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Abstract

An adjacent vertex distinguishing total-coloring of a simple graph G is a proper total-coloring of G such that no pair of adjacent
vertices meets the same set of colors. The minimum number of colors �′′a(G) required to give G an adjacent vertex distinguishing
total-coloring is studied. We proved �′′a(G)�6 for graphs with maximum degree �(G) = 3 in this paper.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Let G be a finite simple graph with no component K2. Let C be a finite set of colors and let � : E(G) → C be a
proper edge coloring of G. The color set of a vertex v ∈ V (G) with respect to �, is the set of colors of edges incident
with v. The coloring � is adjacent vertex distinguishing (or neighbor distinguishing) if it distinguishes any two adjacent
vertices by their color sets. The minimum number of colors �′

a(G) (or ndi(G)) required to give G an adjacent vertex
distinguishing coloring has been studied in many papers, see for example [1,2,5,9].

The main conjecture related to adjacent vertex distinguishing coloring (formulated in [9]) is listed as follows.

Conjecture 1 (Zhang et al. [9]). For every connected graph G with order at least 6, we have �′
a(G)��(G) + 2.

This conjecture has been proved in [2] for bipartite graphs as well as for graphs with maximum degree at most three.
Let G be a finite simple graph. We say a proper total-coloring of G is adjacent vertex distinguishing-total coloring

(or an avd-total coloring, total neighbors distinguishing coloring) if for any pair of adjacent vertices x and y, the set of
colors meet to x (i.e., the set of colors of edges incident with x together with the color assigned to x. This set, denoted
by C(x), is called the color set of x with respect to the given total-coloring) is not equal to the set of colors meet to y. It
is clear that an avd-total coloring exists for any graph G. A k-avd-total-coloring is an avd-total-coloring using at most

� This work was supported by NNSFC (10771091, 10671158) and the Science and Research Project of the Education Department of Gansu
Province (0501-02).

E-mail address: chenxe@nwnu.edu.cn.

0012-365X/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2007.07.091

http://www.elsevier.com/locate/disc
mailto:chenxe@nwnu.edu.cn


4004 X. Chen / Discrete Mathematics 308 (2008) 4003–4007

k colors. Let �′′
a(G) be the minimum number of colors in an avd-total-coloring of G. In [8] the following conjecture

was made.

Conjecture 2 (Zhang et al. [8]). For every connected graph G with order at least 2, we have �′′
a(G)��(G) + 3.

The relationship between Conjectures 1 and 2 is similar to the relationship between the Vizing Theorem (for proper
edge coloring, see [4]) and the Total Coloring Conjecture (see [7]).

Obviously �′′
a(G) is at least �(G)+1; if G does have two distinct maximum degree vertices which are adjacent, then

�′′
a(G) is at least �(G) + 2. For bipartite graph G the edge chromatic number is � (see [4]). We use two new colors to

be properly assigned to vertices of G. Then we obtain (�(G)+2)-avd-total-coloring of G. Thus we have the following
proposition.

Proposition 1.1. If G is a bipartite graph, then �′′
a(G)��(G) + 2.

So for bipartite graph Conjecture 2 is valid. For graphs with maximum degree �(G) = 3 we have

Theorem 1.1. If G is a graph with maximum degree �(G) = 3, then �′′
a(G)�6.

We know that �′′
a(G)=�(G)+ 3 if G=K2n+1 (Complete graph with odd order 2n+ 1, n�1). We will give another

example with �′′
a(G) = �(G) + 3 in Section 2 and then prove Theorem 1.1 in Section 3.

2. An example with �′′
a (G) = �(G) + 3

Consider the joint sP 3 ∨ Kt of sP 3 and Kt , where sP 3 is the disjoint union of s paths uiviwi (i = 1, 2, . . . , s)
with length 2 and Kt is the complete graph with t vertices x1, x2, . . . , xt . Suppose s is an even positive integer and
t is an odd positive integer and t �9s2 + 2s − 1. Obviously �′′

a(sP 3 ∨ Kt)�� + 2 = 3s + t + 1. In the following
we firstly prove that sP 3 ∨ Kt does not have (3s + t + 1)-avd-total-coloring and then prove that sP 3 ∨ Kt does have
(3s + t + 2)-avd-total-coloring and therefore �′′

a(sP 3 ∨ Kt) = 3s + t + 2 = � + 3.
Assume that we have an avd-total-coloring of sP 3 ∨ Kt using 3s + t + 1 colors. Then for every xi there is only

one color which did not meet xi . Obviously each color is assigned to at most (3s + t − 1)/2 edges. Meanwhile each
color is assigned to at least (t − 1)/2 edges (Otherwise if some color is assigned to at most (t − 3)/2 edges then this
color will meet at most t − 2 vertices xi . So there are at least two vertices which have the same color set. This is a
contradiction). Suppose that there are ri colors such that each of these colors is assigned exactly to (t − 3)/2 + i edges,
where i = 1, 2, . . . , (3s + 2)/2. Thus we have

r1 + r2 + r3 + · · · + r(3s−2)/2 + r3s/2 + r(3s+2)/2 = 3s + t + 1;

t − 1

2
r1 + t + 1

2
r2 + t + 3

2
r3 + · · · + 3s + t − 5

2
r(3s−2)/2 + 3s + t − 3

2
r3s/2 + 3s + t − 1

2
r(3s+2)/2

= 2s + 1

2
t (t − 1) + 3st .

From the above two equations we can deduce that

r(3s+2)/2 = 2s + 1

2
t (t − 1) + 3st − 3s + t − 3

2
(3s + t + 1) + 3s − 2

2
r1

+ 3s − 4

2
r2 + · · · + 2r(3s−4)/2 + r(3s−2)/2

= − 9

2
s2 + 5s + 1

2
t + 3

2
+ 3s − 2

2
r1 + 3s − 4

2
r2 + · · · + 2r(3s−4)/2 + r(3s−2)/2. (1)
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As {u1, v1, x1, x2, . . . , xt } is a clique of sP 3 ∨Kt , we need at least t +2 colors to be assigned to vertices. Therefore,
there are at most 3s − 1 colors which are not assigned to any vertices. Note that r(3s+2)/2 �3s − 1 (Using the condition
t �9s2 + 2s − 1 and Eq. (1)). In r(3s+2)/2 colors, each of which is assigned exactly to (3s + t − 1)/2 edges, there are at
least r(3s+2)/2 − 3s + 1 colors such that each of which is assigned to some vertex and then meets all vertices. The other
(at most) 6s + t − r(3s+2)/2 colors contain the t colors which are missing at vertices x1, x2, . . . , xt respectively. Thus

t �6s + t − r(3s+2)/2

and using (1), we have

9

2
s2 + s − 1

2
t − 3

2
� 3s − 2

2
r1 + 3s − 4

2
r2 + · · · + 2r(3s−4)/2 + r(3s−2)/2 �0.

So t �9s2 + 2s − 3. A contradiction. Thus �′′
a(sP 3 ∨ Kt) > 3s + t + 1.

Construct a new graph G with 3s + t + 1 vertices by adding a new vertex y to sP 3 ∨ Kt such that y is connected
to every vertex of sP 3 ∨ Kt . From [3] we know that the vertex distinguishing proper edge coloring number of G is at
most 3s + t + 2. Assigning the color of each edge zy to the vertex z for any vertex z ∈ V (sP 3 ∨ Kt), we will obtain
the vertex distinguishing total-coloring of sP 3 ∨ Kt . This is also the avd-total-coloring of sP 3 ∨ Kt using 3s + t + 2
colors. Thus �′′

a(sP 3 ∨ Kt) = 3s + t + 2 = �(sP 3 ∨ Kt) + 3.

3. Graphs with � = 3

We start with the special case of regular graphs having a hamiltonian cycle.

Lemma 2.1. If G is a 3-regular hamiltonian graph then G has a 6-avd-total-coloring.

Proof. For K4 (Complete graph with order 4), we may find its 6-avd-total-coloring easily. So we suppose that the order
of G is at least 6 in the following. Let the six colors be 1, 2, 3, a, b, c. Let C = x1x2 · · · xnx1 be a hamiltonian cycle
of G and I be the remaining 1-factor of G. By Brooks’ theorem G has vertex 3-coloring f : V (G) → {a, b, c}. The
edges of I are colored with 3. As the cycle C is even, the edges of C can be colored alternately by 1 and 2. For any pair
of adjacent vertices x and y, the set of colors incident to x is equal to the set of colors incident to y whereas the colors
of vertices x and y are distinct. So x is distinguished from y. �

Theorem 2.2. If G is a 3-regular graph containing 1-factor, then there exists a 6-avd-total-coloring of G.

Proof. We may suppose that the order of G is at least 6. Without loss of generality we may assume G is connected.
Decompose G as a 1-factor I and a union of cycles Ci . If there is only one cycle then G is hamiltonian and we are done
by Lemma 2.1. Otherwise color G as follows.

By Brooks’ theorem we properly color the vertices of G with a, b, c. The edges of I are colored by 3.
If Ci is an even cycle then the edges of C can be colored alternately by 1 and 2.
If Ci = x0x1x2 · · · xnx0 is an odd cycle and each vertex of Ci is not adjacent to any vertex of the other odd cycle

then the edges x0x1, x1x2, x2x3, . . . , xn−1xn can be colored alternately by 1 and 2 and xnx0 is colored by a color in
{a, b, c}\{f (x0), f (xn)}.

Suppose Ci is an odd cycle and some vertex of Ci is adjacent to some vertex of the other odd cycle. Construct a new
graph M with vertex set V (M) equal to the set of all odd cycles Cj and edges joining Cj and Ck when there is an edge
of I joining some vertex of Cj to some vertex of Ck . Consider the nontrivial component S of M such that S contains the
vertex corresponding to Ci . Suppose T is a spanning tree of S, We will color the edges of odd cycles corresponding to
the vertices of T. Given any vertex v ∈ V (T ), the corresponding odd cycle is denoted by Cv . Starting with a vertex (of
Cv) which is connected with one vertex of some other odd cycle by an edge of T, we color the edges of Cv using the
method mentioned in the previous paragraph. For u ∈ V (T ), where distT (v, u)=1, the corresponding odd cycle is Cu.
There is only one edge being in E(T ) and connecting one vertex x of Cv and one vertex y of Cu. Of course the edge is
denoted by xy. If x meets 1 and 2 then starting with y we can color the edges of Cu using the method described in the
previous paragraph. If x meets only one of 1 and 2, say 1, then starting with y we color the edges (except the last edge)
of Cu alternately by 2 and 1 (not 1 and 2) and the last edge zy of Cu is colored by one color in {a, b, c}\{f (z), f (y)}.
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In the same way we can color the edges of Cw corresponding to the vertex w ∈ V (T ), where distT (v, w) = i,

i = 2, 3, . . . .

So far we obtain a proper total coloring.
Obviously in each odd cycle C there is at most one vertex which is not distinguished from some other vertex (this

vertex do not belong to C). If there are two adjacent vertices z1 and z2 having the same color sets then z1 and z2 belong
to different odd cycles and the edge z1z2 has color 3. Without loss of generality we assume the colors of z1 and z2 are
c and a, respectively. There is one edge z1x1 which is incident to z1 and has color a. Similarly there is one edge z2x2
which is incident to z2 and has color c. There are two edges z1y1 and z2y2 which have the same colors 1 or 2, say 1. If
y1 has color b then recolor the vertex z1 with 2; If y1 has color a then recolor the vertex z1 with 2 and the edge z1x1
with c.

After a series of modifications described above we obtain a 6-avd-total-coloring. �

Proof of Theorem 1.1. We shall prove Theorem 1.1 by induction on |E(G)|. Suppose the colors we will use are 1, 2,
3, 4, 5, 6.

From Proposition 1.1 we know that Paths on at least 2 vertices has a 4-avd-total-coloring and then cycles on at least
3 vertices has a 6-avd-total-coloring. So we may assume G is connected with maximum degree 3.

Assume x is a vertex of degree 1 in G. Let y be the neighbor of x. Then y is of degree 2 or 3. We can find a
6-avd-total-coloring of G′ = G − x by induction. In G′, y has degree at most 2, so there are at least three colors that
do not meet y. At most two of these colors cannot be used to color xy as they may result in y meeting the same set of
colors as some neighbor in G′. Therefore, there is still at least one color that can be given to xy and then we color the
vertex x properly so that the coloring is a 6-avd-total-coloring. Hence we may assume G contains no degree 1 vertex.

Assume two vertices of degree 2 are adjacent in G. Let x0x1x2 · · · xn, n > 2, be a suspended trail in G, i.e., a trail
with dG(x0)=dG(xn)=3 and dG(xi)=2 for 0 < i < n. If x0 �= xn let G′ be the graph obtained by contracting this path
to x0yxn. If x0 = xn let G′ be the graph obtained by deleting the vertices x1, . . . , xn−1 and connecting two new degree
one vertices y, z to x0 = xn. By induction G′ has a 6-avd-total-coloring. We may assume without loss of generality
that the edge x0y has color 1 and xny(or xnz) has color 2. If the color of y is not 2 then without loss of generality we
assume that y has color 6. Assign the color of y to the vertex x1. The edges x0x1, xn−1xn can be colored with 1 and 2,
respectively. The sequence x1x2, x2, x2x3, x3, . . . , xn−2, xn−2xn−1 can be colored by 3–6 cyclically. So far xn−1 has
not been colored. At least two colors can be used to color vertex xn−1 properly and at least one color can be used to
color properly such that vertex xn−1 is distinguished from xn−2.

Hence, we can assume that any vertex of degree two is adjacent only to vertices of degree 3. If G contains a bridge
xy, let G1 and G2 be components of G − xy with x ∈ V (G1) and y ∈ V (G2). Give G1 ∪ xy and G2 ∪ xy 6-avd-
total-coloring by induction. By permuting the colors on G2 ∪ xy, we can assume that the vertices x, y and the edge xy

receive the same colors in each coloring respectively and the color set of x in G1 ∪ xy is not the same as the color set
of y in G2 ∪ xy. This now gives a 6-avd-total-coloring.

Hence we can assume that G is a graph with maximum degree 3, no vertices of degree 1, no pair of adjacent degree
2 vertices, and bridgeless. If G does not have degree 2 vertices then G is 3-regular. G must have 1-factor for a cubic
graph without a 1-factor must have at least three bridges. So G has a 6-avd-total-coloring by Theorem 2.2. If G does
contain degree 2 vertices then let G′ be the graph obtained by taking two copies of G and joining their corresponding
degree 2 vertices by an edge. Then G′ is 3-regular and contains at most one bridge. Hence G′ has a 1-factor and so
by Theorem 2.2 G′ has a 6-avd-total-coloring. This coloring of G′ induces a 6-avd-total-coloring of G since no two
vertices of degree 2 are adjacent in G. �

Note that Theorem 1.1 had been also proved by Haiying Wang in [6]. But we have given a more short and more
interesting proof in present paper.
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