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The Bundle Theorem is proved for geometric locally projective lattices of rank 4 
which for every given line (rank 2 element) do not contain too many lines that are 
on a common plane (rank 3 element) with this line, but on no common point (rank 
I element). By a result of J. Kahn (Math. Z. 175 (1980), 219-247), this implies that 
these lattices are projectively embeddable. !C'i 1985 Academic Press, Inc. 

I. INTRODUCTION AND THEOREM 

Let L be a projective geometry of rank n (considered as the lattice of its 
subspaces), and let Q be a nonempty set of points of L. Define L(Q) := 
{xEL:~PEQ with P<x}u{O} d an consider L(Q) as the lattice induced 
by the partial order of L. It is not hard to see that L(Q) is a semimodular 
locally projective lattice of rank n. Semimodular means that if x, y E L cover 
x A y, then they are covered by x v y. For lattice definitions see [ 11. The 
rank 0, 1, 2, 3, and IZ elements are called “0,” “points,” “lines,” “planes,” 
and “1,” respectively. A lattice is called IocalLv projective, if for each point P 
the interval [P, l] is a projective geometry. A geometric lattice is a 
semimodular lattice of finite rank for which “Every element is the join of its 
points,” holds. If a lattice M is isomorphic to some L(Q), we say that M is 
projectively embeddable. 

By a theorem due to Wille [9], every semimodular locally projective lat- 
tice L of rank n > 4, such that the whole space is the join of the set of its 
points, is projectively embeddable. (This is a generalization of a theorem of 
MGrer [7] which states that Miibius geometries of dimension at least 3 
are projectively embeddable; a similar result was obtained by Kantor [S].) 

* This paper is a reworking of a part of the author’s doctoral thesis 
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Wille’s result is false for L of rank 4: There are examples (finite as well as 
infinite) of semimodular locally projective lattices of rank 4 which are even 
geometric, but not projectively embeddable (see [3]). Kahn [4] has 
characterized the projectively embeddable lattices (under an additional 
assumption that on every given point there are not too many lines which 
contain no further point) by the following property, called “Bundle 
Theorem”: 

If 4 lines are such that no 2 are on a common point, no 3 are coplanar, 
and 5 of the 6 pairs of lines are coplanar, then so is the sixth pair. 

On the other hand, it is well known that every affine geometry is projec- 
tively embeddable, and there are some generalizations of this fact (e.g., 
[6, 83). This suggests that a geometric locally projective lattice of rank 4 
should be projectively embeddable, if for each line 1 there are not too many 
lines which are on a common plane with 1, but on no common point. For 
any nonincident point-line-pair (P, 1) of a geometric lattice let )I] and 
z(P, I) denote the (possibly infinite) numbers of all points on f and of those 
lines on P which are on a common plane with 1, but on no common point. 
We obtain the following 

THEOREM. Let L be a geometric locally projective lattice of rank 4 which 
satisfies for every nonincident point-line-pair (P, I) 

(1) dP* 0 < III, 
(2) (z(P, I)- 1)2< II). 

Then L is projectively embeddable. 

In [2] this theorem serves to embed the “group space” of an orthogonal 
group into a projective space. The inequalities (1) and (2) are equivalent if 
z(P, I) is infinite; if \I/ > 2, then (2) implies (1). 

2. PROOF OF THE THEOREM 

In view of Kahn’s result we only have to show the validity of the Bundle 
Theorem. A proof not using Kahn’s result is given in [2]. Throughout Sec- 
tion 2, L is a geometric locally projective lattice of rank 4 satisfying con- 
ditions (1) and (2) of the theorem. The sets of points, lines, and planes of L 
are denoted L, , L,, and L,, respectively. The minimum element of L is 0, 
and the maximum element is 1. 

If P and Q are distinct points of L, then P v Q is a line, hence a point of 
both [P, 1 ] and [Q, 11. The order of [P, 1 ] ( [Q, 11) being one less than 
(so equal to if infinite) the number of planes on P v Q, it follows that all of 
the projective planes [P, l] have the same order. We denote this common 
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order O(L). Let P be a point and 1 a line not on P. Then z(P, I) + (I) = 
O(L) + 1. If O(L) is infinite, then (1) implies 111 = O(L) and z(P, I) < O(L). 
If O(L) is finite, we get 2. z(P, I) < O(L) + 1 and 2.111 > O(L) + 1. We con- 
clude 

LEMMA 1. Let PE L, and 1, rnE L2. Then z(P, /)< Jm/. 

DEFINITION. Let E be a plane and S a collection of lines on E such that 
every point on E is on exactly one member of S. Then S is called a spread 
of E. 

LEMMA 2. Let EE L, be a plane and a, b E L, lines on E with a A b = 0. 
Then there is a unique spread of E which contains a and b. 

ProoJ Choose a point PE L, outside E, P v a and P v b are lines of 
the projective plane [P, 11. This implies (P v a) A (P v 6) =: f E L,. We 
have Er\ f=a A b=O and EA (Xv f)eL2 for every point X on E. 
Therefore S := {E A (X v f ): XE L,, X< E} is a spread of E. Obviously S 
contains a and b. Let S’ be another spread of E containing a and b, and 
assume S’ # S. Then there is a line c E S - S’. On every point on c there 
must be a line of S’. None of these lines is in S and no two of them coin- 
cide, for otherwise c E S’. We will provide a contradiction by showing that 
the number of lines of S’ which are not in S is smaller than the number of 
points on c. 

For every d E S’ - {a, b} define the lines g(d) := (P v d) A (P v a) and 
h(d):=(Pvd)r\(Pvb). We have g(d)Aa=dAa=O and h(d)Ab= 
d A b = 0. For every line dE S’ - S the lines f, g(d), and h(d), are pairwise 
distinct, and d is uniquely determined by g(d) and h(d). 

Therefore 1s’ - S/ < (z( P, a) - 1) ’ (z( P, b) - 1). If /cl is infinite, then 
Lemma 1 implies (z(P, a)- 1). (z(P, b)- 1)~ (cl. Now let ICI be finite. 
Then the projective plane [P, I ] is of finite order n, and z(P, I) + 111 = n + 1 
for every line I E L2 not on P. Without loss of generality we may assume 
z(P, a) az(P, 6). Together with (2) this implies IS’- SI d (z(P, a) - 1)2 < 
[al. We are ready if Ial < /cl. Otherwise, z(P, a)<z(P, c) and therefore 
(since z(P, a) > 1) IS’- SI < (z(P, c) - 1)2 < ICI. 

LEMMA 3 (Bundle Theorem). Let a, b, c, dE L2 be four lines, no two on a 
common point and no three on a common plane. If a v b, a v c, a v d, b v c, 
b v dE L,, then also c v dE L,. 

ProoJ: S, := {(Xv c) A (a v b): XE L,, X<a v b} and Sd := 
{(Xv d) A (a v b): XE L,, X< a v 6) are spreads of a v b because a com- 
mon point of two lines of S, (or of S,) would be a common point on c (or 
on d) and a v b, and consequently a common point on a and b. We have 
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a, b E S,, S,, and therefore S, = S, by Lemma 2. If there is a point D on d 
with (c v D) A (a v b) # 0, we conclude as follows: g := (c v D) A (a v b) 
is an element of S,. Consequently g E Sd, and therefore g v d E L3. We have 
c v D=g v D=g v d. This implies c v dEL3. 

To complete the proof, we must show that such a point D does exist. We 
may assume that c v d is not a plane, for otherwise we are ready. Choose 
points A, B, C E L, with A 6 a, B < b, and C 6 c. For every point D on d, 
1(D) := (A v B v C) A (c v D) is a line on C which is on a common plane 
(namely, A v B v C) with A v B. Assume Z(D) A (A v B) = 0 for every 
point D on d. Since QD,) # I(D,) for D1 # D2 (otherwise c v de L,), this 
implies z( C, A v B) > 1 dl. But z( C, A v B) < IdI by Lemma 1. Consequently 
there is a point D, on d with I(D,) A (A v B) # 0. We have l(Do) A 

(AvB)=(cvD,)r\(AvB), and therefore (c v D,) A (a v b) #O. Thus 
D, is the point we were looking for. 

REFERENCES 

1. G. BIRKHOFF, “Lattice Theory,” 3rd ed., Amer. Math. Sot. Colloq. Pub]., No. 25, 1966. 
2. R. FRANK, “Gruppentheoretische Darstellung der Geometrien metrischer Vektorrlume,” 

Doctoral dissertation, Technische Hochschule Darmstadt, 1983. 
3. A. HERZER, Semimodular locally projective lattices of rank 4, in “Geometry-van Staudt’s 

Point of View,” Proceedings of the NATO Advanced Study Institute (1980 Bad 
Windsheim, Germany), Reidel, Dordrecht/Boston/London, 1980. 

4. J. KAHN, Locally projective-planar lattices which satisfy the Bundle Theorem, Math. Z. 

175 (1980), 219-247. 
5. W. M. KANTOR, Dimension and embedding theorems for geometric lattices, J. Combin. 

Theory 17 (1974), 173-195. 
6. G. P. KIST, Projektiver AbschluB 2-gelochter Raume, Resultate Mark 3 (1980), 192-211. 
7. H. MKURER, Ein axiomatischer Aulbau der mindestens 3-dimensionalen Mobiusgeometrie, 

Math. Z. 103 (1968), 282-305. 
8. L. TEIRLINCK, “Combinatorial Structures,” Thesis, Vrije Universiteit, Brussels, 1976. 
9. R. WILLE, “On Incidence Geometries of Grade n,” Atti Conu. Geom. Combin. Appl. Perugia 

(1971), 421426. 


