,937	0.112750451	0.139072669	0.810730479
SanJuan	8,063	5,917	0.002601343	0.002663627	0.97661673
Skagit	66,322	49,147	0.021397279	0.022124266	0.967140723
Skamania	4,149	3,104	0.00133858	0.001397313	0.957967535
Snohomish	332,324	278,326	0.10721675	0.125292664	0.855730473
Spokane	231,030	202,904	0.074536554	0.091340308	0.816031341
Stevens	16,866	12,789	0.00544143	0.005757162	0.945158355
Thurston	121,894	104,118	0.039326316	0.046870294	0.839045632
Wahkaikum	1,634	1,513	0.000527173	0.0006811	0.774002197
WallaWalla	24,258	22,549	0.00782629	0.010150774	0.771004254
Whatcom	90,938	70,164	0.029339069	0.031585387	0.928881103
Whitman	17,061	16,285	0.005504342	0.007330939	0.750837213
Yakima	117,751	99,187	0.037989671	0.04465053	0.850822406
check sum	3,296,712	2,828,372	1.0636	1.2732	
STATE	3,296,712	2,828,372			

COUNTY	Table 2c. Enrollment in Grades 1- 8, 1990 and 2000 Data				
	$\begin{gathered} \text { Number } \\ \text { Year }=2000 \end{gathered}$	$\begin{gathered} \text { Number } \\ \text { Year=1990 } \end{gathered}$	Proportion Year $=2000$	$\begin{gathered} \text { Proportion Year } \\ =1990 \end{gathered}$	Ratio of 2000 Prop/1990 Prop
Adams	2,417	2,277	0.000779745	0.001025026	0.76070721
Asotin	2,183	2,212	0.00070436	0.000995765	0.707355068
Benton	18,719	15,296	0.006039116	0.006885726	0.87704854
Chelan	8,268	6,567	0.002667485	0.002956234	0.902325116
Clallam	6,424	6,439	0.002072702	0.002898613	0.715066772
Clark	42,803	30,613	0.013809333	0.013780906	1.002062827
Columbia	381	521	0.000122885	0.000234536	0.523951293
Cowlitz	11,789	10,538	0.003803339	0.00474384	0.801742579
Douglas	3,979	3,285	0.001283695	0.001478792	0.868069579
Ferry	816	896	0.000263264	0.000403348	0.652696401
Franklin	6,980	5,760	0.002252063	0.002592951	0.868532899
Garfield	295	311	9.5175E-05	0.000140001	0.679814927
Grant	10,776	8,281	0.003476627	0.003727818	0.932617293
GHarbor	7,778	8,129	0.002509452	0.003659392	0.685756503
Island	6,433	5,803	0.002075538	0.002612308	0.794522595
Jefferson	2,282	2,145	0.00073618	0.000965604	0.762403811
King	173,328	145,005	0.055920321	0.065276197	0.856672483
Kitsap	27,470	23,320	0.008862526	0.010497851	0.844222898
Kittitas	2,907	2,637	0.000937955	0.001187085	0.790132316
Klickitat	2,365	2,370	0.000762987	0.001066891	0.715150057
Lewis	7,901	8,124	0.002549003	0.003657142	0.696993252
Lincoln	1,475	1,466	0.000475943	0.000659942	0.721188755
Mason	5,281	4,448	0.001703768	0.002002335	0.8508909
Okanogan	4,895	4,449	0.001579241	0.002002785	0.788522402
Pacific	2,068	2,069	0.000667125	0.000931392	0.71626711
PendOreille	1,242	1,150	0.000400677	0.00051769	0.773971288
Pierce	85,065	70,118	0.027444386	0.03156468	0.869465072
SanJuan	1,175	949	0.000379132	0.000427207	0.887467517
Skagit	12,035	9,713	0.003882792	0.004372454	0.88801211
Skamania	835	877	0.000269339	0.000394795	0.682224832
Snohomish	73,759	56,030	0.023796657	0.025222753	0.943459945
Spokane	48,216	43,219	0.015555879	0.019455687	0.799554304
Stevens	3,938	3,898	0.001270386	0.001754744	0.723972616
Thurston	23,806	20,459	0.007680617	0.009209929	0.833949692
Wahkaikum	318	287	0.000102595	0.000129197	0.794098348
WallaWalla	6,082	5,650	0.001962199	0.002543433	0.771476591
Whatcom	17,695	14,297	0.005708817	0.006436011	0.887011641
Whitman	3,120	3,079	0.001006639	0.001386058	0.726259907
Yakima	31,436	26,359	0.010142062	0.011865903	0.854723186
check sum	668,735	559,046	0.2158	0.2517	
STATE	668,735	559,046			

COUNTY	Table 2d. Total Population, 1990 and 2000 Data				
	$\begin{gathered} \text { Number } \\ \text { Year }=2000 \end{gathered}$	$\begin{gathered} \text { Number } \\ \text { Year=1990 } \end{gathered}$	Proportion Year =2000	$\begin{gathered} \text { Proportion Year } \\ =1990 \end{gathered}$	Ratio of 2000 Prop/1990 Prop
Adams	16,428	13,603	0.005300119	0.006123596	0.865523901
Asotin	20,551	17,605	0.006630311	0.007925157	0.836615678
Benton	142,475	112,560	0.045966305	0.050670589	0.907159495
Chelan	66,616	52,250	0.021492131	0.023521129	0.913737242
Clallam	64,525	56,464	0.020817518	0.025418125	0.819002903
Clark	345,238	238,053	0.111383158	0.107163163	1.039379154
Columbia	4,064	4,024	0.001311157	0.001811465	0.723810362
Cowlitz	92,948	82,119	0.02998755	0.036967111	0.811195376
Douglas	32,603	26,205	0.010518613	0.011796578	0.891666538
Ferry	7,260	6,295	0.002342273	0.00283379	0.826551571
Franklin	49,347	37,473	0.015920683	0.016869038	0.943781286
Garfield	2,397	2,248	0.000773337	0.001011971	0.764189025
Grant	74,698	54,758	0.024099604	0.024650143	0.977665896
GHarbor	67,194	64,175	0.02167861	0.028889348	0.750401489
Island	71,558	60,195	0.023086555	0.027097691	0.851974986
Jefferson	25,953	20,146	0.008373143	0.009069027	0.923268049
King	1,737,034	1,507,319	0.560414357	0.678542473	0.825909031
Kitsap	231,969	189,731	0.074839501	0.085410283	0.876235257
Kittitas	33,362	26,725	0.010763488	0.012030663	0.894671151
Klickitat	19,161	16,616	0.006181859	0.007479944	0.82645794
Lewis	68,600	59,358	0.022132224	0.026720903	0.828273803
Lincoln	10,184	8,864	0.003285635	0.003990264	0.823412987
Mason	49,405	38,341	0.015939395	0.017259782	0.923499229
Okanogan	39,564	33,350	0.012764421	0.015013008	0.850224126
Pacific	20,984	18,882	0.006770008	0.008500018	0.796469874
PendOreille	11,732	8,915	0.003785062	0.004013222	0.943147843
Pierce	700,820	586,203	0.22610357	0.263888157	0.856815905
SanJuan	14,077	10,035	0.004541623	0.004517407	1.005360465
Skagit	102,979	79,555	0.033223823	0.035812888	0.927705773
Skamania	9,872	8,289	0.003184975	0.003731419	0.853556112
Snohomish	606,024	465,642	0.195519806	0.209615798	0.932753198
Spokane	417,939	361,364	0.134838475	0.162673477	0.82889035
Stevens	40,066	30,948	0.01292638	0.013931711	0.927838668
Thurston	207,355	161,238	0.066898356	0.072583727	0.921671543
Wahkaikum	3,824	3,327	0.001233726	0.001497699	0.82374758
WallaWalla	55,180	48,439	0.017802567	0.021805549	0.816423687
Whatcom	166,814	127,780	0.053818728	0.057522102	0.935618244
Whitman	40,740	38,775	0.013143831	0.017455153	0.753005741
Yakima	222,581	188,823	0.071810677	0.085001533	0.844816262
check sum	5,894,121	4,866,692	1.9016	2.1908	
STATE	5,894,121	4,866,692			

COUNTY	Table 2e. Registered Voters, 2000 and 2005 Data				
	$\begin{gathered} \text { Number } \\ \text { Year }=2005 \end{gathered}$	$\begin{gathered} \text { Number } \\ \text { Year=2000 } \end{gathered}$	Proportion Year =2005	$\begin{aligned} & \text { Proportion Year } \\ & =2000 \end{aligned}$	Ratio of 2005 Prop/2000 Prop
Adams	6,477	6,098	0.001846242	0.00196738	0.938426384
Asotin	11,805	12,987	0.003364966	0.004189959	0.803102325
Benton	85,586	75,315	0.024395931	0.024298665	1.004002932
Chelan	37,395	32,803	0.010659288	0.010583139	1.007195336
Clallam	43,520	39,068	0.012405194	0.012604398	0.984195647
Clark	207,611	167,584	0.059178646	0.054067151	1.094539755
Columbia	2,542	2,671	0.000724586	0.000861737	0.840843924
Cowlitz	53,914	49,643	0.01536796	0.01601618	0.95952715
Douglas	16,994	16,855	0.004844069	0.005437881	0.890800781
Ferry	4,088	3,856	0.001165267	0.00124405	0.936672121
Franklin	21,235	16,321	0.006052948	0.005265598	1.149527149
Garfield	1,524	1,670	0.00043441	0.000538787	0.806273207
Grant	32,760	29,970	0.009338101	0.009669136	0.965763711
GHarbor	36,647	32,038	0.010446074	0.010336329	1.010617382
Island	43,688	38,265	0.012453081	0.012345329	1.008728237
Jefferson	21,165	17,330	0.006032995	0.005591129	1.079029809
King	1,082,406	1,001,339	0.308535298	0.323059164	0.955042706
Kitsap	138,956	125,219	0.039608826	0.040399051	0.980439512
Kittitas	19,817	16,417	0.005648753	0.00529657	1.066492593
Klickitat	12,163	11,717	0.003467012	0.003780223	0.917145013
Lewis	38,007	40,913	0.010833736	0.013199645	0.820759649
Lincoln	6,642	6,656	0.001893274	0.002147406	0.881656249
Mason	31,083	27,238	0.008860079	0.008787719	1.008234247
Okanogan	20,066	18,159	0.005719729	0.005858587	0.976298476
Pacific	13,195	12,697	0.003761179	0.004096397	0.918167693
PendOreille	7,486	6,903	0.002133853	0.002227095	0.958132743
Pierce	405,023	325,079	0.11545011	0.104879316	1.10079007
SanJuan	11,246	9,228	0.003205625	0.002977203	1.076723584
Skagit	63,185	55,780	0.01801062	0.017996143	1.000804414
Skamania	6,305	5,586	0.001797214	0.001802195	0.997235871
Snohomish	352,238	303,110	0.100403967	0.09779152	1.02671445
Spokane	251,184	209,404	0.071598947	0.067559419	1.05979223
Stevens	28,414	25,481	0.008099292	0.008220863	0.985211881
Thurston	137,742	119,016	0.03926278	0.038397795	1.022526959
Wahkaikum	2,592	2,455	0.000738839	0.00079205	0.932818677
WallaWalla	29,279	24,411	0.008345856	0.007875652	1.059703579
Whatcom	106,094	90,987	0.03024165	0.029354878	1.030208693
Whitman	21,082	25,273	0.006009336	0.008153756	0.737002132
Yakima	97,052	94,011	0.027664266	0.030330502	0.912093896
STATE	3,508,208	3,099,553	1.0000	1.0000	

COUNTY	Table 2f. Registered Autos, 2000 and 2005 Data				
	$\begin{gathered} \text { Number } \\ \text { Year }=2005 \end{gathered}$	$\begin{gathered} \text { Number } \\ \text { Year=2000 } \end{gathered}$	Proportion Year $=2005$	$\begin{aligned} & \text { Proportion Year } \\ & =2000 \end{aligned}$	Ratio of 2005 Prop/2000 Prop
Adams	12,064	9,144	0.003438793	0.002950103	1.165651813
Asotin	11,853	10,375	0.003378648	0.003347257	1.009378178
Benton	103,288	80,977	0.029441812	0.02612538	1.126942914
Chelan	40,826	39,153	0.01163728	0.012631821	0.921267009
Clallam	43,880	35,697	0.01250781	0.011516822	1.086047029
Clark	238,323	183,053	0.067932973	0.059057871	1.150278066
Columbia	2,602	2,186	0.000741689	0.000705263	1.05164913
Cowlitz	59,836	52,461	0.017056001	0.016925344	1.007719636
Douglas	23,100	13,008	0.006584558	0.004196734	1.568971966
Ferry	2,767	2,384	0.000788722	0.000769143	1.025455079
Franklin	35,678	27,518	0.010169865	0.008878054	1.145505997
Garfield	1,413	1,263	0.00040277	0.000407478	0.988445079
Grant	42,352	35,188	0.01207226	0.011352605	1.063391227
GHarbor	38,934	33,310	0.011097974	0.010746711	1.032685607
Island	47,153	37,675	0.013440765	0.012154978	1.105782723
Jefferson	18,982	14,459	0.00541074	0.004664866	1.159891708
King	1,227,244	1,083,380	0.349820763	0.349527819	1.000838114
Kitsap	152,831	125,716	0.043563837	0.040559397	1.074075061
Kittitas	20,690	16,405	0.005897598	0.005292699	1.114289372
Klickitat	11,859	9,820	0.003380358	0.003168199	1.066965344
Lewis	39,820	36,164	0.011350524	0.011667489	0.972833523
Lincoln	6,025	5,566	0.001717401	0.001795743	0.956373605
Mason	34,352	25,701	0.009791894	0.008291841	1.180907111
Okanogan	21,622	18,420	0.006163261	0.005942792	1.037098412
Pacific	12,270	10,214	0.003497512	0.003295314	1.061359329
PendOreille	7,157	5,709	0.002040073	0.001841878	1.107604487
Pierce	436,245	349,476	0.124349811	0.112750451	1.102876387
SanJuan	10,736	8,063	0.003060252	0.002601343	1.176412351
Skagit	81,691	66,322	0.023285677	0.021397279	1.088254146
Skamania	5,032	4,149	0.001434351	0.00133858	1.071546273
Snohomish	412,919	332,324	0.117700832	0.10721675	1.09778399
Spokane	277,551	231,030	0.07911475	0.074536554	1.06142216
Stevens	20,268	16,866	0.005777309	0.00544143	1.061726194
Thurston	163,196	121,894	0.046518336	0.039326316	1.182880611
Wahkaikum	2,080	1,634	0.000592895	0.000527173	1.124669752
WallaWalla	29,277	24,258	0.008345286	0.00782629	1.066314496
Whatcom	115,773	90,938	0.033000609	0.029339069	1.124800811
Whitman	20,277	17,061	0.005779874	0.005504342	1.050057184
Yakima	141,179	117,751	0.040242483	0.037989671	1.059300628
STATE	3,973,145	3,296,712	1.1325	1.0636	

COUNTY	Table 2g. Enrollment in Grades 1- 8, 2000 and 2005 Data				
	$\begin{gathered} \text { Number } \\ \text { Year }=2005 \end{gathered}$	$\begin{gathered} \text { Number } \\ \text { Year=2000 } \end{gathered}$	Proportion Year $=2005$	$\begin{aligned} & \text { Proportion Year } \\ & =2000 \end{aligned}$	Ratio of 2005 Prop/2000 Prop
Adams	2,482	2,417	0.000707381	0.000779745	0.907195775
Asotin	2,077	2,183	0.00059204	0.00070436	0.840536749
Benton	19,064	18,719	0.005434222	0.006039116	0.899837281
Chelan	7,930	8,268	0.002260533	0.002667485	0.847439938
Clallam	5,899	6,424	0.001681528	0.002072702	0.811273366
Clark	46,759	42,803	0.013328426	0.013809333	0.965175193
Columbia	389	381	0.000110871	0.000122885	0.902233821
Cowlitz	11,373	11,789	0.003241755	0.003803339	0.852344476
Douglas	4,067	3,979	0.001159361	0.001283695	0.903143919
Ferry	736	816	0.000209651	0.000263264	0.796354155
Franklin	8,701	6,980	0.002480283	0.002252063	1.101338148
Garfield	241	295	$6.87473 \mathrm{E}-05$	9.5175E-05	0.7223256
Grant	10,846	10,776	0.003091595	0.003476627	0.889251387
GHarbor	7,155	7,778	0.00203952	0.002509452	0.812735113
Island	5,909	6,433	0.00168447	0.002075538	0.811582196
Jefferson	1,933	2,282	0.000551099	0.00073618	0.748592414
King	170,347	173,328	0.048556614	0.055920321	0.868317855
Kitsap	25,376	27,470	0.007233434	0.008862526	0.816181917
Kittitas	2,964	2,907	0.000844947	0.000937955	0.900840028
Klickitat	1,984	2,365	0.000565508	0.000762987	0.741176146
Lewis	7,682	7,901	0.002189579	0.002549003	0.85899443
Lincoln	1,341	1,475	0.000382349	0.000475943	0.80335081
Mason	5,074	5,281	0.001446394	0.001703768	0.848938059
Okanogan	4,021	4,895	0.001146141	0.001579241	0.725754324
Pacific	1,817	2,068	0.000518037	0.000667125	0.776520715
PendOreille	1,110	1,242	0.000316458	0.000400677	0.789807647
Pierce	84,043	85,065	0.023956174	0.027444386	0.872898863
SanJuan	1,126	1,175	0.000320819	0.000379132	0.846193378
Skagit	12,072	12,035	0.003441122	0.003882792	0.886249222
Skamania	748	835	0.000213169	0.000269339	0.791451626
Snohomish	73,322	73,759	0.020900101	0.023796657	0.878278846
Spokane	46,975	48,216	0.013389944	0.015555879	0.860764266
Stevens	3,754	3,938	0.00107015	0.001270386	0.842381765
Thurston	24,096	23,806	0.006868415	0.007680617	0.894253064
Wahkaikum	302	318	8.60838E-05	0.000102595	0.839061039
WallaWalla	6,027	6,082	0.001717988	0.001962199	0.875542265
Whatcom	17,575	17,695	0.005009683	0.005708817	0.877534391
Whitman	2,891	3,120	0.000824028	0.001006639	0.818593144
Yakima	31,688	31,436	0.009032589	0.010142062	0.890606697
STATE	661,898	668,735	0.1887	0.2158	

COUNTY	Table 2h. Estimated Population 2005					
	$\begin{gathered} \text { Number } \\ \text { Year }=2000 \end{gathered}$	Proportion Year $=2000$	Estimated Ratio of 2005 Prop /2000 Prop	Estimated Proportion Year =2005	Estimated Population 2005 Not Controlled	Estimated Population 2005 Controlled
Adams	16,428	0.002787184	1.063487897	0.002964136	18,545	18,125
Asotin	20,551	0.003486695	0.971181915	0.003386215	21,186	20,706
Benton	142,475	0.024172391	1.054035167	0.025478551	159,404	155,792
Chelan	66,616	0.011302109	0.965545336	0.010912699	68,274	66,727
Clallam	64,525	0.010947349	0.998966852	0.010936039	68,420	66,870
Clark	345,238	0.05857328	1.099587137	0.064406425	402,952	393,823
Columbia	4,064	0.000689501	1.016129849	0.000700622	4,383	4,284
Cowlitz	92,948	0.015769612	0.990626693	0.015621798	97,736	95,522
Douglas	32,603	0.005531444	1.184544909	0.006552244	40,993	40,065
Ferry	7,260	0.001231736	0.968611432	0.001193073	7,464	7,295
Franklin	49,347	0.008372241	1.165182116	0.009755185	61,032	59,650
Garfield	2,397	0.000406676	0.91106728	0.00037051	2,318	2,266
Grant	74,698	0.012673306	1.025583671	0.012997536	81,318	79,475
GHarbor	67,194	0.011400173	0.985248907	0.011232008	70,272	68,680
Island	71,558	0.012140572	1.007627662	0.012233176	76,536	74,802
Jefferson	25,953	0.004403201	1.002602877	0.004414662	27,620	26,994
King	1,737,034	0.2947062	0.995305428	0.29332268	1,835,144	1,793,565
Kitsap	231,969	0.039355996	0.99707038	0.039240697	245,505	239,943
Kittitas	33,362	0.005660216	1.056326591	0.005979037	37,407	36,560
Klickitat	19,161	0.003250866	0.954783049	0.003103872	19,419	18,979
Lewis	68,600	0.011638716	0.969691291	0.011285961	70,609	69,010
Lincoln	10,184	0.001727823	0.944850982	0.001632536	10,214	9,982
Mason	49,405	0.008382081	1.048303049	0.008786961	54,975	53,729
Okanogan	39,564	0.006712451	0.943852979	0.006335567	39,638	38,740
Pacific	20,984	0.003560158	0.969194674	0.003450486	21,588	21,099
PendOreille	11,732	0.001990458	0.993572129	0.001977664	12,373	12,093
Pierce	700,820	0.118901529	1.043206233	0.124038816	776,036	758,454
SanJuan	14,077	0.002388312	1.052024748	0.002512563	15,720	15,363
Skagit	102,979	0.017471477	1.035336839	0.018088864	113,171	110,607
Skamania	9,872	0.001674889	0.986583624	0.001652418	10,338	10,104
Snohomish	606,024	0.102818385	1.037135674	0.106636615	667,161	652,045
Spokane	417,939	0.070907774	1.020769569	0.072380498	452,841	442,581
Stevens	40,066	0.006797621	1.005540852	0.006835285	42,764	41,795
Thurston	207,355	0.03517997	1.070883741	0.037673658	235,701	230,361
Wahkaikum	3,824	0.000648782	1.019015058	0.000661119	4,136	4,043
WallaWalla	55,180	0.009361871	1.029031869	0.009633664	60,272	58,906
Whatcom	166,814	0.02830176	1.045653176	0.029593826	185,151	180,956
Whitman	40,740	0.006911972	0.967871665	0.006689902	41,855	40,906
Yakima	222,581	0.037763222	1.019901547	0.038514769	240,964	235,504
					6,401,438	6,256,400
STATE	5,894,121	1.0000		1.0232	6,256,400	

