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Introduction 

Regression-based methods for estimating population date back to E. C. Snow (1911), who 

published, “The application of the method of multiple correlation to the estimation of post-censal 

populations” in the Journal of the Royal Statistical Society. Snow’s paper represents the first 

published description of the use of multiple regression in the estimation of population. It also 

discusses other methods, pointing out their strengths and weaknesses, then describes the model 

framework and the data used in the regression application, and applies it to districts in the U. K. In 

addition to being the first published report in English of the use of regression for population 

estimates, it sets the stage for subsequent papers by discussing it relative to other methods.  A 

discussion is published with the paper that contains many important insights that are today 

commonplace in the use of multiple regression not only for making population estimates, but for 

general use. 

One of the insights (Snow, 1911: 625) is given by David Heron, who suggests that one of the 

shortcomings acknowledged by Snow was to “control” the sum of the estimates for individual 

districts to an estimate for the who country (“Estimate for the whole country/sum of estimates for 

individual districts). Another is provided by G. Udny Yule, who contributed substantially to the 

development of multiple regression as a modern analytic technique (Stigler, 1986: 345-361).  Yule  

(Snow, 1911: 621) noted that Snow demonstrated that a multiple regression model built using data 

over one decade had coefficients that could be used for the subsequent decade with the insertion of 

the new set of values for the independent variables. Yule also agreed with Snow that the ex post 

facto tests performed by Snow suggested that using variables constructed on relative (percent) 

change would perform better than variables constructed on the basis of absolute change (Snow, 

1911: 622). Finally, among many comments that are useful still today for those interested in 

regression based methods for estimating population, are the following: Greenwood’ remarks on the 
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impact of skewed distributions (Snow, 1911: 626); Baines’ (Snow, 1911: 626) comments on using 

ratios, and the importance of data quality by virtually all of the discussants (Snow, 1911: 621-629). 

Snow’s (1991) seminal paper is based on the premise that the relationship between symptomatic 

indicators and the corresponding population remains unchanged over time.  His work and the 

insights provided by the discussants of his paper have led to three related but distinct approaches: 

ratio correlation; difference correlation; and average ratio methods. 

 

Ratio Correlation and Its Variants 

 

The most common regression-based approach data to estimating the total population of a given 

area is the ratio-correlation method. Introduced and tested by Schmitt and Crosetti (1954) and again 

tested by Crosetti and Schmitt (1956), this multiple regression method involves relating between 

changes in several variables known as symptomatic indicators on the one had to population changes 

on the other hand.  The symptomatic indicators that are used reflect the variables related to 

population change that are available and of them, those that yield an optimal model. Examples of 

symptomatic variable that  have been used for this purpose are births, deaths, school enrollment, tax 

returns, motor vehicle registrations, employment data, and registered voters. The ratio-correlation 

method is used where a set of areas (e.g., counties) are structured into a geographical hierarchy (e.g. 

the populations of counties within a given state sum to the total state population). It proceeds in two 

steps. The first is the construction of the model and the second is its implementation – actually 

using it to create estimates for given years.  

 Because the method looks at change, population data from two successive censuses are needed 

to construct the model along with data for the same years representing the symptomatic indicators. 

During its implementation step the ratio-correlation method requires symptomatic data representing 
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the year for which an estimate is desired and an estimate of the population for the highest level of 

geography (e.g., the state as a whole) that is independent of the ratio-correlation model.   

The ratio-correlation method expresses the relationship between (1) the change over the 

previous intercensal period (e.g., 1990 to 2000) in an area’s share (e.g., a given county) of the total 

for the parent area (e.g., the state as a whole) for several symptomatic series and (2) the change in 

an area’s share of the population of the parent area.  The method can be employed to make 

estimates for either the primary or secondary political, administrative and statistical divisions of a 

country (Bryan, 2004).  In the U.S., the variables selected usually vary from state to state and 

because of due the small number of counties in some states, certain states were combined and 

estimated in one regression equation.   

In general terms, the ratio correlation model is formally described as follows (Swanson and 

Beck, 1994): 

    Pi,t = a0 + ∑(bj)*Si,j,t + εi                                 [1a] 

                where 

a0 = the intercept term to be estimated 

bj =  the regression coefficient to be estimated 

    εi = the error term 
 
    j = symptomatic indicator  (1 ≤ j ≤ k) 

    i = subarea (1 ≤ j ≤ n) 

    t = year of the most recent census 

  and 

      Pi,t = (Pi,t/∑ Pi,t) /(Pi,t-z/∑ Pi,t-z)                           [1b] 

      Si,j,t  = (Si,t/∑ Si,t)j /(Si,t-z/∑ Si,t-z) j                            [1c] 

                where 

z = number of years between each census for which 
      data are  used to construct the model 
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p =  population 

     
s =  symptomatic indicator 

 

Once a ratio correlation model is constructed, a set of population estimates for time t+k is 

developed in a series of six steps. First, (Si,t+k/∑ Si,t+k)j is substituted into the numerator of the right 

side of Equation [1c] for each symptomatic indicator j and (Si,t/∑ Si,t) j  into the denominator of the 

right side of Equation [1c] for each symptomatic indicator j, which yields   Si,j,t+k.  Second, the 

updated model with the preceding substitution of symptomatic data for time t+k is used to estimate 

Pi,t+k.  Third, (Pi,t/∑ Pi,t)  is substituted into the denominator of Pi,t+k, which yields Pi,t+k = (Pi,t+k/∑ 

Pi,t+k)/(Pi,t/∑ Pi,t), where ∑ Pi,t+k) represents the independently estimated population of the “parent” 

area of the i subareas for time t+k (Note that this estimate is given in boldface and is done by a 

method exogenous to the ratio-correlation model (e.g., a component method)).  Fifth,   since  Pi,t+k , 

(Pi,t/∑ Pi,t) and ∑ Pi,t+k  are all known values, the equation Pi,t+k = (Pi,t+k/∑ Pi,t+k) /(Pi,t/∑ Pi,t) is 

manipulated to yield an estimate of the population of area i at time t+k: 

                                                                                         ^ 
                                     (Pi,t+k) *(Pi,t/∑ Pi,t) *(∑ Pi,t+k)  = Pi,t+k                                 [1d] 

 

As Equation [1d] shows, it is important to remember that an independent estimate of the 

population for the “parent” geography (∑Pi,t+k)  of the i subarea is required when using the ratio-

correlation model to generate population estimates. The sixth and final step is to effect a final 

“control” so that the sum of the i subarea population estimates is equal to the independently 

estimated population for the parent of these i subareas:   ∑ Pi,t+k  = ∑Pi,t+k, which is accomplished as 

follows:   

Pi,t+k  =  (Pi,t+k /∑ Pi,t+k )*( ∑Pi,t+k).                                                [1e] 
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As an empirical example of ratio-correlation model, we use data for the 39 counties of 

Washington State. We used excel to construct a ratio-correlation model using 1990 and 2000 census 

data in conjunction with three symptomatic indicators: (1) registered voters; (2) registered 

automobiles, and (3) public school enrollment in grades 1-8. The raw 1990 and 2000 input data for 

this model are provided in an appendix as tables 2.a through 2.d.  We then use 2005 symptomatic 

indicators to construct a set of county estimates for 2005. The input data for 2000 and 2005, along 

with the results of the calculations leading to the estimates are shown as tables 2.e through 2.h in the 

appendix. 

A summary of the model and its characteristics is provided in Exhibit 1.  

 

                                             Exhibit 1. Example Ratio Correlation Model 
  
 

 

 

 

 

 

 

 

 

 

Although the coefficient for Voters is not statistically significant, we elected to retain this 

symptomatic indicator in the model so that we would have a model with three independent 

variables, a feature that as explained later, can assist in dealing with “model invariance.”  

       
            Pi,t  = 0.195 + (0.0933*Voters) + (0.3362*Autos) + (0.3980*Enroll) 
                   [p<.001]     [p= 0.14]                  [p < .001]              [p<.001] 
             
 
               where 
                             Pi,t = (Pi,2000/∑ Pi,2000) /(Pi,1990/∑ Pi,1990)                      

                      Si,1,t  = (Votersi,2000/∑ Votersi,2000) /(Votersi,1990/∑ Votersi,1990)     

                      Si,2,t  = (Autosi,2000/∑ Autosi,2000) /(Autosi,1990/∑ Autosi,1990)     

                      Si,3,t  = (Enrolli,2000/∑ Enrolli,2000) /(Enrolli,1990/∑ Enrolli,1990)     

                             R2 = 0.794 

                      adj  R2 = 0.776 
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The amount of “explained variance” (R2= 0.794) is typical for a ratio-correlation model. Do not 

be alarmed that this level is not sufficient to have a “good model.” That is, neither believe that a 

good ratio-correlation model should have a very high level of explained variance (e.g., R2 > 0.9) nor 

expect one. This is the case because the structure of the ratio-correlation model reflects the 

“stationarity” achieved by taking ratios over time (Swanson, 2004). Note that the coefficients 

approximately sum to 1.00. This also is a universal feature of the ratio-correlation model, one which 

can be exploited in a model with three symptomatic indicators, as is discussed shortly. 

In using this model to construct a set of county population estimates for 2005, we follow the 

six steps just described. First, we substitute (Si,2005/∑ Si,2005)j is substituted into the numerator of the 

right side of the model  for each symptomatic indicator j and (Si,2000/∑ Si,2000) j  into the denominator 

of the right side of the model for each symptomatic indicator j, which yields  Si,j,2005.  Second, the 

updated model with the preceding substitution of symptomatic data for 2005 is used to estimate 

Pi,2005.  Third, (Pi,2000/∑ Pi,2000)  is substituted into the denominator of Pi,2005, which yields Pi,2005 = 

(Pi,2005/∑ Pi,2005)/(Pi,2000/∑ Pi,2000), where ∑ Pi,2005) represents the independently estimated 

population of the state as a whole, which is the parent area of the 39 counties for 2005.  Fifth,   

since  Pi,2005 , (Pi,2000/∑ Pi,2000) and ∑ Pi,2005  are all known values, the equation Pi,2005 = (Pi,2005/∑ 

Pi,2005) /(Pi,2000/∑ Pi,2000) is manipulated to yield an estimate of the population of county i in the year 

2005:                                                                                     

                                                                                 ^ 
                (Pi,2005) *(Pi,2000/∑ Pi,2000) *(∑ Pi,2005)  = Pi,2005                               

 

The sixth and final step is to control the 2005 population estimates of the 39 counties so that 

they sum to the independently estimated 2005 population for the state of Washington as a whole:      

 ^ 
Pi,2005  =  (Pi,2005 /∑ Pi,2005 )*( ∑Pi,2005)                                                
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The final “controlled” population estimates are shown in Table 1. The appendix shows the 

results of these steps in detail.  

 

  Table 1. 2005 County Population 
                                        Estimates for the state of Washington  

County
Estimated 2005 

Population
 Adams 18,125
 Asotin 20,706
 Benton 155,792
 Chelan 66,727
 Clallam 66,870
 Clark 393,823
 Columbia 4,284
 Cowlitz 95,522
 Douglas 40,065
 Ferry 7,295
 Franklin 59,650
 Garfield 2,266
 Grant 79,475
 GHarbor 68,680
 Island 74,802
 Jefferson 26,994
 King 1,793,565
 Kitsap 239,943
 Kittitas 36,560
 Klickitat 18,979
 Lewis 69,010
 Lincoln 9,982
 Mason 53,729
 Okanogan 38,740
 Pacific 21,099
 Pend Oreille 12,093
 Pierce 758,454
 SanJuan 15,363
 Skagit 110,607
 Skamania 10,104
 Snohomish 652,045
 Spokane 442,581
 Stevens 41,795
 Thurston 230,361
 Wahkaikum 4,043
 WallaWalla 58,906
 Whatcom 180,956
 Whitman 40,906
 Yakima 235,504

State of Washington 6,256,400  
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An acute observer may notice that except when k=z, the use of the model for estimating 

population corresponds to a shorter length of time than that used to calibrate the model. For 

example, if one constructs a model using 1990 and 2000 data for the 39 counties in the state of 

Washington it corresponds to a ten year period of change in both population shares and shares of 

symptomatic variables. However, in using this same model to estimate the populations of the 39 

counties in 2003, the time period now corresponds to a three year period of change in both 

population shares and shares of symptomatic variables. Swanson and Tedrow (1989) addressed this 

temporal inconsistency by using a logarithmic transformation. They called the resulting model the 

“rate-correlation” model. This is one of several variants of the basic ratio-correlation regression 

technique.  Another is known as the “difference correlation” method.  Similar in principle to the 

ratio-correlation method, the difference correlation method differs in its construction of a variable 

that is used to reflect change over time.  Rather than making ratios out of the two proportions at two 

points in time, the difference correlation method employs the differences between proportions 

(Schmitt and Grier, 1966; O’Hare 1976; Swanson, 1978a).  Another variant was proposed by 

Namboodiri and Lalu (1971).  Known as the “average regression” technique, Namboodiri and Lalu 

(1971) examined the use of the simple, unweighted average of the estimates provided by a number 

of simple regression equations, each of which relates the population ratio to one symptomatic 

indicator ratio (As discussed in Chapter 9, this turns out to be very similar to using an average of 

several censal ratio estimates). Using the insights provide by Namboodiri and Lalu (1971), Swanson 

and Prevost (1985) demonstrated that the ratio-correlation model can be interpreted as a  

demographic form of “synthetic estimation” that is composed of a set of weighted censal-ratio 

estimates, with the regression coefficients serving as the weights – a topic we cover toward this end 

of this exposition. 

Bryan (2004) observes that one of the shortcomings of the ratio-correlation method and related 

techniques is that substantial time lags can occur in obtaining the symptomatic indicators needed for 
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producing a current population estimate. That is, suppose that it is the year 2014 and a current 

(2014) estimate is desired, but the most current symptomatic indicators are for 2012. What can one 

do? One answer to this question is “lagged ratio-correlation,” which was introduced by Swanson 

and Beck (1994). In this variant of ratio-correlation, the ratios of proportional symptomatic 

indicators precede the ratios of population proportions by “m” years in model construction so that: 

Si,jt-m  = (Si,t-m/∑ Si,t-m)j /(Si,(t-m)-z/∑ Si,(t-m)-z) j                              [1f] 

                                  where  

                                 m = number of years that symptomatic indicators  
                                        precede the population proportions 

 

When the lagged ratio-correlation is used to estimate a population, the only change to the six 

steps described earlier for the basic form of ratio-correlation is that  (Si,t+k/∑ Si,t+k)j is substituted 

into the numerator of the right side of Equation [1c] for each symptomatic indicator j in place of 

(Si,(t-m)+k/∑ Si,(t-m)+k)j and /(Si,(t-m)/∑ Si,(t-m)) j  into the denominator of the right side of Equation [1c] 

for each symptomatic indicator j in place of (Si,t/∑ Si,t) j. 

Because ratio-correlation and its variants are grounded in regression, they are connected to the 

inferential and other statistical tools that come with it (Swanson, 1989; Swanson and Beck, 1994). 

In using these tools, it is important to point to keep in mind several important things. The first point 

is that within this framework, "uncertainty" is generally based on the “frequentist” view of sample 

error. Thus, as discussed by Swanson and Beck (1994), the construction of confidence intervals 

around estimated values means, for example, that one perceives (whether implicitly or explicitly) 

the following: the data used in model construction are a random sample drawn from a universe; the 

model would fit perfectly were it not for random error; and, any subsequent observations of 

independent variables placed into the model and used to generate dependent variables are drawn 

from the same universe. Since a given model is constructed from data using observations from all 

known cases (e.g., all 39 counties in Washington), the "universe" represented by the county data is a 
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"superpopulation". This means, as noted by D’Allesandro and Tayman (1980), the observed values 

are a random manifestation of all the possible observations that could have occurred.  

Technically speaking, this makes it difficult to interpret confidence intervals in an actual 

estimation or projection application or an ex post facto test because we can never observe the 

regression surface for this superpopulation (specifically, the set of county populations forming the 

expected values of this regression surface). What we do observe is a census count. This census 

count has two distinct uses. First, it must be viewed as an estimator during the model construction 

phase (as are all of the symptomatic indicators). However, when we use a given model to estimate 

or project the number of persons in a given county, we must view the number that is (or could be) 

generated by a complete enumeration as a parameter. Thus, in using the term "confidence intervals" 

one (implicitly or explicitly) assumes that a census count is used to generate an estimate or 

projection. Consequently, when a confidence band is placed around estimated or projected figures, 

the band is an interval estimator for a parameter (Swanson and Beck, 1994). 

Given these qualification, Swanson and Beck (1994) conducted ex post facto examinations on 

estimates produced by the lagged ratio-correlation model and their “forecast intervals” for total 

populations of the 39 counties in Washington State in 1970, 1980, and 1990. For the 1970 set of 

county population projections, they found that the 2/3 forecast intervals contained the 1970 census 

figure in more than two-thirds (30 of the 39 counties) as did the 1990 results (31 of 39 counties). 

For the 1980 set, the 2/3 forecast interval contained the 1980 census figure in just less than two-

thirds (24 of the 39 counties). Swanson and Beck (1994) argued that these findings are of interest 

from an application standpoint because if the 2/3 forecast intervals contained substantially less than 

two-thirds of the actual county populations, one would have a misplaced sense of accuracy in the 

ability of the given models to accurately estimate and project county populations. Since the 

intervals did contain more than two-thirds of the actual county population figures in both 1970 and 
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1990 and nearly two-thirds in 1980, they argued that the results of this case study revealed an  

intuitively appealing view of the accuracy of these particular models (Swanson and Beck, 1994). 

The findings by Swanson and Beck (1994) suggest that, among other useful features, one can 

construct confidence  and “forecast” intervals around the estimates produced by ratio-correlation 

and its variants that are both statistically and substantively meaningful. 

Given that the input data are of good quality, the accuracy of the regression-based techniques 

largely depends upon the validity of the central underlying assumption: that the observed statistical 

relationship between the independent and dependent variables in the past intercensal period will 

persist in the current postcensal period.  The adequacy of this assumption (that the model is 

invariant) is dependent on several conditions (Swanson, 1980; Mandell and Tayman, 1982; 

McKibben and Swanson, 1997; Tayman and Schafer, 1985). 

 In an attempt to deal with model invariance, Ericksen (1973, 1974) introduced a method of 

post-censal estimation in which the symptomatic information is combined with sample data by 

means of a regression format. He considered combining symptomatic information on births, deaths, 

and school enrollment with sample data from the Current Population Survey. Swanson (1980) took 

a different approach to the issue of model invariance and presented a mildly restricted procedure for 

using a theoretical causal ordering and principles from path analysis to provide a basis for 

modifying regression coefficients in order to improve the estimation accuracy of the ratio-

correlation method of population estimation.  

Ridge Regression also represents a method for dealing with model invariance.  Swanson 

(1978b) and D’Allesandro and Tayman (1980) examined this approach to multiple regression and 

found that it offered some benefits.  Ridge Regression also represents a way to deal with another 

possible problem with the regression approach, which is multi-collinearity, a condition whereby the 

independent variables are all highly correlated. This condition can result in type II errors (finding 

that given coefficients are not shown to be statistically significant when in fact they are) when one 
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evaluates the statistical significance of the coefficients associated with the symptomatic indicators 

used in a given model. One also can use the stand diagnostic tools associated with regression to 

evaluate and this issue and overcome it without resorting to ridge regression, if an evaluation 

suggests it is present (Fox, 1991).  Swanson (1989) demonstrated another way to deal with model 

invariance by using the statistical properties of the ratio-correlation method in conjunction with the 

Wilcoxon matched-pairs signed rank test and the “rank-order” procedure he introduced (Swanson 

1980).    

Judgment is also important in the application of ratio-correlation, as the analyst must take into 

account the reliability and consistency of coverage of each variable (Tayman and Schafer, 1985).  

The increasing availability of administrative data allows many possible combinations of variables.  

High correlation coefficients for two past intercensal periods would suggest that the degree of 

association of the variables is not changing very rapidly.  In such a case, the regression based on the 

last intercensal period should be applicable to the current postcensal period.  Furthermore, it is 

assumed that deficiencies in coverage in the basic data series will remain constant, or change very 

little, in the present period (Tayman and Schafer, 1985). 

In addition to the issue of time lags in the availability of symptomatic indicators, Bryan (2004), 

notes two other shortcomings of regression-based techniques:  (1) the use of multiple and differing 

variables (oftentimes depending on the place being estimated) and in some instances averaging the 

results of multiple estimates makes it very difficult to decompose error; and (2) this process may 

compromise the comparability of estimates between different subnational areas.  In regard to 

decomposing error, this is a feature of all of the estimation methods that do not deal directly with 

the components of population change. In regard to comparability, we note that this is an issue when 

different regression models are used (e.g., the ratio-correlation model used to estimate the 

populations of the 75 counties of Arkansas is different from the ratio-correlation model used to 

estimate the populations of the 39 counties of Washington state. 
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In regard to the issue of decomposing error, McKibben and Swanson (1997) argue that at 

least some of the shortcomings in accuracy of population estimates would be better understood by 

linking these methods with the substantive socio-economic and demographic dynamics that clearly 

must be underlying the changes in population that the methods are designed to measure. They 

provide a case study of Indiana over two periods, 1970-1980 and 1980-1990, which was selected 

because a common population estimation method exhibits a common problem over the two periods: 

its coefficients change. The authors link these changes to Indiana's transition to a post-industrial 

economy and describe how this transition operated through demographic dynamics that ultimately 

affected the estimation model. 

Ratio-Correlation and Synthetic Estimation 

Before describing synthetic estimation and its relationship to the ratio-correlation method, it 

is important to realize that synthetic estimation emerged from the field of survey research, as 

statisticians grappled with the problem of trying to apply survey results for a large area (e.g., the 

U.S. as a whole) to subareas (e.g., states) while maintaining validity and avoiding excessive costs. 

Thus, as Swanson and Pol (2008) observe, there are two distinct traditions in regard to “small area 

estimates,” (1) demographic; and (2) statistical: 

“Demographic methods are used to develop estimates of a total population as well 
as the ascribed characteristics – age, race, and sex - of a given population. Statistical 
methods are largely used to estimate the achieved characteristics of a population – 
educational attainment, employment status, income, and martial status, for example 
Among survey statisticians, the demographer’s definition of an estimate is generally 
termed an "indirect estimate" because unlike a sample survey, the data used to 
construct a demographic estimate are symptomatic indicators of population change 
(e.g., K-12 enrollment data, births, deaths,) and do not directly represent the 
phenomenon of interest. Among demographers, the term "indirect estimate" has a 
different meaning.” 

 

So, in the field of demography a direct estimate refers to the measurement of demographic 

phenomena using data that directly represent the phenomena of interest, while among statisticians, 

it is used to describe estimates obtained by survey sampling. In terms of an indirect estimate, 
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demographers, usually use this term in referring to the measurement of demographic phenomena 

using data that do not directly represent the phenomena of interest (e.g., a child woman ratio instead 

of a crude birth rate). Among survey statisticians, this term refers to an estimate not based on a 

sample survey, for example, a model based estimate (Schaible, 1993).   

As a bit of history on the emergence of synthetic estimation, Ford (1981) notes that the 

problem of constructing county or other small area estimates from survey data has been an 

important topic and large-scale surveys and even complete census counts were often used to solve 

the problem.  Because of the resource needs of this approach, attention turned to possible  

alternatives for obtaining small area information in the 1970s. (U.S. NCHS, 1968; Ford, 1981). One 

of the alternatives that gained a lot of attention was synthetic estimation, which according to Ford 

(1981) emerged because of a 1978 workshop on Synthetic Estimates for Small Area Estimates co-

sponsored by the National Institute on Drug Abuse (NIDA) and the National Center for Health 

Statistics (NCHS). This same workshop resulted in a monograph edited by Steinberg (1979). 

In the “Introduction” to the NIDA/NCHS monograph, Steinberg (1979) cites “The Radio 

Listening Survey,” discussed in Hansen, Hurwitz and Madow (1953) as an early example of the 

employment of the synthetic method.  In this survey, questionnaires were mailed to about 1,000 

families in each of 500 county areas and personal interviews were conducted with a sub-sample of 

the families in 85 of these count areas who were mailed questionnaires (Hansen, Hurwitz, and 

Madow (1953: 483-484).  Knowing in advance that the mail-out portion would yield a low level of 

responses (about 20 percent of those mailed questionnaires responded), the data collected in the 

personal interviews were used to obtain estimates not affected by non-response. The relationships 

between the data in the 85 county areas that were collected from the personal interviews and the 

mailed questionnaires were then applied to the county areas for which only mail-out/mail-back was 

done to improve the estimates for these areas (Hansen, Hurwitz, and Madow (1953: 483). While the 
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radio listening study did no use the hallmark of synthetic estimation, which is taking information 

from a “parent” area and applying it to its subareas, the idea behind it is similar. 

In most cases, synthetic estimation is used to estimate “achieved characteristics” and often 

rely on estimates made by demographers of total populations and their achieved characteristics 

(e.g., age, race, and sex) in developing the estimates (Causey, 1988; Cohen and Zhang, 1988; 

Gonzalez and Hoza, 1978; Levy, 1979).  However, it need not be confined to this use. Before we 

turn to a demographic interpretation of synthetic estimation, it is useful to spend some time on its 

statistical interpretation. 

Cohen and Zhang (1988) provide an informal statistical definition of a synthetic estimator 

that we adapt as follows.  First, assume that one is interested in obtaining estimates of an unknown 

characteristic, xi  over a set of i sub-regions (i = 1,…,n) .  Second, suppose one has census counts pi, 

(i =l ,…,n), for each of the sub-regions and both a census count, P, and a “known” value of X, for 

the parent region, where ∑pi. = P and ∑xi. = X, respectively. Third, suppose that the estimated 

values of xi for the subareas must sum to the known value X for the parent area. In this case, Cohen 

and Zhang (1988: 2) define the statistical synthetic estimate as: 

^                    

x i = (X/P)* (pi) .                                                            [2] 

 

Basically, Equation [2] shows that the estimated characteristic (xi) for a given subarea i is 

found by multiplying the known value of population for sub-area i, pi, by the “known” ratio of the 

characteristic (X) to population (P) for the parent area. It is inevitably the case that the “known” 

value of X for the parent area is taken from a sample survey (U.S. NCHS, 1968). Cohen and Zhang 

(1988) go on to show how the basic idea given in Equation [2] can be extended to include 

demographic subgroups (e.g., by age, race, and sex). Similar examples are provided by Levy 

(1979). 
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As a simple example that shows how Equation [2] would be applied , suppose we have 

50,000 people in a parent area (P= 50,000) and 1,000 have a characteristic (X=1,000) that we are 

interested in estimating for its three subareas, which have, respectively 30,000, 15,000, and 5,000 

people, respectively (Exhibit 2). 

 

                             Exhibit 2. Example of Synthetic Estimation 

 

 

 

 

 

 

             

                    

From a statistical perspective, synthetic estimates are generally held to be “biased.” That is, 

there is a difference between the estimator's expected value and the true value of the parameter 

being estimated (see, e.g., Weisstein, 2011).  The bias basically comes from the fact that the ratio of 

xi to pi  in a given subarea i is not the same as the ratio for the parent area. That is,  X/P ≠ xi/pi.  

With this simple introduction to systematic estimation, we now turn to how synthetic 

estimation works from the standpoint of demographers. The key difference for demographers is that 

unlike statisticians, it is the population of area i (pi) that is “unknown” rather than some 

characteristic (xi) of this population. To implement synthetic estimation, demographers find 

“characteristics” that are available for both the parent area and its subareas. These characteristics 

       

 

 Parent Area         Estimated number with  

Sub-area  Population    Ratio (X/P)         Characteristic x 

1   30,000   (1000/50000)  6,000 

2   15,000  (1000/50000)  3,000  

3   5,000  (1000/50000)             1,000 
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are known to demographers as “symptomatic indicators.”  So, for demographers, Equation [2] 

becomes 

                                    ^      

p i = (sj,i) /(Sj/P)                                                                       [3] 

 

   where 

 
P = population of the parent area 

     
Sj = value of symptomatic indicator j for the parent area 
 

    Sj,i =  value of symptomatic indicator j for subarea i (1 ≤ i ≤ n) 

                          pi =  estimated population for subarea i (1 ≤ i ≤ n) 

                                 and so, we can identify the ratio Sj/P as  

Rj = (Sj/P) 

 

As is the case for the synthetic estimators used by statisticians (Equation [2]), the basic form 

of the synthetic estimator used by demographers (as shown in Equation [3]) can be expanded.  One 

expansion is to put the synthetic estimation process in motion using a regression framework. This 

can be done as follows. 

    pi,t   = a0*(Pt )*(pi,t-z/Pt-z )    +  bj*[(sj,i,t )/ ((sj,i,t-z/pi,t-z) * (Sj,t/(Sj,t-z/Pt-z) ))]   +   εi       [4] 

                  

 where  

a0 = the intercept term to be estimated 
bj =  the regression coefficient to be estimated using symptomatic  
        indicator j 

    εi = the error term 
    s j,i = symptomatic indicator  (1 ≤ j ≤ k) in subarea i (1 ≤ i≤ n) 
    t = year of the most recent census 
    z = number years to the census preceding the most recent census 

                 and 
 P = population of the parent area 



 19

Sj = value of symptomatic indicator j for the parent area 
                           

pi =  estimated population for subarea i (1 ≤ i ≤ n) 
 
 

Once the preceding regression model is constructed, it can be used to estimate the population of 

each area i for a year k years subsequent to the last census (time =t) as follows: 

  ^      

 pi,t+k   = [a0*(Pt+k )*(pi,t/Pt  )]    +  [bj*((sj,i,t+k )/ ((sj,i,t/pi,t) * (Sj,t+k/(Sj,t/Pt) )))]                   [5] 

 
 

Equations [4] and [5] should be familiar. They can be algebraically manipulated to become a 

bivariate form (i.e., a regression model with only one independent variable) of the ratio-correlation 

model discussed earlier, which we show here. First, borrowing from Equation [1a], we show here 

the simple bivariate ratio-correlation regression model that is algebraically equivalent to Equation 

[5]  

 

                                  Pi,t = a0 + (bj)*Si,jt + εi                              [6]          

   

                where 

a0 = the intercept term to be estimated 

bj =  the regression coefficient to be estimated 

    εi = the error term 
 
    j = symptomatic indicator  (1 ≤ j ≤ k) 

    i = subarea (1 ≤ j ≤ n) 

    t = year of the most recent census 

  and 

      Pi,t = (Pi,t/∑ Pi,t) /(Pi,t-z/∑ Pi,t-z)                                     [7] 
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      Si,jt  = (Si,t/∑ Si,t)j /(Si,t-z/∑ Si,t-z) j                                      [8] 

                where 

z = number of years between each census for which 
      data are  used to construct the model 
 
p =  population 

     
s =  symptomatic indicator 

 

                As was shown earlier, a set of population estimates can be done in a series of six 

steps, which lead to the estimation version of Equation [6], which is algebraically equivalent to 

Equation [5]: 

                                                                                         ^ 
                                     (Pi,t+k) *(Pi,t/∑ Pi,t) *(∑ Pi,t+k)  = Pi,t+k                                                 [9] 
 

As discussed by Swanson and Prevost (1985), these equations show that the ratio-correlation 

model can be viewed as a regression method that uses synthetic estimation (taking a ratio of change 

for a given “rate” in a parent area and a “censal-ratio” to estimate a current population for area i).  

Note that the intercept term, a0, shown in Equation [5] serves as a “weight” applied to an estimate of 

pi at time t+k (pi,t+k) based on the proportion of the population in area i at the time of the last census, 

t (pi,t) that is multiplied by the total of the parent area at time t+k (Pt+k). The regression coefficient, 

bj, shown in Equation [5] also serves as a weight. In this case it is applied to the “synthetic 

estimate” based on symptomatic indicator sj.  As Swanson (1980) and Swanson and Prevost (1985) 

observe, the regression coefficient in a ratio-correlation model sum to 1.00 (or very nearly so) in 

virtually every model constructed, which means that as shown in Equation [5] the estimate of pi can 

be viewed as a weighted average of synthetic estimates based on j symptomatic indicators. 

 In terms of strengths of the sample based methods that are aimed at generating what the 

statisticians refer to direct estimates, they offer a well-understood approach that is less costly than 
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full enumerations along with estimates of their precision.  In terms of their weaknesses, the cost of 

sample surveys often precludes using them to develop usable information for small areas unless 

they are supplemented by other methods such as synthetic estimation (Ghosh and Rao, 1994; Platek 

et al., 1987; Rao, 2003). Jaffe (1951: 211) notes that while sample surveys are cheaper than full 

enumerations, “demographic procedures” are cheaper than sample surveys; however, he also notes 

that the “direct estimates” resulting from sample surveys can only be used for current estimates 

since it is impossible to interview a past or future population. He goes to observe that only 

“demographic procedures” can provide past, current, and future estimates. We note, however, that 

these same ‘demographic procedures’ can be improved by using the statistical tools and 

perspectives that have emerged from sampling, as this discussion of synthetic estimation illustrates. 

 

Summary 

 

Regression-based methods have very limited application in the preparation of estimates of 

population composition, such as age-sex groups for small geographic areas.  It is possible, of 

course, to apply the age distribution at the last census date to a pre-assigned current total for the 

area, or to extrapolate the last two census age distributions to the current date and apply the 

extrapolated distribution to the current total.  Spar and Martin (1979) found, for example, that the 

ratio-correlation method is more accurate than others in estimating the populations of Virginia 

counties by race and age. 

While the ratio-correlation approach has its limitations, as suggested by this overview, it is clear 

it has strong advantages, given the availability of good quality data to implement and test it. Among 

its many advantages is the fact that regression has a firm foundation in statistical inference, which 

leads to the construction of meaningful measures of uncertainty around the estimates it produces, as 

demonstrated by Swanson and Beck (1994).  No other population technique other than those based 
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on survey samples has this characteristic. Further, as suggested by Snow (1911) and those who 

discussed his ground-breaking use of multiple regression for population estimation, it is important 

to use variables that represent some measure of relative change over time, which the ratio-

correlation method does. Although ratio-correlation is inherently a cross-sectional model rather than 

a time series, Swanson (2004) suggests that one of the reasons for its consistently good 

performance, may be due to the fact that the formation of the change in ratios provides some of the 

benefits associated with “stationarity,” which is an important characteristic in the development of a 

good ARIMA model (Smith, Tayman, and Swanson, 2001: 172-176). 

The basic assumption underlying the regression methods discussed here is the same as those 

underlying any trend extrapolation methods—in terms of the change in a variable of interest 

specified by a particular method—the future will be just like the past.  This is the source of model 

invariance and one must always ask in using a regression-based method what sort of  changes are 

expected to occur over time and how can they be accommodated? 

 

Endnote 
 
1 This work is a draft of a chapter forthcoming in Subnational Population Estimates (Swanson and 
Tayman, 2011, Springer) 
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Number 
Year =2000

Number 
Year=1990

Proportion 
Year =2000

Proportion Year 
=1990

Ratio of 2000 
Prop/1990 Prop

 Adams 6,098 5,553 0.00196738 0.002499767 0.787025521
 Asotin 12,987 8,597 0.004189959 0.00387007 1.082657236
 Benton 75,315 53,452 0.024298665 0.024062227 1.009826097
 Chelan 32,803 24,043 0.010583139 0.010823321 0.977808879
 Clallam 39,068 28,085 0.012604398 0.012642888 0.996955607
 Clark 167,584 88,903 0.054067151 0.040021032 1.350968445
 Columbia 2,671 2,256 0.000861737 0.001015573 0.848523475
 Cowlitz 49,643 34,503 0.01601618 0.015532048 1.031169905
 Douglas 16,855 11,320 0.005437881 0.005095869 1.067115429
 Ferry 3,856 2,486 0.00124405 0.001119111 1.111642059
 Franklin 16,321 13,228 0.005265598 0.005954785 0.884263396
 Garfield 1,670 1,537 0.000538787 0.000691904 0.778702686
 Grant 29,970 21,391 0.009669136 0.009629483 1.004117935
 GHarbor 32,038 29,613 0.010336329 0.01333074 0.775375474
 Island 38,265 24,325 0.012345329 0.010950267 1.12739976
 Jefferson 17,330 11,413 0.005591129 0.005137735 1.088247842
 King 1,001,339 765,692 0.323059164 0.344687849 0.937251385
 Kitsap 125,219 82,518 0.040399051 0.037146727 1.087553441
 Kittitas 16,417 12,836 0.00529657 0.00577832 0.916628084
 Klickitat 11,717 7,943 0.003780223 0.003575662 1.057209207
 Lewis 40,913 27,990 0.013199645 0.012600122 1.047580719
 Lincoln 6,656 5,495 0.002147406 0.002473657 0.868109854
 Mason 27,238 18,108 0.008787719 0.00815159 1.078037328
 Okanogan 18,159 14,987 0.005858587 0.006746625 0.868372958
 Pacific 12,697 9,906 0.004096397 0.004459336 0.918611473
 PendOreille 6,903 4,851 0.002227095 0.002183751 1.019848515
 Pierce 325,079 229,449 0.104879316 0.103289942 1.015387506
 SanJuan 9,228 6,919 0.002977203 0.003114693 0.955857879
 Skagit 55,780 38,696 0.017996143 0.01741959 1.033097962
 Skamania 5,586 3,946 0.001802195 0.001776352 1.014548749
 Snohomish 303,110 196,968 0.09779152 0.088668128 1.102893707
 Spokane 209,404 165,189 0.067559419 0.07436233 0.908516708
 Stevens 25,481 14,406 0.008220863 0.006485079 1.267658073
 Thurston 119,016 79,381 0.038397795 0.035734559 1.074528289
 Wahkaikum 2,455 1,944 0.00079205 0.000875121 0.90507445
 WallaWalla 24,411 20,614 0.007875652 0.009279704 0.848696416
 Whatcom 90,987 60,874 0.029354878 0.027403353 1.071214827
 Whitman 25,273 18,842 0.008153756 0.008482012 0.961299834
 Yakima 94,011 73,148 0.030330502 0.03292868 0.921096825
check sum 3,099,553 2,221,407 1.0000 1.0000 
STATE 3,099,553 2,221,407

COUNTY

Table 2a. Registered Voters, 1990 and 2000 Data
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Number 
Year =2000

Number 
Year=1990

Proportion 
Year =2000

Proportion Year 
=1990

Ratio of 2000 
Prop/1990 Prop

 Adams 9,144 7,476 0.002950103 0.003365435 0.876588954
 Asotin 10,375 8,964 0.003347257 0.00403528 0.829497968
 Benton 80,977 62,203 0.02612538 0.028001622 0.932995226
 Chelan 39,153 31,360 0.012631821 0.014117179 0.894783691
 Clallam 35,697 29,592 0.011516822 0.013321287 0.864542744
 Clark 183,053 139,958 0.059057871 0.063004213 0.937363832
 Columbia 2,186 2,226 0.000705263 0.001002068 0.703807786
 Cowlitz 52,461 47,555 0.016925344 0.021407603 0.790623007
 Douglas 13,008 12,107 0.004196734 0.005450149 0.770021861
 Ferry 2,384 1,943 0.000769143 0.000874671 0.879351522
 Franklin 27,518 24,762 0.008878054 0.011146989 0.796453117
 Garfield 1,263 1,247 0.000407478 0.000561356 0.725881898
 Grant 35,188 28,154 0.011352605 0.012673949 0.895743254
 GHarbor 33,310 32,097 0.010746711 0.014448951 0.743771032
 Island 37,675 28,462 0.012154978 0.0128126 0.94867382
 Jefferson 14,459 10,170 0.004664866 0.00457818 1.018934751
 King 1,083,380 975,138 0.349527819 0.438973137 0.796239654
 Kitsap 125,716 101,075 0.040559397 0.045500442 0.891406658
 Kittitas 16,405 13,174 0.005292699 0.005930476 0.892457708
 Klickitat 9,820 8,351 0.003168199 0.003759329 0.842756427
 Lewis 36,164 34,157 0.011667489 0.015376291 0.758797358
 Lincoln 5,566 5,632 0.001795743 0.00253533 0.708287578
 Mason 25,701 18,893 0.008291841 0.00850497 0.974940622
 Okanogan 18,420 15,046 0.005942792 0.006773185 0.877400015
 Pacific 10,214 9,204 0.003295314 0.00414332 0.795331737
 PendOreille 5,709 4,486 0.001841878 0.002019441 0.912073511
 Pierce 349,476 308,937 0.112750451 0.139072669 0.810730479
 SanJuan 8,063 5,917 0.002601343 0.002663627 0.97661673
 Skagit 66,322 49,147 0.021397279 0.022124266 0.967140723
 Skamania 4,149 3,104 0.00133858 0.001397313 0.957967535
 Snohomish 332,324 278,326 0.10721675 0.125292664 0.855730473
 Spokane 231,030 202,904 0.074536554 0.091340308 0.816031341
 Stevens 16,866 12,789 0.00544143 0.005757162 0.945158355
 Thurston 121,894 104,118 0.039326316 0.046870294 0.839045632
 Wahkaikum 1,634 1,513 0.000527173 0.0006811 0.774002197
 WallaWalla 24,258 22,549 0.00782629 0.010150774 0.771004254
 Whatcom 90,938 70,164 0.029339069 0.031585387 0.928881103
 Whitman 17,061 16,285 0.005504342 0.007330939 0.750837213
 Yakima 117,751 99,187 0.037989671 0.04465053 0.850822406
check sum 3,296,712 2,828,372 1.0636 1.2732 
STATE 3,296,712 2,828,372

COUNTY

Table 2b. Registered Autos, 1990 and 2000 Data 
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Number 
Year =2000

Number 
Year=1990

Proportion 
Year =2000

Proportion Year 
=1990

Ratio of 2000 
Prop/1990 Prop

 Adams 2,417 2,277 0.000779745 0.001025026 0.76070721
 Asotin 2,183 2,212 0.00070436 0.000995765 0.707355068
 Benton 18,719 15,296 0.006039116 0.006885726 0.87704854
 Chelan 8,268 6,567 0.002667485 0.002956234 0.902325116
 Clallam 6,424 6,439 0.002072702 0.002898613 0.715066772
 Clark 42,803 30,613 0.013809333 0.013780906 1.002062827
 Columbia 381 521 0.000122885 0.000234536 0.523951293
 Cowlitz 11,789 10,538 0.003803339 0.00474384 0.801742579
 Douglas 3,979 3,285 0.001283695 0.001478792 0.868069579
 Ferry 816 896 0.000263264 0.000403348 0.652696401
 Franklin 6,980 5,760 0.002252063 0.002592951 0.868532899
 Garfield 295 311 9.5175E-05 0.000140001 0.679814927
 Grant 10,776 8,281 0.003476627 0.003727818 0.932617293
 GHarbor 7,778 8,129 0.002509452 0.003659392 0.685756503
 Island 6,433 5,803 0.002075538 0.002612308 0.794522595
 Jefferson 2,282 2,145 0.00073618 0.000965604 0.762403811
 King 173,328 145,005 0.055920321 0.065276197 0.856672483
 Kitsap 27,470 23,320 0.008862526 0.010497851 0.844222898
 Kittitas 2,907 2,637 0.000937955 0.001187085 0.790132316
 Klickitat 2,365 2,370 0.000762987 0.001066891 0.715150057
 Lewis 7,901 8,124 0.002549003 0.003657142 0.696993252
 Lincoln 1,475 1,466 0.000475943 0.000659942 0.721188755
 Mason 5,281 4,448 0.001703768 0.002002335 0.8508909
 Okanogan 4,895 4,449 0.001579241 0.002002785 0.788522402
 Pacific 2,068 2,069 0.000667125 0.000931392 0.71626711
 PendOreille 1,242 1,150 0.000400677 0.00051769 0.773971288
 Pierce 85,065 70,118 0.027444386 0.03156468 0.869465072
 SanJuan 1,175 949 0.000379132 0.000427207 0.887467517
 Skagit 12,035 9,713 0.003882792 0.004372454 0.88801211
 Skamania 835 877 0.000269339 0.000394795 0.682224832
 Snohomish 73,759 56,030 0.023796657 0.025222753 0.943459945
 Spokane 48,216 43,219 0.015555879 0.019455687 0.799554304
 Stevens 3,938 3,898 0.001270386 0.001754744 0.723972616
 Thurston 23,806 20,459 0.007680617 0.009209929 0.833949692
 Wahkaikum 318 287 0.000102595 0.000129197 0.794098348
 WallaWalla 6,082 5,650 0.001962199 0.002543433 0.771476591
 Whatcom 17,695 14,297 0.005708817 0.006436011 0.887011641
 Whitman 3,120 3,079 0.001006639 0.001386058 0.726259907
 Yakima 31,436 26,359 0.010142062 0.011865903 0.854723186
check sum 668,735 559,046 0.2158 0.2517 
STATE 668,735 559,046

COUNTY

Table 2c. Enrollment in Grades 1- 8, 1990 and 2000 Data
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Number 
Year =2000

Number 
Year=1990

Proportion 
Year =2000

Proportion Year 
=1990

Ratio of 2000 
Prop/1990 Prop

 Adams 16,428 13,603 0.005300119 0.006123596 0.865523901
 Asotin 20,551 17,605 0.006630311 0.007925157 0.836615678
 Benton 142,475 112,560 0.045966305 0.050670589 0.907159495
 Chelan 66,616 52,250 0.021492131 0.023521129 0.913737242
 Clallam 64,525 56,464 0.020817518 0.025418125 0.819002903
 Clark 345,238 238,053 0.111383158 0.107163163 1.039379154
 Columbia 4,064 4,024 0.001311157 0.001811465 0.723810362
 Cowlitz 92,948 82,119 0.02998755 0.036967111 0.811195376
 Douglas 32,603 26,205 0.010518613 0.011796578 0.891666538
 Ferry 7,260 6,295 0.002342273 0.00283379 0.826551571
 Franklin 49,347 37,473 0.015920683 0.016869038 0.943781286
 Garfield 2,397 2,248 0.000773337 0.001011971 0.764189025
 Grant 74,698 54,758 0.024099604 0.024650143 0.977665896
 GHarbor 67,194 64,175 0.02167861 0.028889348 0.750401489
 Island 71,558 60,195 0.023086555 0.027097691 0.851974986
 Jefferson 25,953 20,146 0.008373143 0.009069027 0.923268049
 King 1,737,034 1,507,319 0.560414357 0.678542473 0.825909031
 Kitsap 231,969 189,731 0.074839501 0.085410283 0.876235257
 Kittitas 33,362 26,725 0.010763488 0.012030663 0.894671151
 Klickitat 19,161 16,616 0.006181859 0.007479944 0.82645794
 Lewis 68,600 59,358 0.022132224 0.026720903 0.828273803
 Lincoln 10,184 8,864 0.003285635 0.003990264 0.823412987
 Mason 49,405 38,341 0.015939395 0.017259782 0.923499229
 Okanogan 39,564 33,350 0.012764421 0.015013008 0.850224126
 Pacific 20,984 18,882 0.006770008 0.008500018 0.796469874
 PendOreille 11,732 8,915 0.003785062 0.004013222 0.943147843
 Pierce 700,820 586,203 0.22610357 0.263888157 0.856815905
 SanJuan 14,077 10,035 0.004541623 0.004517407 1.005360465
 Skagit 102,979 79,555 0.033223823 0.035812888 0.927705773
 Skamania 9,872 8,289 0.003184975 0.003731419 0.853556112
 Snohomish 606,024 465,642 0.195519806 0.209615798 0.932753198
 Spokane 417,939 361,364 0.134838475 0.162673477 0.82889035
 Stevens 40,066 30,948 0.01292638 0.013931711 0.927838668
 Thurston 207,355 161,238 0.066898356 0.072583727 0.921671543
 Wahkaikum 3,824 3,327 0.001233726 0.001497699 0.82374758
 WallaWalla 55,180 48,439 0.017802567 0.021805549 0.816423687
 Whatcom 166,814 127,780 0.053818728 0.057522102 0.935618244
 Whitman 40,740 38,775 0.013143831 0.017455153 0.753005741
 Yakima 222,581 188,823 0.071810677 0.085001533 0.844816262
check sum 5,894,121 4,866,692 1.9016 2.1908 
STATE 5,894,121 4,866,692

COUNTY

Table 2d. Total Population, 1990 and 2000 Data
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Number 
Year =2005

Number 
Year=2000

Proportion 
Year =2005

Proportion Year 
=2000

Ratio of 2005 Prop/2000 
Prop

 Adams 6,477 6,098 0.001846242 0.00196738 0.938426384
 Asotin 11,805 12,987 0.003364966 0.004189959 0.803102325
 Benton 85,586 75,315 0.024395931 0.024298665 1.004002932
 Chelan 37,395 32,803 0.010659288 0.010583139 1.007195336
 Clallam 43,520 39,068 0.012405194 0.012604398 0.984195647
 Clark 207,611 167,584 0.059178646 0.054067151 1.094539755
 Columbia 2,542 2,671 0.000724586 0.000861737 0.840843924
 Cowlitz 53,914 49,643 0.01536796 0.01601618 0.95952715
 Douglas 16,994 16,855 0.004844069 0.005437881 0.890800781
 Ferry 4,088 3,856 0.001165267 0.00124405 0.936672121
 Franklin 21,235 16,321 0.006052948 0.005265598 1.149527149
 Garfield 1,524 1,670 0.00043441 0.000538787 0.806273207
 Grant 32,760 29,970 0.009338101 0.009669136 0.965763711
 GHarbor 36,647 32,038 0.010446074 0.010336329 1.010617382
 Island 43,688 38,265 0.012453081 0.012345329 1.008728237
 Jefferson 21,165 17,330 0.006032995 0.005591129 1.079029809
 King 1,082,406 1,001,339 0.308535298 0.323059164 0.955042706
 Kitsap 138,956 125,219 0.039608826 0.040399051 0.980439512
 Kittitas 19,817 16,417 0.005648753 0.00529657 1.066492593
 Klickitat 12,163 11,717 0.003467012 0.003780223 0.917145013
 Lewis 38,007 40,913 0.010833736 0.013199645 0.820759649
 Lincoln 6,642 6,656 0.001893274 0.002147406 0.881656249
 Mason 31,083 27,238 0.008860079 0.008787719 1.008234247
 Okanogan 20,066 18,159 0.005719729 0.005858587 0.976298476
 Pacific 13,195 12,697 0.003761179 0.004096397 0.918167693
 PendOreille 7,486 6,903 0.002133853 0.002227095 0.958132743
 Pierce 405,023 325,079 0.11545011 0.104879316 1.10079007
 SanJuan 11,246 9,228 0.003205625 0.002977203 1.076723584
 Skagit 63,185 55,780 0.01801062 0.017996143 1.000804414
 Skamania 6,305 5,586 0.001797214 0.001802195 0.997235871
 Snohomish 352,238 303,110 0.100403967 0.09779152 1.02671445
 Spokane 251,184 209,404 0.071598947 0.067559419 1.05979223
 Stevens 28,414 25,481 0.008099292 0.008220863 0.985211881
 Thurston 137,742 119,016 0.03926278 0.038397795 1.022526959
 Wahkaikum 2,592 2,455 0.000738839 0.00079205 0.932818677
 WallaWalla 29,279 24,411 0.008345856 0.007875652 1.059703579
 Whatcom 106,094 90,987 0.03024165 0.029354878 1.030208693
 Whitman 21,082 25,273 0.006009336 0.008153756 0.737002132
 Yakima 97,052 94,011 0.027664266 0.030330502 0.912093896
  
STATE 3,508,208 3,099,553 1.0000 1.0000

COUNTY 

Table 2e. Registered Voters, 2000 and 2005 Data
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Number 
Year =2005

Number 
Year=2000

Proportion 
Year =2005

Proportion Year 
=2000

Ratio of 2005 Prop/2000 
Prop

 Adams 12,064 9,144 0.003438793 0.002950103 1.165651813
 Asotin 11,853 10,375 0.003378648 0.003347257 1.009378178
 Benton 103,288 80,977 0.029441812 0.02612538 1.126942914
 Chelan 40,826 39,153 0.01163728 0.012631821 0.921267009
 Clallam 43,880 35,697 0.01250781 0.011516822 1.086047029
 Clark 238,323 183,053 0.067932973 0.059057871 1.150278066
 Columbia 2,602 2,186 0.000741689 0.000705263 1.05164913
 Cowlitz 59,836 52,461 0.017056001 0.016925344 1.007719636
 Douglas 23,100 13,008 0.006584558 0.004196734 1.568971966
 Ferry 2,767 2,384 0.000788722 0.000769143 1.025455079
 Franklin 35,678 27,518 0.010169865 0.008878054 1.145505997
 Garfield 1,413 1,263 0.00040277 0.000407478 0.988445079
 Grant 42,352 35,188 0.01207226 0.011352605 1.063391227
 GHarbor 38,934 33,310 0.011097974 0.010746711 1.032685607
 Island 47,153 37,675 0.013440765 0.012154978 1.105782723
 Jefferson 18,982 14,459 0.00541074 0.004664866 1.159891708
 King 1,227,244 1,083,380 0.349820763 0.349527819 1.000838114
 Kitsap 152,831 125,716 0.043563837 0.040559397 1.074075061
 Kittitas 20,690 16,405 0.005897598 0.005292699 1.114289372
 Klickitat 11,859 9,820 0.003380358 0.003168199 1.066965344
 Lewis 39,820 36,164 0.011350524 0.011667489 0.972833523
 Lincoln 6,025 5,566 0.001717401 0.001795743 0.956373605
 Mason 34,352 25,701 0.009791894 0.008291841 1.180907111
 Okanogan 21,622 18,420 0.006163261 0.005942792 1.037098412
 Pacific 12,270 10,214 0.003497512 0.003295314 1.061359329
 PendOreille 7,157 5,709 0.002040073 0.001841878 1.107604487
 Pierce 436,245 349,476 0.124349811 0.112750451 1.102876387
 SanJuan 10,736 8,063 0.003060252 0.002601343 1.176412351
 Skagit 81,691 66,322 0.023285677 0.021397279 1.088254146
 Skamania 5,032 4,149 0.001434351 0.00133858 1.071546273
 Snohomish 412,919 332,324 0.117700832 0.10721675 1.09778399
 Spokane 277,551 231,030 0.07911475 0.074536554 1.06142216
 Stevens 20,268 16,866 0.005777309 0.00544143 1.061726194
 Thurston 163,196 121,894 0.046518336 0.039326316 1.182880611
 Wahkaikum 2,080 1,634 0.000592895 0.000527173 1.124669752
 WallaWalla 29,277 24,258 0.008345286 0.00782629 1.066314496
 Whatcom 115,773 90,938 0.033000609 0.029339069 1.124800811
 Whitman 20,277 17,061 0.005779874 0.005504342 1.050057184
 Yakima 141,179 117,751 0.040242483 0.037989671 1.059300628
  
STATE 3,973,145 3,296,712 1.1325 1.0636

COUNTY 

Table 2f. Registered Autos, 2000 and 2005 Data 



 32

 

 

 
 
 
 
 
 
 
 
 
 
 
  
 

Number 
Year =2005

Number 
Year=2000

Proportion 
Year =2005

Proportion Year 
=2000

Ratio of 2005 Prop/2000 
Prop

 Adams 2,482 2,417 0.000707381 0.000779745 0.907195775
 Asotin 2,077 2,183 0.00059204 0.00070436 0.840536749
 Benton 19,064 18,719 0.005434222 0.006039116 0.899837281
 Chelan 7,930 8,268 0.002260533 0.002667485 0.847439938
 Clallam 5,899 6,424 0.001681528 0.002072702 0.811273366
 Clark 46,759 42,803 0.013328426 0.013809333 0.965175193
 Columbia 389 381 0.000110871 0.000122885 0.902233821
 Cowlitz 11,373 11,789 0.003241755 0.003803339 0.852344476
 Douglas 4,067 3,979 0.001159361 0.001283695 0.903143919
 Ferry 736 816 0.000209651 0.000263264 0.796354155
 Franklin 8,701 6,980 0.002480283 0.002252063 1.101338148
 Garfield 241 295 6.87473E-05 9.5175E-05 0.7223256
 Grant 10,846 10,776 0.003091595 0.003476627 0.889251387
 GHarbor 7,155 7,778 0.00203952 0.002509452 0.812735113
 Island 5,909 6,433 0.00168447 0.002075538 0.811582196
 Jefferson 1,933 2,282 0.000551099 0.00073618 0.748592414
 King 170,347 173,328 0.048556614 0.055920321 0.868317855
 Kitsap 25,376 27,470 0.007233434 0.008862526 0.816181917
 Kittitas 2,964 2,907 0.000844947 0.000937955 0.900840028
 Klickitat 1,984 2,365 0.000565508 0.000762987 0.741176146
 Lewis 7,682 7,901 0.002189579 0.002549003 0.85899443
 Lincoln 1,341 1,475 0.000382349 0.000475943 0.80335081
 Mason 5,074 5,281 0.001446394 0.001703768 0.848938059
 Okanogan 4,021 4,895 0.001146141 0.001579241 0.725754324
 Pacific 1,817 2,068 0.000518037 0.000667125 0.776520715
 PendOreille 1,110 1,242 0.000316458 0.000400677 0.789807647
 Pierce 84,043 85,065 0.023956174 0.027444386 0.872898863
 SanJuan 1,126 1,175 0.000320819 0.000379132 0.846193378
 Skagit 12,072 12,035 0.003441122 0.003882792 0.886249222
 Skamania 748 835 0.000213169 0.000269339 0.791451626
 Snohomish 73,322 73,759 0.020900101 0.023796657 0.878278846
 Spokane 46,975 48,216 0.013389944 0.015555879 0.860764266
 Stevens 3,754 3,938 0.00107015 0.001270386 0.842381765
 Thurston 24,096 23,806 0.006868415 0.007680617 0.894253064
 Wahkaikum 302 318 8.60838E-05 0.000102595 0.839061039
 WallaWalla 6,027 6,082 0.001717988 0.001962199 0.875542265
 Whatcom 17,575 17,695 0.005009683 0.005708817 0.877534391
 Whitman 2,891 3,120 0.000824028 0.001006639 0.818593144
 Yakima 31,688 31,436 0.009032589 0.010142062 0.890606697
  
STATE 661,898 668,735 0.1887 0.2158

COUNTY 

Table 2g. Enrollment in Grades 1- 8, 2000 and 2005 Data
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Number 
Year =2000 Proportion Year =2000

Estimated Ratio of
2005 Prop /2000 Prop

Estimated Proportion 
Year =2005

Estimated Population 2005 Not 
Controlled

Estimated 
Population 2005

Controlled

 Adams 16,428 0.002787184 1.063487897 0.002964136 18,545 18,125
 Asotin 20,551 0.003486695 0.971181915 0.003386215 21,186 20,706
 Benton 142,475 0.024172391 1.054035167 0.025478551 159,404 155,792
 Chelan 66,616 0.011302109 0.965545336 0.010912699 68,274 66,727
 Clallam 64,525 0.010947349 0.998966852 0.010936039 68,420 66,870
 Clark 345,238 0.05857328 1.099587137 0.064406425 402,952 393,823
 Columbia 4,064 0.000689501 1.016129849 0.000700622 4,383 4,284
 Cowlitz 92,948 0.015769612 0.990626693 0.015621798 97,736 95,522
 Douglas 32,603 0.005531444 1.184544909 0.006552244 40,993 40,065
 Ferry 7,260 0.001231736 0.968611432 0.001193073 7,464 7,295
 Franklin 49,347 0.008372241 1.165182116 0.009755185 61,032 59,650
 Garfield 2,397 0.000406676 0.91106728 0.00037051 2,318 2,266
 Grant 74,698 0.012673306 1.025583671 0.012997536 81,318 79,475
 GHarbor 67,194 0.011400173 0.985248907 0.011232008 70,272 68,680
 Island 71,558 0.012140572 1.007627662 0.012233176 76,536 74,802
 Jefferson 25,953 0.004403201 1.002602877 0.004414662 27,620 26,994
 King 1,737,034 0.2947062 0.995305428 0.29332268 1,835,144 1,793,565
 Kitsap 231,969 0.039355996 0.99707038 0.039240697 245,505 239,943
 Kittitas 33,362 0.005660216 1.056326591 0.005979037 37,407 36,560
 Klickitat 19,161 0.003250866 0.954783049 0.003103872 19,419 18,979
 Lewis 68,600 0.011638716 0.969691291 0.011285961 70,609 69,010
 Lincoln 10,184 0.001727823 0.944850982 0.001632536 10,214 9,982
 Mason 49,405 0.008382081 1.048303049 0.008786961 54,975 53,729
 Okanogan 39,564 0.006712451 0.943852979 0.006335567 39,638 38,740
 Pacific 20,984 0.003560158 0.969194674 0.003450486 21,588 21,099
 PendOreille 11,732 0.001990458 0.993572129 0.001977664 12,373 12,093
 Pierce 700,820 0.118901529 1.043206233 0.124038816 776,036 758,454
 SanJuan 14,077 0.002388312 1.052024748 0.002512563 15,720 15,363
 Skagit 102,979 0.017471477 1.035336839 0.018088864 113,171 110,607
 Skamania 9,872 0.001674889 0.986583624 0.001652418 10,338 10,104
 Snohomish 606,024 0.102818385 1.037135674 0.106636615 667,161 652,045
 Spokane 417,939 0.070907774 1.020769569 0.072380498 452,841 442,581
 Stevens 40,066 0.006797621 1.005540852 0.006835285 42,764 41,795
 Thurston 207,355 0.03517997 1.070883741 0.037673658 235,701 230,361
 Wahkaikum 3,824 0.000648782 1.019015058 0.000661119 4,136 4,043
 WallaWalla 55,180 0.009361871 1.029031869 0.009633664 60,272 58,906
 Whatcom 166,814 0.02830176 1.045653176 0.029593826 185,151 180,956
 Whitman 40,740 0.006911972 0.967871665 0.006689902 41,855 40,906
 Yakima 222,581 0.037763222 1.019901547 0.038514769 240,964 235,504

 
6,401,438 6,256,400

STATE 5,894,121 1.0000 1.0232 6,256,400

COUNTY

Table 2h. Estimated Population 2005


