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Abstract

The history of schema languages for XML is (roughly) an increase of expressiveness. While early schema languages mainly
focused on the element structure, Clark first paid an equal attention to attributes by allowing both element and attribute constraints
in a single constraint expression (we call his mechanism “attribute–element constraints”). In this paper, we investigate intersection
and difference operations and inclusion test for attribute–element constraints, in view of their importance in static typechecking for
XML processing programs. The contributions here are (1) proofs of closure under intersection and difference as well as decidability
of inclusion test and (2) algorithm formulations incorporating a “divide-and-conquer” strategy for avoiding an exponential blow-up
for typical inputs.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

XML [3] is a standard document format that comes with two notions: data and schemas. Data are tree structures
and basically have two major constituents, elements, which are tree nodes forming the “skeleton” of documents, and
attributes, which are auxiliary name–value pairs associated with each element. Schemas are a mechanism for imposing
constraints on these two structures, and what kinds of constraints they can use is defined by a schema language.

Numerous schema languages have been proposed and their history has been basically how to increase expressiveness,
allowing finer and finer-grained controls to the structure of documents. At first, the main interest of the designers of
schema languages (DTD [3], W3C XML Schema [11], and RELAX [25]) was elements, and by now this pursue has
mostly converged—most of modern schema languages use tree regular expressions for describing this part of data.

On the other hand, much less attention has been paid to attributes, although there has been a big demand for a higher
expressiveness, in particular, involving interdependencies among elements and attributes. There are mainly two kinds
of such interdependencies that are often wanted. The first one is to allow a choice between an element and an attribute.
For example, one might want to allow each person element to have either a name subelement or a name attribute,
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but not both. It is one of the most perennial questions for the past 10 years among schema designers whether to put
certain information in an attribute or an element (e.g., [27] collects related debates). Thus, it is natural for them to
wish to make either case possible and such demand has been known among XML engineers as folklore. The second
group is to allow attribute values to control permissible subelements. For example, in the Atom Syndication Format
[26], the content of a certain element is required to be either a text or an XHTML fragment depending on the value
of the attribute called type. Neither DTD nor W3C XML Schema allows these interdependencies among elements
and attributes since these schema languages only admit attributes to be mandatory or optional. RELAX allows such
interdependencies to some extent, but requires a schema description to be exponentially long for the first kind and
rather unintuitive for the second kind.

Recently, Clark, in his schema language TREX [7], proposed a description mechanism called attribute–element
constraints for fulfilling such demands. The kernel of his proposal is to allow mixture of constraints on elements
and those on attributes in a single “regular” expression, thus achieving a uniform and symmetric treatment of these
two kinds of structure. The expressive power yielded by this mechanism is quite substantial. In particular, both
uses of attribute–element interdependencies mentioned above can be represented in a simple and straightforward
manner.

In this paper, we pay attention to an algorithmic aspect of attribute–element constraints. Specifically, we investigate
intersection and difference operations (i.e., compute a new schema representing the intersection of or difference between
given two schemas) and inclusion test (i.e., check if any instance of one schema is that of another). Studying these has
not only been a tradition in formal language theory, but also is strongly motivated by an important application: static
typechecking for XML processing—program analysis technology for detecting all run-time type errors at compile
time. Indeed, the recent series of papers have used these operations in crucial parts of their typechecking algorithms
[17,12,28,22,24]. For example, intersection is used in almost all of these XML processing languages as the core of type
inference mechanisms for their pattern matching facilities; difference is used in XDuce type inference for precisely
treating data flow through prioritized pattern clauses [18]; and, perhaps most importantly, inclusion test is used for
“subtyping” in many of the above-mentioned XML processing languages.

The main contributions that we made in this work are twofold: (1) proofs of closure under intersection and difference
and decidability of inclusion and (2) algorithms based on a “divide-and-conquer” technique.

While closure under intersection can be obtained in a straightforward way, closure under difference is slightly tricky.
We first fail to prove closure under difference due to attributes’ special properties (i.e., ordering among attributes
is insignificant and the same label cannot occur several times in the same set, whereas elements are opposite in both
respects). However, we discover that we can regain the closure by imposing a few simple syntactic restrictions.Although
these bring a small “bump” in the system, the compromise in expressiveness seems acceptable for practical purposes as
we will discuss in Section 3.3.1. These arguments may appear to imply that inclusion test also needs the same restrictions
since inclusion test is usually done by computing a difference and then testing the emptiness. On the contrary, they
are not needed since our inclusion algorithm computes, rather than an exact difference, an “approximate” difference
whose emptiness is exactly the same as the difference. One practical implication from this is that, for applications that
use only intersection and inclusion (not difference), the above-mentioned syntactic restrictions can be elided, which
may help keeping cleanliness of the applications.

We have further made efforts to make the algorithms for intersection, difference, and inclusion more practical. We
can think of a naive decision procedure that completely separates constraints on attributes and those on elements from
their mixture. However, this easily blows up even for typical inputs as explained in Section 3. Although this explosion
seems not avoidable in the worst case, we can make the algorithm efficient in most practical cases by partitioning
given constraint formulas into orthogonal subformulas and proceeding to the corresponding subformulas separately.
The basic idea is taken from Vouillon’s inclusion algorithm for shuffle expressions [29], but has not been applied to the
setting of attribute–element constraints. Our specific contributions here are thus the conditions to apply partitioning in
our setting and the proofs of correctness.

This work has been carried out in collaboration with committee members of the new schema language RELAX NG
[9]. As a result, aiming for closure under boolean operations, RELAX NG adopted the syntactic restrictions described
in this paper.

The rest of this paper is organized as follows. The next section gives motivating examples for attribute–element
constraints and basic definitions including the data model and the syntax and semantics of constraints. Section 3
describes the intersection, difference, and inclusion algorithms. Section 4 presents some implementation techniques.
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Section 5 discusses the relationship with other work and Section 6 concludes the paper. Addendum formalizations and
correctness proofs can be found in Appendices.

2. Attribute–element constraints

In this section, we first informally explain attribute–element constraints by example and then formally define the
syntax and semantics.

2.1. Informal explanation

In our framework, data are XML documents with the restriction that only elements and attributes can appear. That is,
we consider trees where each node is given a name and, in addition, associated with a set of name–string pairs. In XML
jargon, a node is called element and a name–string pair is called attribute. For example, the following is an element
with name article that has two attributes key and year and contains four child elements—two with authors,
one with title, and one with publisher.

<article key="HosoyaMurata2002" year="2002">
<author> ... </author>
<author> ... </author>
<title> ... </title>
<publisher> ... </publisher>
</article>

The ordering among sibling elements is significant, whereas that among attributes is not. The same name of elements
can occur multiple times in the same sequence, whereas this is disallowed for attributes.

Attribute–element constraints describe a pair of an element sequence and an attribute set. We first illustrate element-
only constraints and then attribute–element constraints. Element expressions describe constraints on elements and are
regular expressions on names. For example, we can write

author+ title publisher?

to represent that a permitted sequence of child elements are one or more author elements followed by a mandatory
title element and an optional publisher element. Note that the explanation here is informal: for brevity, we show
constraints only on names of elements. The actual constraint mechanism formalized later can also describe contents of
elements.

Attribute expressions are constraints on attributes and have a notation similar to regular expressions. For example,

@key@year?

requires a key attribute and optionally allows a year attribute. We prepend an @-sign to each attribute name in order
to distinguish attribute names from element names. Again, although informal examples here show constraints only on
names of attributes, we later introduce constraints on contents of attributes. A more complex example would be

@key ((@year@month?) | @date)

That is, we may optionally append a month to a year; or we can replace these two attributes with a date attribute.
Attribute expressions are different from usual regular expressions in three ways. First, attribute expressions describe

(unordered) sets and therefore concatenation is commutative (e.g., @key@year? is equivalent to @year? @key).
Second, since names cannot be duplicated in the same set, we require expressions to permit only data that conform to
this restriction (e.g., (@a | @b) @a? is forbidden). Third, for the same reason, repetition (+) is disallowed in attribute
expressions. We provide, however, “wild-card” expressions that allow an arbitrary number of attributes from a given
set of names (discussed later).

Attribute–element expressions or compound expressions allow one expression to mix both attribute expressions and
element expressions. For example, we can write

@key@year?author+ title publisher?
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to require both that the attributes satisfy @key@year? and that the elements satisfyauthor+ titlepublisher?.
The next example is a compound expression allowing either a title attribute or a title element, not both:

@key@year?author+ (title | @title)publisher?

In this way, we can express constraints where some attributes are interdependent with some elements. Note that we can
place attribute expressions anywhere—even after element expressions. In the extreme, the last example could be made
more flexible as follows

(@key |key)

(@year |year)?
author+
(@title |title)

(@publisher |publisher)?

where every piece of information except for authors can be put in an attribute or an element.
In addition to the above, we provide “multi-attribute expressions”, which allow an arbitrary number of attributes with

arbitrary names chosen from a given set of names. Multi-attribute expressions are useful in making a schema “open”
so that users can put their own pieces of information in unused attributes. For example, when we want to require key
and year attributes but optionally permit any number of any other attributes, we can write the following expression
(where (*\key\year) represents the set of all names except key and year):

@key@year@(*\key\year)∗

Although our formulation will not include a direct treatment, multi-attribute expressions can be even more useful if
combined with name spaces. (Name spaces are a prefixing mechanism for names in XML documents; see [2] for the
details.) For example, when we are designing a schema in the name space myns, we can write the following to permit
any attributes in difference name spaces (where *\(myns:*)means the set of “any names except those in name space
myns”).

@myns:key@myns:year@(*\(myns:*))∗

Apart from the kinds of name sets described above, the following can be useful: (1) the set of all names, (2) the set of
all names in a specific name space, and (3) the set of all names except those from some specific name spaces. (In fact,
these are exactly the ones supported by RELAX NG [9].)

2.2. Data model

We assume a countably infinite set N of names, ranged over by a, b, . . . . We define values inductively as follows:
a value v is a pair 〈�, �〉 where

• � is a set of pairs of a name and a value, and
• � is a sequence of pairs of a name and a value.

A pair in � and a pair in � are called attribute and element, respectively. In the formalization, attributes associate names
with values and therefore may contain elements. This may appear odd since XML allows only strings to be contained
in attributes. Our treatment is just for avoiding the need to introduce another syntactic category for attribute contents
and thereby simplifying the formalism. We write � for an empty sequence and �1�2 for the concatenation of sequences
�1 and �2. We write V for the set of all values.

For convenience in definitions and proofs in the sequel, we introduce the following slightly unusual notations for
constructing values:

a[v] ≡ 〈∅, 〈a, v〉〉 @a[v] ≡ 〈{〈a, v〉}, �〉
〈�1, �1〉 〈�2, �2〉 ≡ 〈�1 ∪ �2, �1�2〉 � ≡ 〈∅, �〉

For example, @a[v] @b[w] c[u] means 〈{〈a, v〉, 〈b, w〉}, 〈c, u〉〉. It is crucial not to mistake @a[v] @b[w] c[u] as a
sequence consisting of two attributes and one element—we intend to formalize the unordered and unrepeatable nature
of attributes.
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2.3. Expressions

Let S be a set of sets of names where S is closed under boolean operations. In addition, we assume that S contains
at least the set N of all names and the empty set ∅. Each member N of S is called name set.

We next define the syntax of expressions for attribute–element constraints. As already mentioned, our expressions
describe not only top-level names of elements and attributes but also their contents. Since we want expressions to
describe arbitrary depths of trees, we introduce recursive definitions of expressions, that is, grammars. (It is also
theoretically important to study tree grammars rather than simple word grammars since, as will be discussed in Section
3.3.1, considering contents of attributes introduces a new complication not arising in word grammars, i.e., breakage of
closure under difference and syntactic restrictions to recover the closure.)

We assume a countably infinite set of variables, ranged over by x, y, z. We use X, Y, Z for sets of variables. A
grammar G on X is a finite mapping from X to compound expressions. Compound expressions c are defined by the
following syntax in conjunction with element expressions e. 1

c ::= @N [x]+
@N [x]
c | c
c c

e

e ::= N [x]
�
e | e
e e

e+
∅

We call the form @N [x]+ multi-attribute expression (as mentioned) and @N [x] single-attribute expression. (As we
discuss in Section 3.3.1, we can encode single-attribute expressions by multi-attribute expressions in the case of finite
name sets, and this seems to be sufficient in practical uses.) We define FV(c) as the set of variables appearing in c and
FV(G) as

⋃
x∈dom(G) FV(x). We require any grammar to be “self-contained”, i.e., FV(G) ⊆ dom(G), where dom(G)

is the domain of G. In the sequel, we use the following shorthands:

@a[x]+ ≡ @{a}[x]+ @a[x] ≡ @{a}[x] a[x] ≡ {a}[x]
e∗ ≡ e+ | � c? ≡ c | � @N [x]∗ ≡ @N [x]+ | �

We forbid concatenation of expressions with overlapping attribute name sets. That is, we first define att(c) as the
union of all the attribute name sets (the N in the form @N [x]+ or @N [x]) appearing in the expression c. Then, any
expression must not contain an expression c1 c2 with att(c1) ∩ att(c2) 
= ∅. We call this restriction no-overlapping
attribute. 2 (Note that the no-overlapping restriction disallows the usual rewriting of one-or-more repetitions @N [x]+
by @N [x]∗ @N [x] and this is why we take the former as primitive. For symmetry, we also take one-or-more repetitions
e+ as primitive in element-only constraints.) We define elm(c) as the union of all the element name sets (the N in the
form N [x]) appearing in the expression c.

We require that a repetition containing attributes must have the form @N [x]+. This is reflected in the syntax presented
above, which contains the atomic form @N [x]+ and stratifies compound expressions c and element expressions e to
disallow expressions with attributes to appear under the repetition operator. We call this restriction stratification. (We
do not formalize in a way that introduces a single syntax and imposes a restriction since explicit stratification is easier
to present our boolean and inclusion algorithms.) The reason for introducing it is as follows. First, with the restriction,
we may have repetitions of concatenations involving attributes, e.g., (@N [x] @N ′[y])+. However, this would grant
a power to grammars for counting the number of occurrences of attributes. Although an approach directly dealing
with this has been pursued by other researchers [30], we choose to disallow such expressions since we have not found

1 If we consider only element constraints, grammars defined here are essentially regular hedge grammars [4] or regular expression types [20].
2 We have chosen this design not only for simplifying our boolean and inclusion test algorithms, but also for enabling our validation algorithm

presented elsewhere [16] based on automata with both element and attribute transitions. It is also worth remarking that RELAX NG has adopted this re-
striction. However, a number of different design choices could be taken. One of the reviewers suggested to drop the restriction on expressions but instead
exclude values with repeated attributes.Another proposed to interpret @N1[x]∗ @N2[y]∗ as @N1[x]∗ @(N2 \ N1)[y]∗ | @(N1 \ N2)[x]∗@N2[y]∗.
The latter is only a syntax sugar and therefore we may adopt it without any technical difficulty. However, in general, each design choice requires a
fair amount of formal study and we have not undertaken to pursue any.
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∀i. (ai ∈ N G � vi ∈ G(x)) k�1 ai 
= aj for i 
= j

G � @a1[v1] . . . @ak[vk] ∈ � lu@N [x] T-ATTREP
a ∈ N G � v ∈ G(x)

G � @a[v] ∈ @N [x] T-ATT

a ∈ N G � v ∈ G(x)

G � a[v] ∈ N [x] T-ELM
G � v ∈ c1 or G � v ∈ c2

G � v ∈ c1 | c2
T-ALT

G � � ∈ �
T-EPS

G � v1 ∈ c1 G � v2 ∈ c2

G � v1 v2 ∈ c1 c2
T-CAT

∀i. G � vi ∈ e k�1

G � v1 . . . vk ∈ � lue
T-PLU

Fig. 1. Semantics.

any useful application; we prefer simplicity instead. Then, what a repetition can now contain is a union, another
repetition, or an attribute. A repetition of a union can always be rewritten by using only repetitions without unions,
e.g., (@N [x] | @N ′[y])+ can be rewritten as @N [x]+ | @N [x]∗ @N ′[y]+. (A concrete rewriting procedure is omitted
here but would not be so complicated.) So we drop this ability to simplify our formalization. Finally, a repetition of a
repetition can be collapsed to a single repetition. 3

The semantics of expressions with respect to a grammar is described by the relation of the form G � v ∈ c, which is
read “value v conforms to expression c under G”. This relation is inductively defined by the rules in Fig. 1. Note that
rules T-ALT and T-CAT treat alternation and concatenation both in compound expressions and element expressions.

For example, under the grammar

G(x) = �,

the values conforming to the compound expression (a[x] | @a[x]) (b[x] | @b[x]) are the following four:

a[�] b[�]
@a[�] b[�]
a[�] @b[�]
@a[�] @b[�]

Using the notations introduced in the end of Section 2.2, the above four can each be expanded as follows:

〈 ∅ , 〈a, v〉 〈b, v〉 〉
〈 {〈a, v〉} , 〈b, v〉 〉
〈 {〈b, v〉} , 〈a, v〉 〉
〈 {〈a, v〉, 〈b, v〉} , � 〉

where v is the value 〈∅, �〉.
The language LG(c) of an expression c under a grammar G is defined as {v | G � v ∈ c}. Given two pairs (c1, G1) and

(c2, G2) of expression and grammar, we define their intersection as a pair (c, G) where LG(c) = LG1(c1) ∩ LG2(c2),
similarly, their difference as (c, G) where LG(c) = LG1(c1) \ LG2(c2), and their inclusion as the predicate that is true
iff LG1(c1) ⊆ LG2(c2). In the next sections, we present algorithms for computing these.

3. Boolean and inclusion algorithms

In this section, we present our algorithms for intersection, difference, and inclusion for attribute–element grammars.
The proofs of the theorems shown in this section appear in Appendix B.

3.1. Partitioning

The key technique in our algorithms is partitioning. Consider first the following intersection of compound expres-
sions:

3 RELAX NG adopts essentially the same restriction. Specifically, concatenation and repetition are prohibited in a repetition if it contains an
attribute.
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(@a[x] | a[x]) (@b[x] | b[x]) ∩ @a[y] (@b[y] | b[y]) (1)

How can we calculate this intersection? In a naive algorithm, we may separate constraints on attribute sets and those
on element sequences and thereby apply conventional techniques for each kind of constraint. More specifically, we
may repeatedly use distributivity of concatenation over union until we only have a union of sequences each of which
consists of attribute-only and element-only expressions. From the formula (1), we obtain the following:

(@a[x] @b[x] | @a[x] b[x] | a[x] @b[x] | a[x] b[x]) ∩ (@a[y] @b[y] | @a[y] b[y])

Then, we can now easily compute the result by taking each pair of clauses on both sides and computing independently
the intersection of the attribute-only parts and that of the element-only parts. (We will describe the last step in more
detail since it becomes a part of our algorithm.)

However, as one can immediately see, this naive use of distributive laws makes the algorithm easily blow up.
Fortunately, we can avoid it in typical cases. Note that each expression in the formula (1) is the concatenation of two
subexpressions, where the left subexpressions on both sides contain the names @a and a and the right subexpressions
contain the different names @b and b. In such a case, we can compute intersections of the left subexpressions and of
the right subexpressions separately, and concatenate the results:

((@a[x] | a[x]) ∩ @a[y]) ((@b[x] | b[x]) ∩ (@b[y] | b[y]))

The intuition behind why this works is that each “partitioned” expression can be regarded as cross-products, and therefore
the intersection of the whole expressions can be done by intersecting each corresponding pair of subexpressions. Note
also that no subexpression is duplicated by this partitioning process. Therefore, the algorithm proceeds linearly in the
size of the inputs as long as partitioning can be applied. This idea of splitting expressions into orthogonal parts was
inspired by Vouillon’s unpublished work on shuffle expressions [29]. We will discuss the difference of our work from
his in Section 5.

For treating partitioning in our formalization, it is convenient to view a nested concatenation of expressions as a
flat concatenation and ignore empty sequences (e.g., view (c1 (c2 �) ) c3 as c1 c2 c3). In addition, we would like to
treat expressions to be “partially commutative”, that is, concatenated c1 and c2 can be exchanged if one of them
is element-free. For example, the expression @a[x] (@b[x] | b[x]) is equal to (@b[x] | b[x]) @a[x]. On the other
hand, (@a[x] | a[x]) (@b[x] | b[x]) is not equal to (@b[x] | b[x]) (@a[x] | a[x]) since, this time, a[x] prevents such
an exchange. To formally express this, we identify expressions up to the relation ≡ defined as follows: ≡ is the smallest
congruence relation including the following 4 :

c1 c2 ≡ c2 c1 if elm(c1) = ∅
c1 (c2 c3) ≡ (c1 c2) c3

c � ≡ c

Now, (c′
1, c

′′
1), . . . , (c′

k, c
′′
k ) is a partition of c1, . . . , ck if

ci ≡ c′
i c′′

i for all i(⋃
i

att(c′
i )

)
∩
(⋃

i

att(c′′
i )

)
= ∅(⋃

i

elm(c′
i )

)
∩
(⋃

i

elm(c′′
i )

)
= ∅.

4 In implementation, it is desirable to represent equal expressions (in terms of ≡) by an identical data structure. For example, we may rep-
resent an expression by a pair of a bag of expressions and a list of expressions (e.g., represent (a[x] ((@b[x] c[x]) �)) @d[x]+ by the pair
of the bag of @b[x] and @d[x]+ and the list of a[x] and c[x]).
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That is, each ci can be split into two subexpressions such that the names contained in all the first subexpressions
are disjoint with those contained in all the second subexpressions. We will use partition of two expressions (k = 2)
in the intersection algorithm and that of an arbitrary number of expressions in the difference. The partition is said
proper when 0 < width(c′

i ) < width(ci) for some i. Here, the function width counts the number of expressions
that are concatenated at the top level (except �). That is, width(�) = 0, width(c1 c2) = width(c1) + width(c2), and
width(c) = 1 if c 
= � and c 
= c1 c2. (Note that ≡ preserves width.) This properness will be used for ensuring the
boolean and inclusion algorithms to make a progress.

3.2. Intersection

Let grammars F on X and G on Y be given. We assume that F and G have been normalized. That is, the given
grammars have already been transformed so that all name sets appearing in them are pairwise either equal or disjoint.
The reason for doing this is to simplify our boolean and inclusion algorithms. For example, in computing the intersection
@N1[x] @N2[x] ∩ @N3[y] @N4[y], if N1 and N2 are, respectively, equal to N3 and N4, then this intersection is
obvious. However, if these are overlapping in a non-trivial way (e.g., @{a, b}[x] @{c, d}[x]∩ @{a, c}[y] @{b, d}[y]),
it would require more work. An actual algorithm for normalization is presented in Appendix A.

Our intersection algorithm is based on product construction. From F and G, we compute a new grammar H on X×Y

that satisfies

H(〈x, y〉) = inter(F (x), G(y))

for all x ∈ X and y ∈ Y . The function inter computes an intersection of compound expressions. It works roughly in the
following way. We proceed the computation by progressively decomposing the given compound expressions. At some
point, they become attribute-free. Then, we convert the expressions to element automata (defined later), compute an
intersection by using a variant of the standard automata-based algorithm, and convert back the result to an expression.
Formally, inter is defined in Fig. 2. We apply the rules from top to bottom, that is, earlier rules have higher priority.
Also, we assume that there is a deterministic strategy (not specified here) for choosing a proper partition among possibly
multiple possibilities in rule 7 and for choosing a union (c2 | c3) from a sequence in rule 8. 5 The base cases are handled
by rules 1–6, where each of the arguments is either an element expression (as indicated by the metavariables e or f )
or a single- or multi-attribute expression. In rule 1, where both arguments are element expressions, we pass them
to another intersection function interreg specialized to element expressions. This function will be explained below.
Rules 2 and 3 return ∅ since the argument expressions obviously denote disjoint sets. Rules 4–6 handle the cases
where each argument is a single- or multi-attribute expression with the same name set N. When both arguments are
multi-attributes, rule 4 yields a multi-attribute where the name set is N and the content is the intersection of their
contents x and y. When either argument is a single-attribute, rule 5 or 6 returns a single-attribute. (Note that, in rules
4–6, normalization ensures that the name sets in the given expressions are equal.) The inductive cases are handled by
rules 7 and 8. Rule 7 applies the partitioning technique already explained. 6 Rule 8 simply expands one union form
appearing in the argument expressions. Note that rules 7 and 8 overlap, that is, in some cases, both rules could be
applied. The first example shown in Section 3.1 indeed illustrated the case where we could apply either distributivity
(rule 8) or partitioning (rule 7). However, since rule 7 has higher priority, we always perform partitioning in such
a case.

5 What strategy to use for these could have effects on efficiency. However, our current implementation does not use any clever strategy, yet seems
to yield a reasonable performance.

6 In our current formalism, partitioning is applied only when there is at least one attribute in both arguments. However, there is no fundamental
problem in allowing pure element expressions to be partitioned and that would in fact make the algorithm more efficient in some cases.
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1) inter(e, f ) = interreg(e, f )

2) inter(@N [x]+, d) = ∅ (N ∩ att(d) = ∅)

3) inter(@N [x], d) = ∅ (N ∩ att(d) = ∅)

4) inter(@N [x]+, @N [y]+) = @N [〈x, y〉]+
5) inter(@N [x], @N [y]+) = @N [〈x, y〉]
6) inter(@N [x], @N [y]) = @N [〈x, y〉]
7) inter(c, d) = inter(c1, d1) inter(c2, d2) if (c1, c2), (d1, d2) is a proper partition of c, d

8) inter(c1 (c2 | c3) c4, d) = inter(c1 c2 c4, d) | inter(c1 c3 c4, d)

In addition, rules 2, 3, 5, and 8 each have a symmetric rule.

Fig. 2. Intersection algorithm.

We demonstrate our algorithm using our first example of the intersection operation. The intersection of (@a[x] | a[x])
(@b[x] | b[x]) and @a[y] (@b[y] | b[y]) is computed as follows:

inter((@a[x] | a[x]) (@b[x] | b[x]), @a[y] (@b[y] | b[y]))
= inter((@a[x] | a[x]), @a[y]),

inter((@b[x] | b[x]), (@b[y] | b[y])) (by rule 7)

= (inter(@a[x], @a[y]) | inter(a[x], @a[y])), (by rule 8)

(inter(@b[x], @b[y]) | inter(@b[x], b[y]) |
inter(b[x], @b[y]) | inter(b[x], b[y]))

= (@a[〈x, y〉] | inter(a[x], @a[y])), (by rule 5)

(@b[〈x, y〉] | inter(@b[x], b[y]) |
inter(b[x], @b[y]) | inter(b[x], b[y]))

= (@a[〈x, y〉] | ∅), (@b[〈x, y〉] | ∅ | ∅ | inter(b[x], b[y])) (by rule 2)

= (@a[〈x, y〉] | ∅), (@b[〈x, y〉] | ∅ | ∅ | b[〈x, y〉]) (by rule 1)

(By an obvious optimization, the last expression could further be rewritten as @a[〈x, y〉], (@b[〈x, y〉] | b[〈x, y〉]).)
Termination of this algorithm may seem mysterious at first sight since, while rule 7 decrements the widths of the

given expressions, rule 8 may increase them. However, observe that the number of times that rule 8 can be applied
from given expressions is finite. More precisely, rule 8 decreases the number of clauses resulting from fully expanding
the expression by distributivity and, since rule 7 does not increase this number, we can guarantee the termination. (See
Appendix B.2 for a formal treatment.)

Also, the presented rules cover all the cases. To see this, first let us view each given expression as a sequence of
the form c1 . . . ck where each ci is either a multi-attribute @N [x]+, a single-attribute @N [x], a union c1 | c2, or an
element expression e. There are two cases: (1) one of the two given expressions contains at least one union or (2)
neither has a union. The first case is handled by rules 7 and 8. We apply rule 7 as often as possible, but rule 8 can
always serve as fall backs. (One might think that cases like � (c1 | c2) � are not handled. However, since, as stated in the
previous subsection, we identify expressions up to associativity, partial commutativity, and neutrality of �, such cases
are already handled by rule 8.) In the second case, both of the given expressions are sequences consisting of single-
or multi-attribute and element expressions. The case that both sequences have width zero or one is handled by rules
1–6. The remaining case is therefore that either sequence has width two or more. If the two expressions contain only
element expressions, then rule 1 applies. Otherwise, by recalling that attributes are normalized, we can always find a
proper partition for such expressions; therefore this case is handled by rule 7.

The intersection function interreg performs the following: (1) construct element automata M1 and M2 from element
expressions e1 and e2, (2) compute the “product automaton” M from M1 and M2, and (3) convert M back to an
element expression e. Element automata are defined as follows. First, an automaton M on an alphabet � is a tuple
(Q, q init, Qfin, �) where Q is a finite set of states, q init ∈ Q is an initial state, Qfin ⊆ Q is a set of final states, and
� ⊆ Q×�×Q is a transition relation [15]. Then, an element automaton is an automaton over {N [x] | N ∈ S, x ∈ X},
where S is a set of name sets and X is a set of variables. Since well-known conversion algorithms between automata
and regular expressions can directly be used for the case of element automata and element expressions by assuming
N [x] as symbols, we use them for (1) and (3) parts of the interreg function.
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The product construction for element automata (used for the (2) part of interreg) is slightly different from the standard
one. Usually, product construction generates, from two transitions with the same label in the input automata, a new
transition with that label in the output automaton. In our case, we generate, from a transition with label N [x] and another
with label N [y], a new transition with label N [〈x, y〉]. Formally, given two element automata Mi = (Qi, q

init
i , Qfin

i , �i )

on {N [x] | N ∈ S, x ∈ Xi} (i = 1, 2), the product of M1 and M2 is an automaton (Q1×Q2, 〈q init
1 , q init

2 〉, Qfin
1 ×Qfin

2 , �)

on {N [〈x1, x2〉] | N ∈ S, x1 ∈ X1, x2 ∈ X2} where

� = { (〈q1, q2〉, N [〈x1, x2〉], 〈q ′
1, q

′
2〉) | (qi, N [xi], q ′

i ) ∈ �i for i = 1, 2}.
(Note that we use here the assumption that the name sets of elements in the given grammars have been normalized.)

We can prove the following expected property for our intersection algorithm.

Theorem 1. Let H(〈x, y〉) = inter(F (x), G(y)). Then, inter(c, d) = b implies that H � v ∈ b iff F � v ∈ c and
G � v ∈ d.

The intersection algorithm takes at most a quadratic time in the numbers of variables in the given grammars. However,
for each pair of variables, it takes an exponential time in the size of the expressions assigned to the variables in the
worst case, where the function needs to fully expand the expressions by using rule 8. There is no other exponential
factor in this algorithm. (The function interreg can be computed in a polynomial time since each of the three steps is
polynomial [15]. 7 ) The lower bound of the intersection problem (and also the other problems that we consider later)
remains to be an open question.

3.3. Difference

3.3.1. Restrictions
Our expressions, as they are defined as in Section 2, do not have closure under difference. The kinds of expressions that

break the closure are single-attributes @N [x] where N is infinite, and multi-attributes @N [x]+ where N is infinite. For
single-attributes, consider the difference @N [any]∗ \ @N [any] (where N is the name set containing all names). This
would mean zero, two, or more attributes with any name and any content. However, “two or more” is not expressible
in our framework, since (@N [any]+, @N [any]) is disallowed by the no-overlapping-attribute restriction (Section
2.3). For multi-attributes, consider the difference @N [any]+ \ @N [x]+ where N is infinite. The resulting expression
should satisfy the following. Each value in it has a set of attributes all with names from N. But at least one of them
has a content not satisfying x. An apparently plausible expression (@N [any]∗, @N [x]) is forbidden by, again, the
no-overlapping-attribute restriction. The expression @N [x]+ is also not a right answer because it requires all attributes
to have contents not satisfying x.

For this reason, we impose two syntactic restrictions. First, the name set of a single-attribute expression must be a
singleton. Note that, with this restriction, we can still represent the case where N is finite 8 : when N = {a1, . . . , ak}

@N [x] ≡ @a1[x] | . . . | @ak[x]
On the other hand, the case that N is infinite is not expressible. We consider, however, that this restriction is acceptable
from practical point of view since an infinite name set is usually used for representing “arbitrary names from a specific
name space” and one naturally wants an arbitrary number of attributes from such a name set. We call this restriction
single-name-singleton-content. The second restriction is that the content of a multi-attribute expression must be a
distinguished variable any accepting any values. We assume that any given grammar G has the following mapping (this
mapping will be modified when we will normalize the grammar before taking a difference):

G(any) = N [any]∗ @N [any]∗

7 The third step of interreg takes a cubic time in the size of the given automaton if the resulting expression is represented as a dag. If we fully
unfold the dag to a flat expression, the expression has an exponential size and hence the step takes also an exponential time.

8 RELAX NG adopts this restriction of finiteness.
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We can still represent the case where N is finite and the content is not any: when N={a1,. . .,ak}, we rewrite @N [x]+
by ∣∣∅
={i1,...,ip}⊆{1,...,k}@ai1 [x] . . . @aip [x].

On the other hand, we cannot handle the case where N is infinite and the content is not any. However, this restriction
seems reasonable since an open schema typically wants both the name and the content to be generic—making only the
content specific seems rather unnatural. We call this restriction multi-name-universal-content.

These restrictions do not break closure under intersection. This can easily be shown since rules 5 and 6 preserve the
single-name-singleton-content restriction and rule 4 preserves the multi-name-universal-content restriction.

3.3.2. Algorithm
The difference algorithm is similar to the intersection algorithm since it uses partitioning, but it is somewhat more com-

plicated because of the need to apply subset construction at the same time. To see this, consider the following difference:

@a[x] @b[x] \ (@a[y] @b[y] | @a[z] @b[z])
First of all, note that each of the left expressions and the right expressions under the union can be partitioned to the one
with @a and the one with @b; these components can be regarded as orthogonal. We proceed the difference by first
subtracting @a[y] @b[y] from @a[x] @b[x]. This yields

(@a[x] \ @a[y]) @b[x] | @a[x] (@b[x] \ @b[y]).
That is, we obtain the union of two expressions, one resulting from subtracting the first component and the other resulting
from subtracting the second. This can be understood by observing that “a value @a[v]@b[w] being not in @a[y]@b[y]”
means “either @a[v] being not in @a[y] or @b[w] being not in @b[y]”. Now, back to the original difference calculation,
we next subtract the second clause @a[z] @b[z] from the above result. Performing a similar subtraction, we obtain

(@a[x] \ (@a[y] | @a[z])) @b[x]
| (@a[x] \ @a[y]) (@b[x] \ @b[z])
| (@a[x] \ @a[z]) (@b[x] \ @b[y])
| @a[x] (@b[x] \ (@b[y] | @b[z]))

Thus, the original goal of difference has reduced to the combination of the subgoals of difference. Then, the result of
the first difference (@a[x] \ (@a[y] | @a[z])) (similarly for the other), should be a single-attribute with @a whose
content is the difference between the variable x and the union of the variables y and z. For representing such union
symbolically, we use a usual technique of subset construction.

Formally, let grammars F on X and G on Y be given and have been normalized simultaneously, as before. The
difference between F and G is a new grammar H on X × P(Y ) that satisfies

H(〈x, Z〉) = diff(F (x), {G(y) | y ∈ Z})
for all x ∈ X and Z ⊆ Y . The function diff takes a compound expression c and a set of compound expressions di and
returns a difference between c and the union of di’s. The definition of this function is presented in Fig. 3. Similar to
the intersection algorithm, we give higher priority to earlier rules. (Here, D ranges over sets of compound expressions
and  is the disjoint union.) The base cases are handled by rules 1–5. As before, when all the arguments are element
expressions, rule 1 passes them to the difference function diff reg (explained below). Rules 2, 2′, 3, and 3′ remove, from
the set in the second argument, an expression that is disjoint with the first argument. Rule 4 handles that all expressions
in the arguments are single-attributes. Note that, by the above-mentioned restriction, the name set is a singleton. Rule 5
handles that all expressions are multi-attributes. Since the content is any as required by the restriction, the rule returns
the empty set expression.

The inductive cases are handled by rules 6–8. Rules 7 and 8 expand one union form in the argument expressions.
Rule 6 is applied when all the arguments can be partitioned altogether. The complex formula involving “for all subsets
I ⊆ {1, . . . , k}” on the right-hand side is a generalization of the discussion made in the beginning of this section.
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1) diff(e, {f1, . . . , fk}) = diff reg(e, f1 | . . . | fk)

2) diff(c, {@N [y]+}  D) = diff(c, D) (att(c) ∩ N = ∅)

2′) diff(c, {@a[y]}  D}) = diff(c, D) (att(c) ∩ {a} = ∅)

3) diff(@N [x]+, {d}  D) = diff(@N [x]+, D) (N ∩ att(d) = ∅)

3′) diff(@a[x], {d}  D) = diff(@a[x], D) ({a} ∩ att(d) = ∅)

4) diff(@a[x], {@a[y1], . . . , @a[yk]}) = @a[〈x, {y1, . . . , yk}〉]
5) diff(@N [any]+, {@N [any]+}) = ∅
6) diff(c, {d1, . . . , dk}) = ∣∣

I⊆{1,...,k}diff(c′, {d ′
i | i ∈ I }) diff(c′′, {d ′′

i | i ∈ {1, . . . , k} \ I }
if (c′, c′′), (d ′

1, d
′′
1 ), . . . , (d ′

k, d
′′
k ) is a proper partition of c, d1, . . . , dk

7) diff(c1 (c2 | c3) c4, D) = diff(c1 c2 c4, D) | diff(c1 c3 c4, D)

8) diff(c, {d1 (d2 | d3) d4}  D) = diff(c, {d1 d2 d4, d1 d3 d4}  D)

Fig. 3. Difference algorithm.

This “subsetting” technique has repeatedly been used in the literature. Interested readers are referred to [19,18,13]. Note
again that the rules overlap each other. However, as mentioned before, we apply earlier rules as often as possible, in
particular, we always try to partition expressions before resorting to expanding them. The termination of this algorithm
is guaranteed since (1) rules 2, 2′, 3, and 3′ decrement the cardinality of the second argument of diff , (2) rule 6
decrements the widths of the given expressions, and (3) the number of times that a given expression can be expanded
by rule 7 or 8 is finite (more precise, as in intersection, rule 7 and 8 decrease the number of clauses resulting from fully
expanding the expression by distributivity).

The function diff reg is analogous to the function interreg already shown: it constructs element automata M1 and M2
from element expressions e1 and e2, then computes the “difference automaton” M from M1 and M2, and finally converts
M back to an element expression e. The construction of difference automata uses both product and subset construction.
Given two element automata Mi = (Qi, q

init
i , Qfin

i , �i ) on {N [x] | N ∈ S, x ∈ Xi} (i = 1, 2), the difference of M1

and M2 is an automaton (Q, q init, Qfin, �) on {N [〈x1, Y2〉] | N ∈ S, x1 ∈ X1, Y2 ⊆ X2} where

Q = Q1 × P(Q2)

q init = 〈q init
1 , {q init

2 }〉
Qfin = {〈q1, P 〉 | q1 ∈ F1 and P ∩ F2 = ∅}
� = { (〈q1, P 〉, N [〈x1, Y 〉], 〈q ′

1, P
′〉) |

(q1, N [x1], q ′
1) ∈ �1 and

Y ⊆ {y | (p, N [y], p′) ∈ �2, p ∈ P } and
P ′ = {p′ | (p, N [y], p′) ∈ �2, p ∈ P, y /∈ Y }}

We demonstrate this algorithm using the first example of the difference operation shown in the beginning of Section
3.3.2. The difference between @a[x] @b[x] and (@a[y] @b[y] | @a[z] @b[z]) is computed as follows:

diff(@a[x]@b[x], {(@a[y]@b[y] | @a[z]@b[z])})
= diff(@a[x]@b[x], {@a[y]@b[y], @a[z]@b[z]}) (by rule 8)

= diff(@a[x], {@a[y], @a[z]})diff(@b[x], ∅)

| diff(@a[x], {@a[y]})diff(@b[x], {@b[z]})
| diff(@a[x], {@a[z]})diff(@b[x], {@b[y]})
| diff(@a[x], ∅)diff(@b[x], {@b[y], @b[z]}) (by rule 6)

= @a[〈x, {y, z}〉]@b[〈x, ∅〉]
| @a[〈x, {y}〉]@b[〈x, {z}〉]
| @a[〈x, {z}〉]@b[〈x, {y}〉]
| @a[〈x, ∅〉]@b[〈x, {y, z}〉] (by rule 4)

We can prove the following property expected for the difference algorithm.
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Theorem 2. Let H(〈x, Z〉) = diff(F (x), {G(y) | y ∈ Z}). Then diff(c, D) = b implies that H � v ∈ b iff F � v ∈ c

and G � v /∈ d for all d ∈ D.

The worst-case complexity of the difference algorithm is as follows. It is linear in the size of dom(F ) and exponential
in the size of dom(G). For each pair 〈x, Z〉, the computation of the diff function takes an exponential time in the size of
the first argument and a double exponential time in the size of the second argument. There are two exponential factors.
The first comes from that the given expressions may have to be fully expanded by rule 7 or 8 in the worst case. This
factor applies to both arguments. The second exponential factor, which applies only to the second argument, comes
from subset construction performed in rules 1 and 6.

Traditional formal language theories typically study complementation rather than difference. One might wonder why
we do not do the same. The reason is that, even if we consider complementation, its subcomputation needs to calculate
differences anyway. For example, suppose that we have an attribute-only expression c d where N = att(c). Then, we
would compute the complementation c d by

(@N [any]∗ \ c) d | c (@N [any]∗ \ d) | @N [any]∗N [any]+

which uses differences. (Note that it is wrong to answer c d | c d | @N [any]∗N [any]+ since the names contained in c

may overlap with those in d.)

3.4. Inclusion

One way of deciding inclusion is to compute a difference and then test the emptiness of the result. In this approach,
we would need the restrictions described in the previous section since otherwise difference is not computable. Below,
we show a slight variation of this approach that does not require these restrictions. The idea is to compute, in the
first step, an expression that denotes “approximately” the difference but whose emptiness is exactly the same as the
difference. We call this approximate difference quasi-difference. 9

By dropping the restrictions, we need to additionally treat (1) single-attributes with infinite name sets and (2) multi-
attributes with infinite name sets and non-any content. Accordingly, our quasi-difference algorithm must handle the
following two tricky cases.

The first case is when we subtract single- or multi-attributes from a single-attribute, where all the name sets are N
(which is possibly infinite) and the contents x and y’s are not necessarily any.

@N [x] \ (@N [y1]+ | . . . | @N [yl]+ | @N [yl+1] | . . . | @N [yk]) (2)

Since the left-hand side contains only values with width one, we can restrict the right-hand side to values with width
one. Thus, we can transform (2) as follows:

@N [x] \ (@N [y1] | . . . | @N [yk])
which is equivalent to

@N [x \ (y1 | . . . | yk)].
The second case is when we subtract single- or multi-attributes from a multi-attribute.

@N [x]+ \ (@N [y1]+ | . . . | @N [yl]+ | @N [yl+1] | . . . | @N [yk]) (3)

We simplify this formula in two steps. First, since the left-hand side is a multi-attribute, only multi-attributes on the
right-hand side can contribute in covering the values on the left-hand side. In other words, if the multi-attributes on the
right-hand side cannot cover the left-hand side, then adding single-attributes makes no difference. Therefore, we can
drop single-attributes from the right-hand side:

@N [x]+ \ (@N [y1]+ | . . . | @N [yl]+) (4)

9 We could obtain a more efficient algorithm by combining quasi-difference and emptiness check together so that we can skip the rebuilding of a
whole grammar. This approach is taken by a “top-down” algorithm for tree automata inclusion [19].
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2′) qdiff(c, {@N [y]}  D}) = qdiff(c, D) (att(c) ∩ N = ∅)

3′) qdiff(@N [x], {d}  D) = qdiff(@N [x], D) (N ∩ att(d) = ∅)

4) qdiff(@N [x], {@N [y1]+, . . . , @N [yl]+, @N [yl+1], . . . , @N [yk]}) = @N [〈x, {y1, . . . , yk}〉]
5) qdiff(@N [x]+, {@N [y1]+, . . . , @N [yl]+, @N [yl+1], . . . , @N [yk]})

= @a1[〈x, {y1}〉]+ . . . @al[〈x, {yl}〉]+(ai ∈ N and ai 
= aj for i 
= j)

Fig. 4. Quasi-difference algorithm: in addition, we transfer rules 1–3, 6–8 of diff (with the function symbol diff replaced by qdiff) to here. (Rule 1
still uses the function diff reg for element expressions.)

The second step transforms this to the following:

@a1[x \ y1]+ . . . @al[x \ yl]+ (5)

where a1, . . . , al are arbitrary different names taken from N. We can see that the emptinesses of (4) and (5) are the
same. Suppose that (5) is empty. Then, we can say x ⊆ yi for some i, and therefore @N [x]+ ⊆ @N [yi]+, which
implies that (4) is empty. The other direction holds since (5) is equal to or smaller than (4). Indeed, take an arbitrary
instance from the bottom

@a1[v1] . . . @al[vl]
where

v1 ∈ (x \ y1) . . . vl ∈ (x \ yl).

This value is in @N [x]+ since all v’s are taken from x, but is not in either of @N [yi]+ since vi is not from yi .
Note that the last trick works only when N is “big enough”—that is, the cardinality of N is equal to or larger than l.

As a counterexample, the following holds:

@{a, b}[x]+ \ (@{a, b}[y1]+ | @{a, b}[y2]+ | @{a, b}[y3]+) = ∅
where x, y1, y2, and y3 each denote the following finite sets:

{v1, v2, v3} {v1, v2} {v2, v3} {v3, v1}
Note that, even though x contains three values, the name set {a, b} allows the left-hand side @{a, b}[x]+ to generate
only values of width at most two. All such values are covered by the right-hand side. However, the transformation from
(4) to (5) does not work since we cannot take three different names from the set {a, b}. In the case that a multi-attribute
has a finite name set, we break it into a combination of single-attribute expressions with a singleton name set and apply
the rule for single-attributes.

Formally, let grammars F on X and G on Y be given and have been normalized simultaneously. Also, as mentioned
in the last paragraph, we assume that each multi-attribute expression has either an infinite name set or a singleton name
set. (An arbitrary multi-attribute expression can be converted to a form conforming to this restriction by using the name
set normalization described in Appendix A.) The “quasi-difference” between F and G is a grammar H on X × P(Y )

that satisfies

H(〈x, Z〉) = qdiff(F (x), {G(y) | y ∈ Z})
for all x ∈ X and Z ⊆ Y . The function qdiff takes a compound expression c and a set of compound expressions di and
returns an expression whose emptiness is the same as the difference between c and the union of di’s. The definition of
the function qdiff is given in Fig. 4. Here, we assume that N in the form @N [x]+ is an infinite set. We can prove the
following expected properties.

Theorem 3. Let H(〈x, Z〉) = qdiff(F (x), {G(y) | y ∈ Z}). Then qdiff(c, D) = b implies that H � v ∈ b for some v
iff F � w ∈ c and G � w /∈ d for all d ∈ D for some w.
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To examine the emptiness of a given grammar H, we first check the emptiness of H(x) for each variable x, assuming
the emptiness of all variables. We then “update” this assumption if H(x) is non-empty for some variable x. By repeating
the emptiness test and assumption update, we can eventually determine whether each H(x) is empty or not. This idea
can be formalized as follows. We compute a series of (total) functions �0, �1, . . . from the variables in dom(H) to
booleans, as defined below, and stop this computation when �n(x) = �n−1(x) for all x.

�0(x) = false
�i (x) = nemp(H(x))�i−1

where the function nemp is inductively defined as follows.

nemp(@N [x]+)� = (N 
= ∅) ∧ �(x)

nemp(@N [x])� = (N 
= ∅) ∧ �(x)

nemp(N [x]+)� = (N 
= ∅) ∧ �(x)

nemp(�)� = true
nemp(c1 c2)� = nemp(c1)� ∧ nemp(c2)�
nemp(c1 | c2)� = nemp(c1)� ∨ nemp(c2)�
nemp(c+)� = nemp(c)�

Theorem 4. nemp(c)�n = true if and only if H � v ∈ c for some v.

Since the structure of the inclusion algorithm is similar to the difference, the worst-case complexity is the same. The
emptiness test presented above is quadratic (in the size of the number of variables). However, we believe that it can be
made linear by choosing an appropriate data structure (similar to tree automata emptiness [10]).

4. Implementation techniques

As already discussed, the worst-case complexities of the algorithms presented above are quite bad—the intersection
algorithm is exponential and the difference and inclusion algorithms are double exponential. Our approach is to cope with
these high complexities by optimization techniques that work for typical inputs. One of such techniques is partitioning
(already presented), which avoids the need for fully expanding expressions, thus dealing with one of two exponential
factors. The other factor is subset construction, for which there are several known techniques. Below, we briefly explain
some of the techniques (which we used in our implementation). (More discussions can be found in [19,18].)

4.1. Top-down strategy

The intersection algorithm presented above takes grammars F (on X ) and G (on Y ) and calculates the product of F
and G for the whole domain X × Y . However, the actual algorithm takes “start variables” x0 and y0 in addition and the
useful part of the output grammar is the one that defines the reachable variables from the output start variable 〈x0, y0〉.
Our observation is that such reachable variables are typically much fewer than the whole X × Y . Exploiting this, we
construct the output grammar lazily from the start variable 〈x0, y0〉 in a top-down manner. That is, we initialize H to
be a grammar just containing the mapping 〈x0, y0〉 �→ inter(F (x0), G(y0)). We then take any pair 〈x, y〉 ∈ FV(H)

that is not yet in the domain of H, and add the mapping 〈x, y〉 �→ inter(F (x), G(y)). We repeat this until H becomes
self-contained. The same technique can be used in the algorithms for product automata, difference grammars, difference
automata, and quasi-difference grammars.

4.2. Sharing

It is quite common that the intersection algorithm encounters, during its computation, a pair of the same expression
c ∩ c. Since the result is trivially c itself whatever c is, we would like to somehow exploit this fact. However, since
expressions can be nested and refer to other variables, sameness is a bit complicated. For example, in the following
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grammars F and G:

F(x1) = a[x2] F(x2) = �
G(y1) = a[y2] G(y2) = �

x1 and y1 are the “same”, but detecting this requires a bit of work. In addition, even if we can detect it, we need to copy
the whole structure reachable from x1 to the output grammar.

To deal with this issue, we employ one global grammar.All input and output grammars are parts of it, and, furthermore,
these grammars can share some variables. We modify our intersection algorithm so that it takes only two start variables,
proceeds the computation using the global grammar, and adds a new mapping to it whenever necessary. Now, the
intersection of x and x is immediately x. Similarly, difference between x and Y with x ∈ Y results in a variable x∅ that
is assigned to ∅.

4.3. Other techniques

Since the function inter (and similarly for diff and qdiff) often computes the intersection of the same pair of
expressions repeatedly, memoizing the previous computations and reusing the results later are quite helpful. Another
technique is to use rules that are specialized to some fixed but frequently used expressions, such as any and ∅. For
example, we can use the special rules x ∩ any = x and x \ Y = x∅ when any ∈ Y .

5. Related work

Our study on attribute constraints has a strong relationship to type theories for record values (i.e., finite map-
pings from labels to values). Early papers presenting type systems for record types do not consider the union op-
erator and therefore no such complication arises as in our case. (A comprehensive survey of classical records can
be found in [14].) Buneman and Pierce have investigated record types with the union operator [6]. Their system
does not, however, have any mechanism similar to our multi-attribute expressions or recursion. Frisch et al. [13]
have designed a typed XML processing language CDuce that supports attribute types based on records. Although
the descriptive power of their types is the same as ours, type expressions to represent interdependency between
attributes and elements are exponentially larger than ours since they do not allow mixture of element and attribute
constraints. The DSD schema language [21] and its descendent DSD2 [23], designed by Klarlund et al., are capable
of expressing the kinds of attribute–element interdependencies discussed here by their special constraint mechanisms
(separate from regular expressions to describe content models). Closure properties of these schema languages have not
yet been clear, though a fragment of DSD2 (eliding pointers and uniqueness facilities) appears to be closed.

In his unpublished work, Vouillon has considered an algorithm for checking the inclusion relation between shuffle
expressions [29]. His strategy of progressively decomposing given expressions to two orthogonal parts made much
influence on our boolean and inclusion algorithms. The difference is that his algorithm directly answers yes or no
without constructing new grammars like our case, and therefore does not incur the complication of switching back and
forth between the expression representation and the automata representation.

Another important algorithmic problem related to schemas is validation. There have been several validation algo-
rithms proposed for attribute–element constraints. One is designed and implemented by Clark [8] based on deriva-
tives of regular expressions [5,1]. Another is presented by Hosoya and Murata using so-called attribute–element
automata [16].

6. Conclusion

In this paper, we have presented our intersection, difference, and inclusion algorithms. We have used these algo-
rithms in our implementation of the typed XML processing language XDuce [17]. For the examples that we have
tried, our algorithms incorporating the implementation techniques presented in Section 4 seem to have a reasonable
performance.

For future possibilities, we wish to figure out the lower bounds of the presented algorithmic problems. However,
we currently feel that most of operations performed in our algorithms that are expensive in the worst case (e.g.,
normalization) are unavoidable and therefore the complexities of the algorithms are unlikely to be improved. As a
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separate topic, instead of studying closure operations on grammars as in the present paper, we could investigate those
on tree automata with “attribute transitions”. While it might add a complication arising from commutativity of attribute
constraints and their partitioning, it could make a simplification by avoiding the use of conversion back from automata
to regular expressions.
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Appendix A. Name set normalization

Let {N1, . . . , Nk} be the set of name sets appearing in given grammars. (When we are given two grammars, this set
includes all the names in both grammars.) From this, we generate a set of disjoint name sets by the following shred
function. (Here,  is the disjoint union.)

shred({N}  S) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{N} ∪ shred(S) \ {∅} if N
⋂

(
⋃

S) = ∅
{N \ (

⋃
S)}∪

shred({N ′ ∩ N | N ′ ∈ S})∪
shred({N ′ \ N | N ′ ∈ S}) \ {∅} otherwise

shred(∅) = ∅

That is, we pick one member N from the input set. If this member is already disjoint with any other member, we continue
shredding for the remaining set S. Otherwise, we first divide each name set N ′ in S into the disjoint sets N ′ ∩ N and
N ′ \ N . We separately shred all the name sets of the first form and those of the second form. We then combine the
results from these and the name set obtained by subtracting all the members in S from N. As an example, this function
shreds the set {{a, b}, {b, c}, {a, c}} in the following way:

shred({{a, b}, {b, c}, {a, c}})
= {{a}} ∪ shred({{b}, {a}}) ∪ shred({{c}})
= {{a}} ∪ {{b}} ∪ {{a}} ∪ {{c}}
= {{a}, {b}, {c}}

This function may blow up since the “otherwise” case above uses two recursive calls to shred where the size of the
arguments do not necessarily decrease by half. (Indeed, we can easily construct an initial set {N1, . . . , Nk} such
that every Ni is not disjoint with and not a subset of the union of the other name sets. For this set, the shred
function takes O(2k) time and returns a set of size O(2k).) However, this does not seem to happen in practice
since the initial name sets are usually mostly disjoint and therefore the case N ∩ (∪S) = ∅ is taken in most of
the time.

We can easily show the following expected properties.

Lemma 1. Let S = shred({N1, . . . , Nk}).
(1) For all N, N ′ ∈ S, either N = N ′ or N ∩ N ′ = ∅.
(2) For all Ni , there is uniquely S′ ⊆ S such that Ni = ∪S′.
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Having computed a shredded set S = shred({N1, . . . , Nk}), we next replace every occurrence of the form N [x],
@N [x]+, or @N [x] with an expression that contains only name sets in S. We obtain such an expression by using the
following norm function:

normS(∅[x]) = ∅
normS((N  N ′)[x]) = N [x] | normS(N ′[x]) (N ∈ S)

normS(@∅[x]+) = ∅
normS(@(N  N ′)[x]+) = @N [x]+ | ((� | @N [x]+) normS(@N ′[x]+)) (N ∈ S)

normS(∅[x]) = ∅
normS(@(N  N ′)[x]) = @N [x] | normS(@N ′[x]) (N ∈ S)

In the special case that a given @N [x]+ is unioned with �, we can transform it to a somewhat simpler form as follows:

norm′
S(@∅[x]+ | �) = �

norm′
S(@(N  N ′)[x]+ | �) = (@N [x]+ | �) norm′

S(@N ′[x]+ | �) (N ∈ S)

This specialized rule is important since the straightforward form of concatenations yielded by the rule gives more
opportunities to the partitioning technique, compared to the complex form yielded by the general rule, where unions
and concatenations are nested with each other. In our experience, @N [x]+ almost always appears in the form @N [x]+ | �
since the user typically writes zero or more repetitions rather than one or more. The following lemma can easily be
proved.

Lemma 2. Let G be a grammar on X and G′ be the normalization of G. Then, G � v ∈ G(x) iff G′ � v ∈ G′(x) for all
v and x ∈ X.

The worst-case complexity of the whole normalization procedure is as follows. Suppose that there are n occurrences
of atomic form (N [x], @N [x]+, or @N [x]) in the given grammars. Since there are at most n different name sets,
shredding takes O(2n) and returns a set of size O(2n) at most. Since we apply the norm or norm′ function for each
occurrence of atomic form and each takes linear time in the size of the shredded set, the whole normalization takes
O(2n) and results in grammars of size O(2n) in the worst case.

Appendix B. Correctness of the Boolean and inclusion algorithms

B.1. Element automata

From the standard automata theory, the following is well known.

Proposition 1 (Hopcroft and Ullman [15]). (1) There is an algorithm compile that constructs an automaton M from
a given regular expression e such that L(M) = L(e).

(2) There is an algorithm decompile that constructs a regular expression e from a given automaton M such that
L(e) = L(M).

Given a grammar G on X, an element automaton is an automaton on S × X, where S is the set of name sets. We
present the semantics of an element automaton M w.r.t. G by the relation G�v ∈ M defined as follows:

ai ∈ Ni G � vi ∈ G(xi) N1[x1] . . . Nk[xk] ∈ L(M)

G � a1[v1] . . . ak[vk] ∈ M

Then, we can easily show that this semantics satisfies the following properties.

Corollary 1. (1) G � v ∈ e iff G � v ∈ compile(e).
(2) G � v ∈ M iff G � v ∈ decompile(M).
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B.2. Intersection

We inductively define the height |v| of a value v as follows:

|a[v]| = |v| + 1
|@a[v]| = |v| + 1
|v1 v2| = max(|v1|, |v2|)
|�| = 1

Let H be the “intersection” grammar constructed from two grammars F and G as in Section 3.2. By using the standard
proof technique, we can show the following expected property of product element automata.

Lemma 3. Let M be the product automaton of M1 and M2. Let v be any value. Suppose that, for any x, y, w with
|w| < |v|,

H � w ∈ H(〈x, y〉) iff F � w ∈ F(x) and G � w ∈ G(y).
Then, we have

H � v ∈ M iff F � v ∈ M1 and G � v ∈ M2.

Corollary 2. Let interreg(e1, e2) = e. With the same assumption as Lemma 3, we have
H � v ∈ e iff F � v ∈ e1 and G � v ∈ e2.

The following technical lemma shows that, if a value can be partitioned by disjoint sets of attributes and elements,
then such a partition is unique.

Lemma 4. Given a value v, if v = u w = u′ w′ where (elm(u) ∪ elm(u′)) ∩ (elm(w) ∪ elm(w′)) = ∅ and (att(u) ∪
att(u′)) ∩ (att(w) ∪ att(w′)) = ∅, then u = u′ and w = w′.

Proof. Let v = 〈�, �〉. Also, let u = 〈�1, �1〉 and w = 〈�2, �2〉; similarly u′ = 〈�′
1, �

′
1〉 and w′ = 〈�′

2, �
′
2〉. Suppose

u 
= u′. Then, either �1 
= �′
1 or �1 
= �′

1.
• When �1 
= �′

1, either �1 \ �′
1 
= ∅ or �′

1 \ �1 
= ∅. Therefore, �1 ∩ �′
2 
= ∅ or �2 ∩ �′

1 
= ∅. Either case contradicts
the condition (att(u) ∪ att(u′)) ∩ (att(w) ∪ att(w′)) = ∅.

• When �1 
= �′
1, either (1) �1 = �′

1� and �′
2 = ��2 for some non-empty � or (2) �′

1 = �1� and �2 = ��′
2 for some

non-empty �. Either case contradicts the condition (elm(u) ∪ elm(u′)) ∩ (elm(w) ∪ elm(w′)) = ∅. �

In the subsequent proofs, we use the following function weight from compound expressions to integers:

weight(c1 c2) = weight(c1)weight(c2)

weight(c1 | c2) = weight(c1) + weight(c2)

weight(c) = 1 if c 
= c1 c2 and c 
= c1 | c2

This function computes the number of clauses resulting from fully expanding the given expression by distributivity.
For example, weight((a[x] | @a[y]) (� | b[z])) = 4.

We use both width and weight functions for the measure of induction in the proof of Theorem 1. When we decompose
an expression c into c1 c2 by proper partition, each ci decreases width while it either keeps or decreases weight (never
increases it). When we expand an expression c (c1 | c2) c′ to (c c1 c′) | (c c2 c′), each c ci c′ decreases weight while it
may increase width (e.g., width((a[x] b[x]) | c[x]) = 1 < width(a[x] b[x]) = 2). For this reason, the measure gives
weight higher priority than width.

The following theorem (shown in Section 3.2) shows the correctness of the function inter.

Theorem 1. Let H(〈x, y〉) = inter(F (x), G(y)). Then, inter(c, d) = b implies that H � v ∈ b iff F � v ∈ c and
G � v ∈ d.
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Proof. Let measure(v, c, d) = (|v|, weight(c)+weight(d), width(c)+width(d)). By induction on the lexicographic
order of measure(v, c, d).

Case: c = e (i.e., att(c) = ∅) d = f

b = interreg(e, f )

The induction hypothesis allows us to use Corollary 2, from which the result follows.

Case: c = @N [x] att(d) ∩ N = ∅ b = ∅ or
c = @N [x]+ att(d) ∩ N = ∅ b = ∅

Trivial.

Case: c = @N [x] d = @N [y]+ b = @N [〈x, y〉]
Clearly, v has the form @a[v′]. By definition, F � v ∈ c and G � v ∈ d iff a ∈ N with F � v′ ∈ F(x) and G � v′ ∈ G(y).
By induction hypothesis, F � v′ ∈ F(x) and G � v′ ∈ G(y) if and only if H � v′ ∈ H(〈x, y〉). By combining these, the
result follows.

Case: c = @N [x] d = @N [y] b = @N [〈x, y〉]
Similar to the previous case.

Case: c = @N [x]+ d = @N [y]+ b = @N [〈x, y〉]+
Clearly, v has the form @a1[v1] . . . @ak[vk]. By definition, F � v ∈ c and G � v ∈ d iff k�1 and ai ∈ N with F � vi ∈
F(x) and G � vi ∈ G(y). By induction hypothesis, F � vi ∈ F(x) and G � vi ∈ G(y) if and only if H � vi ∈ H(〈x, y〉).
By combining these, the result follows.

Case: b = inter(c1, d1) inter(c2, d2)

(c1, c2), (d1, d2) is a proper partition of c, d

By the definition of partition, the result suffices to show

F � v ∈ c1 c2 and G � v ∈ d1 d2
iff H � v ∈ inter(c1, d1) inter(c2, d2)

(B.1)

with (att(c1) ∪ att(d1)) ∩ (att(c2) ∪ att(d2)) = ∅ and (elm(c1) ∪ elm(d1)) ∩ (elm(c2) ∪ elm(d2)) = ∅.
We first show the “if” direction of the statement (B.1). Let v satisfy the right-hand side of this statement. Then,

there are v1 and v2 such that v = v1 v2 with H � vi ∈ inter(ci, di) for i = 1, 2. Since the partition is proper,
measure(v, ci, di) < measure(v, c, d) for i = 1, 2. This allows us to apply the induction hypothesis and obtain
F � vi ∈ ci and G � vi ∈ di for i = 1, 2.

To show the other direction, let v satisfy the left-hand side of (B.1). Then, there are v1 and v2 such that v = v1 v2
with F � v1 ∈ c1 and F � v2 ∈ c2; also, there are v′

1 and v′
2 such that v = v′

1 v′
2 with G � v′

1 ∈ d1 and G � v′
2 ∈ d2. From

Lemma 4, v1 = v′
1 and v2 = v′

2. By the same argument as above, we can apply the induction hypothesis shown above,
we obtain H � vi ∈ inter(ci, di) for i = 1, 2, from which the result follows.

Case: c = c1 (c2 | c3) c4
b = inter(c1 c2 c4, d) | inter(c1 c3 c4, d)

Clearly F � v ∈ c if and only if either F � v ∈ c1 c2 c4 or F � v ∈ c1 c3 c4. Note measure(v, c1 c2 c4, d)<measure
(v, c, d) and, similarly, measure(v, c1 c3 c4, d) < measure(v, c, d). The result follows from the induction hypothesis.

The other cases corresponding to the symmetric rules can be proved similarly. �

B.3. Difference

Let H be the “difference” grammar constructed from two grammars F and G as in Section 3.3. By combining the
standard proof technique for product construction and subset construction, we can show the following:

Lemma 5. Let M be the difference automaton of M1 and M2. Let v be any value. Suppose that, for any x, Y, w with
|w| < |v|,

H � w ∈ H(〈x, Y 〉) iff F � w ∈ F(x) and G � w /∈ G(y) for all y ∈ Y .
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Then, we have
H � v ∈ M iff F � v ∈ M1 and G � v /∈ M2.

Corollary 3. Let diff reg(e1, e2) = e. With the same assumption as Lemma 5, we have
H � v ∈ e iff F � v ∈ e1 and G � v /∈ e2.

Now, we prove Theorem 2 (given in Section 3.3.1). In the proof, we need a care in considering the measure of
induction since we pass a set of expressions (instead of a single expression) as the second argument to the diff function.
The rules making recursive calls (where let c and D be the two arguments) are (a) ones removing an expression from
D (rules 2, 2′, 3, and 3′), (b) one splitting c and the expressions in D by proper partitioning (rule 6), (c) one expanding
c (rule 7), and (d) one expanding D (rule 8). What does each kind of rules decrease? It is easy to see that (a) decreases
the cardinality of D, (b) decreases the sum of the widths of c and the expressions in D, and (c) decreases the weight of
c, that is, the number of expressions resulted from fully expanding c by distributivity. Note that (d) does not decrease
but retains the sum of the weights of the expressions in D. What this rule decreases is actually how close D is to the
full expansion. This can formally be expressed by∑

d∈D

weight(d) − |D|.

Since (c) and (d) decrease their measures independently, these measures can be combined as

weight(c) + ∑
d∈D

weight(d) − |D|.

Let us define m1(c, D) be this formula, m2(c, D) be |D|, and m3(c, D) be width(c) +∑
d∈D width(d).

Now, we need to combine these measures for forming a lexicographic order. The question is which measure is more
robust than the others. At first, m1 may look fragile since it contains the clause −|D|. However, we can see that (a)
does not decrease m1 since, when D′ ⊆ D,(∑

d∈D

weight(d) − |D|
)

−
( ∑

d∈D′
weight(d) − |D′|

)

= ∑
d∈D\D′

weight(d) − (|D \ D′|)
�0.

(The last inequation follows from weight(d)�1 for any d.) Also, (b) does not since it decreases the cardinality of D
to D′ and each expression d ′

i (or d ′′
i ) in D′ is resulted from a proper partition of the corresponding expression di in D.

From this discussion, the measure m1 is actually the most robust among the three measures. The next most robust is
m2 since it may increase only when m1 decreases (by rule 8).

Theorem 2. Let H(〈x, Z〉) = diff(F (x), {G(y) | y ∈ Z}). Then diff(c, D) = b implies that H � v ∈ b iff F � v ∈ c

and G � v /∈ d for all d ∈ D.

Proof. Let measure(v, c, D) be(
|v|, weight(c) + ∑

d∈D

weight(d) − |D|, |D|, width(c) + ∑
d∈D

width(d)

)
.

By induction on the lexicographic order of measure(v, c, D):

Case: c = e D = {f1, . . . , fk}
b = diff reg(e, f1 | . . . | fk)

The induction hypothesis allows us to use Corollary 3, from which the result follows.

Case: D = {@N [y]+}  D′ or D = {@N [y]}  D′ att(c) ∩ N = ∅
b = diff(c, D′)
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Since c and @N [y]+ are obviously disjoint, the result follows by the induction hypothesis.

Case: c = @N [x]+ or c = @N [x] N ∩ att(d) = ∅
b = diff(@N [y]+, D′)

Similar to the previous case.

Case: c = @N [any]+ D = {@N [any]+} b = ∅
Trivial.

Case: c = @a[x] D = {@a[y1], . . . , @a[yk]}
b = @a[〈x, {y1, . . . , yk}〉]

By definition, F � v ∈ c and G � v /∈ @a[yi] for all i = 1, . . . , k if and only if v = @a[v′] with F � v′ ∈ F(x) and
G � v′ /∈ G(yi) for all i = 1, . . . , k. By the induction hypothesis, the latter is equivalent to saying H � v ∈ b.

Case: D = {d1, . . . , dk}
b = ∣∣

I⊆{1,...,k}
diff(c′, {d ′

i | i ∈ I })
diff(c′′, {d ′′

i | i ∈ {1, . . . , k} \ I })
(c′, c′′), (d ′

1, d
′′
1 ), . . . , (d ′

k, d
′′
k )

is a proper partition of c, d1, . . . , dk

By the definition of partition, we have c = c′ c′′ and di = d ′
i d ′′

i with (att(c′)∪⋃i att(d ′
i ))∩(att(c′′)∪⋃i att(d ′′

i )) = ∅
and (elm(c′)∪⋃i elm(d ′

i ))∩ (elm(c′′)∪⋃i elm(d ′′
i )) = ∅. We first show the “only if” direction. Let H � v ∈ b. Then,

there are v′ and v′′ such that H � v′ ∈ diff(c′, {d ′
i | i ∈ I }) and H � v′′ ∈ diff(c′′, {d ′′

i | i ∈ {1, . . . , k} \ I }). By the
induction hypothesis, we have

F � v′ ∈ c′ and G � v′ /∈ d ′
i for all i ∈ I

and

F � v′′ ∈ c′′ and G � v′′ /∈ d ′′
i for all i ∈ {1, . . . , k} \ I .

These imply that F � v ∈ c and G � v /∈ di for all i ∈ {1, . . . , k}.
We next show the “if” direction. Let F � v ∈ c and G � v /∈ di for all i ∈ {1, . . . , k}. Then, there are v′ and v′′ such

that v = v′ v′′ with F � v′ ∈ c′ and F � v′′ ∈ c′′. From Lemma 4, v′ and v′′ are uniquely determined. Therefore, either
G � v′ /∈ d ′

i or G � v′′ /∈ d ′′
i . Since this holds for all i, there is I ⊆ {1, . . . , k} such that G � v′ /∈ d ′

i for all i ∈ I and
G � v′′ /∈ d ′′

i for all i ∈ {1, . . . , k} \ I . By the induction hypothesis,

H � v′ ∈ diff(c′, {d ′
i | i ∈ I })

and
H � v′′ ∈ diff(c′′, {d ′′

i | i ∈ {1, . . . , k} \ I }).
The desired result H � v ∈ b follows from these.

Case: c = c1 (c2 | c3) c4
b = diff(c1 c2 c4, D) | diff(c1 c3 c4, D)

The result can be shown straightforwardly by using that
F � v ∈ c1 (c2 | c3) c4 iff F � v ∈ c1 c2 c4 or F � v ∈ c1 c3 c4

plus the induction hypothesis.

Case: D = {d1 (d2 | d3) d4}  D′
b = diff(c, {d1 d2 d4, d1 d3 d4}  D′)

Similar to the previous case. �

B.4. Inclusion

Let H be the “quasi-difference” grammar constructed from two grammars F and G as in Section 3.4. Then, we
can prove the following statement. Note that, since H is now the quasi-difference grammar rather than the difference
grammar, what we can state is somewhat weaker than Lemma 5. That is, we want to have that, if there is some value
accepted by M1 but not by M2, then there is some (possibly different) value of the same height accepted by M; and
vice versa. We can ensure this if a similar statement holds for the quasi-difference grammar for any values with smaller
heights.
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Lemma 6. Let M be the difference automaton of M1 and M2. Take an arbitrary h�0. Suppose that, for any h′ < h,
x, and Y,

H � v′ ∈ H(〈x, Y 〉) for some v′ with |v′| = h′ iff F � w′ ∈ F(x) and G � w′ /∈ G(y) for all y ∈ Y for some w′
with |w′| = h′.

Then, we have
H � v ∈ M for some v with |v| = h iff F � w ∈ M1 and G � w /∈ M2 for some w with |w| = h.

Corollary 4. Let diff reg(e1, e2) = e. With the same assumption as Lemma 6, we have
H � v ∈ e for some v with |v| = h iff F � v ∈ e1 and G � v /∈ e2 for some w with |w| = h.

Theorem 3. Let H(〈x, Z〉) = qdiff(F (x), {G(y) | y ∈ Z}). Then qdiff(c, D) = b implies that H � v ∈ b for some v

iff F � w ∈ c and G � w /∈ d for all d ∈ D for some w.

Proof. To prove the result, we show the following slightly more general statement:
qdiff(c, D) = b implies, for any h�0, that H � v ∈ b for some v with |v| = h iff F � w ∈ c and G � w /∈ d for
all d ∈ D for some w with |w| = h.

Let measure(h, c, D) be(
h, weight(c) + ∑

d∈D

weight(d) − |D|, |D|, width(c) + ∑
d∈D

width(d)

)
.

The proof proceeds by induction on the lexicographic order of measure(h, c, D). Most of the cases are analogous to
the proof of Theorem 2. The exceptions are the following:

Case: c = e D = {f1, . . . , fk}
b = diff reg(e, f1 | . . . | fk)

The induction hypothesis allows us to use Corollary 4, from which the result follows.

Case: c = @N [x]
D = {@N [y1]+, . . . , @N [yl]+, @N [yl+1], . . . , @N [yk]}
b = @N [〈x, {y1, . . . , yk}〉]

We first show the “only if” direction. Let H � v ∈ b. Then, v = @a[v′] for some v′ with a ∈ N and H � v′ ∈
H(〈x, {y1, . . . , yk}〉). By the induction hypothesis, F � w′ ∈ F(x) and G � w′ /∈ G(yi) (i = 1, . . . , k) for some w′
with |w′| = h − 1. Let w = @a[w′]. Then, F � w ∈ c and G � w /∈ d for d ∈ D.

We next show the “if” direction. Let F � w ∈ c and G � w /∈ d for d ∈ D. Then, w = @a[w′] where a ∈
N with F � w′ ∈ F(x) and G � w′ /∈ G(yi) (i = 1, . . . , k) for some w′. By the induction hypothesis, H � v′ ∈
H(〈x, {y1, . . . , yk}〉) for some v′ with |v′| = h − 1. Let v = @a[v′]. Then, H � v ∈ b. The result
follows.

Case: c = @N [x]+
D = {@N [y1]+, . . . , @N [yl]+, @N [yl+1], . . . , @N [yk]}
N is infinite
b = @a1[〈x, {y1}〉]+ . . . @al[〈x, {yl}〉]+
ai ∈ N ai 
= aj (i 
= j)

We first show the “only if” direction. Let H � v ∈ b. Then, v = @a1[v1] . . . @al[vl] for some v1, . . . , vl with
H � vi ∈ H(〈x, {yi}〉) (i = 1, . . . , l). By the induction hypothesis, F � wi ∈ F(x) and G � wi /∈ G(yi) for some wi

with |wi | = |vi | for i = 1, . . . , l. Take two arbitrary different names b1 and b2 from N that are also different from any ai

(which is always feasible because N is infinite). Let w = @a1[wi] . . . @al[wl]@b1[w1]@b2[w2]. Clearly, |w| = h and
F � w ∈ c. For each i = 1, . . . , l, we have G � w /∈ @N [yi]+ since G�wi /∈ G(yi). Finally, for each i = l + 1, . . . , k,
we have G � w /∈ @N [yi] since w has at least width two. The result follows.

We next show the “if” direction. Let F � w ∈ c and G � w /∈ d for d ∈ D. Then, w must have the form @b1[w1] . . .

@bl[wl] where, for i = 1, . . . , l, we have bi ∈ N with F � wji
∈ F(x) and G � wji

/∈ G(yi) for some ji . By applying
the induction hypothesis for i = 1, . . . , l, we obtain that H � vi ∈ H(〈x, {yi}〉) for some vi with |vi | = |wji

|. Let
v = @a1[v1] . . . @al[vl]. Then, the result H � v ∈ b follows. �
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Lemma 7. nemp(c)�i = true if and only if H � v ∈ c for some v with |v|� i + 1.

Proof. The proof proceeds by induction on the lexicographic order of (i, |c|).
Case: c = �

nemp(c)�i = true always holds. The result follows from H � � ∈ � and |�| = 1� i + 1.

Case: c = N [x]
By definition, nemp(c)�i = (N 
= ∅) ∧ �i (x) = (N 
= ∅) ∧ nemp(H(x))�i−1. By the induction hypothesis,
nemp(H(x))�i−1 = true if and only if H � v′ ∈ H(x) for some v′ with |v′|� i. By T-ELM, N 
= ∅ and H � v′ ∈ H(x)

if and only if H � a[v′] ∈ N [x] where a ∈ N . Since |a[v′]|� i + 1, the result follows.

Case: c = @N [x] or c = @N [x]+
Similar to the previous case.

Case: c = c1 | c2

By definition, nemp(c)�i = true if and only if nemp(c1)�i = true or nemp(c2)�i = true. By the induction
hypothesis, the latter is equivalent to H�v1 ∈ c with |v1|� i + 1 or H � v2 ∈ c with |v2|� i + 1. The result follows
by T-OR.

Case: c = c1 c2

Similar to the previous case. �

Theorem 4. nemp(c)�n = true if and only if H � v ∈ c for some v.

Proof. The “only if” direction immediately follows from Lemma 7. For the “if” direction, suppose that H � v ∈ c

for some v and let |v| = h + 1. If h�n, then |v|�n + 1 and therefore nemp(c)�n = true by Lemma 7. Otherwise,
nemp(c)�h = true by Lemma 7. The result follows since �h = �n. �
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