
Selective Memoization with Box Types

Favio Ezequiel Miranda-Perea1

Lourdes Del Carmen González-Huesca2

Departamento de Matemáticas
Facultad de Ciencias UNAM

Circuito Exterior s/n, Cd. Universitaria,
México D.F. 04510, México

Abstract

Memoization is a useful technique to eliminate computational redundancy. A memo function remembers
all the arguments to which it has been applied, together with their corresponding results, by storing them
in a table. This table is consulted before each functional call to determine if the particular argument is
in it. If so, the call is skipped and the stored result is returned; otherwise the call is performed and its
result added to the table. Acar, Belloch and Harper present a framework to apply memoization selectively,
that is, enabling the programmer to determine precisely the dependences between the input and the result
of a function. This framework is efficient and yields programs whose performance can be analyzed using
standard techniques. The language, implemented as an SML library, is based on a modal type system
which allows the programmer to reveal the true data input/output dependences in a program. However,
the modality seems to be an ad-hoc choice for the implementation. In this paper we develop selective
memoization, using instead box types, corresponding to the necessitation modality �. We also include
non-memoized functions, and provide full proofs of type safeness and soundness of the dynamic semantics
with respect to an effect-free system which is later translated into the very well-known language PCF .

Keywords: selective memoization, modal types, box types, adaptive computation, type safeness,
functional programming.

1 Introduction

Memoization is a well known technique to avoid repeated computation which has
been around a half century [6]. It refers to the tabulation of the results of a compu-
tation to elude their repeated calculation and has been extensively used in several
areas such as dynamic programming [3], incremental computation [12] and others
[10]. To be adequate for implementation a memoization framework must provide
control over equality tests, space management as well as a precise identification of
dependences between the input and the output of memoized code. The selective

1 Email: favio@matematicas.unam.mx
2 Email: l gonzalez@uxmcc2.iimas.unam.mx

Electronic Notes in Theoretical Computer Science 256 (2009) 67–85

1571-0661© 2009 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.11.006
Open access under CC BY-NC-ND license.

mailto:favio@matematicas.unam.mx
mailto:l_gonzalez@uxmcc2.iimas.unam.mx
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

memoization framework presented in [2] provides control over equality and identifi-
cation of dependences, and some control over space management. When detecting
dependencies, it is essential not to omit any, or the function caching will be unsound.
However, it is also important not to introduce too broad dependencies, or the mem-
oization will be ineffective. For the technique to be most effective, each function
call’s dependencies must be recorded as precisely as possible. As an example con-
sider the following simple function: fun f(x,y,z) = if x > 0 then y else z.
The choice point (x>0) causes the arguments on which f depends, to change in a
dynamic way. For instance in the call to f(1,2,3) the result depends only on x and
y; the value of z being irrelevant. Moreover observe that the evaluation of f(x,y,z)
does not depend on the exact value of the first argument x, since it suffices to know
the sign of x; therefore, a later invocation to say f(3,2,35) in which the result
is identical to the one in the previous call, for the argument y is identical, should
yield a table lookup using as key the former input (1,2,3). To handle this kind of
function calls efficiently, instead of using the input arguments to index the memo
table, a list of choice points, called events, is used. Thus, this list, called branch
of events, records the control flow of information from the input to the result of
a function. This technique improves the memoization process, as showed in [2],
although it could still yield recalculations as in the case of f(-1,5,2), since the
argument -1 corresponds to a different event, namely not (x > 0).

An incremental exploration process guided by a modal type reveals the needed
dependences to build a branch. However, the modality ! employed in [2] for this
purpose, seems to be an ad-hoc choice for the implementation. To build the type !T,
called a bang type, the underlying type T is required to be indexable, which means
that T must admit an injective function, that maps each value of T to a unique in-
teger. Therefore, the type !T makes explicit the indexable feature of the type T 3 ,
which is needed for the implementation with hash tables, and although box types
are mentioned as an important extension and even used in the implementation they
were not formalized. In this paper we propose a system for selective memoization
with essentially the same evaluation semantics but using a static semantics which
dismisses bang types in favor of box types as defined in [11]. This type, correspond-
ing to the necessitation modality in logic, has been used for different applications
such as mobility and locality in distributed computation [9], secure information flow
[8] or extensions with persistent code [13]. To our purposes �T can be thought of
as a type which encapsulates certain ordinary values by means of immutable refer-
ences, that is, there is a way to allocate values (box) and to deallocate them (let box).
However, we cannot assign a new value to the same box. Furthermore, the encap-
sulation of a value v by a box signals that v should be explored to reveal its control
and data dependences. Particularly, in practice, memoized functions involve a box
type in their domains.

As we will rely on the language MFL of [2] we give here a brief comparison
between this system and our proposal: In this paper we are mainly interested in the
mechanism of identification of dependences and their formal definition and behavior,

3 ! T could even be syntax sugar for the product type 〈T, T → Int〉 as implemented in [2].

F.E. Miranda-Perea, L.D.C. González-Huesca / Electron. Notes Theor. Comput. Sci. 256 (2009) 67–8568

by means of a type system and an evaluation semantics. Although we consider that
other aspects of that framework, such as performance and equality tests needed
for the implementation, are of great importance, we have decided not to treat them
here. However, as our evaluation semantics is very similar to that of MFL, we expect
that those aspects behave in a similar way, but of course further research is needed.
For the time being, we believe that the advantage of our system over MFL is a
theoretical one since, apart from the use of box types, which have a strong logical
foundation, we prove here in detail its type safeness, as well as its soundness with
respect to a non-memoized semantics, as opposed to the work in [1,2].

Our paper is organized as follows: after this introduction we present a system
SM of selective memoization with box types in section 2. The auxiliary system S,
which keeps the selectivity mechanism but without effects (storages), is developed
in section 3, where we also prove that it is type safe. In section 4 the type safeness
of SM is proved by means of a faithful translation to S. A translation of S to PCF

is provided in section 5 proving indirectly the soundness of the original effectful
evaluation semantics of SM with respect to the purely functional semantics of PCF.
Finally in section 6 we provide some closing remarks and future work.

2 Selective Memoization

In this section we present a system for selective memoization based on the original
system given in [2] but with the following differences: we eliminate the use of
indexable and bang types in favor of box types and include non-memoized functions,
case analysis and projections among the terms. With respect to static semantics
we propose type judgments with an additional context for locations keeping the
dynamic semantics essentially equal to the original one.

The syntax is structured in terms and expressions, in the same sense as in [11].
A term corresponds to a program which is evaluated in an ordinary way, whereas
expressions are meant to be evaluated with respect to a given memo table. The
type structure engages function, product and sum types as well as the necessitation
modality �, deeply studied in [11] from the type-theoretical point of view.

• Types. Types are built from a set of basic types B including the unit type Unit
and the integers Int

T ::= B | T → T | T+T | T×T |�T

• Terms. Built from an infinite set of term variables x, an infinite set of resource
variables a and primitive operators o, including numbers n

t, r, s ::= x | a | o(t, . . . , t) | � | n | λx : T .r | mfun�(f.a.e) | rs | inlT r | inrT s |
case(r, x.s, y.t) | 〈r, s〉 | fst r | snd r | box t

where box t is the constructor of box typed terms; and mfun�(f.a.e) defines a
memoized, usually recursive, function with name f , in this case the metavariable �

belongs to a set L of label locations disjoint from ordinary variables and resources.
The dot notation on abstractions, case analysis and function declarations denotes

F.E. Miranda-Perea, L.D.C. González-Huesca / Electron. Notes Theor. Comput. Sci. 256 (2009) 67–85 69

binding: in every expression of the form x.t the occurrences of the term variable
x in t are considered bound. This binding mechanism using the dot avoids the
use of parentheses, the dot signals an opening parentheses which closes as far
to the right as syntactically possible. This same convention as well as the usual
α-equivalence also apply to expressions below.

• Expressions. Built from terms

e ::= return t | let box (t, x.e) | letprod (t, a1.a2.e) | mcase (t, a1.e1, a2.e2)

Expressions provide a binding mechanism for either data dependences (ordinary
variables of modal type), or control dependences (resource variables). The idea
is that an expression, as opposed to a term, will be evaluated with respect to a
memo table. This will be made clear later when defining the semantics. Observe
that every term can be considered as an expression due to the return constructor.

• Contexts. There are three kinds of contexts, which are finite sets of pairs. Variable
contexts Γ; resource contexts Δ and location contexts Σ defined by:

Γ ::= · |Γ, x : T Δ ::= · |Δ, a :: T Σ ::= · |Σ, � : T

where · denotes the empty set.
Variable contexts correspond to the validity context of [11] whereas resource

context correspond to truth contexts. We use a third context for labels to keep
exact track of the labels occurring in a term or expression. With aid of this
context we will statically ensure that location labels of different functions in a
same program will be different.

2.1 Type System

The static semantics is given by a type system which derives judgments of the form
Γ |Δ |Σ � r : T denoting that the term or expression r is well-typed in contexts
Γ,Δ and Σ. The rules for deriving these judgments are defined as follows:

Γ, x : T |Δ |Σ � x : T
(Tvar)

Γ |Δ, a :: T |Σ � a : T
(Tresource)

Γ |Δ |Σ � ti : T i (1 ≤ i ≤ n) � o : T1 × · · · × Tn → T

Γ |Δ |Σ � o (t1, . . . , tn) : T
(Tbasicop)

Γ |Δ |Σ � � : Unit
(Tunit)

Γ |Δ |Σ � n : Int
(Tnum)

Γ, x : T 1 |Δ |Σ � t : T2

Γ |Δ |Σ � λx : T1 .t : T1 → T2
(Tlam)

Γ, f : T 1 → T 2 |Δ, a :: T 1 |Σ � e : T 2

Γ |Δ |Σ, � : T 2 � mfun� (f.a.e) : T 1 → T 2
(Tmfun)

Γ |Δ |Σ � t1 : T 1 → T 2 Γ |Δ |Σ � t2 : T 1

Γ |Δ |Σ � t1 t2 : T 2
(Tapply)

Γ |Δ |Σ � t : T 1

Γ |Δ |Σ � inlT2 t : T 1 + T 2
(Tinl)

Γ |Δ |Σ � t : T 2

Γ |Δ |Σ � inrT1 t : T 1 + T 2
(Tinr)

F.E. Miranda-Perea, L.D.C. González-Huesca / Electron. Notes Theor. Comput. Sci. 256 (2009) 67–8570

Γ|Δ|Σ � t : T 1 + T 2

Γ, x1 : T 1|Δ|Σ � t1 : T

Γ, x2 : T 2|Δ|Σ � t2 : T

Γ|Δ|Σ � case (t, x1.t1, x2.t2) : T
(Tcase)

Γ |Δ |Σ � t1 : T 1 Γ |Δ |Σ � t2 : T 2

Γ |Δ |Σ � 〈t1, t2〉 : T 1 × T 2
(Tpair)

Γ |Δ |Σ � t : T 1 × T 2

Γ |Δ |Σ � fst t : T 1
(Tfst)

Γ |Δ |Σ � t : T 1 × T 2

Γ |Δ |Σ � snd t : T 2
(Tsnd)

Γ | · |Σ � t : T

Γ |Δ |Σ � box t : �T
(Tbox)

Observe that in rule (Tbasicop) the typing of the primitive operator o is supposed
to be given beforehand. Furthermore, in the rule (Tmfun) we expand the label
context, guaranteeing thus, that every new memoized function term is associated
to a unique label. In the case of rule (Tbox) the requirement of an empty resource
context in the premise, ensures that the term t does not have free resources before
its encapsulation in box t this is necessary for an adequate operational behavior of
boxed expressions. A logical motivation for this rule can be found in [11].

Expressions are typed as follows:

Γ| · |Σ � t : T

Γ|Δ|Σ � return t : T
(Treturn)

Γ|Δ|Σ � t : �T 1 Γ , x : T 1|Δ|Σ � e : T 2

Γ|Δ|Σ � let box(t, x.e) : T 2
(Tletbox)

Γ|Δ|Σ � t : T 1 × T 2 Γ|Δ , a1 :: T 1, a2 :: T 2|Σ � e : T

Γ|Δ|Σ � letprod (t, a1.a2.e) : T
(Tletprod)

Γ|Δ|Σ � t : T 1 + T 2

Γ|Δ, a1 :: T 1|Σ � e1 : T

Γ|Δ, a2 :: T 2|Σ � e2 : T

Γ|Δ|Σ � mcase (t, a1.e1, a2.e2) : T
(Tmcase)

The rule (Treturn) provides an inclusion of terms in expressions, it is a special
purpose rule for memoization with no analogue in modal logic. Its premise requires
not to have free-resources, this will ensure that any dependence on a memoized
function argument is made explicit in program code before introducing a return
statement. On the other hand, the rule (Tletbox) is the elimination rule for box
types. The expression constructor let box binds a boxed value to an ordinary vari-
able, which may be used without restriction. Again a logical motivation for this
rule can be found on [11]. To bind further resources with other ordinary terms
we use the constructors letprod and mcase. As an example, consider the following
definition of the Fibonacci function mfib : � Int− > Int

F.E. Miranda-Perea, L.D.C. González-Huesca / Electron. Notes Theor. Comput. Sci. 256 (2009) 67–85 71

mfun� mfib (a::�Int) = letbox x = a in
return (if x<2 then x

else mfib (box (x-1)) +
mfib (box (x-2))).

The let box constructor in this definition causes the underlying value of parameter
a, which is a resource, to be exposed before performing the two recursive calls. This,
instead of generating an immediate evaluation, will produce a lookup in a memo
table, as formalized in the following subsection. Moreover, the domain is given a box
type to signal the fact that an actual argument to the function should be explored,
since the final result depends completely on this value.

2.2 Dynamic Semantics

The evaluation of a term or expression is given by two mutually defined big-step
semantics, which involve stores of memo tables indexed by branches that trace choice
points in the evaluation process. For terms, the semantics ⇓t is quite standard. This
semantics interacts with the one used for expressions in the case of an application
of a memoized function. The semantics for expressions ⇓e

β@� performs an evaluation
according to a given branch β which will be used to query the memo table stored
at a given location �. We define now these concepts in detail.

The set of values is a subset of terms defined as follows:

v ::= � | n | λx : T .t | mfun�(f.a.e) | inl v | inr v | 〈v, v〉 | box v

We have carefully defined a set of values which consists of terms including neither
variables nor resources; as opposed to the set of values defined in [2].

Definition 2.1 A branch β is a list of events ε. An event signals a choice point in
the evaluation of an expression. Such a point arises either by a case analysis or by
a boxed value. The definitions are:

β ::= • | ε · β ε ::= !v | inl | inr

Definition 2.2 A memo table θ is a partial function θ : B → VT mapping branches
to values of a given type T. We write θ[β �→ v] for the extension of θ that binds β

with v, always assuming that β 	∈ dom(θ).

Definition 2.3 A store μ is a partial function with finite domain μ : L → T
mapping location labels � to memo tables θ. A store is initial if and only if it
contains only empty memo tables, that is, ∀� ∈ dom(μ)(μ(�) = ∅).
We write μ[� �→ θ] for the extension of μ that binds � with θ, always assuming that
� 	∈ dom(μ). Moreover, when � ∈ dom(μ), we write μ[� ← θ] for the update of store
μ which binds � to θ.

The evaluation semantics for terms is given by a relation μ, t ⇓t v, μ′ modeling
the evaluation process of term t with respect to store μ resulting in a final value v

and store μ′, defined by the following inference rules: 4

4 For the sake of a direct comparison observe that this semantics corresponds to σ, t ⇓t v, σ′ in [2].

F.E. Miranda-Perea, L.D.C. González-Huesca / Electron. Notes Theor. Comput. Sci. 256 (2009) 67–8572

μ, t1 ⇓t v1, μ1 . . . μn−1, tn ⇓t vn, μn μn, o(v1, . . . , vn) ⇓t v, μ′

μ, o (t1, . . . , tn) ⇓t v, μ′ (Ebasicop)

μ, � ⇓t �, μ
(Eunit)

μ, n ⇓t n, μ
(Enum)

μ, λx : T .t ⇓t λx : T .t, μ
(Elam)

� /∈ dom(μ)
μ, mfun� (f.a.e) ⇓t mfun� (f.a.e), μ[� �→ ∅]

(Emfun)
� ∈ dom(μ)

μ, mfun� (f.a.e) ⇓t mfun�(f.a.e), μ
(Emfun − in)

μ, t1 ⇓t λx : T .t, μ1

μ1, t2 ⇓t v′, μ2

μ2, t[x := v′] ⇓t v, μ′

μ, t1t2 ⇓t v, μ′ (Eapply)

μ, t1 ⇓t v1 = mfun� (f.a.e), μ1

μ1, t2 ⇓t v2, μ2

μ2, e[f, a := v1, v2] ⇓e
•@� v, μ′

μ, t1t2 ⇓t v, μ′ (Emapply)

μ, t ⇓t v, μ′

μ, inl t ⇓t inl v, μ′ (Einl)
μ, t ⇓t v, μ′

μ, inr t ⇓t inr v, μ′ (Einr)

μ, t ⇓t inl v, μ1

μ1, t1[x1 := v] ⇓t v1, μ′

μ, case (t, x1.t1, x2.t2) ⇓t v1, μ′ (Ecase − l)

μ, t ⇓t inr v, μ1

μ1, t2[x2 := v] ⇓t v2, μ′

μ, case (t, x1.t1, x2.t2) ⇓t v2, μ′ (Ecase − r)

μ, t1 ⇓t v1, μ1

μ1, t2 ⇓t v2, μ′

μ, 〈t1, t2〉 ⇓t 〈v1, v2〉, μ′ (Epair)

μ, t ⇓t 〈v1, v2〉, μ′

μ, fst t ⇓t v1, μ′ (Efst)
μ, t ⇓t 〈v1, v2〉, μ′

μ, snd t ⇓t v2, μ′ (Esnd)

μ, t ⇓t v, μ′

μ, box t ⇓t box v, μ′ (Ebox)

The substitution operations r[x := s] and r[a := s] where r, s can be terms or
expressions –appearing in some rules above– are defined in a standard fashion, in-
cluding an implicit renaming of bound variables. Observe that a memoized function
is a value, but its evaluation can yield the creation of a new empty memo table, in
case a memo table for this function does not already exists. Moreover, the applica-
tion of such a function launches an expression evaluation starting from the empty
branch, which means that an exploration of dependences begins.

The corresponding semantics for expressions is given by a relation μ, e ⇓e
β@� v, μ′,

meaning that the evaluation of expression e with respect to store μ results in a value
v and store μ′; all according to the query of branch β at the memo table stored at
location � in μ.

The deriving rules for this semantics are 5 :

5 Again, for a direct comparison our relation μ, e ⇓e
β@� v, μ′ corresponds to σ, l : β, e ⇓e v, σ′ in [2].

F.E. Miranda-Perea, L.D.C. González-Huesca / Electron. Notes Theor. Comput. Sci. 256 (2009) 67–85 73

μ(�)(β) = v

μ, return t ⇓e
β@� v, μ

(Efound)

μ(�) = θ

β /∈ dom(θ)

μ, t ⇓t v, μ′

μ′(�) = θ′

μ, return t ⇓e
β@� v, μ′[� ← θ′[β �→ v]]

(Enotfound)

μ, t ⇓t box v, μ1

μ1, e[x := v] ⇓e
!v·β@� v′, μ′

μ, let box (t, x.e) ⇓e
β@� v′, μ′ (Eletbox)

μ, t ⇓t 〈v1, v2〉, μ1

μ1, e[a1, a2 := v1, v2] ⇓e
β@� v, μ′

μ, letprod (t, a1.a2.e) ⇓e
β@� v, μ′ (Eletprod)

μ, t ⇓t inl v, μ1

μ1, e1[a1 := v] ⇓e
inl ·β@� v1, μ′

μ, mcase (t, a1.e1, a2.e2) ⇓e
β@�, v1, μ′ (Emcase − l)

μ, t ⇓t inr v, μ1

μ1, e2[a2 := v] ⇓e
inr ·β@� v2, μ′

μ, mcase (t, a1.e1, a2.e2) ⇓e
β@�, v2, μ′ (Emcase − r)

There is a subtlety in the definition of rule (Enotfound). Observe that for θ′[β �→
v] to be defined we must have β /∈ dom(θ′), but the rule only requires β /∈ dom(θ).
We will justify the soundness of this rule definition later in lemma 4.5.

The main goal of this paper is to prove the type safeness of the above system,
stated next.

Theorem 2.4

(i) If Γ| · |Σ � t : T and μ, t ⇓t v, μ′ with μ initial, then there exists Σ′ such that
Γ| · |Σ′ � v : T.

(ii) If Γ| · |Σ � e : T and the evaluation μ, e ⇓e
β@� v, μ′ originates in an application 6

μ�, t1t2 ⇓t v�, μ�′ with μ� initial, then there exists Σ′ such that Γ| · |Σ′ � v : T.

It is worth noting that part (ii) of this theorem does not have a counterpart in
[1], which is an important omision since it is needed for the proof of part (i).

To prove this theorem we will translate SM to a system S defined in the following
section. We will prove that S is type safe and that the translation is faithful getting
as a corollary a proof of theorem 2.4. For part (i) this idea is sketched without
details in [1]. Here we provide a full proof.

3 A selective system without effects

To prove the safeness for the system SM we define an auxiliary system S which keeps
the selective feature but avoids memoization. This system is quite similar to the
original one, with some differences mainly in the dynamic semantics for expressions.
With this, we provide a detailed alternative to the missing definitions and properties

6 This means that μ, e ⇓e
β@� v μ′ arises as part of a derivation of the premise involving ⇓e

•@�′ in an instance

of the rule (Emapply).

F.E. Miranda-Perea, L.D.C. González-Huesca / Electron. Notes Theor. Comput. Sci. 256 (2009) 67–8574

of the relations ⇓t
p,⇓e

p of [1,2], which are critical to the proof of soundness for their
system MFL.

• Types. The same types used for SM

• Terms. The same terms as for SM except for the memoized functions declaration
where now there is no label associated with a function. That is, we use terms of
the form mfun(f.a.e) instead of mfun�(f.a.e). This class of term is called named
function.

• Expressions. The same as for SM

• Contexts. We keep the contexts for ordinary variables Γ and for resource variables
Δ.

• Type system. The same rules as for SM, adapted accordingly to the terms of
S, eliminating all the label contexts Σ. For instance the typing rule for named
functions is:

Γ, f : T 1 → T 2 |Δ, a :: T 1 � e : T 2

Γ |Δ � mfun(f.a.e) : T 1 → T 2

This inference system satisfies the usual structural properties of monotonicity,
exchange and contraction. Moreover, since the inferences are syntax-directed it also
satisfies typing inversion. These properties can be shown routinely by structural
induction.

3.1 Dynamic semantics

The evaluation relation for terms is completely analogous to the one for SM, we
simply eliminate the stores and modify the class of values accordingly. For expres-
sions, the evaluation relation denoted e ⇓e

β;vf
v depends now on a branch β and a

functional value vf of the form mfun(f.a.e). For the cases of let box, letprod or mcase
statements the evaluation rules are obtained from the ones for ⇓e

β@� replacing β@�

for β; vf accordingly. For the case of a return statement we need a partial access
function vf@β, defined below, which will compute a return statement obtained by
exploring the given branch β.

Definition 3.1 Given a term or expression r and a branch β we define the partial
access function r@β as follows:

mfun(f.a.e) @ β = e @ β

return t @ • = return t

let box(t, x.e) @ β̂!v = e[x := v] @ β

letprod(t, a1.a2.e) @ β = e @ β

mcase(t, a1.e1, a2.e2) @ β̂ inl = e1 @ β

mcase(t, a1.e1, a2.e2) @ β̂ inr = e2 @ β

where the notation β ε̂ makes explicit the last event ε of a branch whose previous
elements are those of β.

The evaluation of a return statement can now be defined as

F.E. Miranda-Perea, L.D.C. González-Huesca / Electron. Notes Theor. Comput. Sci. 256 (2009) 67–85 75

vf@β = return t

t ⇓t
p v

return t ⇓e
β;vf

v
(Ereturn)

This rule causes the evaluation of the argument t of the return statement to
always take place. The side condition vf@β = return t makes sure that the branch
β really corresponds to the exploration of the functional value vf which we are using
to evaluate.

The dynamic semantics for terms t ⇓t
p v is analogous to the one for SM, the

main difference arises in the rule for application of named functions which is:

t1 ⇓t
p v1 = mfun(f.a.e)

t2 ⇓t
p v2

e[f, a := v1, v2] ⇓e• ; v1
v

t1 t2 ⇓t
p v

(Emapply)

3.2 Type safeness for S

It is conventional to prove the type safeness for S, since this is an effect-free system.
We state next a standard substitution lemma needed in the proof.

Lemma 3.2 (Substitution lemma) The static semantics of system S satisfies:

(i) If Γ, x : R |Δ � t : T and Γ|· � r : R then Γ|Δ � t[x := r] : T.

(ii) If Γ, x : R |Δ � e : T and Γ|· � r : R then Γ|Δ � e[x := r] : T.

(iii) If Γ|Δ, a :: R � t : T and Γ|Δ � r : R then Γ|Δ � t[a := r] : T.

(iv) If Γ|Δ, a :: R � e : T and Γ|Δ � r : R then Γ|Δ � e[a := r] : T.

Proof Straightforward induction on the first given derivation in each case. �

Now we can prove the safeness theorem.

Theorem 3.3 System S is type safe, that is:

(i) If Γ|· � t : T and t ⇓t
p v then Γ|· � v : T.

(ii) If Γ|· � e : T and e ⇓e
β;vf

v, for any β and vf , then Γ|· � v : T.

Proof We prove both parts simultaneously by performing induction on both eval-
uation relations ⇓t

p and ⇓e
β;vf

.
Let us show the cases for applications of named functions and return statements.

• Assume that t = t1t2 with t1t2 ⇓t
p v derived from t1 ⇓t

p v1 = mfun(f.a.e), t2 ⇓t
p v2

and e[f, a := v1, v2] ⇓e• ; v1
v. As Γ|· � t1t2 : T, inversion of typing implies that

Γ|· � t1 : R → T and Γ|· � t2 : R. By I.H. of part (i) we get Γ|· � v1 : R → T and
Γ|· � v2 : T. Next observe that the typing of v1 implies that Γ, f : R → T |a ::
R � e : T. Therefore by the substitution lemma parts (ii) and (iv) we obtain
Γ|· � e[f, a := v1, v2] : T. Finally, as e[f, a := v1, v2] ⇓e• ; v1

v, the I.H. for part (ii)
of this theorem yields Γ|· � v : T.

F.E. Miranda-Perea, L.D.C. González-Huesca / Electron. Notes Theor. Comput. Sci. 256 (2009) 67–8576

• Assume e = return t with return t ⇓e
β;vf

v derived from vf@β = return t and t ⇓t
p v.

Γ|· � return t : T yields, from inversion of typing, Γ|· � t : T which by I.H. for part
(i), together with return t ⇓e

β;vf
v leads us to Γ|· � v : T.

�

This system will later be translated into the well-known system PCF. In this
way we indirectly reduce the system of selective memoization to a pure functional
system proving soundness of the original memoized semantics with respect to the
pure semantics of PCF.

4 A translation from SM to S

In this section we develop a faithful translation from SM to S and use it to prove
the type safeness of SM.

Definition 4.1 The translation (·)− from the terms and types of SM to the terms
and types of S is defined as follows:

• The translation on types is the identity function.
• The translation on terms is the forgetful map on labels. In particular we have

mfun�(f.a.e)− = mfun(f.a.e−) and (return t)− = return t−

Later on, we will also apply this translation to branches β, obtaining a branch
β− by replacing each event of the form !v occurring in β, by !(v−).

Important features of our translation are its compatibility with substitution and
its compliance with typing derivations.

Lemma 4.2 If r is a term or expression then r[x := t]− = r−[x := t−] and r[a :=
t]− = r−[a := t−].

Proof Straightforward simultaneous induction on terms and expressions. �

Proposition 4.3 The translation t �→ t− respects types.

(i) If Γ|Δ|Σ � t : T then Γ|Δ � t− : T.

(ii) If Γ|Δ|Σ � e : T then Γ|Δ � e− : T.

Proof Straightforward simultaneous induction on typing derivations. �

To prove that our translation is faithful we need to simulate a store μ in an ad-
equate way. To this purpose we use function tables which associate a label location
with a named function value.

Definition 4.4 A function table τ is a partial function τ : L → F with finite
domain, mapping location labels to functional values of the form mfun(f.a.e).

Using function tables and access functions we can justify the subtlety in the
definition of the evaluation rule (Enotfound) by means of the following

F.E. Miranda-Perea, L.D.C. González-Huesca / Electron. Notes Theor. Comput. Sci. 256 (2009) 67–85 77

Lemma 4.5 If μ, t ⇓t v, μ′, μ(�)@β = return t and μ(�)(β) is undefined then
μ′(�)(β) is also undefined.

Proof See [1]. �

For the evaluation simulation to succeed, we need to associate an adequate
function table τ with a given store μ. The needed intrinsic relationship between
a store μ in SM and a table τ in S is that every memoized function f , for which
there is a memo table stored in μ at location �, should have a corresponding named
function f− as image of the same location � in τ . To achieve this we will use the
following

Definition 4.6 Let μ be a store, τ a function table, r a term or expression and e

an expression.

• τ is consistent with r if and only if for each subterm of r of the form mfun�(f.a.e),
we have τ(�) = mfun(f.a.e−)

• τ is consistent with μ if and only if for all � ∈ dom(μ) and β ∈ dom(μ(�)), if
μ(�)(β) = v then τ is consistent with v.

• τ is compatible with μ if and only if:
· dom(μ) = dom(τ)
· τ is consistent with μ.
· For all � ∈ dom(μ), β ∈ dom(μ(�)) and t term, if μ(�)(β) = v and τ(�)@β− =

return t− then t− ⇓t
p v−. Let us call this condition ().

To prove that the translation simulates the evaluation relation we will need the
following concepts.

Definition 4.7 An augmented branch γ is a list of augmented events ε. An aug-
mented event records choice points and the bindings of resource variables.

γ ::= • | ε · γ
ε ::= (v) | !v | 〈v1, v2〉 | inl v | inr v

Partial access functions for augmented branches are defined as follows:

mfun�(f.a.e) @ γ̂(v) = e[f, a := mfun�(f.a.e), v] @ γ

e @ • = e

let box(t, x.e) @ γ̂ !v = e[x := v] @ γ

letprod(t, a1.a2.e) @ γ 〈̂v1, v2〉 = e[a1, a2 := v1, v2] @ γ

mcase(t, a1.e1, a2.e2) @ γ̂ inl v = e1[a1 := v] @ γ

mcase(t, a1.e1, a2.e2) @ γ̂ inr v = e2[a1 := v] @ γ

Augmented branches are a device needed in the proof of proposition 4.9 below.
Given an augmented branch γ we can easily obtain a simple branch denoted γ◦, by
forgetting events of the form (v) and 〈v1, v2〉, as well as the event v in the injections
inl v, inr v. Moreover the translation γ− of an augmented branch γ is defined by

F.E. Miranda-Perea, L.D.C. González-Huesca / Electron. Notes Theor. Comput. Sci. 256 (2009) 67–8578

replacing each value v, occuring in γ, by v−.

Operationally, the augmented branches give the same results as simple branches
as ensured by the following

Lemma 4.8 Augmented branches do not modify return statements. That is, if
τ(�)@γ = return t then τ(�)@γ◦ = return t

Proof See [1]. �

The following proposition states the preservation of the selective memoized se-
mantics of SM with respect to the selective semantics without memoization of S,
and allows us to conclude the faithfulness of the translation.

Proposition 4.9 The translation t �→ t− simulates evaluation under the following
conditions:

(i) Let τ be consistent with t and compatible with store μ. If μ, t ⇓t v, μ′ then
t− ⇓t

p v− and there exists τ ′ ⊇ τ such that τ ′ is consistent with v and compatible
with μ′.

(ii) Let τ be consistent with expression e and compatible with store μ, β be a simple
branch and γ be an augmented branch. If μ, e ⇓e

β@� v, μ′, γ◦ = β and τ(�)@γ− =
e− then there exists τ ′ ⊇ τ such that τ ′ is consistent with v and compatible with
μ′ and e− ⇓e

β ; τ ′(�) v−

Proof The two parts are proved simultaneously by induction on both evaluation
relations. We show the most important cases, application of a named function and
return statements.

• t = t1t2 and μ, t1t2 ⇓t v, μ′ derived from μ, t1 ⇓t v1 = mfun�(f.a.e), μ1, μ1, t2 ⇓t

v′, μ2 and μ2, e[f, a := v1, v2] ⇓e
•@� v, μ′. Let τ be consistent with t and compatible

with μ. In particular τ is consistent with t1 which by I.H. yields t−1 ⇓t
p v−1 and

τ1 ⊇ τ consistent with v1 and compatible with μ1. Applying now the I.H. for t2
with τ1 which is possible for τ1 extends τ and therefore τ1 is also consistent with
t2 we obtain t−2 ⇓t

p v−2 and τ2 ⊇ τ1 consistent with v2 and compatible with μ2.
We observe now that τ2 is also consistent with e[f, a := v1, v2] for τ2 is consistent
with v1, v2 and also with e for e is a subexpression of v1. It suffices now to show
a γ such that γ◦ = • and τ2(�)@γ− = (e[f, a := v1, v2])−. For then the I.H. for
e[f, a := v1, v2] will get us a τ such that e[f, a := v1, v2]− ⇓e

• ; τ ′(�) v− which will
yield t− ⇓t

p v− as desired. Define γ = (v2) · •, then

τ2(�)@γ− = v−1 @γ−
= e−[f, a := v−1 , v−2]

= (e[f, a := v1, v2])− (by lemma 4.2)

• e = return t and μ, e ⇓e
β@� v, μ′ derived with the rule found, therefore μ′ = μ and

μ(�)(β) = v. Assume τ consistent with return t and compatible with μ, γ◦ = β and
τ(�)@γ− = (return t)− = return t−. Observe that, as μ(�)(β) = v the compatibility

F.E. Miranda-Perea, L.D.C. González-Huesca / Electron. Notes Theor. Comput. Sci. 256 (2009) 67–85 79

of τ with μ implies that τ is consistent with v. Moreover, as τ(�)@γ− = return t−,
lemma 4.8 implies τ(�)@(γ−)◦ = return t−. But (γ−)◦ = (γ◦)− = β−. Therefore
τ(�)@β− = return t− and again by compatibility we get t− ⇓t

p v− which finally,
using the rule for return, yields return t− ⇓e

β ; τ(�) v−. Therefore, in this case it
suffices to take τ ′ = τ .

• e = return t and μ, e ⇓e
β@� v, μ′ derived with the rule notfound. Assume τ consis-

tent with return t and compatible with μ, γ◦ = β and τ(�)@γ− = (return t)− =
return t−. By I.H. there exists τ1 ⊇ τ consistent with v and compatible with μ′

and t− ⇓t
p v−. Take τ ′ = τ1. It remains to be proved that τ ′ is compatible with

μ′′ = μ′[� ← θ′[β �→ v]]. We show this now:
· dom(μ′′) = dom(τ ′) because μ′′ is only an update of μ′.
· τ ′ is consistent with μ′′. Observe that, as τ ′ is consistent with μ′ it suffices to

show consistency for the update μ′′(�)(β) = v. In this case we need to show
that τ ′ is consistent with v, but this is true by definition of τ ′.

· To show that condition () holds, it suffices again to show it for �, β and an
arbitrary term t′ such that μ′′(�)(β) = v and τ(�)@β− = return t′−. But observe
that, τ(�)@β− = τ(�)@γ− = return t− which implies that t = t′, for @ is a
function. Hence we have to show t− ⇓t

p v− but this was consequence of the I.H.
�

It is easy to see that, if t = f v is an application of a memoized function with
no free variables f to a value v, the part (i) of proposition 4.9 entails that the
translation of this memoized function computes indeed an application t− = f−v−,
which corresponds to a non-memoized function with the same outcome as f . In
particular, the memoized function given in page 5 will compute the actual Fibonacci
function.

Next we give some conditions which guarantee the existence of function tables
as required by proposition 4.9.

Lemma 4.10 If (e@ γ) is defined, then for every augmented event ε, (e@ γ) @ ε =
e@ ε · γ

Proof Straightforward induction on the augmented branch γ.
�

Lemma 4.11 Let e be an expression such that μ, e ⇓e
β@� v, μ′ originates in an

application μ�, t1t2 ⇓t
p v�, μ�′ with μ� initial, then there exists a table function τe

and an augmented branch γ such that τe is consistent with e and compatible with μ,
γ◦ = β and τe(�)@γ− = e−.

Proof According to the statement of the lemma we have the following situation:

F.E. Miranda-Perea, L.D.C. González-Huesca / Electron. Notes Theor. Comput. Sci. 256 (2009) 67–8580

μ, e ⇓e
β@� v, μ′

μ′′, e′ ⇓e
β1@� v, μ′

...
...

...

μ�, t1 ⇓t v1 = mfun�(f.a.e1), μ1 μ1, t2 ⇓t v2, μ2 μ2, e1[f, a := v1, v2] ⇓e
•@� v�, μ�′

μ�, t1t2 ⇓t v�, μ�′

The proof is by induction on the number n of inference rules from the evaluation
of e1[f, a := v1, v2] up to the evaluation of e.

• Induction basis: n = 0 which means there is no inference rule, that is, e =
e1[f, a := v1, v2] and v1 = mfun�(f.a.e1). As μ� is initial we can build a τ

consistent with t1t2 and compatible with μ�. From this τ , repeated applications
of proposition 4.9 yield the desired τe. In particular we have τe(�) = mfun(f.a.e−1).
Define now γ = (v2) · •, and observe that τe(�)@γ− = e−1 [f, a := v−1 , v−2] · • =
e−1 [f, a := v−1 , v−2]. But by lemma 4.2 e−1 [f, a := v−1 , v−2] = e1[f, a := v1, v2]− =
e−, which completes the proof.

• Inductive step: assume that there are n + 1 inference rules from e1[f, a := v1, v2]
up to e. The proof proceeds by a case analysis on the top rule and is illustrated
for the case of rule (Eletbox). In this case we have e′ = let box(t, x.e1), e = e1[x :=
v1], β =!v1 · β1 and μ′′, t ⇓t

p box v1, μ. By I.H. there are τe′ and γ1 such that τe′

is consistent with e′ and compatible with μ′′, τe′(�)@γ−
1 = e′− and γ◦

1 = β1. In
particular τe′ is consistent with t and therefore, by proposition 4.9, there is a τ ′′

such that τ ′′ ⊇ τe′ is consistent with box v1 and compatible with μ. Moreover, τ ′′

is also consistent with e = e1[x := v1], and as it was compatible with μ we can
define τe = τ ′′. Define now γ =!v1 · γ1 and observe that γ◦ =!v1 · γ◦

1 =!v1 ·β1 = β.
This suffices to show that τe(�)@γ− = e−.

τe(�)@γ− = τe′(�)@γ−

= τe′(�)@(!v−1 · γ−
1)

= (τe′(�)@γ−
1)@!v−1) (by lemma 4.10)

= let box(t−, x.e−1)@!v−1

= e−1 [x := v−1]@•
= e−1 [x := v−1] = e− (by lemma 4.2)

The cases for letprod and mcase are analogous.
�

After a final lemma, we will be able to prove now the type safeness for system
SM .

Lemma 4.12 Let r be a term or expression of SM. If Γ|Δ � r− : T then there
exists a label context Σ such that Γ|Δ|Σ � r : T

Proof Straightforward induction on the typing derivation of r−. �

F.E. Miranda-Perea, L.D.C. González-Huesca / Electron. Notes Theor. Comput. Sci. 256 (2009) 67–85 81

4.1 Type safeness for SM

We can now develop the proof of type safeness for SM stated in theorem 2.4.

Proof of theorem 2.4

• Part (i). Assume Γ|·|Σ � t : T and μ, t ⇓t v, μ′ with μ an initial store. Let Lt be the
set of labels occurring in t. Without loss of generality we can assume dom(μ) =
Lt = dom(Σ). Observe that the typing ensures that for every � ∈ dom(τ) there is
a unique expression e such that mfun�(f.a.e) occurs in t. Therefore we can define
a function table τ with dom(τ) = dom(μ) by defining τ(�) = mfun(f.a.e−) for
every � ∈ dom(τ). In this way τ is consistent with t by construction and it is
compatible with μ due to the initiality of μ. Therefore we can apply part (i) of
proposition 4.9 to get a τ ′ ⊇ τ such that τ ′ is consistent with v, compatible with
μ′ and t− ⇓t

p v−. On the other hand, proposition 4.3 yields the typing Γ|· � t− : T
which together with t− ⇓t

p v− implies, by type safeness of system S (prop. 3.3),
that Γ|· � v− : T. Finally lemma 4.12 yields a Σ′ such that Γ| · |Σ′ � v : T.

• Part (ii). Assume Γ| · |Σ � e : T and μ, e ⇓e
β@� v, μ′ originating in an application

μ�, t1t2 ⇓t
p v�, μ�′ with μ� initial. By lemma 4.11 there is a τe consistent with e

and compatible with μ, and a γ such that τe(�)@γ− = e− and γ◦ = β. The proof
proceeds analogous to part (i).

�

We have now fulfilled our main goal. However, although system S does not have
explicit effects, from a strict point of view, this system is still not pure, for it keeps
the distinction between types and expressions as well as the selectivity feature. To
solve this problem we provide a translation of S to the purely functional language
PCF.

5 A translation from S to PCF

In section 4 we have developed a faithful translation from SM to S, a system which
can be considered to be effect-free. However we are not comfortable claiming that
this translation shows the soundness of the memoized semantics with respect to a
pure functional semantics. Our main reason to this remark is that the operational
semantics of S is not pure strictly speaking, for it refers to a function table and
upholds the selective mechanism of the original system SM. Moreover, the return
instruction, which has a strong imperative flavor, is maintained. To avoid this
problem we give a translation (·)∗ from S to the very well-known pure functional
language PCF.

The translation on types is the identity function except in the case of a box
type where the definition is (�T)∗ = T∗. Furthermore, terms and expressions of S
collapse into terms of PCF according to the following table, where every resource
variable a is mapped to a unique variable xa of PCF.

F.E. Miranda-Perea, L.D.C. González-Huesca / Electron. Notes Theor. Comput. Sci. 256 (2009) 67–8582

r r∗

x x

a xa

box t t∗

mfun�(f.a.e) fun(f.xa.e
∗)

return t t∗

let box(t, x.e) let(t∗, x.e∗)

letprod(t, a1.a2.e) let(snd t∗, xa2 .(let(fst t∗, xa1 .e
∗)))

mcase(t, a1.e1, a2.e2) case(t∗, xa1 .e
∗
1, xa2 .e

∗
2)

For ease of presentation we have assumed named functions fun and let expressions
as primitives in PCF, though they are indeed syntax sugar. All syntactic forms
missed in the table are defined in a homomorphic way.

The following results prove that the translation is faithful. Their proofs are
completely conventional due to the fact that S does not have actual effects.

Proposition 5.1 Let r be a term or expression. If Γ|Δ � r : T then Γ∗, Δ∗ � r∗ :
T�, where Γ∗ = {x : T� | x : T ∈ Γ} and Δ∗ = {xa : T∗ |a :: T ∈ Δ}.

Proposition 5.2 The translation (·)∗ satisfies:

(i) If t ⇓t
p v then t∗ ⇓PCF v∗.

(ii) If e ⇓e
β;vf

v then e∗ ⇓PCF v∗.

Finally an adequate combination of propositions 4.9 and 5.2 allows us to claim
the soundness of the original memoization semantics with respect to a pure func-
tional semantics.

6 Conclusions and Final Remarks

The framework MFL of selective memoization makes explicit the performance effects
of memoization by capturing control and data dependences between the input and
the result of a memoized function. Moreover it yields programs whose running
times can be analyzed by standard techniques and has been implemented as an
SML library. An essential feature of the system is the use of a modal type to
reveal dependences. In this paper we have presented a framework SM, similar to
the one developed in [2], with the following improvements from the theoretical point
of view: instead of the bang modality, which in our opinion, was an ad-hoc choice
for the implementation of the original system, we use the box type corresponding
to the necessitation modality deeply discussed in [11] from the logical point of
view. We provide our system with a static semantics which keeps exact track of
the location labels occurring in a term or expression. Hence, we statically ensure
the uniqueness of the label assignment for memoized functions. Type safeness for
SM is proven by its translation to an effect-free system which is later translated

F.E. Miranda-Perea, L.D.C. González-Huesca / Electron. Notes Theor. Comput. Sci. 256 (2009) 67–85 83

to the purely functional language PCF. This way we have shown that selective
memoization does not affect the outcome of evaluation as compared to a purely
functional non-memoizing semantics.

Concerning current and future work, above all we do not discard a reformulation
of the dynamic semantics of our systems in the framework of operational structural
semantics, which would allow to pursuit an analysis of evaluation progress. We
are working towards an implementation of the system in Haskell, based on the
framework of polytypic memoization of [5]. From the logical point of view neither
MFL nor SM have a clear sight under the Curry-Howard correspondence. Hence
an interesting question is to formulate a system which directly corresponds to the
necessitation fragment of the judgmental reconstruction of modal logic given in [11].
In particular the typing relations for terms and expressions should be different, but
mutually defined as in the case of evaluation relations; and the return instruction
should be dismissed. Regarding further extensions of our system, a natural one is
to add the type ©T representing monadic memoization and other computations of
type T.
Memoization becomes more complicated when the language includes composite
value types like records, in that case the data dependencies should be as fine-grained
as possible, as discussed in [4]. Therefore, it is interesting to pursuit the modeling of
such dependencies in our framework. Last, but not least, and regarding the inclu-
sion of recursive types, we recall that memoization is most effective when applied to
the kind of programs used in dynamic programming, which usually are neither sim-
ple iterative nor primitive-recursive, but course-of-value recursive. This fact leads
us to investigate an extension with inductive types modeling the latter principle,
motivated by our previous work in [7].

Acknowledgement

We are thankful to the anonymous referees for the helpful comments and suggestions
regarding the contents and presentation of this paper. We also gratefully acknowl-
edge the LSFA 2009 travel grants committee for providing partial funds to attend
the meeting and Martha Buschbeck Alvarado for improving the English manuscript.

References

[1] Acar U. A., G. E. Blelloch and R. Harper, Selective memoization, Technical Report CMU-CS-02-194,
Carnegie Mellon University, Computer Science Department, 2002.

[2] Acar U. A., G. E. Blelloch and R. Harper, Selective memoization, In Proceedings of the 30th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (2003), 14-25.

[3] Cormen T. H., C. Leiserson and R. Rivest, “Introduction to algorithms”, MIT Press, 1990.

[4] Heydon A., R. Levin and Y. Yu, Caching function calls using precise dependencies, In Proceedings of
the ACM SIGPLAN 2000 conference on Programming language design and implementation, 311-320.

[5] Hinze R., Memo functions, polytypically!, Proceedings of the 2nd Workshop on Generic Programming
(2000), 17-32.

[6] Michie D., ”Memo” Functions and Machine Learning, Nature (1968), 218:19-22.

F.E. Miranda-Perea, L.D.C. González-Huesca / Electron. Notes Theor. Comput. Sci. 256 (2009) 67–8584

[7] Miranda-Perea F. E., Some Remarks on Type Systems for Course-of-value Recursion To appear in
Electronic Notes in Theoretical Computer Science. Elsevier Science Holland 2009.

[8] Miyamoto K. and A. Igarashi, A modal foundation for secure information flow, In Proceedings of
Workshop on Foundations of Computer Security (2004), 187-203.

[9] Moody J., Logical Mobility and Locality Types, In Proceedings of the International Symposium on
Logic-based Program Synthesis and Transformation (2004), 69-84.

[10] Norvig P., Techniques for Automatic Memoization with Applications to Context-Free Parsing,
Computational Linguistics 17 (1991), 91-98.

[11] Pfenning F. and R. Davies, A judgmental reconstruction of modal logic, Mathematical Structures in
Computer Science 11 (2001), 511-540.

[12] Pugh W. and T. Teitelbaum, Incremental Computation via Function Caching, In Proceedings of the
16th ACM SIGPLAN-SIGACT symposium on Principles of programming languages (1989), 315-328.

[13] Yuse Y. and A. Igarashi, A modal type system for multi-level generating extensions with persistent
code, In Proceedings of the 8th ACM SIGPLAN international conference on Principles and practice of
declarative programming (2006), 201-212.

F.E. Miranda-Perea, L.D.C. González-Huesca / Electron. Notes Theor. Comput. Sci. 256 (2009) 67–85 85

	Introduction
	Selective Memoization
	Type System
	Dynamic Semantics

	A selective system without effects
	Dynamic semantics
	Type safeness for S

	A translation from SM to S
	Type safeness for SM

	A translation from S to PCF
	Conclusions and Final Remarks
	Acknowledgement
	References

