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Abstract

Automata theory based on quantum logic (abbr. l-valued automata theory) may be viewed as a logical
approach of quantum computation. In this paper, we characterize some fundamental properties of l-valued
automata theory, and discover that some properties of the truth-value lattices of the underlying logic are
equivalent to certain properties of automata. More specifically (i) the transition relations of l-valued auto-
mata are extended to describe the transitions enabled by strings of input symbols, and particularly, these
extensions depend on the distributivity of the truth-value lattices (Proposition 3.1); (ii) some properties of the
l-valued successor and source operators and l-valued subautomata are demonstrated to be equivalent to a
property of the truth-value lattices which is exactly equivalent to the distributive law (Proposition 4.3 and
Corollary 4.4). This is a new characterization of Boolean algebras in the framework of l-valued automata
theory; (iii) we verify that the intersection of two l-valued subautomata is still an l-valued subautomaton if
and only if the multiplication (&) is distributive over the union in the truth-value lattices (Proposition 4.5),
which is strictly weaker than the usual distributivity; (iv) we show that some topological characterizations
in terms of the l-valued successor and source operators also rely on the distributivity of truth-value lattices
(Theorem 5.6). Finally, we address some related topics for further study.
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1. Introduction

With a desire to circumvent the fundamental limits on current computing technologies, some
nontraditional models of computation such as analog, molecular, and quantum computation have
been greatly interested in both physics and computer science (e.g., [1,8,12,20,24,43]). In particular,
quantum computation has become a highly active research area (e.g., [17,25,46]). To a certain ex-
tent, this originated from Shor’s findings of quantum algorithms for factoring prime integers in
polynomial time [41] and Grover’s algorithm [16] for searching through an unstructured database
which could also be sped up on a quantum computer.
The idea of quantum computation came from the studies of connections between physics and

computation. The first step toward it was the understanding of the thermodynamics of classical
computation. In 1973, Bennett [5] noted that a logically reversible operation need not dissipate
any energy and found that a logically reversible Turing machine is a theoretical possibility. Quan-
tum computers were first conceived by Benioff [4] and Feynman [15] in the early of 1980s. In [12],
Deutsch elaborated and formalized Benioff and Feynman’s idea. In particular, he proposed the so-
called Church–Turing principle as a physical principle underlying the Church-Turing hypothesis in
computing theory, and introduced the notion of quantum Turing machine. After Shor’s impressive
discovery [41] of a polynomial-time algorithmonquantum computers for prime factorization, quan-
tum computation has become a very active research area in both quantum physics and computer
science.
Roughly speaking, current studies of quantum computation may be divided into four strata: (1)

physical implementations, (2) physicalmodels, (3)mathematicalmodels, and (4) logical foundations
[10,17,25,46]. Almost all pioneer works of quantum computation such as [4,12,15,48] were devoted to
establishing physicalmodels of quantumcomputing. In 1990s, a great attentionwas paid to the phys-
ical implementations of quantum computation. For example, Lloyd [21] considered the practical
implementation of quantum computing by using electromagnetic pulses and Cirac and Zoller [11]
used laser manipulations of cold trapped ions to implement quantum computation. In classical
computing theory, automata are simple mathematical models of computers. Correspondingly, the
notion of quantum automata was introduced as a mathematical model of quantum computer; see
[2,6,7,18,20,24,29,30] and [17, pp. 151–215] for example. Quantum automata are generalizations of
probabilistic automata. In a probabilistic automaton [26,38], each transition is equipped with a
number in the unit interval which indicates the probability of the occurrence of the transition; by
contrast in a quantum automaton we associate with each transition a vector in a Hilbert space
which is interpreted as the probability amplitude of the transition. In a sense, mathematical models
of quantum computation may be seen as abstractions of its physical models.
Quantum automata are usually more powerful than classical ones [45] (for example, two-way

quantum finite automata can recognize nonregular language [20]), but the unitarity (retrievability
of computation) of quantum physics results in some restrictions and limitations (for example, the
class of languages recognized by one-way quantum finite automata is a proper subclass of regular
languages [7]). Also, in quantum information processing [23], due to the unitarity and linearity
of quantum physics, there exist some restrictions and limitations such as no-cloning theorem [47],
no-deleting principle [27], and a number of probabilistic and approximate quantum cloning and
deleting machines [14,19,31–35]. So, clarifying those essential differences between traditional and
quantum computation is very significant.
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Quantum automata indicated above may be viewed as some computing models based on quan-
tummechanics. As is well known, quantum logic was introduced by Birkhoff and von Neumann [9]
as the logic of quantum mechanics, and it stemmed from von Neumann’s Hilbert space formalism
of quantum mechanics in which the behavior of a quantum mechanical system is described by a
closed subspace of a Hilbert space. By noticing that the set of closed subspaces of a Hilbert space
is an orthomodular lattice, Birkhoff and von Neumann [9] suggested to use orthomodular lattice
as the algebraic version of the logic of quantum mechanics, just like Boolean algebra acting as an
algebraic counterpart of classical logic.
Recently, the author [49,50] primarily and very significantly considered automata theory based

on quantum logic (l-valued automata), in which quantum logic is understood as a logic whose
truth-value set is an orthomodular lattice, and an element of an orthomodular lattice is assigned
to each transition of an automaton and it is considered to be the truth value of the proposition
describing the transition. This is a logical approach to quantum computation, and it should be
treated as a further abstraction of mathematical models of quantum computation.
With this approach, the author [49,50] dealt with some operations on l-valued automata, and

interestingly established corresponding pumping lemma. In this paper, we discover some new phe-
nomena in l-valued automata theory, which reveal to some extent some intrinsic distinctions of
quantum computation from classical one, and may stimulate us to further exploration of quantum
computing. We now state our results in detail. (i) We find that some basic properties of transi-
tion functions of l-valued automata heavily rely on the distributivity of the truth-value lattices of
the underlying logic (Proposition 3.1). As is known, orthomodular lattices have weaker condition
than distributivity, and any orthomodular lattice satisfying distributivity reduces to a Boolean al-
gebra, so, this point we found implies that those properties of transition functions do not hold
in the framework of l-valued automata theory. (ii) Successor and source operators as well as su-
bautomata introduced by Bavel [3] are a fundamental tool in classical automata theory and have
been applied to topological characterization of automata [44], so we define l-valued successor and
source operators and l-valued subautomata, especially discover that some properties of these op-
erators are equivalent to some properties of the truth-value lattices which are exactly equivalent
to distributive law (Proposition 4.3). This is a new characterization of Boolean algebras in the
framework of l-valued automata theory. (iii) We show that the meet of any two l-valued subau-
tomata still is an l-valued subautomaton iff the distributivity of & over ∨ of truth-value lattice
holds (Proposition 4.5). It is interesting to note that the distributivity of & over ∨ is strictly weaker
than the distributivity of ∧ over ∨, so we discover a new characterization of orthomodular lat-
tices in terms of automata. (iv) We present topological characterizations in terms of the l-valued
successor and source operators, and find that they also depend on the distributivity of truth-value
lattices.
So, these findings imply that some fundamental properties of classical automata theory do not

hold in l-valued automata, unless some conditions are imposed on the truth-value lattices, some of
which are equivalent to distributive law, while another conditions are strictly weaker than distribu-
tivity. This leads naturally us to guess that there may be a spectrum of properties of orthomodular
lattices which is pointwise equivalent to a spectrum of properties of automata. Furthermore, These
results display some essential distinctions of quantum computation from classical one, and show
that systematically establishing computational models based on quantum logic needs new idea and
method, and is worthy of further exploration.
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2. Preliminaries

Here we briefly review some notions and terminology in quantum logic. For details, we refer to
[13,22,28,42]. A 7-tuple l = 〈L,�,∧,∨,⊥, 0, 1〉 is called a complete orthomodular lattice, if it satisfies
the following conditions:
(1) 〈L,�,∧,∨,⊥, 0, 1〉 is a complete lattice, 0 and 1 are the least and greatest elements of L, respec-
tively, � is the partial ordering in L, and for any M ⊆ L, ∧M , and ∨M stand for the greatest
lower bound and the least upper bound ofM , respectively.

(2) ⊥ is a unary operation on L, called orthocomplement, and it is required to satisfy the following
conditions: for any a, b ∈ L,
(2.1) a ∧ a⊥ = 0, a ∨ a⊥ = 1.
(2.2) a⊥⊥ = a.
(2.3) a � b implies b⊥ � a⊥.
(2.4) a � b implies a ∧ (a⊥ ∨ b) = b.

The condition (2.4) may be restated as follows:
(2.4)′ For any a, b ∈ L, a ∧ (a⊥ ∨ (a ∧ b)) � b.
A quantum logic is a complete orthomodular lattice-valued logic. In this paper, we mainly

use the Sasaki arrow as the implication operator. The Sasaki arrow is defined as follows: for
any a, b ∈ L,

(3) a→ b
def= a⊥ ∨ (a ∧ b).

The conjunction in a quantum logic is usually interpreted as the meet operation of the truth-
value lattices. It is easy to see that themeet operation is not conjugate to the Sasaki arrow. Thus,
Román and Rumbos [39] introduced a new conjunction operator, namely, the multiplication.
The multiplication is defined as follows: for all a, b ∈ L,

(4) a&b
def= (a ∨ b⊥) ∧ b.

For the sake of convenience, we give here some of properties of the Sasaki arrow and the
multiplication:
(4.1) a&b � c iff a � b→ c.
(4.2) a � b iff a→ b = 1.
(4.3) (a→ b)&a � b.
(4.4) a&(a→ b) � b.
(4.5) 0→ a = 1 = a→ 1.
(4.6) a&b � b.
(4.7) a ∧ b � a&b.
(4.8) Let l = 〈L,�,∧,∨,⊥, 0, 1〉 be a complete orthomodular lattice. Then L is a Boolean alge-

bra, i.e., it satisfies the distributive law: a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for all a, b, c ∈ L, if
and only if any one of the following holds:
(i) & is commutative, i.e., a&b = b&a for any a, b ∈ L.
(ii) b � c⇒ a&b � a&c for any a, b, c ∈ L.

The bi-implication operator corresponding to the Sasaki arrow is defined as follows:
for all a, b ∈ L,

(5) a↔ b
def= (a→ b) ∧ (b→ a).
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Let l = 〈L,�,∧,∨,⊥, 0, 1〉 be a complete orthomodular lattice and→ the Sasaki arrow. The
syntax of l-valued logic is similar to that of classical first-order logic. We have three primi-
tive connectives ¬(negation), ∧(conjunction), and →(implication) and a primitive quantifier
∀(universal quantifier). The connectives ∨(disjunction) and↔(bi-implication) and the existen-
tial quantifier ∃ are defined in terms of ¬, ∧,→, and ∀ in the usual way.
In addition, we need to use some set-theoretical formulas. Let ∈ (membership) be a binary

(primitive) predicate symbol. Then⊆ (inclusion) and≡ (equality) can be defined with ∈ as usu-
al. The semantics of l-valued logic is given by interpreting the connectives ¬, ∧, and→ as the
operations ⊥, ∧, and→, respectively, on L and by interpreting the quantifier ∀ as the greatest
lower bound in L. In addition, the truth value of set-theoretical formula x ∈ A is �x ∈ A� = A(x).
It is worth indicating that in this paper the set A and its characteristic function are identified.
In the l-valued logic, 1 is the unique designated truth value. In other words, a formula ϕ is valid
iff its truth value �ϕ� is 1.

3. Characterizations of transition relations

Let 〈L,�,∧,∨,⊥, 0, 1〉 be a complete orthomodular lattice, let→ be an implication operator on l,
and let�beafinite alphabet.An l-valued (quantum)automataover� is aquadruple� = 〈Q, I , T , �〉,
where:
1. Q is a finite set of states.
2. I ⊆ Q is the set of initial states.
3. T ⊆ Q is the set of terminal states.
4. � is an l-valued subset of Q ×�× Q, i.e., a mapping from Q ×�× Q into L, called the l-valued
(quantum) transition relation of �. Intuitively, for any p , q ∈ Q and � ∈ �, �(p , �, q) indicates
the truth value of the proposition that input � causes state p to become q.
The transition relation � represents the transition of states induced by a single input symbol.

To depict the transitions enabled by a string of input symbols, � may be naturally extended to �∗ :
Q ×�∗ × Q→ Las follows:For any p , q ∈ Q, ifq = p , then �∗(p , �, q) = 1; otherwise, �∗(p , �, q) = 0,
and

�∗(p , xa, q) = ∨{�∗(p , x, r) ∧ �∗(r, a, q) : r ∈ Q},
for any x ∈ �∗ and a ∈ �, where �∗ =⋃∞

k=0�k , �(0) = {�} represents an empty string, and �k=
{�1�2 · · · �k : �i ∈ �, i = 1, 2, . . . , k}. On the other hand, �∗ may be treated as an l-valued predi-
cate on Q ×�∗ × Q. For any p , q ∈ Q and x ∈ �∗, �∗(p , x, q) may be seen as the proposition that
state p becomes state q after inputting the string x of symbols, and its truth value is ��∗(p , x, q)� def=
�∗(p , x, q). Intuitively, we may expect that the concatenation of two strings of input symbols causes
a state p becoming another state q iff the first string enables the state p becoming some state r and
then r becomes q after inputting the second string. In other words, for any p , q ∈ Q and for any
x, y ∈ �∗,

l|= �∗(p , xy , q)↔ (∃r ∈ Q)(�∗(p , x, r) ∧ �∗(r, y , q)).
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However, this conclusion appeals to the distributivity of the lattice of truth values. For convenience,
denote by a(�, l) the class of all l-valued automata over �.

Proposition 3.1. The following three statements are equivalent.
(i) L satisfies the distributivity: a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for any a, b, c ∈ L.

(ii) For any � = (Q, I , T , �) ∈ A(�, l), for any p , q ∈ Q and for any x, y ∈ �∗,

l|= �∗(p , xy , q)→ (∃r ∈ Q)(�∗(p , x, r) ∧ �∗(r, y , q)).

(iii) For any � = (Q, I , T , �) ∈ A(�, l), for any p , q ∈ Q and for any x, y ∈ �∗,
l|= (∃r ∈ Q)(�∗(p , x, r) ∧ �∗(r, y , q))→ �∗(p , xy , q).

Proof. (i)⇒ (ii) and (i)⇒ (iii): It suffices to show that �∗(p , xy , q) = ∨{�∗(p , x, r) ∧ �∗(r, y , q) : r ∈ Q}.
For the case of y ∈ � ∪ {�}, it is clear by the definition of �∗. Suppose that it holds for
any y ∈ �∗ with |y| � k − 1, where |y| denotes the length of word y . Let y = �1 · · · �k ∈ �∗. Then
from the definition of �∗ and the condition (i) that ∧ is distributive over ∨ one has

�∗(p , xy , q) = ∨{�∗(p , x�1 · · · �k−1, r) ∧ �(r, �k , q) : r ∈ Q}
= ∨{∨{�∗(p , x, r′) ∧ �∗(r′ , �1 · · · �k−1, r) : r′ ∈ Q} ∧ �(r, �k , q) : r ∈ Q}
= ∨{�∗(p , x, r′) ∧ �∗(r′ , �1 · · · �k−1, r) ∧ �(r, �k , q) : r′ , r ∈ Q}
= ∨{∨{�∗(r′ , �1 · · · �k−1, r) ∧ �(r

′
, �k , q) : r ∈ Q} ∧ �∗(p , x, r′) : r′ ∈ Q}

= ∨{�∗(r′ , �1 · · · �k , q) ∧ �∗(p , x, r′) : r′ ∈ Q}
= ∨{�∗(p , x, r′) ∧ �∗(r′ , y , q) : r′ ∈ Q}.

(ii)⇒(i): Given a, b, c ∈ L, then the purpose is to show a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for any
a, b, c ∈ L. We take � = (Q, I , T , �) ∈ A(�, l), where Q = {p0, p1, p2, p3, p4}, I = {p0}, T = {p4}, and
�(p0, �1, p1) = �(p1, �2, p3) = b, �(p0, �1, p2) = �(p2, �2, p3) = c, �(p3, �3, p4) = a for some �1, �2, �3 ∈
�. Let x = �1 and y = �2�3. Then we have

�∗(p0, xy , p4) = ∨{�∗(p0, �1�2, r) ∧ �(r, �3, p4) : r ∈ Q}
= �∗(p0, �1�2, p3) ∧ �(p3, �3, p4)

= (b ∨ c) ∧ a,

and

∨{�∗(p0, �1, r) ∧ �∗(r, �2�3, p4) : r ∈ Q}
= (b ∧ (b ∧ a)) ∨ (c ∧ (c ∧ a))

= (b ∧ a) ∨ (c ∧ a).

Therefore, it follows from (ii) that a ∧ (b ∨ c) � (a ∧ b) ∨ (a ∧ c). However, a ∧ (b ∨ c) � (a ∧ b) ∨
(a ∧ c) always holds. So (a ∧ b) ∨ (a ∧ c) � a ∧ (b ∨ c) holds.
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(iii)⇒(i): Let a, b, c ∈ L. Take � = (Q, I , T , �) ∈ A(�, l), where Q = {p0, p1, p2, p3, p4}, I = {p0},
T = {p4}, and �(p0, �1, p1) = a, �(p1, �2, p2) = �(p2, �3, p4) �(p1, �2, p3) = �(p3, �3, p4) = c for some
�1, �2, �3 ∈ �. Let x = �1 and y = �2�3. Then we have

�∗(p0, xy , p4) = ∨{�∗(p0, �1�2, r) ∧ �(r, �3, p4) : r ∈ Q}
= (�∗(p0, �1�2, p2) ∧ �(p2, �3, p4)) ∨ (�∗(p0, �1�2, p3) ∧ �(p3, �3, p4))

= ((a ∧ b) ∧ b) ∨ ((a ∧ c) ∧ c)

= (a ∧ b) ∨ (a ∧ c),

and

∨{�∗(p0, �1, r) ∧ �∗(r, �2�3, p4) : r ∈ Q}
= �(p0, �1, p1) ∧ �∗(p1, �2�3, p4)
= a ∧ (b ∨ c).

Therefore it follows from (ii) that a ∧ (b ∨ c) � (a ∧ b) ∨ (a ∧ c). So a ∧ (b ∨ c) = (a ∧ b) ∨
(a ∧ c) holds. This completes the proof. �

4. l-Valued successor and source operators

The successor and source operators introduced by Bavel [3] are a fundamental tool in classical
automata theory. For any state p , the successor operator describes all states which may be reached
from p by a sequence x of inputs; conversely, the source operator presents all predecessors of p , i.e.,
states that may get at p by inputting a string. In this section, we will establish some of their basic
properties in l-valued automata theory.

Definition 4.1.LetM = (Q,�, �)be an l-valued automaton. Thenwedefine the successor and source
operators S and R from LQ to LQ as follows: for any A ∈ LQ and q ∈ Q,

S(A)(q)
def= ∨{A(p) ∧ �∗(p , x, q) : p ∈ Q, x ∈ �∗},

R(A)(q)
def= ∨{A(p) ∧ �∗(q, y , p) : p ∈ Q, y ∈ �∗}.

From the above definitions it follows that for any p ∈ Q,

S(A)(p) � A(p) and R(A)(p) � A(p).

Thus
l|= A ⊆ S(A) and

l|= A ⊆ R(A) always holds.

A subautomaton of an automaton means a subset of the set of states satisfying the closure
property under the successor operator. Formally, we have:



186 D. Qiu / Information and Computation 190 (2004) 179–195

Definition 4.2. Let M = (Q,�, �) be an l-valued automaton. Then for any A ∈ LQ, we call A an
l-valued subautomaton ofM if

l|= (∀q ∈ Q)(q ∈ A→ (∀p ∈ Q)(∀x ∈ �∗)((q, x, p) ∈ �∗ → p ∈ A)),

equivalently, for any q ∈ Q,

A(q) � ∧{�∗(q, x, p)→ A(p) : x ∈ �∗, p ∈ Q}.
As we know, in classical automata theory the operators S and R may be described in terms of

each other, and both of them can be used to give a characterization of subautomata. Of course, we
hope to generalize these results to l-valued automata theory. However, the following proposition
shows that these results heavily depends upon the distributivity of the underlying logic, and so they
are invalid unless our quantum logic degenerates to classical Boolean logic.

Proposition 4.3. The following three statements are equivalent.
(i) For any a, b ∈ L, b⊥ ∨ (b ∧ a) � a.

(ii) For any l-valued automatonM=(Q,�, l) and A∈LQ, l|= S(A)≡A if and only if
l|= R(A⊥)≡A⊥.

(iii) For any l-valued automaton M = (Q,�, l) and A ∈ LQ,
l|= S(A) ≡ A if and only if A is an

l-subautomaton ofM.

Proof. (i)⇒(ii): Since for any A ∈ LQ and q ∈ Q, A(q) � S(A)(q) and A(q) � R(A)(q) always hold,

it suffices to prove that
l|= S(A) ⊆ A if and only if

l|= R(A⊥) ⊆ A⊥. Suppose that S(A) ⊆ A, then for
any q ∈ Q,

∨{A(p) ∧ �∗(p , x, q) : p ∈ Q, x ∈ �∗} � A(q). (1)

For any p ∈ Q, our purpose is to show that R(A⊥)(p) � A⊥(p), i.e.,

∨{A(r)⊥ ∧ �∗(p , y , r) : r ∈ Q, y ∈ �∗} � A(p)⊥. (2)

For any r ∈ Q and y ∈ �∗, from (1) we have

A(p) ∧ �∗(p , y , r) � A(r).

Consequently,

A(r) ∨ �∗(p , y , r)⊥ � (A(p) ∧ �∗(p , y , r)) ∨ �∗(p , y , r)⊥

� A(p).

So A(r)⊥ ∧ �∗(p , y , r) � A(p)⊥, and (2) holds. With a similar argument we can obtain the converse
implication.
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(ii) ⇒(i): Given a, b ∈ L, we take an l-valued automata (Q,�, �) as follows: Q = {p , q}, � =
{�}, �(p , �, q) = b. Furthermore, suppose that A ∈ LQ, A(p) = a and A(q) = b ∧ a. Then we have

S(A)(p) = A(p) and S(A)(q) = a ∧ b = A(q). It follows that
l|= S(A) ≡ A. Thus with (ii)

l|= R(A⊥) ≡
A⊥ holds. By this we have A(p) � A(q) ∨ �∗(p , �, q)⊥, and therefore a � (b ∧ a) ∨ b⊥.
(i)⇒(iii): Suppose l|= S(A) ≡ A. The aim is to show that for any p , q ∈ Q, x ∈ �∗, A(q) � �∗(q, x, p)

→ A(p), i.e.,

A(q) � �∗(q, x, p)⊥ ∨ (�∗(q, x, p) ∧ A(p)). (3)

Because S(A)(p) � A(p), it holds that A(q) ∧ �∗(q, x, p) � A(p). Therefore we have

�∗(q, x, p)⊥ ∨ (�∗(q, x, p) ∧ A(p))

� �∗(q, x, p)⊥ ∨ (�∗(q, x, p) ∧ (A(q) ∧ �∗(q, x, p)))
= �∗(q, x, p)⊥ ∨ (�∗(q, x, p) ∧ A(q))

� A(q).

Thus inequality (3) holds.
(iii)⇒(i): Let a, b ∈ L. We consider the l-valued automata (Q,�, �) defined as follows:Q = {p , q},

� = {�}, �(p , �, q) = b. Suppose that A ∈ LQ satisfies that A(q) = A(p) = a. We have shown that
l|= S(A) ≡ A, and thus A is an l-subautomaton ofM. Consequently, A(q) � �∗(q, �, p)⊥ ∨ (�∗(q, �, p)
∧ A(p)), i.e., a � (b ∧ a) ∨ b⊥. We complete the proof. �

Indeed, from the proof of Proposition 4.3 it follows easily that the following Corollary 4.4
holds.

Corollary 4.4. The following six statements are equivalent:
(i) L satisfies the distributive law: a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for all a, b, c ∈ L.

(ii) For any a, b ∈ L, b ∧ (b⊥ ∨ a) � a, i.e., a&b � a.

(iii) For any a, b ∈ L, b⊥ ∨ (b ∧ a) � a.

(iv) For any L-valued automatonM = (Q,�, �) and for any A ∈ LQ, if
l|= S(A) ≡ A, then

l|= R(A⊥) ≡
A⊥.

(v) For any L-valued automatonM = (Q,�, �) and for anyA ∈ LQ, if
l|= R(A⊥) ≡ A⊥, then

l|= S(A) ≡
A.

(vi) For any L-valued automaton M = (Q,�, �) and for any A ∈ LQ, if
l|= S(A) ≡ A, then A is an

l-valued subautomaton ofM.

Proof. (i)⇒(ii): Clear.
(ii)⇒(i): From (ii) it is easy to see that a ∧ b � a&b � a ∧ b and a ∧ b � b&a � a ∧ b, and hence

a&b = a ∧ b = b&a. So by (4.8) in Section 2 it yields (i).
(ii)⇔(iii): Immediate.
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Fig. 1.

(v)⇒(ii): Given a, b ∈ L, and let Q = {p , q},� = {�}, and �(q, �, p) = b. Suppose that A ∈ LQ with
A(p) = a and A(q) = b⊥ ∨ a, then R(A⊥)(p) = A⊥(p) and R(A⊥)(q) = �(q, �, p) ∧ A⊥(p) = b ∧ a⊥ =
A(q)⊥, Hence

l|= R(A⊥) ≡ A⊥ holds. By (v) S(A)(p) � A(p) follows. Thus we have

S(A)(p) = �(q, �, p) ∧ A(q) = b ∧ (b⊥ ∨ a) � a.

(ii)⇒(v) and (iii)⇔(iv) and (iii)⇔(vi): From Proposition 4.3. �

In Propositions 3.1, 4.3, andCorollary 4.4 we showed that some properties of successor and source
operators are equivalent to the distributivity of∧ over∨ in the lattice of truth values. The following
proposition indicates that a certain property of l-valued subautomata is equivalent to the distrib-
utivity of & over ∨. It is interesting to note that the distributivity of & over ∨ is strictly weaker
than the distributivity of ∧ over ∨. Clearly, the distributivity of ∧ over ∨ implies the distributivity
of & over ∨, but in general the converse implication does not hold. This may be seen from the
example visualized by Fig. 1. Indeed, it is easy to check that the lattice depicted by Fig. 1 enjoys the
distributivity of & over ∨, but obviously ∧ is not distributive over ∨.

Proposition 4.5. The following three statements are equivalent:
(i) For any a, b, c ∈ L, (b&a) ∨ (c&a) = (b ∨ c)&a.
(ii) For any a, b, c ∈ L, (a ∨ (a⊥ ∧ b)) ∧ (a ∨ (a⊥ ∧ c)) = a ∨ (a⊥ ∧ b ∧ c).

(iii) For any l-valued automaton M = (Q,�, �), if A and B are l-valued subautomata of M, then so
is A ∩ B.

Proof. (i)⇔(ii): Straightforward from the definition of &.
(ii)⇒(iii): For any p , q ∈ Q and for any x ∈ �∗, since A and B are l-valued subautomata of M,

we have

A(p) � �∗(p , x, q)→ A(q),

and

B(p) � �∗(p , x, q)→ B(q).
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Therefore

A(p) ∧ B(p) � (�∗(p , x, q)→ A(q)) ∧ (�∗(p , x, q)→ B(q))

= ((�∗(p , x, q) ∧ A(q)) ∨ �∗(p , x, q)⊥) ∧ ((�∗(p , x, q) ∧ B(q)) ∨ �∗(p , x, q)⊥)
= �∗(p , x, q)→ A(q) ∧ B(q).

From definition 4.2 it follows that A ∩ B is an l-valued subautomaton ofM.
(iii)⇔(ii): Given a, b, c ∈ L, let us take M = {p , q}, � = {�}, �(p , �, q) = a⊥. If A ∈ LQ satisfies

A(q) = b, A(p) = (a⊥ ∧ b) ∨ a, B(q) = c, B(p) = (a⊥ ∧ c) ∨ a, then obviously A and B are l-valued
subautomata ofM. So

A(p) ∧ B(p) � �∗(p , x, q)→ A(q) ∧ B(q),

i.e.,

((a⊥ ∧ b) ∨ a) ∧ ((a⊥ ∧ c) ∨ a) � a⊥ → b ∧ c = (a⊥ ∧ b ∧ c) ∨ a.

Therefore it yields (ii) since ((a⊥ ∧ b) ∨ a) ∧ ((a⊥ ∧ c) � (a⊥ ∧ b ∧ c) ∨ a always holds. �

5. Topological characterizations

To study the topological structures induced from l-valued automata, we first need to present
some of the fundamental properties of S and R as well as l-valued subautomata.

Proposition 5.1. LetM = (Q,�, �) be an l-valued automaton and let A,B ∈ LQ. Then

(i)
l|= S(Ø) ≡ Ø ∧ S(Q) ≡ Q ∧ R(Ø) ≡ Ø ∧ R(Q) ≡ Q,
and Ø and Q are l-valued subautomata ofM.

(ii)
l|= A ⊆ S(A) and

l|= A ⊆ R(A).

(iii)
l|= S(a) ≡ a and

l|= R(a) ≡ a
for all a ∈ L, where a ∈ LQ is the constant l-valued subset of Q with height a, i.e., a(q) = a for
any q ∈ Q.

(iv) If
l|= S(A) ≡ A and

l|= S(B) ≡ B, then
l|= S(A ∩ B) ≡ A ∩ B.

(v) If
l|= R(A) ≡ A and

l|= R(B) ≡ B, then
l|= R(A ∩ B) ≡ A ∩ B.

(vi)
l|=⋃i∈J S(Ai) ⊆ S(

⋃
i∈J Ai) and

l|=⋃i∈J R(Ai) ⊆ R(
⋃

i∈J Ai)

for any Ai ∈ LQ, i ∈ J , where J denotes any indexing set.
(vii) If A and B are l-valued subautomata ofM, then so is A ∪ B.

Proof. (i) Immediate.
(ii) For any p ∈ Q, we have

S(A)(p) = ∨q∈Q ∨x∈�∗ (�∗(q, �, p) ∧ A(q))

� �∗(p , �, p) ∧ A(p) = A(p),
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and

R(A)(p) = ∨q∈Q ∨x∈�∗ (�∗(p , �, q) ∧ A(q))

� �∗(p , �, p) ∧ A(p) = A(p).

So (ii) holds.
(iii) For any p ∈ Q and for any a ∈ L, we have

S(a)(p) = ∨q∈Q ∨x∈�∗ (�∗(q, x, p) ∧ a(q))
= ∨q∈Q ∨x∈�∗ (�∗(q, x, p) ∧ a)

= �∗(p , �, p) ∧ a

= a(p),

and similarly we can obtain that R(a)(p) = a(p) for any p ∈ Q and for any a ∈ L. Thus we have
justified (iii).

(iv) It is enough to prove that for any p ∈ Q,

S(A ∩ B)(p) � A(p) ∧ B(p), (4)

i.e.,

∨q∈Q ∨x∈�∗ (�∗(q, x, p) ∧ A(q) ∧ B(q)) � A(p) ∧ B(p). (5)

For any q ∈ Q and for any x ∈ �∗, from
l|= S(A) ≡ A and

l|= S(B) ≡ B it follows that �∗(q, x, p) ∧
A(q) � A(p) and �∗(q, x, p) ∧ B(q) � B(p). Clearly, it follows that

�∗(q, x, p) ∧ A(q) ∧ B(q) � A(p) ∧ B(p).

So (5) holds and hence (4) follows.
(vi) For any p ∈ Q, one has

S

(⋃
i∈J

Ai

)
(p) = ∨q∈Q ∨x∈�∗ (�∗(q, x, p) ∧ (∨i∈J Ai(p)))

� ∨i∈J ∨q∈Q ∨x∈�∗(�∗(q, x, p) ∧ Ai(p))

=
⋃
i∈J

S(Ai)(p).

This yields that
l|=⋃i∈J S(Ai) ⊆ S(

⋃
i∈J Ai). Similarly we can obtain that

l|=⋃i∈J R(Ai) ⊆
R
(⋃

i∈J Ai

)
for any Ai ∈ LQ and i ∈ J .

(vii) Let A and B are l-valued subautomata ofM. Then for any p , q ∈ Q and x ∈ �∗, one has

A(p) � �∗(p , x, q)→ A(q),

and

B(p) � �∗(p , x, q)→ B(q).
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Therefore

A(p) ∨ B(p) � (�∗(p , x, q)→ A(q)) ∨ (�∗(p , x, q)→ B(q))

= ((�∗(p , x, q) ∧ A(q)) ∨ �∗(p , x, q)⊥)
∨ ((�∗(p , x, q) ∧ B(q)) ∨ �∗(p , x, q)⊥)
� (�∗(p , x, q) ∧ (A(q) ∨ B(q))) ∨ �∗(p , x, q)⊥

= �∗(p , x, q)→ A(q) ∨ B(q).

So A ∪ B is an l-valued subautomaton ofM, and we complete the proof. �

LetM = (Q,�, �) be an l-valued automaton. We set

JS = {A ∈ LQ| l|= S(A) ≡ A},
JR = {A ∈ LQ| l|= R(A⊥) ≡ A⊥}, and
Jl = {A ∈ LQ|A is an l-subautomaton ofM}.

Proposition 5.2. LetM = (Q,�, �) be an l-valued automaton. If A ∈ LQ is an l-valued subautomaton

ofM, then
l|= S(A) ≡ A.

Proof. For any x ∈ �∗ and for any p , q ∈ Q, we have

A(q) � �∗(q, x, p)→ A(p)

since A is an l-valued subautomaton ofM. Thus

�∗(q, x, p) ∧ A(q) � �∗(q, x, p) ∧ (�∗(q, x, p)→ A(p))

� �∗(q, x, p)&(�∗(q, x, p)→ A(p))

� A(p).

So S(A)(p) � A(p) for all p ∈ Q, and with
l|= A ⊆ S(A) it yields that

l|= S(A) ≡ A. �

Proposition 5.3. LetM = (Q,�, �) be an l-valued automaton. Then Jl ⊂ JS .

Proof. Straightforward from Proposition 5.2. �

In classical automata theory, for any sets A and B of states, if A and B are equal to their successor
(source) sets, respectively, then the union of A and B is also equal to the successor (source) of
the union of A and B. In the framework of many-valued logics, however, this conclusion appeals
to the distributivity of the underlying logic. This is similar to Propositions 3.1, 4.3, and Corollary 4.4.

Proposition 5.4. The following three statements are equivalent:
(i) L satisfies the distributive law: a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for all a, b, c ∈ L.
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(ii) If
l|= S(A) ≡ A and

l|= S(B) ≡ B, then
l|= S(A ∪ B) ≡ A ∪ B.

(iii) If
l|= R(A) ≡ A and

l|= R(B) ≡ B, then
l|= R(A ∪ B) ≡ A ∪ B.

Proof. (i)⇒(ii): For any q ∈ Q and x ∈ �∗, from
l|= S(A) ≡ A and

l|= S(B) ≡ B we have

A(q) ∧ �∗(q, x, p) � A(p)

and
B(q) ∧ �∗(q, x, p) � B(p).

So
(A(q) ∨ B(q)) ∧ �∗(q, x, p)
= (A(q) ∧ �∗(q, x, p)) ∨ (B(q) ∧ �∗(q, x, p))
� A(p) ∨ B(p).

Therefore S(A ∪ B)(p) � (A ∪ B)(p), and further we have
l|= S(A ∪ B) ≡ A ∪ B since

l|= A ⊆ S(A) and
l|= A ⊆ R(A) always hold (Proposition 5.1 (ii)).
(ii)⇒(i): Given a, b, c ∈ L, let us set Q = {p , q}, � = {�}, �(q, �, p) = c, and take A,B ∈ LQ with

A(p) = a ∧ c, A(q) = a, B(p) = b ∧ c, B(q) = b. Then it is easy to check that
l|= S(A) ≡ A and

l|= S(B) ≡ B. Thus S(A ∪ B)(p) � (A ∪ B)(p) = A(p) ∨ B(p), where

S(A ∪ B)(p) � (A(q) ∨ B(q)) ∧ �(q, �, p) = (a ∨ b) ∧ c.

So by (ii) we obtain (a ∧ c) ∨ (b ∧ c) � (a ∨ b) ∧ c. Therefore (a ∧ c) ∨ (b ∧ c) = (a ∨ b) ∧ c since
(a ∧ c) ∨ (b ∧ c) � (a ∨ b) ∧ c always holds.
(i)⇔(iii): Similar to the proof of (i)⇔(ii). Thus the proof is completed. �

In order to present topological characterizations in terms of the l-valued successor and source

operators, we introduce the notion of l-valued topology, a natural generalization of general
topology.

Definition 5.5. Let X be a non-empty set, and let T ⊆ LX . Then we call T an l-valued topology over
X if it satisfies:
(i) Ø, X ∈ T .
(ii) If A,B ∈ T , then A ∩ B ∈ T .

(iii) If I is an indexing set and for every i ∈ I , Ai ∈ T , then⋃i∈I Ai ∈ T .

Theorem 5.6. The following six statements are equivalent:
(i) L satisfies the distributive law of ∧ over ∨.
(ii) For any l-valued automatonM = (Q,�, �), JR = JS .

(iii) For any l-valued automatonM = (Q,�, �), JR = Jl.

(iv) For any l-valued automatonM = (Q,�, �), JS = Jl.

(v) For any l-valued automatonM = (Q,�, �), JS is an l-valued topology on Q.
(vi) For any l-valued automatonM = (Q,�, �), JR is an l-valued topology on Q.
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Proof. Immediate from Corollary 4.4, Propositions 5.1 and 5.4. �

6. Concluding remarks

In this paper, we have characterized some fundamental properties of l-valued automata the-
ory. The most interesting thing that we found is that some properties of the truth-value lattic-
es of the underlying logic are equivalent to certain properties of automata, which implies that
these conclusions in l-valued automata theory may not hold, and therefore need to be recon-
sidered.
More specifically, (i) the transition relations of l-valued automata have been extended to describe

the transitions enabled by strings of input symbols, and particularly, these extensions depend on the
distributivity of orthomodular lattices of the underlying logic; (ii) Proposition 4.3 and Corollary
4.4 show that some properties of the l-valued successor and source operators and l-valued subau-
tomata are equivalent to a property of the truth-value lattices which is exactly equivalent to the
distributive law. This is a new characterization of Boolean algebra in the framework of l-valued
automata theory; (iii) Proposition 4.5 indicates that the intersection of two subautomata is still a
subautomaton if and only if the multiplication (&) is distributive over the union in the truth-value
lattice, which is strictly weaker than the usual distributivity; (iv) and Theorem 5.6 presents that
some l-valued topological characterizations in terms of the l-valued successor and source operators
also rely on the distributivity of truth-value lattices.
It is quite interesting to note that the distributivity of multiplication over union is strictly weaker

than that of meet over union. This leads naturally us to guess that there may be a spectrum of
properties of orthomodular lattices which is pointwise equivalent to a spectrum of properties of
automata. In [36,37], we established a basic framework of automata theory based on residuated
lattice-valued logic. We note that some basic properties in such a framework were verified to be
valid (for example Proposition 4.3 (ii) and (iii)), but they do not hold in l-valued automata theory.
Furthermore, these results suggest us to examine systematically the logical laws underlying various
theorems in mathematics and computer science and to find the weakest logic which guarantees the
validity of these theorems. This is a very interesting problem in mathematical logic. In 1952, Rosser
and Turquette [40] raised the following problem: if there are many-valued theories beyond the level
of predicate calculus, then what are the details of such theories? In a sense, our problem may be
seen as an inverse problem of Rosser and Turquette’s one. Instead of asking what can be deduced
based on a fixed logic? we want to ask how strong logic is needed to derive a certain theorem? We
would like to emphasize it here because we believe that it is a promising programme to re-investigate
some fundamental issues inmathematics and computer science from the standpoint of non-classical
logics.
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