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A b s t r a c t - - I n  this paper, we present a numerical comparative study of the Newton-preconditioned 
Lanczos algorithms and Newton-preconditioned CG-like methods, with respect to convergence speed 
and CPU-time, by considering appropriate test problems. (~) 2000 Elsevier Science Ltd. All rights 
reserved. 

K e y w o r d s - - K r y l o v  subspace, Preconditioned CG-like methods, Preconditioned Lanczos algo- 
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1. I N T R O D U C T I O N  

Nonlinear systems of equations often arise from the numerical modeling of problems in many  

branches of science and engineering. For example, the discretization of boundary  value problems 
by finite difference or finite element methods gives rise to a huge sparse system of nonlinear 
equations. The  Newton method is well known for solving nonlinear system of equations. At each 
Newton step of the Newton method,  it requires us to solve a linear system of equations, where 

the system matr ix  is a Jacobian matr ix  and it converges rapidly for any sufficiently good initial 
guess. However, solving a system of linear equations at  each Newton step becomes expensive if 
the number  of unknowns are large and may not be justified when the iterative solution X (new) is 

far from a solution. 

Chronopoulos [1] explained tha t  the Newton method coupled with direct linear system solvers 

is an efficient way to solve the nonlinear systems when the dimension of the Jacobian mat r ix  is 
small. When the Jacobian becomes large and sparse, some kind of iterative methods may be used. 

The  Newton-i terat ive method uses a linear iterative method such as SOR [2] to approximate  the 
solution of linear system in each Newton step. 

The  sequence of major  iterates X (new) (outer) generated by such a method depends upon 
the part icular  linear iterative method chosen and the criteria used to stop the minor (inner) 
iteration. Therefore, the Krylov subspace methods (called a parameter  free i terative method)  
play an impor tant  role in performing the convergence speed of the Newton-iterative method.  

A nonlinear conjugate method has been introduced and analyzed by Daniel [3]. Fletcher 
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and Reeves [4] have obtained a nonlinear conjugate method which converges if the Jacobian is 
symmetric and uniformly positive definite. The number of Newton steps is decreased significantly 
when using a generalized CGS method as a linear solver for the Newton correction equation and it 
was so successful as a linear solver in the Newton scheme (see the work of Fokkema e t  al .  [5]). The 
Lanczos algorithm has also been extended for solving a nonlinear system of equations (see [6]). 
Hybrid Krylov methods for a nonlinear system of equations were given by Brown and Saad [7]. 

In this paper, we have focused our attention on making a comparative numerical s tudy of the 
Newton method with the preconditioned Krylov subspace methods. Our results reveal that  the 
convergence speed of the Newton method with preconditioned CG-like methods is faster than 
the Newton method with a preconditioned Lanczos algorithm for any arbitrary initial vector. 

The layout of the paper is as follows. The next section gives a brief account of the Newton 
method for a nonlinear system. The ensuing section describes the Krylov space methods for 
solving symmetric and nonsymmetric linear systems. The numerical experiments for sample 
problems are given in Section 4 and the conclusions are drawn in the final section. 

2. N E W T O N  M E T H O D  

F O R  N O N L I N E A R  S Y S T E M S  O F  E Q U A T I O N S  

Consider a nonlinear system of equations 

F ( X )  = 0 ,  (1) 

where F : R n ~ R n is a nonlinear mapping with the following properties. 

(1) There exists an X E R '~ with F(:K) = 0. 
(2) F is continuously differentiable in a neighborhood of X. 
(3) F ' (X)  (Jacobian of F) is nonsingular. 

Newton's Algorithm 

Start with an initial guess X0 = :K(old). 

Set 

STEP 1. 

STEP 2. 

STEP 3. Solve the system 

STEP 4. 

STEP 5. C h e c k  

STEP 6. 

A = J (:K (°td)) , (2) 

13 : - F  (X(°td)) . (3) 

A y  = ft. (4) 

If not goto Step 2 with 

~/~(new) = x(o ld)  q._ ~.  

~(new) _ ~l~(old) m i n i m u m .  

(5) 

(6) 

x(o ld)  = x(new).  (7) 

Computing the solution of (4) using a direct method at every Newton method can be expensive 
if the number of unknowns are large and may not be justified when X (new) is far from X. 
Therefore, it is reasonable to use an iterative method to solve (4) only approximately. Step 3, often 
consisting of the Jacobian, is only required for performing Jacobian times vector operations. The 
explicit computation of the Jacobian requires additional sparse storage and computation time. 
Efficient methods to compute directly sparse Jacobian have been proposed by Griewank [8]. 

In our implementation, the Jacobian times vector operation is approximated the following 
divided difference [7,9]: 

F (x ° + ey) - F (x °) 
F '  (x °) y = (8) 

£ 
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3. K R Y L O V  S U B S P A C E  M E T H O D S  

If  b is an a rb i t ra ry  nonzero vector,  a Krylov subspace of dimension m is defined by K m = 
KIn (A ,  b)  = Span (b, Ab, A 2 b , . . . ,  A m - l b ) .  

The  Krylov subspace methods  are mainly based on project ion process, either or thogonal  or 

oblique, onto Krylov subspace. The  general project ion method  for solving the linear sys tem 

A y  = l~ is a me thod  which seeks an approximate  solution x m from an affine space x ° + K m, 

by imposing a Petro-Gelerkin condit ion l~ - A '~ ± L m. Here K "~ is the Krylov subspace of 
dimension m and K m = Span (r °, A r ° , A 2 r  ° . . . .  , A " - l r ° ) ,  where r ° = l ~ -  A x  ° is a initial 

residual vector.  The  principal idea here is to make the residual vector r "~ or thogonal  to another  
Krylov subspace L re(called left subspace),  usually different from K "~ [10]. 

The  symmet r i c  Lanczos process is based on an or thogonal  project ion process onto the Krylov 

subspace K m, whereas the nonsymmetr ic  Lanczos process is based on oblique project ion pro- 

cess. In the oblique project ion process, the  right space K m is a Krylov subspace K "~ = St)an 

(v 1. A v  1, . . . ,  A m - i v ) ,  where v 1 is a s tar t ing vector,  while L is Krylov subspace associated with 
L TM = Span (w 1, A T w l , . . . ,  ( A T ) m - l w l ) .  

4. N U M E R I C A L  E X P E R I M E N T S  

The  numerical  exper iments  described in this section have been performed oil a D E C - A L P H A  

3000/600 OSF system• The  single precision has been used throughout•  

Experiment 1 

We have considered the  following system of n equations in n unknowns:  f (x)  = A x  - b (x )  = 0, 

where x is the vector  with components  xl  th rough  x~, A is an n x n t rkt iagonal  matrix:  

2 - 1  

- 1  2 - 1  

- 1  2 
A =  

- 1  
- 1  2 

and b is a vector  whose components  depend on x: 

e-x1 

c-XS 

c-x3 
b(x)  = 

C---cn 

The  Jacobian  of this sys tem is a t r idiagonal  matr ix  

2 -]- C - x l  - - 1  

- 1  2 + e -x2 

- 1  
J ( x )  = 

- 1  

2 + e  - z 3  ". 

- 1  
- 1  2 + e - x "  

which is symmet r i c  whatever  the  value of  x. Here, we find the solution of the given sys tem by 
employing the Newton ' s  me thod  with the CG, precondit ioned CG- ICF ,  Lanczos and precondi-  
t ioned Lanczos - ICF methods  used for solving the intermediate  linear system• The  compara t ive  
s tudy  is made  for the  case when n = 30 and for the initial guess x ° = (1, 1 . . . . .  1) T. 
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The details of the execution (CPU) time as well as the number of Newton (outer) and linear 
(inner) iterations are summarized in Table 1. Here it can be observed that  the total execution 
(CPU) time is the same for all different cases considered. The results clearly show that  the 
Newton-CG method without preconditioning takes more number of Newton (outer) iterations 
as compared to the Newton-preconditioned CG method with incomplete Cholesky factorization 
(ICF) preconditioning. Although the Newton-Lanczos method with and without precondition- 
ing takes the same number of Newton (outer) iterations, but when the comparison is made 
along with the total number of linear (inner) iterates, we find that  the Newton-preconditioned 
Lanczos method with incomplete Cholesky preconditioning is faster than the Newton-Lanczos 
method without preconditioning. We also infer from Table 1 that  the Newton-preconditioned 
CG method with ICF preconditioning is faster than the Newton-preconditioned Lanczos method 
with ICF preconditioning. 

Table  1. C o m p a r a t i v e  resul ts  (outer,  inner,  CPU- t ime)  for E x p e r i m e n t  1 using dif- 

ferent Krylov  subspace  solvers. 

Ou te r  Er ror  

1.0 x 10 - °1  

1.0 x 10 - ° 2  

1.0 x 10 -03 

1.0 × 10 -04 

1.0 x 10 -05  

1.0 x 10 - ° 6  

E x p e r i m e n t  2 

Newton-CG 

5 99 O.O2 

7 140 0.02 

8 161 0.02 

9 182 0.02 

10 203 0.02 

12 245 0.02 

N e w t o n - C G - I C F  

5 5 0.02 

6 6 0.02 

6 6 0.02 

7 7 0.02 

7 7 0.02 

7 7 0.02 

Newton-LAN 

5 120 0.02 

6 151 0.02 

6 151 0.02 

7 167 0.02 

7 167 0.02 

7 167 0.02 

N e w t o n - L A N - I C F  

5 19 0.02 

6 24 0.02 

6 24 0.02 

7 27 0.02 

7 27 0.02 

7 27 0.02 

F ( x )  = 0, 

where 

f l ( X )  = (3 --  5 X l ) X  1 Jr- 1 - 2 x 2 ,  

fi(x) = (3 - 5 x i )  x i  + 1 - xi-1 - -  2 X i + l ,  i = 2 , 3 , . . . , ( n -  1), 

and 

f n  = (3--  5Xn) Xn + 1 -- Xn -1 .  

The Jacobian of the above system of equations is given by 

J ( x )  = 

"3 - 10Xl - 2  
- 1  3 - 10x2 

- 1  

- 2  

3 - 1 0 x 3  

- 1  
- 1  3 - -  l O x n  

which can never be symmetric, whatever the value of x. As the Jacobian is nonsymmetric,  
we solve the given system using the Newton method with the CGS (conjugate gradient squared 
method),  preconditioned CGS-ILU, and the Lanczos biorthogonalization methods used for solving 
the intermediate linear system. We solve the problem for the case when n = 30 and for the initial 

We consider the following system of n nonlinear equations in n unknowns [8]: 
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Table 2. Comparative results (outer, inner, CPU-time) for Experiment 2 using dif- 
ferent Krylov subspace solvers. 

Outer Error 

1.0 x 10 -m 

1.0 x 10 -°2 

1.(J × 10 -°3 

1.0 × 10 -04 

1.0 x 10 -05 

1.0 x 10 06 

Newton-CGS 

4 12 0.03 

4 12 0.03 

5 15 0.03 

5 15 0.03 

6 18 0.03 

6 18 0.03 

Newton-CGS-ILU 

4 4 0.03 

4 4 0.03 

5 5 0.03 

5 5 0.03 

6 6 0.03 

6 6 0.03 

Newton-LAN 

4 ,ll 0.03 

.1 ,ll 0.03 

5 48 0.03 

5 4~ 0.03 

6 55 0.03 

6 55 0 03 
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guess x ° = ( - 1 . 2 , - 1 . 2  . . . .  , - 1 . 2 )  T. The results obtained by using the various Krylov subspace 

liner solvers are compared and summarized in Table 2. 

The  results from Table 2 reveal that  the total  execution (CPU) t ime as well as the re:tuber 
of Newton (outer) iterations are the same ibr all the different cases considered. On comparing 
the total  number  of inner iterations required by each of the three different methods, we find 

that  the Newton-preconditioned CGS method with incomplete LU (ILU) decomposition is the 

fastest among them. It  should also be noted that  the linear system in the Newton-preconditioned 
CGS method with ILU preconditioning is solved in a single step for each Newton (outer) iteration. 

5. C O N C L U S I O N S  

Our  numer ica l  expe r imen t  on the  problem wi th  a symmet r i c  Jacob ian  revealed tha t  the  New- 

ton -p recond i t ioned  CG m e t h o d  with  incomple te  Cholesky precondi t ion ing  is faster t han  the 

N e w t o n - C G ,  Newton-Lanczos ,  and the  Newton-precond i t ioned  Lanczos methods .  It  has also 

been es tabl ished t h a t  the  precondi t ioned Krylov subspace linear solvers are faster than  the or- 

d inary  Kry lov  subspace  solvers. From the  second problem,  we can conclude tha t  the Newton-  

p recondi t ioned  CGS m e t h o d  with  ILU precondi t ion ing  is a faster m e t h o d  than  the N e w t o n - C G S  

and the  Nmvton-Lanczos  b ior thogonal iza t ion  me thod  for nonl inear  sys tems with  nonsym m et r i c  

Jacot)ian. 

Whi le  f inding the  solut ion of our problems,  we have not considered the  po lynomia l  pre(ondi -  

t ioning technique,  even though  polynomia l  precondi t ion ing  is considered to be be t t e r  t han  the  

incomple te  Cholesky factor izat ion precondi t ioning.  This  is because po lynomia l  p recondi t ion ing  

requires  Am~x at  each Newton  i te ra t ion  (which by itself a huge task),  and may  dras t ica l ly  reduce 

the efficiency. 
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