Note

On the adjacent vertex distinguishing total coloring numbers of graphs with $\Delta=3^{\text {络 }}$
 Xiang'en Chen
 College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, PR China

Received 1 March 2006; received in revised form 24 June 2007; accepted 18 July 2007
Available online 30 August 2007

Abstract

An adjacent vertex distinguishing total-coloring of a simple graph G is a proper total-coloring of G such that no pair of adjacent vertices meets the same set of colors. The minimum number of colors $\chi_{a}^{\prime \prime}(G)$ required to give G an adjacent vertex distinguishing total-coloring is studied. We proved $\chi_{a}^{\prime \prime}(G) \leqslant 6$ for graphs with maximum degree $\Delta(G)=3$ in this paper. © 2007 Elsevier B.V. All rights reserved.

MSC: 05C15
Keywords: Simple graph; Adjacent vertex distinguishing total-coloring

1. Introduction

Let G be a finite simple graph with no component K_{2}. Let C be a finite set of colors and let $\varphi: E(G) \rightarrow C$ be a proper edge coloring of G. The color set of a vertex $v \in V(G)$ with respect to φ, is the set of colors of edges incident with v. The coloring φ is adjacent vertex distinguishing (or neighbor distinguishing) if it distinguishes any two adjacent vertices by their color sets. The minimum number of colors $\chi_{a}^{\prime}(G)$ (or $\left.\operatorname{ndi}(G)\right)$ required to give G an adjacent vertex distinguishing coloring has been studied in many papers, see for example [1,2,5,9].

The main conjecture related to adjacent vertex distinguishing coloring (formulated in [9]) is listed as follows.
Conjecture 1 (Zhang et al. [9]). For every connected graph G with order at least 6 , we have $\chi_{a}^{\prime}(G) \leqslant \Delta(G)+2$.
This conjecture has been proved in [2] for bipartite graphs as well as for graphs with maximum degree at most three.
Let G be a finite simple graph. We say a proper total-coloring of G is adjacent vertex distinguishing-total coloring (or an avd-total coloring, total neighbors distinguishing coloring) if for any pair of adjacent vertices x and y, the set of colors meet to x (i.e., the set of colors of edges incident with x together with the color assigned to x. This set, denoted by $C(x)$, is called the color set of x with respect to the given total-coloring) is not equal to the set of colors meet to y. It is clear that an avd-total coloring exists for any graph G. A k-avd-total-coloring is an avd-total-coloring using at most

[^0]k colors. Let $\chi_{a}^{\prime \prime}(G)$ be the minimum number of colors in an avd-total-coloring of G. In [8] the following conjecture was made.

Conjecture 2 (Zhang et al. [8]). For every connected graph G with order at least 2, we have $\chi_{a}^{\prime \prime}(G) \leqslant \Delta(G)+3$.
The relationship between Conjectures 1 and 2 is similar to the relationship between the Vizing Theorem (for proper edge coloring, see [4]) and the Total Coloring Conjecture (see [7]).
Obviously $\chi_{a}^{\prime \prime}(G)$ is at least $\Delta(G)+1$; if G does have two distinct maximum degree vertices which are adjacent, then $\chi_{a}^{\prime \prime}(G)$ is at least $\Delta(G)+2$. For bipartite graph G the edge chromatic number is Δ (see [4]). We use two new colors to be properly assigned to vertices of G. Then we obtain $(\Delta(G)+2)$-avd-total-coloring of G. Thus we have the following proposition.

Proposition 1.1. If G is a bipartite graph, then $\chi_{a}^{\prime \prime}(G) \leqslant \Delta(G)+2$.
So for bipartite graph Conjecture 2 is valid. For graphs with maximum degree $\Delta(G)=3$ we have
Theorem 1.1. If G is a graph with maximum degree $\Delta(G)=3$, then $\chi_{a}^{\prime \prime}(G) \leqslant 6$.
We know that $\chi_{a}^{\prime \prime}(G)=\Delta(G)+3$ if $G=K_{2 n+1}$ (Complete graph with odd order $\left.2 n+1, n \geqslant 1\right)$. We will give another example with $\chi_{a}^{\prime \prime}(G)=\Delta(G)+3$ in Section 2 and then prove Theorem 1.1 in Section 3.

2. An example with $\chi_{a}^{\prime \prime}(G)=\Delta(G)+3$

Consider the joint $s P_{3} \vee K_{t}$ of $s P_{3}$ and K_{t}, where $s P_{3}$ is the disjoint union of s paths $u_{i} v_{i} w_{i}(i=1,2, \ldots, s)$ with length 2 and K_{t} is the complete graph with t vertices $x_{1}, x_{2}, \ldots, x_{t}$. Suppose s is an even positive integer and t is an odd positive integer and $t \geqslant 9 s^{2}+2 s-1$. Obviously $\chi_{a}^{\prime \prime}\left(s P_{3} \vee K_{t}\right) \geqslant \Delta+2=3 s+t+1$. In the following we firstly prove that $s P_{3} \vee K_{t}$ does not have ($3 s+t+1$)-avd-total-coloring and then prove that $s P_{3} \vee K_{t}$ does have $(3 s+t+2)$-avd-total-coloring and therefore $\chi_{a}^{\prime \prime}\left(s P_{3} \vee K_{t}\right)=3 s+t+2=\Delta+3$.

Assume that we have an avd-total-coloring of $s P_{3} \vee K_{t}$ using $3 s+t+1$ colors. Then for every x_{i} there is only one color which did not meet x_{i}. Obviously each color is assigned to at most $(3 s+t-1) / 2$ edges. Meanwhile each color is assigned to at least $(t-1) / 2$ edges (Otherwise if some color is assigned to at most $(t-3) / 2$ edges then this color will meet at most $t-2$ vertices x_{i}. So there are at least two vertices which have the same color set. This is a contradiction). Suppose that there are r_{i} colors such that each of these colors is assigned exactly to $(t-3) / 2+i$ edges, where $i=1,2, \ldots,(3 s+2) / 2$. Thus we have

$$
\begin{aligned}
& r_{1}+r_{2}+r_{3}+\cdots+r_{(3 s-2) / 2}+r_{3 s / 2}+r_{(3 s+2) / 2}=3 s+t+1 \\
& \frac{t-1}{2} r_{1}+\frac{t+1}{2} r_{2}+\frac{t+3}{2} r_{3}+\cdots+\frac{3 s+t-5}{2} r_{(3 s-2) / 2}+\frac{3 s+t-3}{2} r_{3 s / 2}+\frac{3 s+t-1}{2} r_{(3 s+2) / 2} \\
& \quad=2 s+\frac{1}{2} t(t-1)+3 s t .
\end{aligned}
$$

From the above two equations we can deduce that

$$
\begin{align*}
r_{(3 s+2) / 2}= & 2 s+\frac{1}{2} t(t-1)+3 s t-\frac{3 s+t-3}{2}(3 s+t+1)+\frac{3 s-2}{2} r_{1} \\
& +\frac{3 s-4}{2} r_{2}+\cdots+2 r_{(3 s-4) / 2}+r_{(3 s-2) / 2} \\
= & -\frac{9}{2} s^{2}+5 s+\frac{1}{2} t+\frac{3}{2}+\frac{3 s-2}{2} r_{1}+\frac{3 s-4}{2} r_{2}+\cdots+2 r_{(3 s-4) / 2}+r_{(3 s-2) / 2} . \tag{1}
\end{align*}
$$

As $\left\{u_{1}, v_{1}, x_{1}, x_{2}, \ldots, x_{t}\right\}$ is a clique of $s P_{3} \vee K_{t}$, we need at least $t+2$ colors to be assigned to vertices. Therefore, there are at most $3 s-1$ colors which are not assigned to any vertices. Note that $r_{(3 s+2) / 2} \geqslant 3 s-1$ (Using the condition $t \geqslant 9 s^{2}+2 s-1$ and Eq. (1)). In $r_{(3 s+2) / 2}$ colors, each of which is assigned exactly to $(3 s+t-1) / 2$ edges, there are at least $r_{(3 s+2) / 2}-3 s+1$ colors such that each of which is assigned to some vertex and then meets all vertices. The other (at most) $6 s+t-r_{(3 s+2) / 2}$ colors contain the t colors which are missing at vertices $x_{1}, x_{2}, \ldots, x_{t}$ respectively. Thus

$$
t \leqslant 6 s+t-r_{(3 s+2) / 2}
$$

and using (1), we have

$$
\frac{9}{2} s^{2}+s-\frac{1}{2} t-\frac{3}{2} \geqslant \frac{3 s-2}{2} r_{1}+\frac{3 s-4}{2} r_{2}+\cdots+2 r_{(3 s-4) / 2}+r_{(3 s-2) / 2} \geqslant 0 .
$$

So $t \leqslant 9 s^{2}+2 s-3$. A contradiction. Thus $\chi_{a}^{\prime \prime}\left(s P_{3} \vee K_{t}\right)>3 s+t+1$.
Construct a new graph G with $3 s+t+1$ vertices by adding a new vertex y to $s P_{3} \vee K_{t}$ such that y is connected to every vertex of $s P_{3} \vee K_{t}$. From [3] we know that the vertex distinguishing proper edge coloring number of G is at most $3 s+t+2$. Assigning the color of each edge $z y$ to the vertex z for any vertex $z \in V\left(s P_{3} \vee K_{t}\right)$, we will obtain the vertex distinguishing total-coloring of $s P_{3} \vee K_{t}$. This is also the avd-total-coloring of $s P_{3} \vee K_{t}$ using $3 s+t+2$ colors. Thus $\chi_{a}^{\prime \prime}\left(s P_{3} \vee K_{t}\right)=3 s+t+2=\Delta\left(s P_{3} \vee K_{t}\right)+3$.

3. Graphs with $\boldsymbol{\Delta}=\mathbf{3}$

We start with the special case of regular graphs having a hamiltonian cycle.
Lemma 2.1. If G is a 3-regular hamiltonian graph then G has a 6 -avd-total-coloring.
Proof. For K_{4} (Complete graph with order 4), we may find its 6 -avd-total-coloring easily. So we suppose that the order of G is at least 6 in the following. Let the six colors be $1,2,3, a, b, c$. Let $C=x_{1} x_{2} \cdots x_{n} x_{1}$ be a hamiltonian cycle of G and I be the remaining 1 -factor of G. By Brooks' theorem G has vertex 3-coloring $f: V(G) \rightarrow\{a, b, c\}$. The edges of I are colored with 3 . As the cycle C is even, the edges of C can be colored alternately by 1 and 2 . For any pair of adjacent vertices x and y, the set of colors incident to x is equal to the set of colors incident to y whereas the colors of vertices x and y are distinct. So x is distinguished from y.

Theorem 2.2. If G is a 3-regular graph containing 1 -factor, then there exists a 6 -avd-total-coloring of G.

Proof. We may suppose that the order of G is at least 6 . Without loss of generality we may assume G is connected. Decompose G as a 1 -factor I and a union of cycles C_{i}. If there is only one cycle then G is hamiltonian and we are done by Lemma 2.1. Otherwise color G as follows.

By Brooks' theorem we properly color the vertices of G with a, b, c. The edges of I are colored by 3 .
If C_{i} is an even cycle then the edges of C can be colored alternately by 1 and 2 .
If $C_{i}=x_{0} x_{1} x_{2} \cdots x_{n} x_{0}$ is an odd cycle and each vertex of C_{i} is not adjacent to any vertex of the other odd cycle then the edges $x_{0} x_{1}, x_{1} x_{2}, x_{2} x_{3}, \ldots, x_{n-1} x_{n}$ can be colored alternately by 1 and 2 and $x_{n} x_{0}$ is colored by a color in $\{a, b, c\} \backslash\left\{f\left(x_{0}\right), f\left(x_{n}\right)\right\}$.

Suppose C_{i} is an odd cycle and some vertex of C_{i} is adjacent to some vertex of the other odd cycle. Construct a new graph M with vertex set $V(M)$ equal to the set of all odd cycles C_{j} and edges joining C_{j} and C_{k} when there is an edge of I joining some vertex of C_{j} to some vertex of C_{k}. Consider the nontrivial component S of M such that S contains the vertex corresponding to C_{i}. Suppose T is a spanning tree of S, We will color the edges of odd cycles corresponding to the vertices of T. Given any vertex $v \in V(T)$, the corresponding odd cycle is denoted by C_{v}. Starting with a vertex (of C_{v}) which is connected with one vertex of some other odd cycle by an edge of T, we color the edges of C_{v} using the method mentioned in the previous paragraph. For $u \in V(T)$, where $\operatorname{dist}_{T}(v, u)=1$, the corresponding odd cycle is C_{u}. There is only one edge being in $E(T)$ and connecting one vertex x of C_{v} and one vertex y of C_{u}. Of course the edge is denoted by $x y$. If x meets 1 and 2 then starting with y we can color the edges of C_{u} using the method described in the previous paragraph. If x meets only one of 1 and 2 , say 1 , then starting with y we color the edges (except the last edge) of C_{u} alternately by 2 and 1 (not 1 and 2) and the last edge $z y$ of C_{u} is colored by one color in $\{a, b, c\} \backslash\{f(z), f(y)\}$.

In the same way we can color the edges of C_{w} corresponding to the vertex $w \in V(T)$, where $\operatorname{dist}_{T}(v, w)=i$, $i=2,3, \ldots$.

So far we obtain a proper total coloring.
Obviously in each odd cycle C there is at most one vertex which is not distinguished from some other vertex (this vertex do not belong to C). If there are two adjacent vertices z_{1} and z_{2} having the same color sets then z_{1} and z_{2} belong to different odd cycles and the edge $z_{1} z_{2}$ has color 3 . Without loss of generality we assume the colors of z_{1} and z_{2} are c and a, respectively. There is one edge $z_{1} x_{1}$ which is incident to z_{1} and has color a. Similarly there is one edge $z_{2} x_{2}$ which is incident to z_{2} and has color c. There are two edges $z_{1} y_{1}$ and $z_{2} y_{2}$ which have the same colors 1 or 2 , say 1 . If y_{1} has color b then recolor the vertex z_{1} with 2 ; If y_{1} has color a then recolor the vertex z_{1} with 2 and the edge $z_{1} x_{1}$ with c.

After a series of modifications described above we obtain a 6-avd-total-coloring.
Proof of Theorem 1.1. We shall prove Theorem 1.1 by induction on $|E(G)|$. Suppose the colors we will use are 1, 2, 3, 4, 5, 6 .
From Proposition 1.1 we know that Paths on at least 2 vertices has a 4 -avd-total-coloring and then cycles on at least 3 vertices has a 6 -avd-total-coloring. So we may assume G is connected with maximum degree 3 .

Assume x is a vertex of degree 1 in G. Let y be the neighbor of x. Then y is of degree 2 or 3 . We can find a 6 -avd-total-coloring of $G^{\prime}=G-x$ by induction. In G^{\prime}, y has degree at most 2 , so there are at least three colors that do not meet y. At most two of these colors cannot be used to color $x y$ as they may result in y meeting the same set of colors as some neighbor in G^{\prime}. Therefore, there is still at least one color that can be given to $x y$ and then we color the vertex x properly so that the coloring is a 6 -avd-total-coloring. Hence we may assume G contains no degree 1 vertex.

Assume two vertices of degree 2 are adjacent in G. Let $x_{0} x_{1} x_{2} \cdots x_{n}, n>2$, be a suspended trail in G, i.e., a trail with $d_{G}\left(x_{0}\right)=d_{G}\left(x_{n}\right)=3$ and $d_{G}\left(x_{i}\right)=2$ for $0<i<n$. If $x_{0} \neq x_{n}$ let G^{\prime} be the graph obtained by contracting this path to $x_{0} y x_{n}$. If $x_{0}=x_{n}$ let G^{\prime} be the graph obtained by deleting the vertices x_{1}, \ldots, x_{n-1} and connecting two new degree one vertices y, z to $x_{0}=x_{n}$. By induction G^{\prime} has a 6 -avd-total-coloring. We may assume without loss of generality that the edge $x_{0} y$ has color 1 and $x_{n} y\left(\right.$ or $\left.x_{n} z\right)$ has color 2 . If the color of y is not 2 then without loss of generality we assume that y has color 6 . Assign the color of y to the vertex x_{1}. The edges $x_{0} x_{1}, x_{n-1} x_{n}$ can be colored with 1 and 2 , respectively. The sequence $x_{1} x_{2}, x_{2}, x_{2} x_{3}, x_{3}, \ldots, x_{n-2}, x_{n-2} x_{n-1}$ can be colored by $3-6$ cyclically. So far x_{n-1} has not been colored. At least two colors can be used to color vertex x_{n-1} properly and at least one color can be used to color properly such that vertex x_{n-1} is distinguished from x_{n-2}.

Hence, we can assume that any vertex of degree two is adjacent only to vertices of degree 3 . If G contains a bridge $x y$, let G_{1} and G_{2} be components of $G-x y$ with $x \in V\left(G_{1}\right)$ and $y \in V\left(G_{2}\right)$. Give $G_{1} \cup x y$ and $G_{2} \cup x y 6$-avd-total-coloring by induction. By permuting the colors on $G_{2} \cup x y$, we can assume that the vertices x, y and the edge $x y$ receive the same colors in each coloring respectively and the color set of x in $G_{1} \cup x y$ is not the same as the color set of y in $G_{2} \cup x y$. This now gives a 6 -avd-total-coloring.

Hence we can assume that G is a graph with maximum degree 3, no vertices of degree 1, no pair of adjacent degree 2 vertices, and bridgeless. If G does not have degree 2 vertices then G is 3 -regular. G must have 1 -factor for a cubic graph without a 1 -factor must have at least three bridges. So G has a 6 -avd-total-coloring by Theorem 2.2. If G does contain degree 2 vertices then let G^{\prime} be the graph obtained by taking two copies of G and joining their corresponding degree 2 vertices by an edge. Then G^{\prime} is 3 -regular and contains at most one bridge. Hence G^{\prime} has a 1 -factor and so by Theorem $2.2 G^{\prime}$ has a 6 -avd-total-coloring. This coloring of G^{\prime} induces a 6 -avd-total-coloring of G since no two vertices of degree 2 are adjacent in G.

Note that Theorem 1.1 had been also proved by Haiying Wang in [6]. But we have given a more short and more interesting proof in present paper.

Acknowledgments

This paper draws heavily on idea from a paper by Balister et al. [2], in which they consider the avd-edge-coloring of graph with $\Delta=3$. The present author would like to thank them for that paper. Without it, this one would not have been written.

The author is also very grateful to Professor Zhongfu Zhang for his helpful comments and suggestions.

References

[1] S. Akbari, H. Bidkhori, N. Nosrati, r-strong edge colorings of graphs, Discrete Math. 306 (23) (2006) 3005-3010.
[2] P.N. Balister, E. Győri, J. Lehel, R.H. Schelp, Adjacent vertex distinguishing edge-colorings, SIAM J. Discrete Math. 21 (1) (2007) $237-250$.
[3] C. Bazgan, A. Harkat-Benhamdine, H. Li, M. Woźniak, On the vertex-distinguishing edge colorings of graphs, J. Combin. Theory 75 (1999) 288-301.
[4] A. Bondy, U.S.R. Murty, Graph Theory with Applications, The Macmillan Press Ltd, New York, 1976.
[5] H. Hatami, $\Delta+300$ is a bound on the adjacent vertex distinguishing edge chromatic number, J. Combin. Theory Ser. B 95 (2005) $246-256$.
[6] H. Wang, On the adjacent vertex distinguishing total chromatic numbers of graphs with $\Delta(G)=3$, J. Combin. Optim. 14 (2007) $87-109$.
[7] H.P. Yap, Total Colouring of Graphs, Springer, Berlin, Heidelberg, 1996.
[8] Z. Zhang, X. Chen, et al., On the adjacent vertex distinguishing total coloring of graphs, Sci. China Ser. A 48 (3) (2005) $289-299$.
[9] Z. Zhang, L. Liu, J. Wang, Adjacent strong edge coloring of graphs, Appl. Math. Lett. 15 (2002) 623-626.

[^0]: ${ }^{2}$ This work was supported by NNSFC $(10771091,10671158)$ and the Science and Research Project of the Education Department of Gansu Province (0501-02).

 E-mail address: chenxe@nwnu.edu.cn.

