CAMBRIDGE ZOOLOGICAL SERIES
General Editor:-Arthur E. Shipley, Sc.D., F.R.S. master of christ's college, cambridge

THE BIOLOGY
of
DRAGONFLIES
(ODONATA or PARANEUROPTERA)

THE BIOLOGY

OF
 DRAGONFLIES

(ODONATA or PARANEUROPTERA)

CAMBRIDGE UNIVERSITY PRESS
c. F. CLAY, Manager

Houdom: fetter lane, e.c.
Eedinburgh: 100 PRINCES STRELTT

Honban: H. K. Lewis and CO., Ltid, 13; Gowher Streetr, w. gem goth : G. P. PUYNAM'S sons bombap, Talcutta and ftabras: MACMAM's sons שoronto: J. M. गen f在lbourne and \$ponen: J. M. DEN'T AND SONS, LTD.

[^0]BY
R. J. TILLYARD, M.A. (Cantab.) B.Sc. (Sydney), F.L.S., F.E.S.

Macleay Fellow in Zoology to the Linnean Society of New South Wales
Late N.S.W. Government Research Student in Zoology in the University of Sydney; formerly Foundation Scholar
of Queens' College, Cambridge; and Assistant
Mathematical and Science Master at
Sydney Grammar Schoot

Cambridge:

at the University Press
1917

Haee est mei

Libellula libri:

Tôn aixmên tồn tamtoméncon
пónt ω к кад入ıाтtép $\omega \mathrm{N}$
mánton árpions.

TO MY
good friends and
MENTORS IN ODONATOLOGY
M. RENE MARTIN and Dr F. RIS,

I dedicate this book, in memory of many kindnesses received FROM 'THEM

A living flash of light."
Tennyson, The Two Voices.

PREFACE

THE prineipal objeet with whieh this volume has been written is to present as full and eomplete an aeeount of the Biology of the Odonata as it is possible to offer in the present state of our knowledge of these inseets. Thus the book is written primarily for biologists rather than systematists. More than ninety per eent. of the papers so far publislied on the Odonata have been ehiefly systematie in their aim. The remainder are prineipally morphologieal, and form a valuable though somewhat small eolleetion of faets on whieh a book of this kind must neeessarily be based. During the last three years, I have fortunately been able to undertake a eonsiderable amount of work on the internal anatomy of the Order, thereby not only eonfirming many points which were more or less in doubt, but also adding some new diseoveries, and here and there reetifying errors. Most of this work has not yet been published, and will first see the light in the eondensed form in whieh it appears in the present volume. It is hoped that the method of treatment followed in this book, by whieh the morphologieal, phylogenetie and physiological view-points have been eorrelated, in so far as our present knowledge allows, will enable students of the Odonata to take up any line of researel on this interesting Order with a full knowledge of what has already been aehieved. To this end, the Bibliography has been praetically eonfined to those publieations bearing on the biologieal study of the Order. It would have been impossible to include a eomplete list of the enormous number
of purely systematie publieations on these Insects. Only those have been ineluded whieh eontain material of suffieient biological interest to require a referenee in the text. All papers, however, dealing with the larvae, life-histories or faunal studies, have been ineluded. With the exeeption of two or three which it has been quite impossible to obtain, all the works listed have been earefully read and studied by the author. Referenees to the Bibliography are given within square braekets.

A complete seheme of elassifieation down to tribes is given in Chapter XIV. It is hoped that this, eombined with a very full aeeount of those external parts whieh are of use in elassifieation, will make the book of value to systematists. For the use of British entomologists, a ehapter is ineluded dealing exelusively with the British speeies (Chapter XVIII). At the request of several entomologieal friends, a short glossary of biologieal terms has been introdueed, for the use of readers who are not biologists.

In a previous volume of this series ${ }^{1}$, the author, Dr O. H. Latter, in dealing with the Inseeta, seleets three types of this enormous Class for study. These are the Coekroaeh, the Dragonfly and the Wasp. The Coekroael has for many years scrved the purpose of a "type" for the Inseeta, in all general courses on Zoology. Now there are three essentials which a "type" for general use ought to fulfil. Firstly, it must be obtainable without undue diffieulty, and easily preserved for use. Seeondly, it should illustrate as generally as possible the morphology of its Class. Thirdly, it should present a fairly typieal life-history for its Class. The Coekroaeh eompletely satisfies the first two eonditions. But it fails in the third, sinee it offers no illustration of the very important phenomenon of metamorphosis, whieh is assoeiated with the great majority of the Orders of Inseeta. It
${ }^{1}$ The Natural History of Some Common Animals, by O. H. Latter, M.A. Cambridge, 1904.
seems, therefore, to be in the highest degree advisable, that Dr Latter's lead should now be followed in all Zoologieal Laboratories, by the selection of two other Inseet "types," whieh should illustrate respeetively the phenomena of ineomplete and eomplete metamorphosis. Of these, one should undoubtedly be the Dragonfly, the other either the Wasp, Bee, Blow-fly or Butterfly.

The metamorphosis of the Dragonfly is easily observed and easily understood, yet it is as striking as that of any other Inseet. If we add to this the further advantages that both larva and imago (but partieularly the former) provide disseetions of eomparative ease and unrivalled beauty: that both elosed and open traeheal systems ean be studied in the one inseet: and that the adaptations to the aquatie way of living in the larva are of an interest not to be equalled anywhere in the Inseeta,-it-will be seen that a very strong ease exists for the reeognition of the Dragonfly as a seeond biologieal "type" for the Class. If this book helps towards the general aeeeptanee of this view, by providing a text-book suitable for the use of zoologieal students, the author will feel more than repaid for his labours.

Little need be said as to the design of the book. I have made original text-figures in every ease except where the material was not available. In sueh cases, the authorship of the figure is gratefully aeknowledged, but the lettering has been altered to suit the text of the book. Of the original drawings, figs. 23 , $30,33,35,37,38,125,128,139,146$ and 154 have already appeared in my contributions to the Proceedings of the Linnean Sociely of New Soulh Wales [167, 169, 171, 172, 176], while figs. 79-83 are taken from a paper eontributed to the Journal of the Linnean Socicty of London [179].

Almost all the speeimens studied and figured have been eolleeted around Sydney. Readers will therefore not fail to diseover a very strong Australian "flavour" in the book. Those
who know how rieh and varied the Australian Dragonfly-fauna is, will look upon this rather as an advantage than otherwise. While care has been exereised in selceting, for general deseription, wellknown genera of wide distribution, yet there has been no hesitation in making use of the more arehaie Australian forms, when these latter eould throw new light on the phylogeny of the Order.

Throughout the book, the names Gomphus, Aeschna, Calopteryx and Agrion are used in the Selysian sense. In eommon with praetieally all other students of the Order, I regard these names as nomina conservanda. Their alteration would not only lead to immense eonfusion, but would in a sense vitiate the whole of the elassieal or Selysian literature. Odonatologists are more eoneerned than anyone else in the retention of these names, and they will never eonsent to their arbitrary removal by eommittees formed of men who know little, and eare less, about the requirements of this very speeial braneh of entomology.

The ms. of this book was eompleted on Mareh 19th, 1915, and was forwarded to Cambridge in July, 1915, with the Bibliography brought up to that date. During the first eorreeting of proofs, opportunity was taken to bring the work on the Respiratory

- System (Chapter IX) into line with the reeent researchess of Calvert and myself; but it was not eonsidered practicable to add any new reeords to the Census and lists of genera. The Additional Bibliography on p. 373 was added in July, 1916, when the first proofs were returned to Cambridge. The sending of the original ms., figures and plates, three sets of galley-proofs and three sets of page-proofs (involving in all a total of some fifty paekets and letters), to and fro between England and Australia in these troublous times, without the loss of a single item, is an aehievement whieh I eannot let pass without offering my grateful thanks to all who were responsible for it.

In eonclusion, I desire to acknowledge with very sineere thanks the help reeeived in the preparation of this work. My
thanks are due to my wife, for the exeeution of figs. 25, 167, 184, 185, 187, 188, and for her valuable help in indexing; to Mr F. W. Carpenter, M.A., of Sydncy Grammar Sehool, for mueh arduous work in the field, for adviee and help in the preparation of wingphotographs, and for the two beautiful photographs reprodueed in Plate IV; to Dr F. Ris, of Rheinau, Switzerland, for the loan of publieations from his library, and for mueh useful help and eritieism; to M. René Martin, of Paris, for an aeeount of the Ethiopian fauna; to Professor P. P. Calvert, Ph.D., of Philadelphia, for an aecount of the fauna of the New World, and for other information; to Dr F. F. Laidlaw, of Uffeulme, Devon, for an aeeount of the Oriental fauna; to Mr R. A. Muttkowski, B.Sc., of Madison, Wiseonsin, for information on the Nearetie fauna; to Mr K. J. Morton, of Edinburgh, and .Mr Herbert Campion, of Ealing, W., for speeimens of, and information eoneerning the British and European fauna; to Dr S. J. Johnston, Leeturer in Zoology, University of Sydney, for assistance in drawing up the glossary; to Mr B. G. Engelhardt, of Hornsby, for geological information; and finally to those many other eorrespondents, whose exehanges of publieations and speeimens have indireetly helped me in the eompletion of this work.

R. J. TILLYARD.

"Kuranda," Mount Lrbinaton, Hornsby, N.S.W.

September 30th, 1916.

Table of Entoaenic Genera of Obonata
To face page 282
Map of Zoogeograpiical Distribution „ 300
PLATES

PLATES									
I.	-	-	-	-	-	.		Frontis	piece
II.	-	-	-	.	-	-		To face page	44
III.	-	.	-	-	,	-		-	243
IV.	-	-	-	.	-	-		"	321

ERRATA

Plate I, Fig. 4. For Now Britain read India. Fig. 5. For Papua read Now Britain.

CHAPTER I

INTRODUCTION

Historical.
In his subdivision of the Class Inseeta, Linnaeus plaeed all the Dragonflies known to him in the single genus Libellula, forming the fimily Libellulidue of the very heterogeneous Order Neuroptera. His pupil Fabrieius, in re-arranging the Orders of Inseets by the structure of their mouth-parts, eonstituted the Dragonflies as a separate Order under the name Odonata ${ }^{1}$, beeause of the form of their mandibles. His general seheme quiekly fell into disuse. But the name Odonata persisted, and has been adopted by all subsequent writers. Latreille merged the Odonata with the May-flies (Liphemeriduc) in his Order Subulicomia, based on the form of the antennac. To these (erstaeeker added the Stone-flies (Perlidae) forming a group Orthoptera Amphibiotica, eharaeterized by the possession of aquatic larvae. Erichson, in splitting up the old Order Neuroptera, formed an Order Pseudoneuroptera to eomprise the Odonata, Rephemeridue, Psocidue and Termitidae. Later workers have almost unanimonsly rejeeted these unnatural groupings, and have regarded the Odonata as a distinet Order. Thé name Paraneuroptera has been suggested by Dr Shipley as a substitute for Odonata, with a view to maintaining the termination "-ptera" for all Orders of Winged Inseets.

Reeent work on the morphology and phylogeny of the Dragonflies has not only tended more and more to eonfirm the view that they form a distinet Order of Insects, but has even gone so far as to increase our sense of their isolation. Thus Handlirseh [67], on
${ }^{1}$ Greck isois a tooth, stem $\dot{\text { os }}\langle\boldsymbol{y \tau}$-. The word should therefore more correctly bo Odontata.
T. D. -F
phylogenetic grounds, raises them to the rank of a Sub-Class (Libelluloidea). This seems to be going rather too far, particularly now that the very important character of the radial sector has been shewn to hold only for the Anisoptera, and not for the Zygoptera. We shall therefore be content to treat the Dragonflies as a very distinct and isolated Order of Insects, under the name Odonata or Parancuroptera.

Little attention was paid to the Odonata during the first half of the nineteenth century, and the total of described species remained small, despite the excellent work of Rambur [127] and others. The darkness was dispelled by the appearance on the scene of the great Belgian master, rightly called the "Father of Odonatology," Baron Edmond de Selys-Longchamps. His work on the Order began just before the middle of the century, and lasted until his death in 1890. His whole life was devoted to the study of Natural History. But the Dragonflies soon became his favourite group, and remained so to the end. He not only built up a magnificent collection of these insects, but published monographs of every subfamily except the Libellulinae. His collections, which contain an enormous number of types, were placed at his death in the Natural History Museum at Brussels, where, we most sincerely trust, they have remained untouched by the greedy hands of the Despoilers.

The life of de Selys marks the Classical Period of the study of Odonata. It was he who first saw the importance of the wingvenation as the basis of classification, and who started the study of the Order along the right lines. To him we owe the facts that the Odonata now stand as one of the best-understood of all Orders of Insects, and that their classification is based on a natural system supported by an ever-increasing weight of morphological and phylogenetic evidence.

After his death, the work of de Selys was continued by his sons, who arranged for the publication of a series of catalogues of the various groups of animals in their father's collection. These catalogues became expanded into complete and magnificent monographs, dealing with every known species. In the case of the Odonata, the Corduliinae, Aeschninae and Calopterygidae were entrusted to M. René Martin of Paris. He has faithfully completed
his task, though the work on the last-named family had unfortunately not left the printer's hands by August 1914. The immense task of dealing with the Libellulinae was entrusted to Dr F. Ris, of Rheinan, Switzerland. As a result of more than ten years' labour, he has now completed his work, in a series of brilliantly conceived and executed fascicules which mark the highwater level of systematic achievement in Entomology. The Gomphinae, Lestidae and Agrionidae were unfortunately entrusted to threc German authors. Not one of these has so far made any serious attempt to deal with his obligations, accepted now over thirteen years ago.

The personal influence of de Selys reacted directly upon the next generation of students of the Odonata, and shewed itself in an era of great activity and advancement in our knowledge of the Order. There were many, including Martin and Ris, who could proudly claim that they had sat at the feet of the master, and had been directly fired with his spirit of enthusiasm. The younger generation of Odonatologists, amongst whom I am proud to include myself, owe to these men what they in their time owed to de Selys. For the past twenty years, with rinfailing courtesy and industry, they have placed their unrivalled knowledge at the disposal of all who sought it, and have lit afresh the flame of devotion which we trust will now be passed on to succeeding gencrations. Mainly owing to their endeavours, the systematic study of the Odonata has been brought up to a level of excellence not exemeded in any other Order; and thas the way is now paved for the biologists of the present and the future to pass on to the deeper studies of the morphology and physiology of the group, not by selecting, at a chance, any common type that happens to be convenient, but with full knowledge of the pliylogenetic position of their regional fauna, and an added certainty as to the degree of specialization to be expected of the types they choose to study.

Characters of the Order.

Habits. Carnivorous in all stages. Amplibiotic: the larva or nymph being aquatic, breathing by means of tracheal gills; the imago being aërial and breathing air directly through spiracles. ILemimetabolous: the larva active, campodeiform, with no true
pupal or resting-stage, but with a considerable clange of structure at metamorphosis.

Imago. Head with biting mouth-parts, the mandibles thick and strongly toothed; antennae reduced, filiform; three ocelli, two large compound eyes. Thorax with small movable prothorax, and large obliquely-placed synthorax (formed by fusion of mesoand metathorax); the legs placed well forward and of little use for walking; the wings placed far backward; two pairs of thoracic spiracles. Wings, two equal or sub-equal pairs, unfolded, richly veined; the six typical longitudinal veins all present, but $R+M$ and also $C u+A$ fused basally for a short distance; a secondary anal vein $\left(A^{\prime}\right)$ developed; $S c$ stopping far short of the apex, at a thickened cross-vein, forming a joint, the nodus; a thickened membranous patch or pterostigma nearly always present between C and R, near the apex; R either simple or once-branched; M branched either three or four times; an arculus and discoidal cell always present. Abdomen with ten complete segments, and terminal appendages; in shape, narrow, elongated, the pleurites membranous, the large tergites enfolding the reduced sternites; eight pairs of spiracles. External Genitalia:- δ with genital pore on ninth sternite; complicated copulatory apparatus developed from the second and anterior part of the third sternites. If with genital pore in the suture between eighth and ninth sternites; ovipositor either complete or reduced. Mid-gut without eacea. Numerous Malpighian tubules.

Larva. Similar to imago in general features, but with less elongated and often very broadly rounded abdomen. Compound eyes present from birth; ocelli absent during most of larval life. Antennae larger than in imago. Labium very highly specialized, forming an elongated jointed mask for the capture of prey. Legs strong, longer than in imago. Wing-sheaths developed externally and gradually, the hind-wing coming to overlic the fore-wing; developing wings richly supplied with tracheac, around which the main venational seheme is subsequently formed. Tracheal System secondarily closed; the spiracles present, but either closed or only partly functional. Gills developed in the rectum, or on the anal appendages; rarely also as lateral appendages on some of the abdominal segments.

Posision of time Order in the Class Insecta.

The Dragonflies oceupy such an isolated position within the Class, that it is a difficult task to indicate any other groups as having any real relationship with them. Morphologically, they have been considered to shew relationships with (a) the Stone-flies or Perharia, (b) the May-flies or Plectoptera.

The points of resemblance with the Perlaria are: (i) the presence of three ocelli, (ii) the large number of Malpighian tubules, (iii) the aquatic habit of the larvae. and the fact that both breathe by means of tracheal gills, (iv) the retention of the cerci alone of all the abdominal appendages in the larva (except in a few genera). It seems very probable that not a single one of these characters has been inherited from a common ancestor. As regards the ocelli, fusion of two out of an original four to form a singlo large median ocellus takes place in a number of widely separated groups of Insects. The Malpighian tubules of the Dragonfly are arranged in groups of five or six together. The young larva has only three tubules. Thus the large number of these organs is again a secondarily developed character. The larvae of the Perlaria have no stigmata, and their tracheal system appears to be a primarily closed one. The larvae of Odonata, on the other hand, possess stigmata, and their tracheal system is only secondarily closed. This points to the supposition that the Perlaria were aquatie long before the Odonata, and that the aquatic habit is not to be traced back to a common ancestor. Lastly, as regards the cerci, these appendages in the Perlaria remain as undifferentiated filiform organs, and are so earried over into the imago. In the Odonata,
\because they are either reduced, or else developed in the form of caudal gills. Only in the Zygoptera are they carried over into the imago. Combining this with the facts that a few Odonate larvae still possess their lateral abdominal appendages, and that the gillsystems in the two Orders are absolutely different, we cannot be far wrong in assuming that the retention of the cerci has been brought about by gradual and incomplete parallel reductions of the original complete set of abdominal appendages once possessed by the ancestors of all Insecta, and does not indicate any special affinity.

While the true affinities of the Perlaria remain a matter of much doubt, we must maintain that no true relationslips can be proved between them and the Odonata, on the evidence available to us.

Turning next to the May-flies, the position is somewhat different. Their points of resemblance with the Odonata are: (i) the presence of three ocelli, (ii) the large number of Malpighian tubules, (iii) the aquatic habit of the larvae, and the fact that both breathe by means of tracheal gills, (iv) the retention, in the larvae of the Plectoptera, and in a few archaic larvae of Odonata, of the lateral abdominal appendages, in the form of gills, (v) the retention of the cerci in the larvae of both groups, and in the imagines of the Plectoptera and the Zygoptera, (vi) the reduced awl-like antennae, (vii) the presence of only one wing-axillary, and the inability to fold the wings downwards either in a flat or roof-like manner over the body. With regard to the first three points, the same argument may be applied as in the case of the Perlaria, especially as the tracheal system of the Plectoptera is as little like that of the Odonata as is that of the Perlaria. Both the latter and the Plectoptera, in fact, appear to have been aquatic in their larval stages long before the Odonata became so. The fourth character mentioned becomes rather striking when we compare the larva of Pseudophaea (fig. 87) or Cora with that of an Ephemerid. It may well be that we have here some evidence of a very ancient connection between the two groups. As regards the retention of the cerei, we must repeat the argument used above. With respect to the form of the antennae, the reduction almost certainly rests upon convergence, and cannot be used as an argument for relationship. Similar antennae appear quite independently in other groups of Insects. The last character, (vii), seems undoubtedly to have been derived from a common ancestor. Thus we have in this case a certa'n amount of evidence for a connection between the two Orders, very long ago.

The palaeontological evidence here helps us considerably. The Protodonata of the Upper Carboniferous were admittedly the ancestors of our present-day Odonata, although an unfortunate gap in the Trias hides the exact line of descent from our view. The Protodonata were large insects with well-developed sub-equal wings. They were undoubtedly Dragonflies in facies and habits,
though lacking those high specializations of the wing-venation which mark ofl the Odonata of to-day. Now we can also trace back the Plectoptera to the Jurassic, where we find forms differing little from those of the present day except in the possession of less reduced hind-wings. The fossil record undoubtedly points to a gradual reduetion taking place in.the hind-wings of the Plectoptera, from an ancestral form in which fore and hind-wings were sub-equal. A study of Permian fossils also bears this out. Coming at last to the Carboniferous period, we find evidence of the existence of a group of moderately delicate insects with four almost equal wings. These, under the name Protephemeroidea, are generally admitted to have been the ancestors of our May-flies. It will thus be seen that, in the Upper Carboniferous, the two Orders Plectoptera and Odonata were already differentiated, but far more closely related than they are to-day. It seems therefore not unreasonable to recognize a very archaic connection between the two, of a far more definite character than we can point to in the case of the Perlaria. We need, however, only remember the numerous and overwhelming points of difference between the two Orders to realize how very slight the relationship really is. We have only to recall the differences in the structure of the head and thorax, the atrophy of the mouth-parts in the May-flies, the very claracteristic arrangement of interpolated sectors in their wingvenation, together with numerous points of difference in the internal anatomy, to feel the force of this. We have not mentioned the sub-imago of the Plectoptera, since a somewhat analogous process is evident in the case of the pronymph of the Odonata.

But for the fact that the Planipennia have a complete metamorphosis, we might be tempted to see a considerable resemblance between the very ancient Protascalaphine genus Stilbopteryx and the Odonata. That Stilbopteryx is remarkably like a Dragonfly in its flight and appearance, nobody who has seen this insect alive will deny. Moreover, the fact that it is admittedly the most archaic of all the Ascalaphidae makes it impossible to accept this resemblance as one purely due to convergence. The more highly specialized Ant-lions depart widely from the type shewn by Stillopteryx, and do not resemble Dragonflies in the least. It seems allowable to postulate an exceedingly remote ancestor
common to these two groups-an ancestor with an incomplete metamorphosis, and only such structure of wing-venation as underlies both types. From that ancestor, the Odonata broke away by the adoption of the aquatic larval habit. The consequent change in the source and direction of the oxygen-supply to the developing wings may have been the determining factor for those wonderful specializations in wing-venation in which the Odonata are unique. On the other liand, a more direct line of descent would lead to Stilbopteryx by the intercalation of a pupal stage, and high specialization in the habits and form of the larva. Palaeontology cannot help us here, since any connection of the kind supposed must have existed before the Protodonata became differentiated out.

To conclude this discussion, we find in the Odonata a singularly isolated group, marked by very high specializations of stricture, superimposed upon an exceedingly archaic foundation. No near relatives of these extraordinary insects exist to-day, nor have any such existed since Palacozoic times. We may, however, most certainly point to the Plectoptera as being the group which has the closest affinity with them, slight though it be. In a serial arrangement of the Orders of the Insecta, the Odonata are best placed next to, and just after, the Plectoptera.

CHAPTER II

THE IMAGO. EXTERNAL FEATURES AND SKELETON

In this chapter we shall deal with the general external features of the Dragonfly, the exoskeleton of the head, thorax, and abdomen, its internal prolongations or endoskeleton, and all the appendages except the wings, which are treated separately in chap. mi.

Tile Mead (fig. 1).

The head of a Dragonfly, like that of other insects, shews no clear traces of metameric segmentation. Embryology, however, tells us that it consists of a number of segments. most probably six, which can be elassified according to their position with regard to the mouth, and the nature of the nerve-centres supplying their appendages. The following table shews us at a glance the usually accepted theory of head-segmentation:

It seems fairly certain that, originally, only the first of these segments was preoral. Thus it corresponded with the prostomium of Annulate Worms, and is not strictly to be considered as an appendage-bearing segment. The mouth itself las moved from an original ventral position, to take up a place at the extreme anterior end of the head. Hence the original ventral surfaces of segments

Fig. 1. Exoskeleton of head, thorax, and first two abdominal segments. A. Austrophlebia costalis Tillyard, p, dorsal view. B. The same, ventral view. c. The same. lateral view. D. Head of the same, front view. \mathbf{E}. Head of Lestes, dorsal view. F. The same, hateral view. a. Metathorax of Orthetrum, ventral view. A analis; A^{\prime} secondary analis; ac anteclypeus; alr ante-alar ridge; ant antenna; ap costal process; As urosternite; At urotergite; ax axillary; e eosta; Cu cubitus; cx coxa; dr dorsal carina; e eye; epic epicraninm; portion; Fw fore-wing; g gena; hs humeral suture; $I w_{w}$ hind-wing ; ins infra episternum; $l l$ lateral lobe of labium; $l m$ labium; $l r$ labrum; l_{s} first, $l s$ second lateral suture; M media; $m b$ membranule; md mandible; me median eye-line; $n l$ median lobe of labium; $m i$ mentum; N notum; occ occiput; ocl lateral, ocm nedian ocellus; orb orbit; ot oeeipital triangle; P prothorax; $p c$ postelypeus; $P l$ pleurum; $P N$ postnotum; pol postocular lobo; $P S$ poststernum; h radus, S sternum; Sc subcosta ; $s p$ spiracle; t temple; v vertex; $v t$ vertical tubercle. ($A-\mathrm{D}$ and $\mathrm{G} \times 2 ; \mathrm{E}, \mathrm{F} \times 5 \frac{1}{3}$.) Original.

1-3, bearing the elypeus and labrum, have become pushed dorsally upwards into their present positions.

The Compound Eyes (see chap. viI). In the Dragonflies, as is the case also in a somewhat less degree with their Vertebrate analogues the Birds, the shape of the head, and the sizes and relationships of its parts, have become profoundly modified in correlation with the extraordinary development of the sense of sight. The orbits have become expanded to an enormous diameter, in order to accommodate the huge compound eyes (e), which, in many forms, occupy by far the largest part of the whole head. In the Aeschninae and Libellutidae this development culminates in the meeting of the two cyes mid-dorsally on the head in a long line of contact, the median eye-line ($\mathrm{A}, m e$), the true nature of which is explained on p. 146. The stages leading up to this result are preserved for us in a long line of existing Anisopterid forms. Of these, the Gomphinae and Petalurinae lie nearest to the primitive type. Their eyes are rounded, not excessively large, and separated by a width of epicranium less than the dorsal diameter of the eye. The eyes of Meganeura (fig. 156) and other early fossil forms seem to have been very similar to this. In the Chlorogomphinae the eyes become somewhat more transversely elongated, and take on a more oval shape. They just fail to touch one another middorsally. In most of the Cordulegastrinae a further slight advance is seen, the eyes just meeting in a point. In the Petaliini there is another slight advance, the eyes meeting for a very short distance. In the Brachylronini the eyc-line becomes of moderate length; while in most of the Aeschnini and Libellulidae it is so long as to obliterate the greater part of the epicranium, and approaches in length the diameter of the cye itself.

In the Zygoptera (E, F) the eye has remained rounded and comparatively small. The tendency has been towards improving the power of sight by a progressive movement of the eyes laterally outwards. Thus the highest forms in this suborder have the head transversely elongated to form a kind of cross-stalk carrying the button-like eyes at its two ends. The distance between the eyes then becomes much greater than the dorsal diameter of a single eye. In the older forms (Calopterygidae) the transverse elongation of the head is not so noticeable.

With the above facts borne in mind, we may now profitably study the conformation of the head itself. The various pieces or sclerites of the head do not appear to be closely connected with the original segmentation. With the exeeption, perhaps, of the labrum, clypeus and gula, they cannot be assigned to definite segments. Thus they are chiefly named from their position in relation to the head and mouth.

The Epicranium (epic). This is by far the largest part of the head-skeleton. If we compare the head to a hollow rectangular box with a lid on, the epicranium represents not only the lid but the upper portions of the front, back, and sides of the box as well. It is bounded laterally on either side by the cyes, which are set in two large hollows with thickened rims, the orbits (A, B, orb). Postero-laterally, each orbit becomes somewhat swollen at a place where the eye itself is slightly concave when seen in profile. This is the temple (c, t). Posteriorly, the cpicranium ends in a sharp shelf, the occiput (\mathbf{E}, occ), which varies greatly in size and shape, according to the extent of the eyes. It is broadest in the Zygoptera, where it usually has a wavy outline, and may be divided into a median portion, the occiput proper, and two lateral postocular lobes (E, pol), corresponding with the more prominent lobes of the same name in the larva. These serve for the attachment of the strong museles of the mandibles and maxillae. In the Comphinue the occiput is an almost straight shelf, often hairy, and modified in the female, to assist in copulation, by the presence of hooks or tubercles which help to hold the complicated anal appendages of the male in position. In the Aeschninae and Libellulidae, the occiput becomes reduced to a small occipital triangle ($\Lambda, o t$). This carries, in some forms, a prominent horn or tubercle. A little in front of the middle of the dorsal surface of the epicranium is a triangular area called the vertex (E, v), marked by the presence of the three ocelli, one of which is median and anterior (ocm), the other two lateral, smaller and posterior (ocl). Originally flat, as in most Zygoptera, we find that in Anisoptera it tends to become raised up, in proportion to the restriction in the area of the epicranium caused by the increase in the size of the eyes. In the Gomphinae the vertex may be a small raised platean, or a strong transverse ridge with a posterior sunken portion, or a
prominent ridge with projecting lateral tubercles. In all these cases, the effect is to force the lateral ocelli forward ahost in line with the median one. In the Aeschninae and Libellulidae, the vertex, like the occiput, becomes excessively reduced, forming a small vertical tubercle or vesicle ($\mathrm{A}, v t$) round which the ocelli are grouped close together.

Just in front of the antennae (p. 15) there runs a transverse groove, the frontal furrow or suture. This separates the vertex from the projecting anterior portion of the epicranium, known as the frons ($\mathrm{E}, \mathrm{F}, f r$). In the Zygoptera, the frons is a sloping shelf, usually rather narrow, and gencrally somewhat convex. Below it, on either side, lies a further small piece of the epicraninm called the gena or cheek (g), bordering the eye. In the Anisoptera, and in the genus Ceriagrion amongst Zygoptera, the frons becomes raised up into a more or less prominent shelf, having a posterior or superior horizontal portion ($f r_{1}$) and an anterior or vertical portion ($\left(r_{2}\right)$, forming a definite forehead. In some Aeschninae (e.g. Austroplitelitu, $\Lambda, \mathrm{c}, f r_{1}$) the frous projects in the form of an anvil, with the superior portion slanting upwards to a median point.

The Clypeus. This is a separate piece inserted below the frons. It forms the chief part of the face of the insect. In all Dragonflies it is divided into an upper postelypeus or nasus (pc) and a lower and smaller anteclypeus or rhinurium (ac). 'The former embraces and often overhangs the latter (D). In many Zygoptera the postclypens forms a kind of shelf comparable with that of the frons in Anisoptera (F, pc). In Rhinocypha (Plate I, figs. 4, 5) the clypeus projects forwards as a kind of snout.

The Labrum. Below the clypeus, and bounding the mouth from above, lies a strong median piece with a more or less rounded lower border. This is the labrum or upper lip (lr). It is narrower than the clypeus, and is bounded on either side by the strong pear-shaped bases of the mandibles ($m d$). In the Anisoptera it continues the plane of the face vertically downwards; in the Zygoptera it projects obliquely forwards and downwards. Together with the epipharynx, which it carries on its inner surface, the labrum forms an organ of taste (chap. vii).

The Mouth. When at rest, the mouth is completely closed by
the labrum above, and by its appendages below and at the sides. These appendages are the mandibles ($m d$), the first maxillue ($m x_{1}$) and the second maxillae or labium ($l m$); the first two placed laterally, the last ventrally. Hence the mouth is capable of great extension, the gape being as wide as the face itself. The labrum and labium act as upper and lower lips respectively, while the mandibles and first maxillae constitute two pairs of laterallyworking jaws.

The Gula. The only remaining portion of the head-skcleton proper is a small membranous piece called the gula. Referring again to our simile of the box, this would occupy the lower part of the back of the box, below the occiput. In the higher Anisoptera the large orbits unite in a median line which runs downwards behind the head. Below this line, or, in the other forms, below the lower portion of the occiput, the head joins the neek. If, now, the head be removed, the rounded opening of the posterior foramen will be seen, through which the cavities of the head and thorax are in communication with one another. The small gula closes this foramen from below. Although so insignificant in size, it is of interest in being generally considered to represent the ventral plate or sternum of the sixth or last head-segment. It forms a base of attachment for the labium.

The Tentorium. We have already seen that the frons is really the most anterior portion of the epicranium. The anterior edge of the epicranium, bordering the clypeus, is turned inwards to form an internal chitinous shelf, separating off an upper frontul cavity from a lower clypeal cavity. Again, the two ends of the frontal furrow also send a pair of ingrowths into the head-cavity. These run downwards and backwards close together, and meet the above-mentioned shelf at its posterior end. They then run on a little further to end up on either side of the posterior foramen. These two rods are in their turn connected by a short transverse rod which divides the posterior foramen into upper and lower halves. The lower passage carries the nerve-cord, the upper the oesophagus, salivary ducts and tracheae. Thus we see that the head has a definite endoskeleton, formed of four separate pieces or endosternites. The whole structure is called the tentorium. The passage between the parts of the tentorium is called the tentorial
foramen. It slants upwards and backwards. Hence the oesophagus, in running forward towards the mouth, passes downwards along this foramen. The brain lies above the oesophagus, between the supporting endosternites of the tentorium. From it the two circum-oesophageal commissures pass downwards, encircling the oesophagns, to join the sub-oesophageal ganglion, which lies below the tentorial foramen.

The Appendages of the Head.

The Antennae. These are placed antero-laterally on the epicranium (fig. 1, ant; fig. 2). Each has its base inserted into a small pit or hollow, the torulus. The antenna itself is always short, and is formed of from three to seven joints. The latter is the usual number. In the Gomphinae the number of joints does not exceed four. The first or basal joint is called the scape; it is short and thick. The second joint or pedicel is longer, and only slightly thickened. The remaining joints or distalit are very slender. The comparative lengths of the joints vary in different genera. In Calopteryx and Syntestes, the pedicel becomes hypertrophied, so as to equal or even exeed in length all the other joints put together. Fig. 2 shews a number of different types of Odonate antemnae. The sensory function of these organs is very poorly developed in all Dragonflies (see chap. viI).

The Mandibles (fig. 3). These are very strong, thick, unjointed appendages, hinged to the head-capsule by a true ginglymus articulation. Viewed externally they are somewhat pear-shaped, the pointed distal end representing the stalk of the pear. The
basal portion is shiny, slightly convex, and often brightly coloured, forming a kind of free or mandibular cheek, in front of the true gena.

Fig. 3. Mandible of Aeschna brevistyla Ramb. A. External view. B. Internal view. i incisors; m molar. ($\times 13$.) Original.
The teeth of the mandible are exceedingly strong. They lic from the distal end to near the base. They may be divided into two groups: (a) a distal group of three incisors (i), and (b) a large basal molar (m). The incisors are sharply pointed and slightly curved. The largest incisor forms the apex of the mandible. The molar has four cusps (originally, no doubt, separate teeth), set on a broad raised base in the shape of a Z. The cusps are placed one at each end and one at each angle of the \mathbf{Z}. The structure of the mandibles is very constant throughout the Order. Biramous mandibles occur in a few archaic ${ }^{\text {s }}$ larvae.

The First Maxillae (fig. 4). These are jointed appendages, slenderer, longer, and much less

Fig. 4. First maxilla of Aeschna brevistyla Ramb. ($\times 15$). c carclo;
il inner lobe; p palp; st stipes. il inner lobe; p palp; st stipes.
Original. powerful than the mandibles. They lie between the latter and the lateral lobes of the labium,
and are barely visible when the mouth is closed. The basal joint or cardo (c) is somewhat twisted. The distal joint or stipes (st) is longer and wider. It carries on its distal end two freely movable processes or lobes. Of these, the outer lobe or palp (p) is curved, hairy, and only moderately pointed. It is obviously an organ of touch. The inner lobe (il) represents the lacinia and galea of more typical mandibulate insects, fused together. It has a rather flattened base, from which project six large, sharply pointed and somewhat curved teeth, occupying the outer two-thirds. The inner third forms a small lobe or tubercle clothed with long sensory hairs. The inner lobe is probably both prehensile and tactile in function. Mastication is performed almost entirely by the mandibles.

Fig. 5. Labinum of Aesr/hat bremistila Rannb. ($\times 10$). oh end-hook; $l l$ latoral lobe; m mentum; mh movablo hook; ml median lobe; sm sub-mentum; st squame. Original.
The Labium (figs. 5, 6). In all insects this organ is formed by the fusion of the second maxillae. It is attached basally to the gula, and represents the paired appendages of the sixth or last head-segment. In the Odonata, both larvae and imagines, it is of a highly specialized form. The question of the homologies of its parts has given rise to much controversy. The conflicting views are dealt with in the account of the larval mask on p. 80.

In the imago, a considerable variation of form is seen in the labia of different groups. In all cases, however, we can recognize the same principal parts. There is a broad short base with a projecting middle portion, at the sides of which are articulated

[^1]two lateral pieces or lobes. The broad base is considered to be formed by the fusion of the sub-mentum ($s m$) and mentum (m). Fused with the mentum distally is the projecting median lobe (ml), probably representing the ligula of other mandibulate insects. The form of this lobe varies greatly. In the Zygoptera and the older Anisoptera it is very prominent and definitely bifid (fig. 6A). In the Aeschninue (fig. 5) the median cleft has disappeared, but

Fig. 6. a. Labium of Synlestes weyersi Selys ($\times 25$). B. Labium of Diplacodes A. Labium of $\quad(\times 15)$. cl cleft of median lobe; other references as in fig. 5. Original.
a slight median groove or line marks the place of its disappearance. In addition, one or two hard black tubercles may project on either side of this median groove. In the Libellulidae (fig. 6 в) the median lobe is reduced to a small triangular piece, over which the huge lateral lobes fold so as to meet one another in a long median line.

On either side of the mentum, the base is widened by the development of two side-pieces or squames (sq) which support the
lateral lobes $(l l)$. The changes in form of these lobes are correlated with those of the median lobe. Normally, cach lateral lobe has its outer border more or less strongly convex, its inner border either slightly concave, waved or nearly straight. The inner border ends distally in a sharp end-hook (eh) which is fixed. Just external to this hook is a small articulated piece, called the movable hook (mh), much resembling a small palpal joint, curved, hairy, and only moderately pointed. The whole lobe is more or less hairy. The end-hook varies in shape. It is most sharply pointed in the Zygoptera (fig. 6 A), and in the older Aeschninae. In Austrophlebia it is strongly bifid. In Cordulegaster it has a set of supplementary teeth. In the higher Aeschninae it tends to become reduced in size. The movable hook also tends to become reduced in size along with the end-hook. In the Libellulidae (fig. 6 в) the end-hook has disappeared, while the movable hook has lost its articulation, and is only represented either by a small spine or a thickened chitinous spot. The lateral lobes themselves are greatly enlarged, with both inner and outer borders convex. As already described, they meet together above the reduced median lobe. Thus the closed mouth of the Libellutidae shews the very characteristic appearance of having a large T-shaped slit, the stem of the T being formed by the line of meeting of these two lateral lobes.

The labium carries internally, projecting from its base, a prominent tongue-like organ projecting into the mouth. This is the hypopharymx or lingua. This is dealt with in chap. vir. The salivary ducts open close to its base.

The Neck, or Microthorax (fig. 7).

In the Dragonfly the neek is exceedingly small and slender, pivoting the head almost, as it were, on a point, and allowing of turning movements to some degree in every direction. Although the neck is firmly fixed to the prothorax, yet it is morphologically part of the head itself. The plates of the neck, or cervical sclerites ($1-4 \mathrm{mi}$), together witl the gula, represent the skeleton of the last head-serment. The neck is supported by four pairs of these plates. Two of these ($1 \mathrm{mi}, 2 \mathrm{mi}$) are rather large and irregular
in shape. Posteriorly they are closely connected with the sides of the prothorax. Two others ($3 \mathrm{mi}, 4 \mathrm{mi}$) are very small, and lie freely in the neek membrane [157].

The orifice of the neck, which is the posterior continuation of the posterior foramen of the head, is so minute that it is difficult to believe that the ventral nerve-cord, oesophagus, salivary ducts and tracheal trunks could possibly all pass through it. Yet such is actually the case. It is interesting to note that, if the head of a Dragonfly be removed, either accidentally when striking with the net, or purposely with fine scissors, the body will continue to live for as much as two days longer, while the wings vibrate vigorously whenever the thorax is touched.

The movements of the head on the neck are brought about by a number of pairs of small muscles arising from the prothorax and anterior part of the mesothorax. They are placed dorsally, ventrally, and laterally, so that the head can turn freely in all directions.

The Thorax (figs. 1, 7).

The thorax of the Dragonfly is very highly specialized, in accordance with the requirements of the very powerful wings and the altered functions of the legs. On the one hand, the prothorax, though remaining a distinct segment, becomes greatly reduced in size. On' the other, the meso- and metathorax are large and powerful, and become fused together into one solid mass, which may conveniently be termed the synhthorax.

In general, three regions can be distinguished in each of the three thoracic segments. These are the tergum or true dorsal region, the sternum or true ventral region, and the pleura or lateral portions. By the addition of the prefix pro-, meso-, or meta-, we indicate to which segment the part in question belongs. The same prefixes may be attached to the name of each particular sclerite.

The Prothorax (fig. 7). This is a small segment supporting the first pair of legs, and the neck or microthorax. It varies greatly in shape. As a general rule, it shews the more normal proportion of parts in the most archaic groups, while it becomes highly reduced or otherwise altered in the most advanced forms.

In all Dragonflies the tergum is occupied by a strong selerite, the pronolum (N), divided into anterior, median and posterior transverse lobes. The median lobe is generally the largest, and is divided inta two by a median longitudinal depression. The posterior lobe may send out a slender strip descending behind the epimerum on either side, and known as the postepimeral strip. The propleurum is complex in the older forms, such as the Gomphinae, where it consists of a large epimerum (epm) behind, and a narrow elongated episternum (eps) in front. This latter is constricted into an upper and a lower portion; the lower piece has been named the proinfraepisternum. In the Libellulidae (A) both parts are reduced, and the episternum is undivided. The prosternum $\left(s_{1}\right)$ in the older forms is a single ventral plate with expanded

B.

Fig. 7. Skeleton of neck and prothorax. A. Libelluia auripennis Burm. в. Lestes uncaths Kirty. cx procoxat epm proepimerum; eps proepisternum; 1-4mi cervical selerites; N pronotum; $p s$ presternum; s_{1} prostornum. After Stodgrass.
antero-lateral wings, which fuse with the proinfraepisternum. In Libellulidue these expansions become separated of as distinct lateral picces, the presterna ($A, p s$). Internally, the prosternum carries a bifureated piece, the furca, forming the endoskeleton of the prothorax. Two slender rods connect the prosternum with the mesosternum, and serve to hold the prothorax in position. They also restrict its mobility upon the synthorax to small dimensions.

In the Agrionidae many interesting modifications of structure are to be found in the pronotum. This may take the form of ornamentation-as in the males of the Oriental genus Amphicnemis, where the posterior lobe projects backwards and upwards in a huge spine-or it may be concerned with the process of copulation. In such a case, the prothorax of the female is
modified to receive the reduced and highly specialized anal appendages of the male, in such a way that a firm interlocking of parts may be secured (see p. 37).

The Synthorax (fig. 1). The remarkable form of the synthorax in Dragonflies is correlated with special conditions of the legs and wings. The former have moved forwards towards the mouth, carrying the sterna with them. The wings, however, have moved backwards away from the head, carrying the terga with them. The reduction in size of both terga and sterna is more than counterbalanced by an enormous development of the pleura. To understand the significance of these changes fully, the student should trace the development of the thorax in the larva, from the time that the wing-buds appear (p.74).

The well-known obliquity or "skewness" of the Dragonfly thorax has been ingeniously measured by Needham and Anthony [107]. If the wings be spread out into a single plane, as if for flight, that plane practically represents the notal plane of the synthorax, and its obliquity to the long axis of the body may be measured by the slant of a line drawn through the two axillaries (c, ax $x_{2}, a x_{3}$) or other suitable points. This angle of obliquity is much smaller in the Anisoptera than in the Zygoptera, the approximate ranges being from 19° to 38° in the former, and from 35° to 62° in the latter. Thus we see that, in this character, the Anisoptera have remained in much the more primitive condition. The ability of the Zygoptera to fold their wings back above the abdomen is of course correlated with the increase in the angle of obliquity.

The obliquity of the synthorax is brought about chiefly by the great development of the mesepisterna (eps ${ }_{2}$), which grow forwards and upwards in front of the tergum, so as to meet in a long middle line, forming the dorsal carina or ridge ($d r$). Thus they form, in their new position, not only the humeral portion of the thorax, but also all the dorsal part in front of the ante-alar ridge (alr). The true terga are pushed backwards and lie between the wingbases. Further, there is a correlated growth of the melepimera (epm ${ }_{3}$) downwards and backwards, which pushes the sterna and the legs forwards, so that the latter come into position close behind the mouth, and are used for holding the prey during flight. In most Dragonflies (a) the metepimera actually meet and fuse
together just behind the metasternum $\left(S_{3}\right)$. A median gap left between the line of union and the base of the abdomen is filled in by a thinner plate or plates, the post-sternum ($p s$). In the older Aeschninae, the fusion is not accomplished, and we have the condition shewn in B.

The Terga. The mesotergum is the reduced area lying behind the ante-alar ridge (alr) and between the bases of the fore-wings. It bears two prominent plates, often brightly coloured. The upper of these, or mesonotum proper (A, N_{2}), consists of a median shield-shaped scutum and a pair of smaller lateral scutella. The lower plate, known as the postnotum or pseudonotum ($P N_{2}$), is a short wide piece, likewise divided into three parts, a median postscutum and two lateral postscutella.

The melatergum lies between the bases of the hind-wings. It carries a large upper plate, the metanotum proper (N_{3}), bearing two convex bosses, and a short, wide, raised postnotum $\left(P N_{3}\right)$ in the form of an obtuse triangular ridge.

The Pleura. The suture between the meso- and metapleurum is partly obliterated, except in the Calopterygidae, where it runs from between the meso- and metacoxa upwards and backwards to end below and behind the base of the fore-wing. In the other families only the lower half, or less, can be distinguished, running from the coxal region to a point just in front of or above the metastigma. This dividing suture is called the first lateral suture ($\mathrm{c}, l s_{1}$). The mesopleurum, lying in front of it, is divided into two pieces by the very distinct humeral suture ($\mathrm{c}, h s$). These pieces are an anterior mesepisternum (eps ${ }_{2}$) and a posterior mesepimerum $\left(e p m_{2}\right)$. From the former a small portion is divided off above the mesocoxa ($c x_{2}$) and is called the mesinfraepisternum ${ }^{1}\left(\right.$ ips $\left._{2}\right)$.

The metapleurum, lying behind the first lateral suture, is likewise divided into two pieces by the very distinct second lateral suture ($\mathrm{c}, l s_{2}$). Of these, the anterior piece or metepisternum (eps ${ }_{3}$) is rather narrow. It carries the posterior spiracle or metastigma $\left(S_{p_{3}}\right)$. A short cross-suture at the level of the spiracle separates off from it a small lower portion, the metinfraepisternum ${ }^{1}\left(i p s_{3}\right)$,

1 The arrangement of the thoracic apolemes or entoskeleton lends support to the view held by some students of Odonata that these pieces are really a part of the sternum.
just above the metaeoxa ($c x_{3}$). The posterior piece or melepimerum (epma $)$ is broad and subtriangular.

The Wing-Bases. These are outgrowths from the thoraeie integument between tergum and pleurum. They are flexible, and merge into the edge of the notum. Each wing-base bears two hard swellings, the anterior and posterior calli, the former lying at the base of the eosta, the latter at the base of the fused radius + media, with a weaker extension to the cubitus. Eaeh callus is supported by a stiff proeess from the pleurum. Of these, the anterior or costal process (c, $a p_{2}, a p_{3}$) closely supports the eostal or anterior eallus, while the larger posterior proeess or axillary $\left(a x_{2}, a x_{3}\right)$ is freely artieulated with the posterior eallus. The axillary forms the ehief fulcrum for the aetion of the wingmuseles (p. 210). It will be seen that the wing of the Dragonfly agrees with that of the May-fly, but differs from those of all other Inseets, in having only the one true axillary, whieh corresponds with the second axillary of other insect-wings [157].

The Sterna. These are very much reduced (13). The mesosternum $\left(S_{2}\right)$ is a small plate lying between the two mesoeoxae; the metasternum (S_{3}) is a similar plate between the metacoxae. The post-sternum has been already mentioned.

The Thoracic Spiracles. There are two pairs of spiraeles on the thorax, the anterior pair being the larger. The anterior spiracles or mesostigmata (c, $S p_{2}$) are transversely elongated slits, lying between the sides of the posterior lobe of the prothorax and the mesepisternum, a little above the mesinfraepisternum, in sueh a position as to be more or less completely hidden from view. These spiracles are developed on special plates, the mesostigmatic laminae, which extend so as to fuse with one another across the mid-dorsal line. Thus they form a single spiracular dorsum whieh fuses behind with the steep vertical front of the mesepisterna. The posterior spiraeles or metastigmala ($S p_{3}$) are smaller, broadly oval, and very distinct. They lie in the metepisterna, at the junetion of the cross-suture with the first lateral suture.

The Synthoracic Endoskeleton (fig. 8). Along all the pleural and sternal sutures the thoraeic integument is folded inwards to form an internal ridge or apodeme. The pleural apodemes of the synthorax number five pairs, named, from in front backwards, the
precosial ($p c$), the mesopleural ($p l_{2}$), the interpleural ($i p$), the metapleural $\left(p l_{3}\right)$, and the posterior epimeral (ep). The mesopleural lies

Fig. 8 A. Internal ventral view of skeleton of a Dragonfly's thorax, to shew endoskeleton. Adapted from Berlese. B. T.S. throurh metathoracie nearal canal in Isosticta simplex Martin ($\times 15$). Original. ac acetabulum; cut cuticle; cx metacoxa; exm coxal muscles; hy hypoderm; na sternai cuticle; cx metacoxa, neanal; ng metathotacie ganglion; st metastigma. For references to parts of endoskeleton, see text: to exoskeleton, legend of fig. 1.
along the humeral suture ($h s$), and is eontinued ventrally into the sterno-episternal (se) directed forwards and downwards, and the sterno-epimeral (se') directed backwards and downwards, to the
acetabulum. In the case of the metapleural (which lies along the seeond lateral suture, $l s_{2}$), there is an additional branch, the peristigmatic ($p s t$), running to the metastigma ($S t$). The interpleural ($i p$) is weakly developed, lying along the first lateral suture $\left(l s_{1}\right)$. The sternal apodemes are known as the furca $\left(f_{2}, f_{3}\right)$ and prefurca $\left(p f_{2}, p f_{3}\right)$. The furea develops a slender posterior proeess ($p r_{2}, f_{3}^{\prime}$) whieh in the ease of the mesothoracie apodeme serves to connect the mesosternum with the metasternum. A similar process $\left(p r_{1}\right)$ conneets the mesosternum with the pro sternum. Anteriorly the furea gives off a large flattened proeess or squame ($t n_{1}, t n_{2}$) which becomes highly specialized to serve as the tendon of attachment for the great elevator wing-muscle. The prefurca likewise develops a squame $\left(s q_{2}, s q_{3}\right)$ whieh is less highly speeialized in form, but serves as the tendon of attachment for the anterior depressor wing-muscle. The sternal apodemes are so bent inwards towards the middle line that they almost meet along their free edges, isolating below them a small eanal of flattened triangular seetion, the neural canal (fig. 8 в). The ventral nerve cord runs through this canal, whieh serves as a protection to it, and isolates it from all the rest of the thoracie organs.

The Appendages of the Thorax.

The Wings are dealt with in chap. III.
The Legs (fig. 9). All Dragonflies possess the full number of legs, viz. three pairs, one pair to each thoracie segment. Though short in eomparison with the size of the body, as well as with their size in the larva, the legs of the Dragonfly are of eonsiderable strength, and are strongly armed. Their position close behind the mouth renders them unfit for walking, though they serve very well for climbing, when that mode of progress is required. By the use of its legs, a Dragonfly ean quiekly orientate its position, so as to interpose the stem of a reed, or a small twig, between itself and an approaching enemy. During flight, all three pairs of legs are carried folded close up under the thorax. The first two pairs at least are able to hold the prey during flight, while the mouth-parts examine and chew it up. It seems very probable that the fore-legs at any rate are
used in the act of eapturing prey on the wing. A differenee of opinion prevails on this point. The diffieulty of making direet observations is obvious, and has not so far been satisfaetorily overcome.

Each leg eonsists of five segments or joints, called (from the base outwards) coxa, trochanter, femur, tibia and tarsus. There is no trochantine. The coxa (cx) is a short truneated cone, with its rounded base inserted into a large hollow, the acetabulum, situated in the side of the sternum, elose to the pleurum. The bases of insertion of the legs of the Dragonfly are very closely approximated, particularly in the cases of the middle and hind-legs (fig. 1 в). The trochanter $(t r)$ is a short and rather slender joint, having a very short upper surface, so that its distal end runs obliquely downwards, and the articulation with the femur is correspondingly modified. A transverse eonstrietion divides the trochanter into a shorter basal and a longer distal portion. An armature of short thick blunt teeth or tubercles may be present. The femur (fm) is the strongest joint in the leg. It is a eylindrical, fairly stout, long joint, strongly armed with at least two rows of spines or tuberelcs. The tibia $(t b)$ is generally

Fig. 9. A. Fore-leg of Hemicordulia tau Selys, $\widehat{\sigma}(\times 5)$, shewing tibial keel (llc). B. Part of hind leg of Platycnemis pennipes
Pallas
on
$(\times 10)$ shewPanlas,
ing dilated tibia.
el claws; $c x$ coxa; $f m$ claws; cx coxa;
femur'; to tibia ; trochanter; is tarsus. Original. somewhat longer, and much slenderer than the femmr; it also is armed with two rows of spines, varying greatly in number, size, and arrangement. The tarsus ($t s$) is the short slender terminal segment. In all living Dragonflies, it consists of three joints, of which the basal is the shortest, the distal the longest. In the fossil genus Tarsophlebia (fig. 158) there were four joints, the basal being the longest. The joints of the tarsus are armed with small, closely-set spines continuing the lines of the tibial armature. The tarsus ends distally in a pair of strong diverging claws (cl), eaeh of which usually bears a well-developed inferior tooth. Between the bases of the claws there ean be
made out a tiny process, the vestige of a plantula, or terminal pad.

Specializations in the Armature of the Legs. So numerous are the variations in this armature that we ean only here mention the most outstanding of them:
(1) In the Corduliinae and in Orogomphus, a tibial keel ($(t b c)$ is present on the under side of the tibia in the male. It is usually only present in the fore-legs. It may be short, and placed at the distal end of the segment, or long, occupying the distal half or more. It seems to be formed by a fusion of the original row of spines which it replaces.
(2) In some Libellulinae (e.g. the Tetrathemini) the males have a row of curved thorn-like spines on the second and third tibiae.
(3) In the Cordulegastrinae, eaeh of the original rows of spines on the femur has beeome double or triple. The femoral spines are very short in this and some other subfamilies, and may be redueed to knobs.
(4) In many Platyoneminae, the males have the tibiae of the middle and hind-legs strongly dilated, with the spines along the flattened edges (fig. 9 B).
(5) In the Calopterygid genus Rhinoneura, the hind femur is thickly elothed with short dense hairs.
(6) In the Teinobasini, the inferior tooth of the tarsal claws is absent or vestigial.

Time Abdomen (figs. 1, 10).
The abdomen of the Dragonfly consists of ten complete and very distinct segments or uromeres, while, aeeording to Heymons [72], the redueed remnants of an eleventh and generally also of a twelfth segment can also be reeognized. At its extreme end, the abdomen carries a set of anal appendages. In shape, it is always narrow, and mueh elongated in eomparison with its breadth. Probably the most primitive form was that of a fairly narrow elongated eylinder, without either eonstrietions or expansions. Such a form is approximately retained to-day in the Pelalurinae and many Calopterygidae. In the Pseudostigmatinae (Plate I, fig. 8), the abdomen has beeome excessively slender, and of enormous
length. This is a secondary development, correlated with the habit of laying eggs in the water colleeted between the bases of the leaves of epiphytic Bromeliads. Many of the Protoneurinae and Teinobasini have the abdomen so slender that it is barely possible to thread it with a fine hair. As a eontrast to this, the abdomen in most Libellulinae is eomparatively short and broad, often strongly depressed, and laterally expanded. In such a form of abdomen, the movements of respiration are seen to the best advantage. In many forms, the third segment of the abdomen is strongly eonstrieted, espeeially in the males. Many Corduliinae have the body shaped like an Indian elub, the base of the abdomen representing the handle (corduliform). In most Gomphinae the abdomen is very strongly clubbed, the sides of segments $7-9$ being muelı expanded, forming a wedge-shaped tip. In the females of most Zygoptera, segments 8-9 are eonsiderably swollen. In most Aeschninae and some Libellulinae, segments 1-2 and part of 3 are greatly distended, partieularly in the female. As a general rule, the body of the female is eonsiderably stouter than that of the male, owing to the presence of the elongated ovaries with their enormous number of eggs.

Each abdominal segment (fig. 10) is formed of four pieces or sclerites, viz. a dorsal tergite ($t g$), a ventral sternite ($s t+s t l$) and two lateral pleurites or pleura (plm). In the Dragonfly, the pleura do not become strongly chitinized, but remain membranous. They are very narrow, and serve merely as a movable connection between tergite and sternite. Their flexibility allows free respiratory movements to take place. They also bear the abdominal spiracles ($s p$). The abdominal sclerites are distinguished from those of the thorax by affixing the prefix uro- (e.g. urotergite, urosternite).

The Tergites. In each segment the tergite is wide and convexly arched. It oecupies not only the dorsal, but also the whole of the lateral region of the segment, together with the outer portions of the ventral region. We ean represent the transverse seetion of a segment by drawing a segment of a cirele somewhat greater than a semicircle. If we then cut off two small pieees from the ehord, one near each end, the remaining middle portion of the chord will represent the sternite, while the small outer pieces, together with the whole of the large arc, represent the tergite. Moreover, the
ventral pieces of the tergite are so turned in as to overlap and partly hide the sternite from view, especially in the dead insect.

Owing to its great extent and eonvexity, the tergite is strengthened by the formation of both longitudinal and transverse ridges of hard ehitin, ealled carinae. The following earinae may be present:
(i) Mid-dorsal carina (dc, longitudinal). This oeeurs very generally, particularly in the larger forms.

Fig. 10. Urosternite and right half of urotergite from Petalura gigantea Leach ($\times 5 \frac{1}{2}$). ac anterior carina; $d c$ dorsal carina; $p c$ posterior carina; plm pleural ${ }_{s p}$ abdominal spiracles; st sternum; stl sternellum; to supplementary transverse carina; $t g$, $t g^{\prime}$ urotergite; $v c$ ventral carina. Original.
(ii) Ventral carinae ($v c$, longitudinal, paired). These border the pleura, and are nearly always present.
(iii) Supplementary lateral carinae (longitudinal). They occur along the angle separating the ventral from the latetal portion of the tergite. They are only found in Aeschninae and Libellulidae.
(iv) Anterior and posterior transverse carinae (ac, pc). These are nearly always present. They serve to separate successive segments from one another, leaving between them a narrow belt
of softer chitin forming the suture. The sutures are usually blaekish, but sometimes brightly coloured.
(v) Supplementary transverse carina (tc). This lies usually a little basad from the middle of the segment. It occurs in Petalurinae, Aeschninae and a number of the larger Libellulinae, but only on one or more of the most anterior segments. It is incomplete ventrally, and is usually plaeed slightly obliquely.

Sonie or all of these carinae may be more or less dentieulate. This is particularly noticeable in the Libellulidae along (ii), (iii), and the parts of (iv) intercepted between them.

The Sternites. The sternite is usually an elongated subtriangular piece (st) narrowing posteriorly, and ending in a small pointed pieee or sternellum (stl) which may be more or less separated off from the rest. Close to its anterior end, the sternite gives off internally and laterally two pairs of sternal processes or apodemes (sap), for the attaehment of the segmental muscles. The sternite of the first segment is short, often quite flat, and of a trapezoidal or even rectangular form. It is more elosely united with the tergite than in the ease of the other segments. The first segment is, indeed, often so short as to become almost completely hidden beneatl the overhanging synthorax (fig. $1 \mathrm{~A}, \mathrm{~B}$).

The Spiracles. Fight pairs of abdominal spiraeles or stigmata ($s p$) occur in the abdomen of all Dragonflies, viz. one pair in the pleural membrane of eaeli of segments $1-8$. They lie a little distad from the second pair of sternal apodemes, elose up to (and often overlapped by) the ventral carinae. They increase in size from before backwards, the eighth pair being usually much the largest. In the older forms they lie slantwise to the body axis; in the higher forms, they beeome elongated parallel to that axis. Their structure is dealt with on p .168.

Appendages and Outgrowths of the Abdomen.

The Auricles (fig. 11). These are outgrowths from the sides of the second tergites, found in the males of all those Anisoptera whieh have angulated hind-wings. They are especially highly developed in the Gomphinate and Petaliini, where smaller auricles also oceur in the females. They are ear-like, rounded, eonvex
above, hollowed out beneath, and often denticulated distally. Their function is unknown; but it seems fairly clear, from their method of occurrence, that they must act in eonjunction with the anal angle of the hind-wing in eontrolling eertain phases of flight. Otherwise, it would be hard to aecount for their absenee in Anax, Hemianax and Hemicordulia, the only genera of the Aeschninae and Corduliinae whieh have rounded hind-wings in the male. In the Petalurinae, the auricles are peculiar and of a primitive form, being merely oblique convex swellings in front of a small

Fig. 11. Right auricle of Austropetalia patricia Inlyard, of ($\times 10$). Original. depression.

The Accessory Genitalia of the Male, situated on the sternites of segments $2-3$, are dealt with in chap. xi. The Ovipositor of the Female, developed from the sternites of segments 8-9, is likewise dealt with there.

The Anal Appendages (figs. 12-16). As these differ eonsiderably in the two suborders, we shall deal with them separately.

1. Anisoptera. The males have two superior appendages (sup) developed from the posterior end of the tenth tergite. They also have, below and between these, a so-called median inferior appendage (inf) representing the appendix dorsalis of the larva (p. 91). This "inferior" appendage is badly named, sinee it lics directly above the anus, and is developed from the reduced tergite of the eleventh segment. In the females, the inferior appendage is absent. The superior appendages are, however, present, though apparently functionless. They are usually smaller than in the males, and are called simply the anal appendages, sinee they are the only ones present.

The anus itself (a) is surrounded by three small proeesses or valves, whieh are the vestiges of an original twelfth segment. Of these, the median dorsal lamina supra-analis (la) represents the reduced tergite, the two latero-ventral laminue sub-anales (la') the reduced bipartite sternite of this lost twelfth segment. A soft paired tuberele below the anus ($s t_{11}$) represents the vestiges of the similar but larger sternite of the reduced elevently segment. The
positions of appendages and vestigial structures are indicated in the diagram (fig. 12 A).

The function of the anal appendages in the male is to grasp the female firmly during pairing. In the Anisoptera, the inferior appendage is always pressed down upon the occiput of the female,

Fig. 12. Diagram to shew the position of the anal appendages of the male, viewed from behind. A in Anisoptera, sin Zygoptera. a anus; iuf inferior appendage; la lamina supra-analis; ta' lamine sub-anales; st t_{1} bipartite
sup superior appendages; t_{11} eleventh tergite. Original.
while the superior appendages become engaged between the prothorax and the back of the head, and most usually press forward against the latter. Thus the head is held as it were between the jaws of a vice (fig. 13 A). In the Petalurinae, however, the broad leaf-like superior appendages (fig. 13 B) fit closely upon the mesepisterna, while the wide inferior appendage, plaeed upon the occiput, presses the head back so as to hold the superiors in position. In a number of forms with long or forcipate superior appendages, a similar kind of grip seems to be the rule, though undoubtedly the chief pressure is on the head. In the Gomplinate the inferior appendage is strongly bifid, engaging the broad occiput in two depressions; while the superiors, whieh are too short to be of much direct use, are generally held in place by tubereles or other outgrowths from the back of the occiput. In the Petaliini (fig. 14) the inferior appendage is trifid

Fig. 13. Position of the anal appendages of the male in Anisoptera during pairing. a in Aeschna, s in Pelalura. e eye; inf inforior appendage; ml mesostigmatic lamina; sup superior appendages; $8-10 \mathrm{ab}$ dominal segments. a fron E. M Walker, в origimal. and very long; the superiors very short. The method of pairing has not yet been observed.

The diversity of form in these appendages is inmense. Exeept in the Libellulinae, and a few Gomphinae, praetically every speeies is at once determinable by the form of its appendages. Henee hybridization is a very rare oeeurrence in the Odonata. In the

Fig. 14. Anal appendages of male Dragonflies, A-H Anisoptera, J-L Zygoptera. A. Austropetalia patricia Tillyard, dorsal view. B. The same, lateral view. c. Gynacantha rosenberghi Selys, dorsal viow. D. Compluus vulyatissimus Linn., dorsal view. E. Bifid inferior appendage of saine (hidden beneath 8 in The same. lateral view. H. The same, oeciput of 8 shewing tubercles (t) which engage the appondages of the male. J. Isosticta simplex Martin, dorsal view. K. Ischnura heterosticha Burm., dorsal view. L. Hemiphlebia mirabilis Selys, dorsal view, shewing white ribbon-like inferior appendages. i inferior; 8 superior appendages. (A, B. $\mathrm{D}-\mathrm{H} \times 8, \mathrm{c} \times 5, \mathrm{~J}-\mathrm{L} \times 15$.) Original.
case of those groups where the appendages are sufficiently similar to admit of the possibility, we find very dissimilar developments of the aecessory genitalia of segment 2 in the male. Here, then, a second almost insuperable barrier is set up.

As hundreds of figures of the appendages are available in systematic works, we have contented ourselves with figuring a few types in fig. 14 (see also figs. 170, 174, 178). As regards the superior appendages, the narrow leaf-like form is perhaps the most primitive, and remains extant in most females still ${ }^{1}$. An expansion of this gave rise to the broad Pelalura-form, while various simple modifications led in the opposite direction to the form seen in Aeschna (fig. 170). Developments of a forcipate nature are very frequent. In the Libellulinae a slightly redueed pointed type obtains almost throughout, and may be eonceived of as lying somewhere between the lanceolate and strongly forcipate types. The much reduced divergent appendages of the Gomphinae (fig. $14 \mathrm{D}-\mathrm{G}$) appear to be the most highly specialized of all.

In the case of the inferior appendage (fig. 15) the primitive type was eertainly correlated with a wide occiput, and henee may be eonceived of as not very far removed from the form found in Petalura (a, b_{1}). A simple change in this form (by median cleavage) leads us directly to the Gowphine type (c_{1}, d_{1}). With the increase in the size of the cyes and the decrease in the size of the oceipnt in Aeschninae and Libellulidae, the appendages tended to lengthen, the inferior becoming sub-triangular and curved, so as to fitover the oecipital tuberele (b_{2}, c_{2}, d_{2}). The form in Petaliini ($c_{2}{ }^{\prime}$) perlaps preserves for us the aneient truneated form, while developing a larger median process to reach forward to the

Fig. 15. Assumed phylogenetic series of inferior appendages in male Anisoptera. a Peta$b_{1} P^{\prime}$ gigantea Leach. c_{1} Gomphus vulgatissimus ${ }_{1}$ Linn. d_{1} Austrogomphus melaleucae Thillyard. ι_{2}, c_{2}, d_{2}, three forme commonly found in Aeschninate and Libellulidae. $\mathrm{C}^{\prime}{ }^{\prime}$ Austropetalia patricia Tillyurc. The series aro (i) ${ }^{a}$, (iii) a, b_{2}, c_{2}. Original. point of umion of the eyes.
${ }^{1}$ Dimorphic appendages occur in the Palaearetic Boyeria irene, some females having them long and some short.
2. Zygoptera. The males have a pair of superior appendages (sup) homologous with those of the Anisoptera. Likewise, these also form the anal appendages of the female, whieh are usually extremely reduced cylindrical or conical stumps. The inferior appendages of the Zygoptera are, however, two in number, and have nothing in eommon with the so-called "iuferior appendage" of the Anisoptera. They lie latero-ventrally below the anus, one on either side, and represent the eerei of the larva; that is, they are outgrowths from the reduced bipartite sternite of the eleventh segment. The laminae anales are placed as in the Anisoptera. The female, as in the Anisoptera, has no inferior appendages, though Heymons has shewn the existence of their rudiments in Calopteryx. The diagram, fig. 12 B , shews the positions of the various parts.

Fig. 16. Position of the anal appendages of the malo in Zygoptera during paring. A in Austrolestes analis Ramb., B in Pseudagrion aurcofrons 'Jillyaril. it ntes-
rior; b median; c posterior lobe of prothorax; cx procoxa; cx, mestcoxa; h hook; inf inferior appendages; ml mesostigmatic lamina; sup superior appendages; 9-10 abdominal segments. Original.
In the Zygoptera, during the process of pairing (fig. 16), the appendages of the male engage the prothorax and the back of the head of the female, in quite a different manner from that described for the Anisoptera. In this case it is the hind lobe of the pronotum whieh becomes engaged between the jaws of the viee, the head only being touched when the inferior appendages are long enough to pass forward and press against it from behind (as in some Lestinae). If the superior appendages are forcipate, a simple transverse loekgrip (fig. 16 A) behind the pronotum appears sufficient to hold the female, bearing in mind the fact that the latter always assists by pressing the pronotum backwards against the spiraeular dorsum.

In sueh a ease the inferior appendages rest in front of the hindlobe of the pronotum, and may exert very little pressure. If, however, the supcrior appendages be redueed, as in most Agrionidae, then a high speeialization of both pairs is usually found. This is of such a nature that the inferior appendages, with the aid of various devices of seulpture on the lind-lobe of the female pronotum (grooves, ridges, tubereles, or even strongly curved hooks), are able to press strongly downwards on part of the hindlobe, while the superior appendages press on it from behind. Thus the hind-lobe is held in a double longitudinal lock-grip, as between the jaws of two viees arranged side by side (fig. 16 в). In some cases the superior appendages press down over, or even behind, the mesostigmatic laminae.

Observations on the actual positions of the appendages during pairing are difficult to make, since the inseets nearly always disengage when eaptured. A good summary of our present knowledge ont the subject is given by Williamson and Calvert [201]. (See also Walker [190].)

The most primitive form of Zygopterid appendages is undoubtedly that in which the superiors were sloort and strongly foreipate, the inferiors still sloorter and straight. This form still exists, with minor modifications, throughout the Caloplerygidae and Lestidae. The highly redueed and often stump-like superior appendages of many Agrionidae are a more advanced type, in which the principal part in maintaining the grip beeomes shifted on to the inferior appendages, aided by speeial developments of the pronotum of the female.

Perlaps the most remarkable appendages oecurring in the Zygoptera are those of IIemiphlebia mirabilis (fig. 14 L). Both pairs in the male are rather long, white, and very conspicuous. The inferior appendages are like a pair of white ribbons. The male uses them to attract the attention of the female by waving them about while at rest on a reed-stem. The female replies to lis siguals by shewing the whitened underside of the tip of her abdomen [173]. Another Australian Zygopterid, Synlestes albicauda, hides on the dark trunks of trees in dense jungle, and can only be seen by the whiteness of its appendages, which it probably uses somewhat after the manner of Hemiphlebia.

CHAPTER III

THE WINGS

All Dragonflies possess two pairs of well-developed wings, of either equal or slightly unequal size. They are elongated membranous outgrowths from between the pleura and terga of the synthorax. The fore-wings are attached to the mesothorax, the hind-wings to the metathorax. Each wing is composed of a chitinous non-cellular membrane, usually quite transparent (hyaline) and formed of two delicate layers fused together. This membrane is strengthened by numerous thickened rods or bars of hard, dark chitin, known as the veins or nervures, forming a complicated supporting network known collectively as the wingvenation. As in other insects, the basis or foundation of the plan of the wing-venation is formed by a number of main longitudinal veins, some of which are simple and some branched. These separate the wing into areas known as the wing-spaces. Between the main veins and their branches, a large number of cross-veins are arranged, in such a manner that the wing is finally divided up into a very large number of small quadrilateral or polygonal spaces, known as cells or cellules.

The main veins in the Dragonfly wing, with few exceptions, are formed along the principal tracheae of the developing larval wing. The cross-veins, on the other hand,-again with one or two notable exceptions,-are not formed about tracheae at all, but appear quite independently of the latter during the last larval instar. The earlier students of Dragonfly venation, amongst whom de Selys was pre-eminent, studied the wing-veins without reference to the larval tracheation. Hence there arose a purely arbitrary terminology, in which homologies were either obscure or ignored. The study of the relationships between the larval tracheation and
the wing-venation was begun by Comstock and Needham [48] and continued by Needham [102], whose work stimulated further work along similar lines [176, 180]. De Selys contented himself with giving names to the various veins. Comstock and Needham not only adopted a new terminology, in which the names of corresponding veins and tracheae were the same, but they also introduced the system of notation, whereby each main vein, each branch, and all the more important cross-veins and wing-spaces, were also designated by an abbreviation of one or more letters. This system forms the basis of the notation adopted in this book. Only in a few important particulars, where recent investigation has shewn the earlier work to have been either incomplete or at fault, has it been necessary to make alterations. The table on $\mathrm{pp} .40-43$ gives the names of the principal parts of the wing, together with the Selysian names, the Comstock-Needham notation, and the revised notation. Veins, points, and angles are denoted by capitals; spaces and areas by sinall letters. Foreign abbreviations, such as q for cross-vein (German, querader), have been rejected.

In addition to the above, secondary branchings of the veins may be denoted by the addition of the suffix " a " for the upper or distal'branch, " b " for the lower or proximal branch, of the vein affected; e.g. in Aeschna, Rs bifurcates into $R s_{a}$ above and $R s_{b}$ below, at the fork. Also, intercalated supplements running to the posterior border, between branches of main veins, may be designated by adding the suffixes $A, B, C \ldots$ in order, from the apex backwards, to the vein above the supplements; e.g. in Agrioninae the "postnodal sector" is $M_{1 \mathrm{~A}}\left(\operatorname{not} M_{1 a}\right)$.

In Plate II we have figured either the whole or the more important parts of wings selected as typical of the five families of Odonata. The Revised Notation is printed in red on the Plate. A study of this plate, in conjunction with fig. 17 (which shews the tracheation in the corresponding larval wings), will, we trust, not only explain the venational scheme satisfactorily, but also justify some important alterations from the familiar Comstock-Needham notation. In order to study the various subfamilies in detail, a series of forty-seven illustrations of typical wings is also provided, to be used in conjunction with Plate II and with the venational definitions given in chap. xiv.

Table of the Principal Parts of the Wing (Plate II and fig. 17).

Name				Course, extent, or position
	(4) Postnodals	Between C and R, from nodus to pterostigma
	(5) Arculus	...		From $R+M$ to $C u$, near base (only its lower portion is a true eross-vein)
	6) Oblique Vein			Represents a small portion of Rs (in Anisoptera) or $M s$ (in Lestidac); runs from M_{2} to origin of B
	7) Brace Vein...			Supports pterostigma proximally ...
	8) Cubito-anals	Crossing cubito-anal space (Ac appears to be one of them)
	9) Bridge Cross-vei			Above bridge, in bridge-space
Special Areas: At base of Wing:				
	2) Subcostal space			Between Sc and R, up to nodus
	3) Median space	Between $R+M$ and $C u+A$, up to arculus
(4) Cubito-anal space				Lies below m, and extends up to discoidal cell
	5) Anal Field ...	\cdots	\cdots	Space below $s m$, from base up to dis. coidal cell and part of Cu_{2} (lower dista) limit is $\mathrm{Cu}_{2 k}$)
(6) Anal Loop (in Anisoptera) $=$ part of anal field				Enclosed between A_{2} proximally and A_{1} or $C u_{2}$ distally; not extending beyond $C u_{2 b}$
	7) Anal Triangle (i Anisoptera) $=$ anal field			Area below $c u$, bounded distally by A_{3}

Selysian Name					$\begin{gathered} \text { Revised } \\ \text { Notation } \\ P x \end{gathered}$
Postcubit	tal n	ules	...		
Areulus	Arc	Arc
...	\cdots	0	0
Submedia	n ne	ules	\cdots	[$\because \sim u q]$	$\begin{gathered} B c \\ C u x \end{gathered}$
\ldots	[$B q$]	$B x$

(8) Membranule (Anisoptera)
(9) Pterostigma
(10) Discoidal Cell :
A. In Zygoptera $=$ Quadrilateral
B. In Anisoptera

$$
=\left\{\begin{array}{c}
\text { Supra-triangle } \\
+ \\
\text { Triangle }
\end{array}\right.
$$

Space abore triangle, from arculus to
distal angle of triangle
Distinct triangular space formed by $C u$
basally, and two strengthened crossbasally, and two strengthened cross-
veins costally and distally veins costally and distally
(11) Sub-triangle (Anisoptera)
(12) Discoidal Field
(13) Sub-quadrangle (Zygoptera)
(14) Pnst-trigonal Cells ...
(15) Bridge space (in Anisoptera or Lestidae)
Contour of Wing:
(1) Anterior Border $=$ Costa \ldots
(2) Apex or tip (A...
(3) Anal Border (Anisoptera)
(4) Anal Angle
(5) Posterior Border
(6) Petiole (Zygoptera) ...

Opaque membrane bordering a at base
of wing
Thichened opaque area between C and
R, towards a pex of wing

Attached to basal side of t, proximaly...
Area between M_{4} and $C u_{1}$, distal from
triangle or quadrilateral
triangle or quadrilateral
Below quadrilateral from $A c$ to $C u_{2} \quad \ldots$
$\begin{array}{llll}\text { Cells in } d \ldots \\ \text { Enclosed by } B, O \text { and } & \ldots & \ldots & \ldots \\ M_{1-2} & \ldots & \ldots\end{array}$

From base to apex
From base to apex $\quad \cdots \quad . . . \quad .$.
$\begin{aligned} & \cdots \\ & \text { From base of } A^{\prime} \text { to anal angle (not a } \\ & \text { true rein) }\end{aligned}$
Separates anal from posterior border. Often rounded
From anal angle (Anisoptera) or end of petiole (Zygoptera) to apex. Not a
true rein
Narrowed ba

Post-trigonal cells
$\begin{array}{lcc}\text { Supra-triangle, or hyper- } & s \text { or } h t & s \text { (or } h t) \\ \text { trigonal space } \\ \text { Triangle or discoidal tri- } & t & t\end{array}$
Sub-triangle or internal $s t, t^{\prime}$ or $t i \quad s t . t^{\prime}$ or $t i$ triangle Discoidal field Discoidal field

Membranule ...	$m b$	$m b$
Pterostigma	$s t$	$p t$
Discoidal cell Quadrilateral or quad. rangle	q	$\underline{4}$
Supia-triangle, or hypertrigonal space Triangle or discoidal triangle	sor $h t$	$s($ or $h l)$
Sub-triangle or internal triangle Discoidal field	$s t, t^{\prime}$ or $t i$ \ldots	$s t . t^{\prime}$ or $t i$ d
Sub-quadrangle .. Post-trigonal cells Bridge space	\ldots \cdots \cdots	$s q$ \dddot{b}

We shall devote the remainder of this chapter to (1) a short account of the development and histology of the wing in the larva, and (2) phylogenetic studies of the principal fcatures of the imaginal wing.

Fig. 17. Tracheation of the larval wing (to be used in conjunction with Plate JI). A. Aeschna brevistyta Ramk.. fore-wing. B. The same, tind-wing. C. Hemicordulia tau Selys, fore-wing. D. The same. hind-wing, L. Calnpteryx
splendens Harrs
F. Austrolestes cingulatus Burm. a. Calugrion billinghursti Martie. The lettering of the tracheae corresponds with that of the veins which replace them in the imaginal wing. Original except a (drawn from photograph sent by Dr F. Bis).

Cu, Cu,

Principal types of Dragonfly venation, A. Acschna brevistyla Ramb., ô. в. Hemicordulia tan Selys, $\widehat{6}$, basal portion. o. Caliagrion billinghursti Martin. n. Caloplerge spitendeus Harris, basil portion. f. Anstrolestes cingulathe

Development of the Wing.

At the third or fourth larval ecdysis, the edges of the pleura of the synthorax, bordering the terga, are seen to be slightly raised up, forming two nearly parallel ridges, the pleural ridges. At the next ecdysis, four minute swellings appear on these ridges, somewhat on the inner side. One pair arises from the ridges of the mesopleura, the other from those of the metapleura. After the following ecdysis, the forward extension of the mesopleura causes the pleural ridges to become more definitely inelined towards one another anteriorly. The swellings are now like tiny buds, and project upwards and a little inwards. From this point on, at each snccessive instar, the pleural ridges become more and more oblique, while the wing-buds cease to turn upwards, and come to project slantingly inwards and backwards. They soon take the form of definite triangular flaps, fore and hind-buds lying quite close to one another on either side. Also, the first pair have come to lic quite close to one another along the middle line. The second pair remain far apart at their bases, owing to the divergence of the pleural ridges, but tend to touch at their tips, which project inwards. These buds or flaps may from now on be spoken of as the wing-shecths ("wing-cases," "wing-pads," or "wing-folds"). As growth procceds, the hind wing-sheaths gradually come to overlap the fore, until only a narrow strip along the costal border of cach of the latter is visible. Concurrently, the direction of the slicaths becomes definitely backwards, so that they lie straight along over the abdomen, reaching to the end of the fourth segment or beyond,-when fully developed,-and having their costal borders all parallel to the long axis of the body. The hind wingsheaths become more or less deeply pigmented. On the fore wing-sheaths,-owing to their being covered by the hind,-pigmentation is very weak or absent, except along the free costal border.

The alar trunk, or main trachea supplying the wing, arises at a very early stage as two small tracheae from the dorsal trumk. The more antcrior trachea passes to the costal end of the base of the wing-bud, the more posterior to its anal end. The latter trachea is the larger. These two tracheae soon become fused into a single
loop, which we call the alar trunk. From this loop, six main tracheae pass into the developing wing-sheath. These are the costal, subcostal, radial, median, cubital, and anal tracheae respectively, counting from in front backwards. In the later stages of growth, they not only supply oxygen to the cells of the growing wing, but gradually assume positions and branchings which foreshadow the main venational plan of the imago. Thus we may say that this plan is the combined result of three interacting forces: (1) the necessity of leading up to the imaginal design, (2) the necessity of supplying every portion with sufficient oxygen for development, and (3) the necessity of relying almost wholly on an oxygen supply coming from the anal end of the alar trunk (owing to the larval gills being situated at the anal end of the body). The influence of (3) is seen in (a) the almost total loss of the costal traehea, (b) a great shortening of the subcostal, (c) a gain by the median over the radial trachea, (d) strong development of the cubital and also of the anal trachea (in non-reduced forms). How far the imaginal design has reacted on the tracheal supply, and vice versa, it is not easy to say. A study of fig. 17, c and D, shews that this interaction has been very considerable.

During the last larval instar, the imaginal venation begins to shew up very distinctly. A definite cuticularization of the wingsheath occurs a short time before metamorphosis, so that the details of venation are permanently recorded on the sheath, and are left behind on it at metamorphosis. This fact is of great value when we want to establish the identity of any un-named exuviae. Beneath this pattern, the imaginal venation proper begins to form, by the deposition of pigment-bands along the courses of the future veins. These bands are not in general deposited on both upper and under surfaces of the wing-rudiment, but on one or the other alternately, according to whether the corresponding trachea runs closer to one surface or to the other The margin of the wing, however, including the costa (which is formed quite independently of the rudimentary costal traehea) is represented by pigment bands on both surfaces. Just before metamorphosis the vein-rudiments proper are formed by a weak deposition of chitin along the course of the pigmented bands, as well as along all the future cross-veins. Thus it comes about that
the veins of the imaginal wing become alternately convex and concave, according as they are laid down upon one or other surfaee of the wing-rudiment.

At metanorphosis the tracheae are withdrawn from the wing, and shrivel up. During the rapid growth of the wing, chitin is deposited with amazing rapidity. As each vein becomes stretched to its full extent, the hypoderm cells along its course completely exhaust themselves with chitin formation, so that the vein becomes built up to the necessary strength in the course of a few minutes. When the construction of both veins and membrane is completed, the hypoderm cells shrivel and die; the blood by whose agency the wing was expanded gradually evaporates, as the wing is exposed to the air and sunlight. Finally, the two surfaces of the wing come into contact and fuse together, except along the main veins, where small blood-canals are retained.

IIistology of the Developing Wing. The wing-bud is simply an ectodermal evagination, in the form of a small bag lined internally with hypoderm cells, and externally with the cuticle. Even before any sign of an external bud can be seen, the hypoderm colls increase in size, becoming distinctly columnar, and forming a sinall fold or bag beneath the cuticle. At the next ecdysis, the cuticle becomes folded also, so that the evagination is then visible externally. At first, the layers of hypoderm bordering the immer and outer surfaces of the wing-bud do not meet. Between them runs a marrow prolongation of the haemococle, filled with blood. Into this space tracheae soon penetrate, taking the courses already described. Fine nerves accompany the tracheac ${ }^{1}$.

By the time that the wing-bud has become a definite flap or lamina, a change has occurred in the form of the hypoderm eells. Thesc liave become spindle-shaped, with the nucleus lying in the middle. Owing to this elongation, the two layers of hypoderm come into contact along their inner ends. Here they unite, forming a basement membrane, except in the places in which the tracheae and nerves run, small blood-channels are left
${ }^{1}$ The presenco or absence, in the wings of Odonata, of the peculiar structure called Semper's rod, which acompanies the trachoae in the wings of certain Lepidoptera, does not appear to have been determined with certainty.
surrounding these organs. The hypoderm cells remain spindleshaped until metamorphosis. Their action at that period has already been described. The hollowness of the main veins is, of eourse, due to the fact that they are formed along the courses of the traeheae, i.e. either above or beneath a blood-channel. The principal cuticularization is in the form of a circular arc (in transverse section) somewhat greater than a half-circle. A weak flattened cuticularization closes the vein from the other side.

Convex and Concave Veins.

If we cut across the wing of a Dragonfly with a pair of seissors, we shall see that the surface is not a plane, but consists of alternate ridges and hollows, with the veins alternately on the tops of the former and at the bottoms of the latter. A vein placed on the top of a ridge is called a convex vein; one at the bottom of a hollow, a concave vein. Now, in the larva, the wings lie flat along the abdomen dorsally. Consequently, it is clear that, at metamorphosis, when the wings are spread out to their full extent, it is the under surface of the larval wing which becomes the upper surface of the imaginal wing, and vice versa. Hence convex veins are developed on the under surface of the wing-rudiment, concate veins on the upper [31].

In order to determine the nature of the veins, let us make cuts across the wing of Aeschna brevistyla (Plate II, fig. A) at various levels. We obtain the following results:

1. Between base and ar-
culus. culus.
2. Half-way between ar culus and nolus.
3. Between nodus and plerostigma, beyond bridge.

We see that C descends nearly to the level of $S c$ at the nodus, and from thence onwards lies well below the level of the high ridge of R, until the pterostigma is reached, when, of course, C and R come to lie nearly at the same level. The fact that M_{1} and M_{2} are consecutive veins, both lying at the bottom of a hollow,
suggests that they were originally separated by a convex supplement. Sueh a supplement occurs in the archaic Petalura, starting about eight cells distal from the sub-nodus (fig. 120). In the Zygoptera, the corresponding "post-nodal sector," $M_{1,}$, is convex.

Phylogenetic Studies.

Comparison between the Wings of Anisoptera and Zygoptera.
The original ancestor of the Winged. Insects had, no doubt, the meso- and metathorax separate and of cqual size. Consequently, the fore and hind-wings may be conceived of as having been originally equal. They were developed as broad lateral expansions or "planing areas," used at first simply on the parachate method. Later on, they took on the active function of flight, and became true wings. Owing to the limited extent of each thoracic segment, the forc-wings in the oldest insects invariably partly overlapped the hind-wings. In insects of strong flight, this is clcatrly a disadvantage. Hence it came about that the fore-wing, very early in the course of its phylogeny, tended to become somewhat narrower than the hind, i.e. an anisopterous condition was set up. The earlicst ancestors of the Dragonflies known to us- the Protodonata of the Upper Carboniferousexhibit such a moderate anisopterous condition (fig. 156). The essential difference between our two living suborders, the Anisoptera and the Zygoptera, is that, in the former, the tendency has been to imercase the amisopteroms comdition (for the culntimation of the evolutionary elfort, see the wings of Tramea, fig. 136); while, in the latter, owing to the reduction of all the wings alike into mere "sculling organs," with no power of soaring or "planing," the original anisoptery has tended to disappear, both fore and hind-wings becoming almost equally narrow, as in the Agrionidae. In nearly all cascs, however, the evidence of original anisoptery is preserved in the fact that the hind-wing is a litte shorter, a lithe broader, and very slightly less petioled than the fore-wing, as careful measurements of ahmost any species will shew.

Another fundamental difference between the two suborders is found in the condition of the two largest wing-veins R and M. If we turn again to the Protodonata (p. 304), we find that the

[^2]then dominant family Meganeuridae occurred both in the Upper Carboniferous and in the Permian. In the Carboniferous genus Meganeura (fig. 156), R in the fore-wing had two very distinet branehes situated close together; but in the hind-wing the same vein was quite unbranched. In the elosely allied genus Meganeurula, R was unbranched in both wings. But in the Permian genus Typus (=Tupus), R was found to be branched in both wings, in the same manner as in present-day Anisoptera, the presence of both bridge and oblique vein having been satisfactorily demonstrated [150]. In other words, in the family Meganeuridae, the condition of R was variable and only of generic value. Unfortunately there is a large gap between the Permian Protodonata and the earliest true Dragonflies, whieh appear in the Lias. Hence the further course of this development is not capable of definite palaeontological proof. It is sufficient, however, to remark that, in the Lias, no forms with the intermediate eondition of R (as seen in Meganeura) have been found. Every Liassic genus either has R once-branched in both wings, or unbranched in both. In other words, in the Lias, the diehotomy between Anisoptera and Zygoptera was complete, through the dying-out of intermediate forms.

As regards the vein M, we find that, in Anisoptera from the Lias onwards, it was constant, and gave off only three branches. In Zygoptera however, during the same period, M has always had four branches, one of whieh ($M s$) played the part of the missing branch of R. In the Melerophlebiinae (fig. 159) the two most distal branehes of $M\left(M_{1-2}\right)$ carne off together by a common stalk. Owing to the big gap thus left between M_{1-2} and M_{3}, we find here the development of a "long bridge" backwards from M_{2} towards the main stem of M. This formation parallels that of the shorter bridge of Anisoptera. Our reeent Lestidae are the direct deseendants of forms such as the ILeterophlebiinae.

A third prineipal difference between the two suborders lies in the evolution of the discoidal cell. It has, I think, been too strongly insisted on that this cell is highly differentiated only in the Anisoptera, its condition in the Zygoptera being eonsidered much more primitive. The strueture of this eell is of such interest that we have dealt with it in a separate section (p. 56).
'To sum up, then, we may indieate the basie differenees between the two suborders as follows:

Anisoptera

1. 'fendeney to accentuate the original anisoptery
2. Basic condition of R once-branched, of M three-branched
3. Discoidal eell divided into two

We may add that, on the totality of evidence, there is no justification for assuming that one suborder is more archaie than the other. Recent writers have invariably àssumed that the Zygoptera are more archaic than the Anisoptera. The truth seems rather to be that the Anisoptera have preserved the ancient strongly-built P'rotodonate type more eompletely, but have added to it the larger number of eaenogenetic developments. On the other hand, the Zygoptera have undoubtedly departed far more from the original "natural eoneeption" of a Dragonfly; but, ehiefly owing to the faet that their line of evolution has been a gradual reduction of the basic struetural plan, they have not added delinite new struetures to the same extent as the Anisoptera have. Take away its triangles, and Petalura undoubtedly represents the most archaic of all living Odonata, and the nearest approach to Meguneura in size, strength, density of venation, and general body-design. Ignore its obvious reduction to a weak type, and Psendophuea may lay cham to be equally as archaic as Petalura. Again, the wonderful advance made by the Eucorduliini or T'rameini over the Peluluru-type stamps these forms as the most highly organized of all Dragonflies. But the advanee made by the Ayrionilae over the Pseudophaea-type is every bit as great, thongh in another direetion; and the strueture of their wings probably represents, on the whole, an even wider departure from the original type (taking funetion as well as strueture into account) than in the ease of the Trameini.

The Pterostigma (fig. 18).

A plerostigma occurs in other Orders of Insects besides Odonata, but in none is it so eonstant or so eonspicuous. From an evolutionary point of view, a strengthening of the wing on the eostal
border, close to the tip, at the point of greatest impact with the air during flight, was elearly a neeessity. The close approximation of R to C just at this point in the Protodonata provided the required means, viz. a thiekening of the membrane in the narrow space between them. Thus arose the most primitive type of

Fig. 18. Various forms of pterostigma. A. Ancestral (Protodonate) condition. B. Petalura ingentissima Tillyard. c. Acselina brevistyla Ramb. D. Hemigomphius heteroclius Selys. E. Nannophyy dalei Tillyard. F. Macromiu terpsichore Förster. G. Diphlelibia lestoides Selys. H. Austrolestes analis Ramb. J. Ischnura heterosticta Burm., ó, hind-wing. K. The same, forelucretia Drury, ô, fore-wing. N. Calopteryx splendens Harris, O. ©. The

Odonate pterostigma, the exceedingly long, narrow, and stronglybraeed form still preserved to us in the Petalurinae (B). Such a form is, indeed, very little removed from a simple fusion of C and R, such as is seen in some Protodonata.

A decrease in length and an inerease in thiekness brought about the next stage, sueh as we find in the Aeschninae (c). In many
eases a braee was not developed. In many Gomphinae (D) further strengthening was gained by convexity of the posterior border. In the Libellulidue, the gradual adoption of a soaring or "skimming" habit of flight, instead of the original method of " darting," lessened the strain on the pterostigma, which finally tended to become both smaller and unbraced in the highest forms (\mathbf{E}, F).

In the Zygoptera, a still earlier and more eomplete departure from the original method of flight quiekly relieved the stress on this part of the wing. Henee it is only in the oldest Calopterygidae (Epullaginue, Thorinue, G) and in the Lestidue (i) that the arehaie regular elongated pterostigma is found. In the Calopleryginae (N, o) this organ is either eompletely absent, or represented by a" false" pterostigma of a whitish texture, traversed by fine veins, and not enclosed on either side by strong cross-veins. In the Pseudostigmatinue also, the pterostigma is either absent or false. It exhibits a peeuliar abnormality in Mecistogaster (м), where it forms a kind of costal hump. In the Agrionidae in general there is a decrease in length in the pterostigma from the older to the more advanced fornis. The highly developed Agrioninae have it lozenge or trapeze-slaped. In a few genera, sueh as Anomalugrion (L), it becomes abnormal, and may sink below the level of the costit. In these advaneed forms, the general weakness of the "sculling" flight renders the pterostigma almost unnecessary, as regards its original purpose of strengthening the wing. In Ischmurt (J, K) a seeondary sexual difference is developed, the pterostigma of the lore-wing in the male becoming partieoloured, while that of the female remains unieolourous. A similar deviee occurs in the Libellutine genus Hemistigma, but in both sexes.
The Nodus (fig. 19).

The phylogeny of the formation of the nodus in the Dragonfly wing has been until quite recently purely a matter for speculation, the palaeontologieal evidenee available being eapable of more than one interpretation. On the one hand, it seemed clear that the shortening of the subensta, to end up at a point somewhere near the middle of the costal border, must have been the essential condition precedent to nodus-formation. But, on the other hand,
forms like Aeschnidium (fig. 163) and the recent Telephlebia (fig. 19 F) seemed to shew the subeosta running through and beyond the nodus.

The reeent diseovery of the fossil Mesophlebia (fig. 160) is a great step in advance. Though it may not be true that all recent Odonate nodi have been aetually evolved by passing through a stage resembling that of Mesophlebia, yet it seems very clear that this stage gives us a very simple solution of the problem, and one whieh seens very likely to have been the actual evolutionary solution in the case of the Anisoptera, and probably of most Zygoptera as well.

In order to follow the steps of the evolutionary proeess, it is essential to bear in mind that the so-called costa of the Dragonfly wing is not really a main vein formed along a preceding traehea, but merely the strengthened anterior border of the wing. Thus its structure is quite different from that of a main vein. When carefully examined it is seen to be regularly ribbed by a series of spines or teeth along its outer border. It seems to be clear that this formation is due to the action of separate hypoderm eells, and that the portion of the costa carrying one sueh tooth is the product of a single pair of cells. Thus there is no inherent difficulty in understanding how a joint, such as the nodus, eould be evolved on the costa, though this difficulty would be hard to overcome if we were dealing with a main vein of uniform structure. Granted then that the nature of the eosta is sueh that the joint can be easily formed when required, Mesophletia shews ns definitely how it was formed. It is elear from this fossil that the nodus eonsists of two distinct parts only, viz. the part proximal to the actual joint, and the part distal to it. The former is derived from a strengthening of the original fusion between the costa and the end of the subeosta: The latter is formed simply by specialization of the cross-vein lying distally next to the ending of the subcosta, strengthened by a thiekening of the eosta itself just distally to the joint. I shall eall this cross-vein the nodal cross-vein (nc). The nodus of recent Dragonflies differs from that of Mesophlebia only in two points, (1) by a eloser union of parts around the joint, (2) by the alteration in direetion of the lower half of the nodal eross-vein. This latter change has been brought about by the need of
strengthening the wing below the nodus, either by the recession of M_{2} towards the nodus, and the eonversion of an intermediate crossvein into the subnodus ($s n$); or else by a similar arrangement on the part of the radial seetor, the basal piece of whieh forms, in

Fig. 19. Phylogeny of the nodus. A, archaic condition with no nodal joint; B-C, development of Mesophlelia-stage (subnodus absent); $\mathbf{D - E}$, addition Drabondies: F nodal recrion of Telephlebia godeffroyi Selys, shewing apparent prolonration of $S c$. N nodus; nc nodal cross-vein; $S n$ subnodus. Original.

Anisoptera, aetually the subnodus itself. In fig. 19 a-E, I have attempted to slew sufficient suecessive stages in the evolution of the nodus to make the phylogeny elear.

There only remains for diseussion the case of the apparent prolongation of Sc through the nodus. Fig. 19 f shews the aetual
state of affairs in the genus Telephlebia. It will be seen that, in this case, Sc does not pass through the nodus, but that a slight beginning of the formation of a double instead of a single row of cells beyond the nodus is the real eause of the apparent prolongation. This change is assoeiated with the production of wingpigment, and is known to oceur in many other genera and in other parts of the wing. In the ease of the fossil Aeschnidium (fig. 163) the apparent prolongation is mneh more marked, but its nature is entirely clear from the presence of a similar extra longitudinal vein formed actually between C and $S c$, proximal to the nodus. This latter could not, from its position, possibly be mistaken for a main vein, and its formation is elearly due to the extreme density of cell-formation in this wing. The same cxplanation appears to be the obvious one in the case of the apparent prolongation of $S c$ through the nodus.

The Arculus and Discoidal Cell (fig. 20).

Had there been no basal fusion of R with M, we may safely say that there would have been no arculus. The fusion of R with M was probably brought about, like the reduction in S_{c}, by the adoption of the aquatic habit by the larva, and the eonsequent shifting of the course of the oxygen supply of the developing wing from the costal to the anal end of the alar trunk. Originally R was the strongest trachea in the wing. When M became placed eloser to the oxygen supply than R was, competition set in. M tended to beeome the strongest traehea of the wing, and finally moved up elose to R, so that these two large traeheae between them monopolized the "lion's share" of the available oxygen. The formation of the single imaginal vein $R+M$, along the contiguous portion of the two tracheae, was the logical result of this. But, as M originally supplied a large area of the wing more distally, below R, the concomitant of a basal approach of M to R was evidently a more distal departure of M from R, to its natural lower level. This bend or departure of M was the rudiment of the future arculus. The strengthening of the bend of M, by thickening of a cross-vein just below it, completed this interesting formation. This cross-vein would originally of eourse be attaehed
to M_{4} not far from its point of departure from M_{1-3}, the latter being closer up to R. Hence, separation of the sectors of the arculus (i.e. M_{1-3} and M_{4}) is an archaic character. Union of these seetors oceurs in many Libellulidae, and is evidence of high specialization in this region. Further, the sectors primitively arose from the upper portion of the areulus. Movement of their points of origin downwards towards $\mathrm{C} u$, as in Hemicordulia (Plate II, fig. B), is a sign of speeialization.

The essential conditions (fig. 20 a) for the formation of the peculiar discoidel cell in the Odonata appear to have been two, (d) the presenec of the arculus, (b) a bifurcation of Cu at some point distad from the level of the arculus. The seeond eondition is absent in the Protodonata; though $C u$ is generally very beautifnlly waved, it is always unbranehed. The connection between the unbranched C of these insects and the onee-branched $C u$ of the tome Odonatia seems to be entirely missing. If we grant, however, that conditions (a) and (b) must be fulfilled before a true discoidal cell cam be formed, it is quite ensy to see how it was formed under those eonditions. The development of the cross-vein above and proximally bearest to the bifureation of Cu into a strong support would at once complete the closing-in of a large quadrilateral area with thickened sides, viz. M_{4} above, $C u$ below, the lower part of the arculus proximally, and this new support distally (fig. 20 b). This is cssentially the original discoidal cell of the Odonata. Purther, since the main veins M and Cu both arose fairly close together from the narow wing-base, and diverged as they traversed the wing distad, we may fairly assume that this quadrilateral was not a rectangular one, but of irregular form, with the distal side somewhat greater than the basal side. The evidence of palaeontology supports this view, for neither the regular quadrilateral of modern C'alopterygidue, nor the extremely sharply distally pointed quadrilateral of the Lestinae and Agrionince, is found in the Jurassic or Miocene Zygoptera (see fig. 164). These two forms, indeed, represent two divergent lines of speeialization from the older type (fig. $20 c^{\prime}$ to e^{\prime}, and c^{\prime} to $f^{\prime \prime}$).

As the cross-veins of all aneient forms of Odonata were abundant, it is clear that originally the discoidal cell enclosed a series of parallel cross-veins between its two ends. This was clearly a
condition essential to further specialization by sub-division, as in the Anisoptera. The tendeney towards broadening the base of the wing in this suborder not only put a strain on the diseoidal cell.

Fig. 20. Phylogenetie diagrams of the discoidal cell. a. Essential condition of the wing-tracheae in order that the discoidal cell (d) may be formed. l. The corresponding archaic wing-venation. Stages in the formation of the triangle ${ }^{(t)}$, supra-triangle (s), and sub-triangle $(s t)$ of the Anisoptera are shewn from
 Stage, hind-wing; g_{0} incomplete and f complete Gomphine-stage; g_{1} Libelluticlquadrilateral (q) of the Zygoptera are sllown from c^{\prime} to $f^{\prime \prime} ; c^{\prime}$ archaic type somewhat irregular quadrilhteral: d^{\prime}, e^{\prime} Calopterygitue; ' $d^{\prime \prime \prime}-f^{\prime \prime}$ Lestidtue and Agrionidue; sq sub-quadrangle. Original.
resulting in a widening of it, but also tended to pull it obliquely amalwards, so that the cross-veins took on a slant. An obvious danger of "buekling" was avoided by the strengthening of one of the eross-veins near the middle of the eell (fig. $20 c, x$). Thus the diseoidal cell became divided into two distinet parts, whieh thenee onward underwent different developments. By a slight bending of the lower side at the junction with the thickened cross-vein, and by a slight movement distad along M_{4} of the upper end of the same eross-vein, we arrive at what may be termed the Tetra-themis-stage ${ }^{1}$ of development (fig. $20 d$; ef. fig. 130). The diseoidal cell now consists of (a) a more basal and upper portion, the supra-triangle (s), and (b) a nore distal and lower portion, the Iriangle (t). Both these areas are still quadrilateral in form. From this stage, a further increase in the bend or break of C, together with a further elongation of the separating eross-veinso that its distal end reaches the upper distal angle of the discoidal cell, and its direction becomes nearly longitudinal to the wing-axis -brings us to the Gompline-stage (fig. $20 e, f$; ef. figs. 117, 118). Here the "triangle" becomes for the first time definitely triangular, by the loss of the original eostal side, while the supra-triangle assumes the elongated and nearly triangular form seen in most recent Anisoptera.

From this point two main diverging lines of development start ofl, one leading to the Aeschninue, the other to the Libellulidue. In the former, fore and hind-wings followed closely similar lines of evolution, the tendency in each case being towards an elongation of the triangle in a direetion parallel to the wing-axis (Plate II, fig. A). In the Libellulidae, however, opposite tendencies set in, in fore and hind-wings. The base of the former became narrower, that of the latter wider. The narrowing of the fore-wing tended to shat the triangle up like a eollapsed framework, and at the same time drove it further away from the wing-base (fig. $20 g_{2}$). As the final result of this proeess, we reael the Iramea-stage, where the triangle of the fore-wing beeomes excessively narrowed, elongated transversely to the wing-axis, and far removed from the areulus. The

[^3]supra-triangle is correspondingly long and narrow (fig. 136). But in the hind-wing, the broadening of the basal portion of the wing had an opposite effect. The triangle was not only stretelied longitudinally (somewhat after the manner seen in the Aeschninae) but it was drawn towards the wing-base. Finally it took up a stable position with its basal side at the level of the areulus, so that supra-triangle and triangle became eoterminous in length (fig. $20 g_{1}$; cf. fig. 136).

Let us now return to the Zygoptera, in which the discoidal eell has remained an undivided quadrilateral. Original differences in the levels of the arculus, and the bifurcation of $C u$, account for the many variations in the length of the quadrilateral still to be seen. (Contrast Pseudophaea, fig. 137, with Rhinocypha, fig. 138, or Calopteryx, fig. 177.) The cross-veins early disappeared in this suborder, except in a number of Calopterygidae, where the original close venation of the wing has persisted up to reeent times. Another early tendency was the thickening of a short basal portion of $\mathrm{Cu} u_{2}$ in line with the distal side of the quadrilateral. As the anal bridge $(A b)$ ended up on $C u_{2}$ just at this same point, a special distal portion of the eubito-anal space beeame ent off between $A c$ and $C u_{2}$, forming a quadrangular area sometimes called the sub,quadrangle (sq in fig. $20 c^{\prime}$).

We can see an archaie type of quadrilateral still extant in the hind-wing of Epiopllebia (fig. 141). From this type, a further narrowing of the wing-base leads us to the Lestine-type (fig. $20 \mathrm{f}^{\prime \prime}$; cf. fig. 142). Here the distal side, together with its prolongation along C ' u_{2}, is no longer transverse to the wing-axis, but beeomes strongly slanted, while the eostal side of the quadrilateral is correspondingly shortened. By a similar metlod, the sharplypointed quadrilateral of the Agrioninae arose from the older form seen in the fossil Phenacolestes (fig. 164) and in many reeent Megapodagrioninae. The Lestine and the Agrionine-types are closely parallel; but the former seems to have been in existence for a very long time, whereas the latter is a very reeent development.

Quite a different tendeney has operated in the ease of the Epallaginae and Calopteryginae, resulting in a gradual loss of the irregularity of the quadrilateral, and the formation of an exaet
rectangle. Owing to the fact that the sectors of the arculus arise lower down in the latter than in the former subfamily, the quadrilateral of the latter is usually exeessively narrow. In the Thorinae (fig. 21) the sectors of the arculus are actually attached to R. This position has been strengthened, in Thore, by a thickening of the antenodal just above it. The effeet is to produce a quadrilateral of peeuliar and, indeed, unique form, with the basal side more than twice as long as the distal.

Fig. 2l. Bage of fore-wing of Thore gigantea Sclys. Ax thickened antenodal; of fore-wing of Thore giganlea Sclys. Ax thick
Ms Zygopterid sector. Aclapted from Neediam.

We have seen that, if the level of the arcuhs be very close to the tevel of the bifurcation of $C u$, the quadrilateral will be very short. Such a condition also suggests the possibility of a new arragement, whereby the areulus, by assuming a sufficient slant, might be continued directly on to the point of division of $C u$. In this case the lower portion of the areulas would not be needed as a support, and so the discoidal cell wonld remain open basally. The Jurassic subfamily T'arsophlebiinae (fig. 158) adopted this line of development. Quite reeently, as the result of extreme reduetion,

Fig. 22. Wings of IIemiphlelna mirahilie Selys, δ (hind \cdot wing 11 mm .). Original.
the same tendency has set in in the Agrionine genus Hemiphlehia (fig. 22). Here of course the arculus has been complete right through the evolution of the genus. But the slanting of the areulus has gone on until it came into line with M_{4}, and then the distal side of the quadrilateral tended to continue the same line. The final stage of elimination of the basal side has only so far been aehieved in the fore-wing of the male, and oceasionally in the female also.

The Anal Field (Plate II, figs. A, B).

(i) Anisoptera. We can only briefly trace the many changes in this important area of the wing. Owing to the basal fusion of A with $C u$ (due to the same causes as the fusion of R with M), there was necessarily also a more distal point of departure of A from $C u$. This point is the analogue of the areulus, and is represented in the imaginal wing by the anal-crossing, Ac. This usually only appears as a straight cross-vein, often indistinguishable, except perhaps for a slight slant, from a number of others descending from $C u+A$, or $C u$.

Just as M, after leaving R, divides into a main stem and three branches, so exactly does A on leaving $C u$. But, as the area to be supplied by these branches differs greatly from that supplied by M, both in size and shape, we find them correspondingly shortened and directed posteriad rather than distad.

The main stem of A, after leaving $A c$, is represented by A_{1}. Normally this continues on to meet $C u$ at, or just below, the posterior angle of the triangle. By a slight re-arrangement of one of the cross-veins above A_{1}, the area known as the sub-triangle or internal triangle is formed (fig. 20, st). In the fore-wing of Libellulidae this may beeome very highly specialized, by means of a sharp bend in A_{1}. At the same time, the cross-vein forming the original basal side of $s t$ beeomes elongated to continue the line of the proximal part of A_{1}, thus giving us the eomplieated structure seen in the fore-wing of Hemicordulia (Plate II, fig. B), Tramea (fig. 136), and many other genera. This is elearly correlated with transverse elongation of the triangle. In the hind-wing, the subtriangle is usually absent.

In the hind-wings of the older Anisoptera, A_{1}, after reaching Cu, fuses with $\mathrm{C} u_{2}$ for a considerable length (fig. 17 B), and finally bends inwards towards the wing-border. The seeond branch, A_{2}, leaves A_{1} a little distad from $A c$, and runs downwards nearly parallel to $C u_{2}+A_{1}$, to the wing-border. Thus a distal portion is separated off from the anal field, between A_{2} basally and $C u_{2}+A_{1}$, or A_{1}, distally. This area remains thus in the Petalurinae and most Gomphinae. In the Aeschninae, however, it beeomes definitely closed ofl below, about half-way between $A c$ and the wing-border, by development of a cross-vein from the in-turned portion of A_{1}. Thus is formed the interesting elosed area known as the anal loop (al). In Aeschna and a few other senem, this may be supplemented by an additional closed area placed distally to it $\left(a l^{\prime}\right)$.

The anal hop remains compact and more or less rounded thronghont the Aeschninue, in the Macromizni, and in the SynHemini. With the beginnings of a further broadening of the anal field in Libullutidue, a new tendency is set up. A_{2} shifts close under $A c$, and nearly monopolizes the oxvgen-supply received from it. A_{1} dwindles, and fails to reach $C u$. Consequently A_{2} grows out strongly into the widened area below it, and tends to assume a slating course parallel to $C u_{2}$. The latter gives off an inwardly projecting branch Cut $t_{2 b}$, tending to run to the wingborder very close to the ending of A_{2}. Thus, between A_{2} and C u_{2}, a long loop is formed quite different in shape from the original eompaet form seen in the carlier Libellulidue. This I have recently termed the cubito-anal loop [176]. We may, however, retain the term "anal loop," sinee the formation is elearly homologous with the older type, except in the laek of fusion of A_{1} with $C u_{2}$.

For most of its width, this long loop is only two cells wide. In the higher forms, there is developed, along the inner boundaries of these two eell-rows, a strong straight cubital supplement (Cuspl), whose formation is exaetly analogous to that of Rspl and Mspl. 'This forms the mid-rib of the long loop. Owing to its assaming the form of a eomplete vein, it was originally mistaken for A_{2}, while A_{2} was regarded as A_{3}. A glance at the tracheation of this area, however, quickly settles the poind.

In the highest forms, the long loop becomes further specialized
by the formation of a sharply pointed." toe" (figs. 132-136), cuding almost on the wing-border, and a long flat "sole," formed by $C u_{2 b}$. This form has reeeived the name of the "foot-shaped," "stocking-shaped" or "Italian" loop, owing to its shape.

The third branch of $A\left(A_{3}\right)$ plays an important part in forming the distal side of the anal triangle of the male, in all those Anisoptera in which the anal angle is angulated, and in marking off a weak corresponding basal area next to the membranule in rounded forms. This triangle may be wide or narrow, short or long, and is usually crossed by one or more veins. The shape of the membranule, as well as its size, seems in most eases to be eorrelated with the shape and size of the area marked off by A_{3}.

Coming finally to A_{4}, we find this small braneh proceeding basad from Ac. Along its course, and beyond it to the base, the secondary or reeurrent anal vein A^{\prime} is laid down.
(ii) Zygoptera. In this suborder we find trachea A much redueed, so that it rarely reaches Cu . The original more distal portion has become quite cut off and fused with $C u$, at a point where we can still reeognize $A c$, and in a few forms (fig. 17 G) the four branches of A coming off from it. A_{1} still runs distad towards C u, and in Calopteryx (fig. 17 E) almost reaches it. In most cases, A_{1} is very short. The line of A_{1} is eontinued in all imaginal Zygoptera by the formation of a special vein, the anal brilye ($A b$), running from $A c$ to $C u i_{2}$, and forming the lower side of the sub)quadrangle. A^{\prime} is formed backwards as in Anisoptera. The rest of the anal field is reduced either to (a) a triangular area below A^{\prime} and $A b$ (Calopteryx and other non-petiolate forms) ; (b) a single row of cells in the same position (most Calopteryyidae); (c) a narrow uncrossed space below $A b$ (Lestidae and most Agrionidae); or (d) it is completely obliterated (many Protoneurinae).

By studying the eorresponding traeheation and venation in Caliagrion (Plate II, fig. C and fig. 17 G) we realize what a large origimal area of the Odonate wing has been saerifieed in the formation of the petiole or stalk. The sub-division of the Agrionince into tribes has been based on the extent of petiolation, with referenee to the position of $A c$.

Sectors, Supplements, Bridges, Transverse Veins.
The term sector in Odonata is usually restrieted to extra veins developed along definite tracheal branehes; while intercalated veins formed in any position without the aid of a definite tracheal braneh are called supplements. The distinction is somewhat arbitrary, sinee two or three very distinct tracheae may aid in

Fig. 23. Comparison of venation of the Synlestinae and the Megapodagrioninae. 1. Synlestes weyersi Sclys, venation (wing 31 mm .). B. The same, more enlarged tracheation of the larval wing in the region of the long bridge. c. Enlarged tracheation of larval wing of Argiolestes icteromelas Solys. D. The same speries, imurianal wing-yenation (wing 28 mm .); notice absen of bridge. Br bridge; Ms Zygoptorid seetor; O oblique vein. Original.
the formation of a strong supplement (e.g. Mspl in Aeschna). A bridye is a supplement formed backwards towards the base of the wing in sueh a way as to continue the line of an important vein, so that this hatter may appear much longer in the imaginal venation than it really is when the tracheation is examined.

When a bridge is formed, the original point of departure of the vein so lengthened is marked by a more or less oblique cross-vein, the oblique vein (O). The most important bridges in the Odonata are (a) the short bridge of Anisoptera, eontinuing Rs baek to $M_{1-2} ;(b)$ the long bridge of the Lestidae, contiming $M s$ similarly backwards, but much further, so that the bridge junctions either with M_{1-2} (Lestinae) or M_{3} (Synlestinae) elose to their point of union. A comparison of the venation of Synlestes (fig. 23A) with one of the Megapodagrioninae (fig. 23 c) shews how this formation has produced a remarkable resemblanee between the two forms. This "hidden eonvergence" has hitherto led to the inclusion of Synlestes in the Megapodagrioninae, a subfamily with whieh it is in no way closely related. [170.]

In the Agrionidae, but not so mueh in the Lestidae, most or even all of the cross-veins have beeome arranged in transverse sets, producing a series of complete transverse veins (Plate II, fig. G). This arrangement, when complete, as in the Agrioninue, must be regarded as one of the most beautiful, as well as one of the highest, speeializations yet attained by the Odonate wing.

We may conelude this chapter by exhibiting the suceessive stages of evolution of the Dragonfly wing in consceutive order, as far as the evidenee allows us:

1. Original slight inequality of wings (hind-wing bronder than fore.wing; Protodonata).
2. Fusion of A with $C u$, and formation of A^{\prime} (completed in Protodenata).
3. Fusion of M with R (nearly completed in Protolonata).
4. Formation of pterostigma
5. Formation of nolus
6. Bifureation of $C u$.
7. Completion of areulus and discoidal cell.

> Anisoptera Zygoptera
8. Presence of Rs a constant character.
9. Sub-division of discoidal cell into two parts.
parts. $\begin{aligned} & \text { a single strong quadrilateral into }\end{aligned}$ wevelopment of the two parts into a
well-formed supra-triangle + triangle, either
(a) of about the same shape in both wings (Aeschnidae),
or (b) of widely different shapes in fore and or (b) shape (Calopteryyidae), widely different shapes in fore and
hind wings (Libellulidae). or (b) towards further irregularity by formation of a sliarply acute distal angle (Lestillae and Agrionidae).

CHAPTER IV

THE LARVA OR NYMPH

The term nymph is applied to the aquatic larvae of those inseets which have an incomplete metamorphosis (i.e. have no true pupa or resting stage), such as Dragonflies, May-flies, etc. The term, however, subserves no useful purpose, since the nymph is, biologieally, simply a larval form, and nothing more nor less. It is, also, somewhat inappropriate to the appearance of these creatures. We slall therefore use the term larva throughout this book. To those entomologists who hold the belief that a true larva must be followed by a pupa-stage, we would point out that such is not the ease. Lar'val forms oceur throughout the Animal Kingdom (even in some Protozoa). The essential eondition of a larval form is that it should differ sulficiently from the perfectly-formed animal to require a metamorphosis in order to reach that final stage. If a new term is wanted anywhere, it is rather to distinguish the larvate of insects with a complete metamorphosis, since these depart most widely from the "general rnn" of animal larvae.

Hatching of the Larva (fig. 24).

As a typieal example, we shall select Anax papuensis Burm. [177]. The eggs are plaeed in the soft tissues of reed-stems, just beneath the water. Before hatching, the embryo (fig. 24 A) lies with its head fitting closely under the pedicel or eap of the egg. The head is well-formed and rounded above; the eompound eyes are distinct, black in the eentre, surrounded by a reddish zone All the mouth-parts can be elearly seen. The labium consists of a pair of three-jointed appendages, quite separate except at their extreme bases. The thoracie and abdominal segments are all

distinct, the legs very long. The hind end of the abdomen, together with the cerci and the metatarsi, is bent round ventrally so as to point forwards. The dorsal traeheal trunks, and strong branehes to the eyes, ean be elearly seen, but are filled with liquid instead of air. A large eylindrical plug of dark yellowish yolk marks the limits of the mid-gut.
'Two or three days before hateling, the heart begins to beat, with an irregular pulse of about 30 to the minute. It gradually becomes more regular, and increases to 80 or more per minute. A large vesiele ($\mathrm{A}, \mathrm{B}, h v$) forms between the head and the pedieel, and appears to be filled with blood. Just before hatching, a very distinet and peeuliar pulsating organ, the cephalic heart ($\mathcal{B}-\mathrm{D}$, ch), appears in the head, between the mouth and the aorta. This organ is two-ehambered, and pulsates like a simple two-chambered heart. Its exact nature is doubtful; but it is probably only a temporary formation in the oesophagus, by means of which the size of the head is inereased, so that it presses hard against the pedieel of the egg. This pressure is the immediate eause of hateling, since it forces the pedieel up like a lid. Thereupon the larva, or pronymph as it is now ealled (c), flows swiftly and easily out of the egg.
. The Pronymph is very unlike a free larva. It is elosely enveloped by a fine chitinous covering, the pronymphal sheath (m rs) . This sherath not only invests the body, but closely follows the form of all the limbs, whieh are held down by it elose alongside the bodve The labinm is only fused basilly, and at present is quite unsuited to perform its funetions. The head and eyes are moderately large. The head-vesiele still eontains some fluid. The pronymphal sheath ends posteriorly around the eerci in the form of a sharp spine ($\mathrm{c}, s p$) which usually eatehes against the broken egg-shell, and serves as an anehor for the pronymph.

Pierre [118] and Balfour-Browne [5] have spoken of this pronymphal sheath as the amniotic covering. This is clearly ineorrect, sinee the sheath is a non-eellular ehitinous strueture. It seems elear that the pronymph is really the first larval instar, and its sheath just an ordinary euticle, sueh as is east at eedysis.

The pronymphal stage in Anax lasts only from three to twenty seconds. The eephalie heart inereases greatly in size. It pulsates
regularly, at about 30 beats to the minute, quickly exlausting the head-vesiele, and driving blood strongly into the dorsal part of the head and into the eyes. These parts swell up with amazing rapidity to twice their original size. The result is a seeond sphit, the pronymphal sheath bursting along the baek of the head and thorax, so that the young larva slips easily out (D, E).

The moment it is free, the young larva wriggles violently, drawing its legs and labium into their natural positions, ready for use. The latter is now seen to be in the form of a eompletely fused organ, the mask ($\mathrm{D}, l m$), very similar to that of the fullgrown larva. The cephalie heart quickly eollapses, and ean no longer be seen. In point of fact, so quiekly does the lhateling take plaee, that this organ is only in action for less than a minute, performing about 25 strong pulsations. In the meantime, however, a strong but smaller pulsating organ has appeared between the rectal valves ($\mathrm{D}, r v$), and appears to be pumping water into the reetum. At the same time, gas ean be seen travelling gradually and evenly down the dorsal traeheal trunks from the region of the mid-gut baekwards ${ }^{1}$. On reaehing the reetum, the gas passes quiekly, first into the larger reetal efferents, then into their branehes, and finally around eaeh separate eapillary loop, so that the whole beautiful strueture of the branehial basket beeomes quiekly and evenly exposed to view. Almost immediately, active respiration of the basket begins, and the larva uses the ejeetion of the water as a means of propulsion. The pulsating organ between the valves gradually subsides, but the valves continue to open and shut regularly:

The newly-hatched larva has the appearance seen in fig. 24 e . The head and eompound eyes are very large, but no oeelli are present. The antennae are only three-jointed. The labium resembles that of the grown larva, and at no time bears any setae in this speeies. The segments of the thorax are equal in size, and little larger than those of the abdomen. The legs are

[^4]large and well-formed, but the tarsi are unjointed. Each tarsus, however, ends in two strong elaws. The abdomen ends in two strongly-pointed hairy cerci (m, c) above whieh a rudinentary appendix dorsalis ($\mathrm{c}, a d$) ean be distinguished. The mid-gut extends from the first to the fifth segment of the abdomen. It encloses a large barrel-like plug of yolk, which provides nonrishment for the young larva, and is gradually absorbed, the large vitellophags eomposing it (p. 235) breaking up, and beeoming replaeed by the eells of the permanent epithelium. The ventral nerve-cord has a pair of large ganglia in caeh of segments 1-8, conneeted by execedingly short cords (fig. 58).

The newly-hatched larva is the second larval instar, the first being the pronymph. Reasons for the quiek easting of the first larval skin are not far to seek. Firstly, as the embryo ruptures its ammion at an early stage (p. 238), the formation of a cutiele provides a protection in plaee of the amnion. Seeondly, the sccretion of a second cuticle within the first uses up a large amount of waste-products which eould not otherwise be disposed of, and thus aids the proeess of exeretion. Thirdly, at the first instar or pronymph stage, the labium has not beeome suffieiently developed to aet as a weapon of prehension. By abbreviating the first instar, the larva practienlly emerges from the egg fully equipped for the struggle of life.

Variations in the Process of IIatching.

Most Dragonflies latch out much in the same way as Anax. Balfour-Browne [5] has described the emergenee of the larva of Agrion pulchellum. This differs from that of Anax only in the

Fig. 25. "Dragonfly.galls" in in osier stem (natural size). Original drawing by P. Tillyard from specimen lent by Mr K. J. Morton.
increase of the pulse to 100 per minute, and in the faet that the pronymph stage lasts for two or three minutes. The eseape from the egg-shell, and again from the pronymphal sheath, does not seem to be so easily accomplished as in Anax.

Pierre [118] has earefully deseribed the remarkable method of hatehing in the case of Lestes viridis (fig. 26). This Dragonfly lays its eggs in autumn on the underside of sallow or osier stems, forming the so-ealled "Dragonfly-galls" (fig. 25). In the spring, the pro-

Fig. 26. Hatching of Lestes viridis Vand. A. Pronymph emerging from "gall." B. Larva emerging from pronymphal sheath. After Pierre.

Fig. 27. Newly.hatched larva of Dip- Fig. 28. Newly.hatehed larva of

nymph emerges, enelosed in its sheath, whieh is armoured all over with small overlapping plates, like a eoat of mail. By a strong bending of the body (fig. 26 A), it jumps elear of the stem, and usually falls into the water. If, however, it falls on to the ground, it skips vigorously about, until, aided by the slope of the ground
towards the river, it cventually jumps into the water. There it floats with its dorsal surfaee downwards. The free larva emerges much in the same way as in $A n a x$ (fig. 26 B).

Other Forms of Young Larva. In the Libellulidae (fig. 27) the general appearanee differs greatly from that of Anax. The eyes are small and black, the head rather squarish; the legs and the short abdomen are more or less hairy. The cerei are short. In the Zygoptera (fig. 28) the larva is muel slenderer, the head not unlike that of the Libellulidae, the abdomen almost eylindrieal, slender and elongated, the legs hairy. The three eaudal gills are usually of equal length, and olten longer than the abdomen. They are slender pointed proeesses, almost filiform, and very hairy. They do not appear to be efficient organs of respiration.

Larval Growth: Instars and Ecdyses.

The growth of the larva is marked by a number of stages or instars, separated by the act of ecdysis, or easting of the eutiele. At eaell eedysis, not only the outer eutiele, but also all its internal prolongations, are east off. Thus the linings of the stomodaeum and proctodicum (ehap. XII)-including the armature of the gizzard -and the intimac of the tracheal trunks, are all east off at this erisis, and are renewed by the eells underlying them.

The mumber of instars is not constant, either for different species or for individuals of the same speeies. It varies between eleven and fifteen, the pronymph being reckoned as the first. The larva may reach maturity within one year of hateling (most Zygoptera, many Libellulidac, and Anax), or it may take two. years, as in Aeschna, or eyen from three to five. External eonditions, sueh as dronght, warmith, ete., affeet not only the length of larval life, but also the total number of instars. It took me three years to rear the larva of Austrocortulia, already more than half-grown when I found it.

The ehanges whieh take plaee during larval growth may be briefly summarized as follows:

1. Increase in size of the compound eyes. The number of facets inereases at eath cedysis. The eyes never meet on the top of the head (as in many imagines); but, in the ease of Anax, they
approaeh very elosely to one another. They remain surprisingly small in Libellulidae, but beeome raised up on pyramids in the higher forms, so as to stand elear of the huge mask (fig. 29 F).
2. Development of the ocelli. These are absent during most of larval life. During the last few instars, their rudiments appear; and, in the Zygoptera at least, they are well-formed in the fullgrown larva. They do not appear to beeome functional until metamorphosis.
3. Increase in the number of joints of the antennae. The antennae at first are three-jointed, there being a short broad base or scape, a short but distinet pedicel, and a single long distule. At the seeond eedysis, the distale divides into two. At the next, the more basal of these two again divides. At the fifth or sixth eedysis, the more basal of these again divides. There are thus, by then, six joints, four being distalia. Either at the last or penultimate eedysis, the apical distale divides into two. Thus the full-grown larva usually has 7 -jointed antennae, as in the imago. In Gomphinue, no sub-division takes place alter four joints are formed. Fither the fourth or the third joint beeomes more or less swollen; in the latter case the fourth may beeome only a vestigial knob.
4. Changes in the form of the latial mask. These difier much in the various groups [19]. The general tendeneies are (a) more complete fusion of parts, (b) repression of galea and lacinia, (c) growth and strengthening of the movable hook, (d) increase in the number of setae, in setigerous forms. In Calopteryx the original eleft in the median lobe beeomes intensified instead of elosing up. In some speeies of Anax, setae are at first present and afterwards lost.
5. Changes in the shape of the thorax. These are the most important of all the changes that take plaee in larval life, since they are eorrelated with the development of the wings. The pleural ridges begin to thieken very early (4th to 5th instars). At the next instar, the wing-rudiments appear as tiny buds growing backwards from these ridges. At eaeh eedysis, these buds inerease in size, and soon beeome triangular flaps. The pleural ridges take up an oblique position. Thas the hind wingsheath gradually overlaps the fore, until it eovers all but the eostal
margin. As the wings develop, the synthorax inereases in size out of all proportion with the prothorax. The latter, however, is never so small in the larva as in the imago. In the later larval stages, the mesopleurae grow forward to meet eaeh other in front of the wing-sheaths. The latter lie parallel to one another, pressed flatly against the abdomen. Just before metamorphosis, the swelling of the pleurae beeomes so pronouneed that the wingsheaths stand up vertieally above the abdomen.
6. Division of the tarsus. At the third instar a small basal piece separates off from the tarsus. At the fourth or a later instar, a third small joint is added in the same manner. In the Gomplinae, the pro- and mesotarsi remain two-jointed.
7. Growh of the appendix dorsalis. In those Anisoptera (e.g. Anax) where this appendix is at first rudimentary, increase of size takes plaee only slowly. At the eighth or ninth instar, the appendix dorsalis may be almost as long as the eerei. It generally beeomes grooved ventrally, and is often bifid distally. In some forms it never becomes long.
8. Changes in the rectal gills of Anisoptera. These are fully dealt with in chap. Ix. All Anisopterid larvae start with a simplex system of gills of the undulate type. In the Aeschninae this does not reach the duplex form until the seventh instar. In the Libellutidue, the lamellate duplex form is assumed at the third instar.
9. Changes in the caudul gills of Zyyoptera. The slender proeesses of the young larva beeome triquetral at the second or third instar. By flattening (either laterally or dorso-ventrally) subsequent instars form the lamellar gill. Saeeoid gills are formed by inflation of the original triquetral form. In Calopleryginae, a differentiation in size and shape takes plaee in the median and the lateral gills.
10. Changes in the nervous system. The ventral ganglia do not inerease mueh in size as the larva grows. Thus they beeome smaller and smaller relative to the segments eontaining them. The cords comecting eonseentive pairs of ganglia rapidly inerease in length. A comparison of figs. 54 and 59 shews the extent of this change. The ganglia tend to move forward in each segment. Finally, the ganglion of the seeond segment moves up into the
first, while that of the first moves up into the metathorax. In the imago, the latter is attaehed posteriorly to the ganglion of the metathorax.
11. Increase in the number of Malpighian Tubules. There are ouly three in the newly-hatehed larva. These inerease at eaeh ecdysis, until a total of fifty or more is attained.

The full-grown Larva (fig. 29).

We may now compare the strueture of the full-grown larva with that of the imago (ehap. II), using one of the large Aeschninae for prineipal referenee.

The Head.

The eyes are smaller, and plaeed more anteriorly in the larva. Consequently the epieranium ($e p$) is mueh larger, espeeially the oeeipital portion, whieh expands laterally into two very prominent postocular lobes. The frons ($f r$) is elearly marked off, and shews the frontal ridge in the Anisoptera. The clypeus ($c l$) is undivided, the labrum (lbr) well-formed. The antennae (ant) are longer and more funetionally important than in the imago. Fig. 2 shews some interesting variations in their strueture. The ocelli may be barely indieated on the flat expanse of the epicranium (Aeschninae) or they may be clearly marked (Zygoptera). The mandibles and maxillae elosely resemble those of the imago, exeept in Pseudophaea and Cora, where the larval mandibles are biramous [31].

Structure of the Labial Mask (figs. 29-32).

The ehief differenee between the head of the larva and that of the imago is undoubtedly the structure and function of the labium. In the larva, this has become a highly speeiatized and very effieient organ for the eapture of prey, unique in the Animal Kingdom. This organ is known as the mask (figs. 29, 30) beeause it hides the other mouth-parts, and sometimes even eovers up the whole faee. Its formation is ehiefly due to a great lengthening of the mentum and sub-mentum. These eome to funetion mueh like the forearm and arm of the human fore-limb, while the palps are opposed

Fig. 29 a-D. Full-grown larva of Acschna brevistyla Ramb. A, dorsal view; B. ventral view; c, lateral view of head and thorax; D , dorsal view of extended mask. E-F. Larva of Trampa loëwii Br., to shew mask covering face. E, lateral view of hoad and thorax; F, head seen from in front. to shew raised cyes projecting nbovo mask. a apicalinal spiracles; c cercus; c^{\prime} cereoid; cl clypeus; $c n$ condyle; $c x_{1}-c x_{\text {coxa }}$ coxae; a distal border of lateral lobe; e eye; ep elypeus; cn condyle; $\mathrm{cx}_{1}-\mathrm{c} x_{3}$ coxa; h hinge; i inner border of lateral tobe ep epicranium; $l u r$ labrum; l lateral lobe; $l s p$ lateral abdominal spines; m mentum; $m h$ movable look; ml median lobe; n_{1} pronotum; o outer border of lateral lobe; oc occiput; ovp ovipositor; pl abdominal pleurite; pl, mesopleurum; pla metapleurum; pol postocular lobe; sc napreeoxal armatime of prothorax; $s m$ sub-mentum; $s p_{1}$ mesostigma; $s p_{2}$ metastigna; $t 6$ tibia; $t r$ trochanter; is tarsus; $t s_{9}$ metasternum; w_{2} fore wing-sheath; w_{3} hind wing-sheath; 1-10 abdominal segments (urotergites in A and c , urosternites in B$)$. ($\times 1 \frac{1}{2}$.) Origimul.
to one another like the thumb and forefinger, and serve to grip the prey. The sub-mentum ($s m$), in the position of rest, is direeted baekward along the ventral surfaee of the thorax, between the bases of the legs. At its distal end it bears a strong linge (h), which funetions as an elbow-joint, and serves to artieulate the mentum. The mentum (m) lies ventrally below the sub-mentum, but is direeted forward, so that its distal end lies just below the mouth. Lateral squames are absent. Galea and lacinia are absent or vestigial, but the base of an original ligula is represented by the median lobe ($m l$), whieh is fused with the mentum, and forms

Fig. 30. Concave or spoon-shaped mask of Synthemis eathtduchat lumm, a toothed distal border of lateral lobe; m mentum; $m h$ novable hook; $s m$ sub-mentum.
$(\times 8$.$) Original.$ $(\times 8$.$) \quad Original.$
its mid-anterior border: Movably artieulated with the mentum, on either side of the redueed median lobe, is a strong lateral lobe ($l l$) formed by the palp. These two lateral lobes are very highly speeialized, and form the aetual organ of prehension. Eaeh earries, at its outer distal angle, a strong movable hook ($m h$). The end-hook of the imaginal labium, whieh is fixed, is represented in the labial mask by the apex (a) furnished with a small hook in some forms, but not in most. The presence of a movable hook and an apex enables us to divide the margin of the lateral lobe into three portions, whose different degrees of development in the various groups lend to them eonsiderable taxonomie importanee.

These are (i) the outer border (o), from the outer edge of the base up to the movable hook; it varies in length, but is always thickened and olten armed with spines; (ii) the distal border (d), or spaee between the movable hook and apex; originally very short, but probably toothed, it takes on a development of great importanee in the concave Libellulid mask; (iii) the inner border (i), running from the apex to the inner edge of the base; it may be short or long, smooth or toothed.

Setae (figs. 30, 32) may be developed both on the mentum (mental setae) and on the lateral lobes (lateral setae, ls). The mental setae often form two groups (fig. 32 N), an outer group of long primary setae ($m s_{1}$) and an inner group of short secondary setae ($m s_{2}$). In Lestinae (fig. 32 H) two or three large setae oeeur on the movable hook. The border of the median lobe earries hairs, small setae, and sometimes tubereles or spines. Small warts (fig. 32 N) are very eharacteristie of the Libellulid mask, espeeially on the surfaee of the lateral lobes.

Mechanism of the Mask. The larva relies, for the eapture of its prey, almost entirely on the mask. Either it remains absolutely motionless until the victim eomes within reaeh, or it stalks it slowly and stealthily until it is close enough to strike. Then the mask is thrown out with lightning rapidity, by means of its strong extensor muscles. At the same time, the extensors of the palps throw the lateral lobes wide apart. Curiously enough, there are no museles comnected with the mavable hooks; yet these organs are shot ont with great rapidity at the moment of striking. The ingenious meehanism of the hooks has been explained by Amans [1]. A strong ligament on the inner side of the base tends naturally to keep them tightly elosed (as in the position of rest). Their sudden extension is due to eontration of the diaphragm (p. 211) situated between abdominal segments 4 and 5 . The mask being hollow, with a definite prolongation of the haemoeoele right up to the bases of the hooks, the forward pressure of the diaphragm forces blood into the cavity, in sueh a way as to overcome the elastieity of the ligament, and so shoots the movable hooks suddenly outwards. The aetion is quite momentary, for the pressure is relaxed almost at onee, and the hooks spring quiekly back, fixing themselves in the body of the hapless victim. When the
struggles of the latter beeome less violent, the flexor muscles eome into play, and draw the mask baek to its position of rest; so that the mandibles ean be brought into aetion. A more effective or more eruel implement it would be almost impossible to conecive for its purpose.

Homologies of the Labial Mask. Considerable discussion has eentred round this point. Our deseription has followed the views of Butler [19], who supports them with sound ontogenetie evidenee. Her views agree with those originally advanced by Rambur and Hagen. The opposing view is that of Gerstaeeker [55]. He eonsiders that the lateral lobe represents the fused palpus and galea, while the ligula (median lobe) is formed of the fused laeiniae only. His argument is mueh weakened by the well-known fact that parallel developments of the first and second maxillae oceur very frequently. In the Odonata, the inner lobe of the first maxillae is formed by the fused galea and laeinia. We should expeet a parallel condition in the labium.

Aeeepting Butler's views, we may hypothetically construet (fig. 31) a typieal arehaie form of Odonate labium, from whieh all present types, both of larval and imaginal forms, ean be easily and simply derived. This arehaic labium has, of eourse, the exaet strueture of the generalized type of labium found in mandibulate insects (e.g. the Cockroaeh), and corresponds with a fused pair of typical biramous jointed appendages of the Crustaeea. It has a pair of fused two-jointed basal protopodites, whieh earry distally both endopodites (ligula) and exopodites (palpi), the latter being two-jointed also. The following table gives the parts of sueh a labium, and their respeetive fates in the larval and imaginal labia of reeent Odonata:

Fig. 31. Hypothetieal arelaie labium of Odonata, to slew homologies of parts. a a apex homologies of parts. a apex
of lateral lobe; a distal border of same; ex exopodite; y ga-
lea; i inner border of lateral lea; i inner border of lateral
lobe; l : lacinia; lig ligula lobe; lc: lacinia; lig ligula (endopodites); m montum; ml median lobe; o outer border of Iateral lobe; p_{1}, p_{2} joints of palpus; pr pro$s m$ sub-mentum. Original

Variations in the Form of the Mask (figs. $29 \mathrm{D}, 31,32$). Two main types of mask are easily distinguishable, the flat mask and the concave or spoon-shaped mask. The former is elcarly the more arehaic form. The following sub-types oeeur:
AH (i) Gomphinae (fig. 32 D). The mentum is short and square, without setae, the median lobe not usually projeeting. The lateral lobes have a rounded apex, a short distal margin, and a more or less dentieulated inner margin. The movable hook is strong. Setae are absent.
(ii) Aeschninae (figs. $29 \mathrm{D}, 32 \mathrm{~A}$ to c). The mentum and submentum are greatly elongated, and narrowed basally. The median lobe usually projeets slightly. In the older forms (fig. 32 c), the lateral lobes are shaped as in Gomphinae; in the rest (A, B), the apex is square or pointed into a distinet hook or tooth. Setae are absent, exeept in Gynacantha (B). In many Brachytronini two pairs of tubereles on the median lobe may be remnants of galeae and laeiniae.
(iii) Calopterygidae (fig. $32 \mathrm{E}, \mathrm{R}$). The median lobe is typically slightly eleft, but secondarily very deeply eleft in Calopteryginae (R). The mentum may be long or short, trapezoidal, without setae. The lateral lobes are slender and earry three teeth; one (the largest) at the apex, a seeond on the distal border (which is mueh redueed), and a third on the inner border just loclow the apex. Setae are absent (exeept a few small ones in Calopteryyinue). This type passes over without ehange from the Epallaginae to the Megapodagrioninae.
(iv) Agrionidae (exeluding Megapoldayrioninae) (fig. 32 F). Type (iii) modified. The median lobe beeomes prominent and triangular. The mentum remains short. Lateral and often also mental setae are developed. The distal tooth becomes flattened into a serrated ridge; the inner tooth tends to disappear, leaving a convexity only. There are many minor variations on this theme.
(v) Synlestinae (fig. 32 a). Intermediate between (iii) and the older Aeschninae. Mentum and sub-mentum mueh elongated, narrow. Median lobe prominently bilobed, with a fairly deep eleft. Lateral lobes as in Gomphinae, but the apex projeeting in a strong tooth, supported by a seeond sharp distal tooth. No setae.

2 (vi) Leslinae (fig. $32 \mathrm{If}, \mathrm{J}$). A most remarkable and highly differentiated type. Mentum and sub-mentam of variable length;

Fig. 32. Variations in the form of the mask, elieflly in the lateral lobes. A. Aeschna brevislyla Ramb. B. Gynacantha rosenberghi Selys. o. Austropetalia patricia Tillyard. D. Hemigomplus heteroclitus Selvs. E. Diphlebia lestoides Selys. r. Caliagrion billinghursti Martin. G. Synlestes weyersi Selys (with cleft inedian lobe also shewn). 11. Austrolestes analis Ramb. J. Austrolestes psyche Selys (distal border). K. Petalura gigantea Leach (with prominent median lobe also shewn). L. Cordulegaster annulatus Latr. M. Azuma elegans Br. N. Diplacodes haematodes Burm. (with half of mentum also shewn). O. He Cordulephya ragmea Selys, Calopteryx splendens Harris (deeply cleft median lobe). Original.
the median lobe slightl/f cleft, not prominent. Lateral lobes with the outer and inner borders rediced, the movable hook and distal borders greatly enlarged. Two or three strong setae on the hook; usually one seta on the lateral lobe, and a row on the mentum. A huge apical tooth, supported by a strongly projecting serrated ridge on the distal border. This ridge breaks up secondarily into either (a) an outer tooth and an inner ridge (II), or (b) three teeth of varying sizes (\mathbf{J}).

The beginnings of a concave formation are found in:
(vii) Petalurinae (fig. 32 k), a reduced arehaic side-branch of very feeble structure. As in all concave labia, the movable hook is reduced in size, and the median lobe is prominent and triangular. It differs however from the typical concave mask in having the inner border elongated, and the distal border short; also, no setae are present. This labium is merely a mud-scoop, and probably helps the larva to shovel out its mud-canals.

Passing on to the true concave forms, we come next to
(viii) Cordulegastrinae (fig. 32 L). Here we see the reduced, slender hook and the projecting, triangular, median lobe, whieh however is bifid at the tip (an archaic character). The inner border is now reduced, and the distal border becomes much elongated and irregularly toothed. By this arrangement, the lateral lobes are enabled to meet together along their distal borders, above the median lobe, in an irregular modian line, formed by the tecth, which interlock like cogs. Mental and lateral setae are present.
(ix) Libellulidae (fig. $32 \mathrm{~N}-\mathrm{Q}$). A single type, with many minor variations, characterizes this huge family. The submentum is narrow, the mentum wide and sub-triangular. The median lobe is projecting and triangular. The lateral lobes are huge, very concave, and roughly triangular in shape, owing to the extension of the distal border to a length about equal to that of the inner border. Mental setae are generally numerous; in the higher forms, they divide up into two sets (primary and secondary). Lateral setae are present along the strongly ridged outer border. The hook is small and slender. The dentition of the distal lobe shews three principal types: (a) the Macromian, with deep regular ineisions (fig. 30); (b) the Eucordulian (fig. 32 o), with shallower
regular erenations, ench crest armed with a set of small setae; and (c) theLibelluline (fig. 32 N) in whieh the c., nations are smoothed out and the distal border beeomes more or less straight, with setae marking the original notehes. Three peculiar aberrations from the main developmental line are figured in fig. $32 \mathrm{~m}, \mathrm{p}, \mathrm{Q}$. Epophthalmia and Azuma (M) are highly specialized Macromian types, in which the distal border has become hypertrophied, forming a set of huge tecth which do not interlock with their fellows on the opposite side. This is a most formidable and peculiar weapon. Austrocordulia (P) is the only known Idocordulian labinm, but is probably not typieal. Four or five large irregular rounded lobes, carrying sets of setae, lie along the distal border. Cordulephya (Q) is a highly specialized Eucordulian type, in whieh deep narrow indentations are formed along the upper half of the distal border. These do not interloek, but form a kind of sieve for the ejection of picees during mastication. Warts (fig. 32 N) oceur on many masks of type (ix). A reference to fig. $29, \mathrm{E}$ and F , will shew how the concave mask excels the flat form in hiding the whole face. It must, however, be added that the Aeschnine labium is far more effective for the eapture of large prey, both as to reach and as to the efficacy of its hooks. The concave labium seems more adapted for catching very small animals.

The Thorax (fig. $29 \mathrm{~A}-\mathrm{c}$).

The short but well-formed prothorax of the larva is always larger than in the imago. It is often armoured with projeeting tubercles or spines. In the Aeschninae two such spines, placed close together above the procoxa, form the supracoxal armature, a structure of eonsiderable systematic importanee, especially in the genus Aeschna (p. 350 and fig. 180). The plates of the neck or microthorax are well-developed.

The synthorax is strongly formed, with the parts closely fused in the well-grown larva. The secondary divisions of the pleurae are only weakly indicated. The mesostigmata $\left(s p_{1}\right)$ are placed latero-dorsally between prothorax and mesothorax, on two flattened pieces ealled the mesostigmatic laminae; these fuse together in the imago to form the spiracular dorsum. The pleural
ridges are placed obliquely, the mesopleurae having grown forward to meet one another in the middle line in front of them. The wingsheaths $\left(w_{2}, w_{3}\right)$ nearly always lie parallel and flat along the back of the abdomen, and reach as far as the end of the fourth segment or beyond. In the Cordulegastrinae and Synthemini they are strongly divergent (fig. 33). The metastigmata ($s p_{2}$) are present, but very small.

Fig. 33. Larva of Synthemis eustalacta Burm., with divergent wing-shenths.
$(\times 2$.$) Original.$

Fig. 34. A. Hind-leg of larva of Aeschna lrevistyla Ramb. ($\times 6$). B. Distal end
f femur; $t b$ tibia; $t r$ trochanter; t_{1}). $l j$ breaking-joint; $c l$ claws; c x coxa;
of muscles, see p. 208. Original. ${ }^{2} s_{1}-t s_{3}$ joints of tarsus. For explanation

The legs (fig. 34) are always longer than those of the imago, and their bases placed further apart. The eoxae ($c x$) are peculiar in being artieulated ventrally with the sternum by means of a special condyle (fig. $29 \mathrm{n}, c n$). 'The articulation of the femur with the small troehanter is very peculiar, and forms a breaking-joint [40]. The trochanteric muscles, instead of being inserted into the base of the femur, are attaehed to a stretched membrane which keeps the femur in position. By a sudden contraction of these muscles, the membrane can be broken and the femur released, with scareely any loss of blood. This process of autotomy enables the larva to escape whenever a leg is seized by an enemy, or gets hopelessly entangled. The hairs present on the legs of almost all young larvae usually disappear in later instars, so that the legs become quite smooth. Some larvae, however, have very hairy legs (fig. 33). The imaginal armature is absent, or only rudimentary, in the latest instars. Small spines are, however, frequently developed distally on the tibia, and on the tarsal joints. In Aeschnt, a series of beautiful trident-spines (fig. 34 B) is found on the tibia. The tarsal elaws are always well-developed, but the tooth found on them in the imago is either absent or rudimentary.

Interesting specializations in the form of the legs are correlated with special habits in some larvae. Thus, roek-dwelling larvae (e.g. Diphlelva, fig. 35) have broal, liat, blade-like femora whieh can be elosely applied to the rock surface. The burrowing larvae of Gomphinae have strongly ridged surfaces on femur and tibia, while the tarsi of the fore and middle legs are reduced to two joints (fig.

Fig. 35. Larva of Selys. (Natura size.) Original. $36 \mathrm{~A}, \mathrm{~B})$.

$$
\text { The Abdomen (fig. } 29 \mathrm{~A}, \mathrm{~B} \text {). }
$$

In the larva, the abdomen is always shorter and broader than in the imago, the difference being very pronounced in Libellutidae and some Gomplinae. The segmental sclerites are more easily distinguished. The tergites (A, 5-10, c, 1-2) are always more or
less eonvexly arehed, though they may become rather flattened in very*broad forms, especially at the sides. A definite trilobation of the abdomen is produced in the Pelaliini (fig. 37) by the development of rounded or sub-triangular upwardly-projecting lobes from the sides of the terga. Extreme elongation of the last few segments is a characteristic of some Gomphine larvae (fig. 186). The sternites ($\mathrm{B}, 1-10$) are reetangular plates, cither flat or slightly convex. The pleura (B, pl) differ from those of the imago in being strongly chitinized. In the Anisoptera they form flat side-pieees to the

Fig. 36. Types of Anisopterid larvae. A Ictinus australis Sclys. B. Gomphus vulgatissimus Linn. C. Macromia sp. (Indiana, U.S.A.). D. Austrocordulia a. Diplacodes bipunctata Br. н. Tramea loéwii Br. (Natural size.) Original.
sterna; in the Zygoptera they are infolded. Eight pairs of abdominal spiracles (n ; asp) are present, the eighth being the largest. Their positions, near the anterior margins of the pleura, close to the terga, correspond with those of the imago. They are, however, small and non-functional, the tracheal cords connected with them remaining solid until metamorphosis.

Dorsal spines may occur on the terga of some or all of the segments, espeeially in running-water forms. Lateral spines
frequently occur at the postero-lateral margins of the more posterior segments ($\mathrm{A}, \mathrm{B}, l$ lsp).

Heymons [72] has investigated the posterior end of the abdomen, with a view to shewing the presence of reduced eleventh and twelfth segments. His conclusions, which will be more fully appreciated by a study of the appendages (see below), determine the eleventh segment as being represented by a single tergite

(base of the appendix dorsalis) and a bipartite sternite (bases of the cerci). If these appendages, especially in young larvae, be forced apart, three small processes ean generally be made out surrounding the anus. Of these, the mid-dorsal one, or lamina supra-analis (fig. $39 \mathrm{G}, l a$), is the reduced twelfth tergite; while the two lateral ones, or laminae sub-anales ($l a^{\prime}$), represent the bipartite stemite. Heymons has also traced these parts in the imago.

The Anal Appendages (fig. 39).
The whole question of the complieated anal appendages of the Dragonfly larva is one of some diffieulty. The famous HeymonsHandlirsch controversy has thrown a flood of light upon it. But, while Handlirseh's original determinations were undoubtedly erroneous, and Heymon's eorrections of these a very great step

Fig. 39. Anal appendages of Odonate larvae. A. Aeschna brevistyla Ramb., or dorsal view. B. The same, lateral view. c. Dendroacschna conspersa Tillyard, d. dorsal view. D. The same, lateral view. J. Epitheca bimaculata Charp., f,
 behind. H. Agrion sp. lateral view, at metamorphosis (imaginal parts shaded).
J. Agrion s., ventral view. ad appendix dorsalis; cerevs: k process from which inferior a ppendage of male imngo is developed c^{c} cercoid; supra-analis; a^{\prime} lamina sub-analis: n breaking-joint; sp lateral spine of
 original, e-J after Heymons.
in advance, yet Handlirseh's Parthian shot (in which he claims that Heymons" "cercoids" are only "re-developed or imaginal cerci") raises a niee point which is best left to individual opinion for settlement. For the purpose of clearly understanding the anatomy of this region, we shall here select for study well-grown
male and female larvac of the subfamily Aeschninae (in which the appendages are best developed).

Three large appendages can be easily seen-the same three that we have already notied in the young larva. These are the appendix dorsalis (ad), mid-dorsal in position, and the two lateroventral cerci (c). When elosed, the three together form the anal pyramid (fig. $29 \mathrm{~A}, \mathrm{~B}, a p$). These appendages are the same in both male and female larvae, and are the true larval appendages. In the Zygoptera they form the three caudal gills (fig. $39 \mathrm{H}, \mathrm{J}$). In most Anisoptera they are mueh shorter than in the Aeschninue.

From the fourth or fifth instar onwards, a second set of appendages develops. These are destined, at metamorphosis, to give rise to the imaginal appendages. In both sexes, these consist of a pair of small pointed appendages, the cercoids of Heymons, lying one on either side of the appendix dorsalis, above the cerci. They give rise to the "superior appendages" of the male imago, or the "anal appendages" of the female. Thus, in larvae of both sexes, there are five appendages, of which the three largest are truly larval; the two smallest, imaginal. Now if we examine a male Aeschnine larva, we shall see, placed directly above the appendix dorsalis, a short projecting piece overlying the base of the latter ($A-D, k$). This is the developing "inferior appendage" of the male imago. In most Anisoptera it is not distinctly separated ofl from the appendix dorsalis, and simply appears as the swollen base of the latter (e, k). As Heymons states that this appendage is really formed from the base of the appendix dorsalis, we forbear to name it here. It is, however, clear that its condition in the more archaic Aeschninae ($\mathrm{C}, \mathrm{D}, k$) raises the question of its having a separate identity, and gives further point to Handlirsch's remarks about the relationships of the cercoids with the cerci.

In the Zygoptera, the position is much simplified. Besides the three caudal gills, whieh are the true larval appendages, we can distinguish the two eercoids as small proeesses (H, c^{\prime}), either bhunt or pointed, placed as in the Anisoptera. No other process corresponding to the basal swelling l in male Anisoptera is to be found.

At metamorphosis, the following changes oecur:
(i) In all cases, the appendix dorsalis is cast off. But, in the males of Anisoptera, it leaves behind it, basally, the inferior
appendage of the male, developed from the process k. In all other cases, a rudimentary eleventh tergite is all that is left of the base (H, t_{11}).
(ii) In all cases, except in the males of Zygoptera, the cerci are cast off, leaving only rudimentary eleventh sternites behind ($\mathrm{H}, \mathrm{st} \mathrm{H}_{11}$). In the males of Zygoptera, they leave behind them the two "inferior appendages" of the imago, developed within their bases. Thus these latter are in no sense homologous with the "inferior appendage" of the Anisopterid male, which lies dorsally above the anus.

We may summarize our results in the following table:
Table of the End-segments and Appendages of the Larval Aldomen.

The ehief characters of the larvae in the various groups of Dragonflies are given in chap. xiv. The principal types are shewn in figs. 29, 33, 35-38, 40-42, which should prove more useful than verbal descriptions. The rectal gills of Anisoptera and the caudal gills of Zygoptera are dealt with in chap. rx. Since our knowledge of the internal anatomy of Odonata is ehiefly derived from a study of the larva, the internal larval organs will be found dealt with in the chapters devoted to those parts.

Fig. 41 Iarvae of Lestidae. A. Synlestes weyersi Selys ($\times 1+1$) B. Austrolestes weyerulatus Burm. ($\times 1 \frac{1}{2}$). Original, draw from photographs of living lacvae.

Iig 42 Larvae of Agrionidae. A. Argiolestes icteromelas Selys $\left(\times 1 \frac{1}{3}\right)$. B Neosticta
 billinghursti Martin ($\times 1 \frac{1}{4}$). . R. 1schunura heterosit A , which was chloroformed. drawn from photograpls

Metamorphosis (fig. 43).
The emergence of the imago from the larval skin or exuviae, usially spoken of as the "metamorphosis," is in point of fact only the eonsummation of an internal metamorphosis which begins

a considerable time before. The beginning of this change is marked by an alteration in the colour and behaviour of the larva. The colour darkens considerably, greenish larvac becoming a dull opaque brown. The larva becomes listless and refuses to feed. A rapid proliferation of the hypoderm cells, preparatory to the formation of the imaginal exoskeleton, causes the larva to appear tense and swollen. In particular, the thorax swells up so that the wing-sheaths stand vertically off from the abdomen. This is partly due to the growth of the great wing-museles, partly also to increased growth of the pleurae forcing the meso- and metanotum backwards into an oblique position. The compound eyes begin to swell, owing to rapid formation of new separate clements. The imaginal hypodermis and cutiele soon begin to shew through the larval skin, and are generally pinkish in colour. Soon the gills cease to be functional. At the same time, the thoracic stigmata, either of one or both sides, become functional, and the larva takes up a position with its head and part of its thornx protruding from the water, so as to breathe air directly.

The emergence of the imago was first described by Réaumur [229], whose beautiful account has never been excelled. Numerous subsequent writers have described and figured the process accurately in the case of an Aeschnine, Libelluline or Ayrionid Dragonfly. We have here introdueed a touch of novelty by figuring the emergence of Petalura gigantea (fig. 43), which differs from the more usual type in several very interesting points. The deseription, however, will be general, the peculiarities of Petulura and other genera being noted by the way.

As soon as the internal changes are practically complete, the larva climbs out of the water, usually up a stiek, rock, reed-stem or other suitable object. Some species elimb to a considerable height, but most of them only travel from a few inehes to a yard. Many larvae (Gomphinae and some Libellulidae) cannot climb, and just crawl out of the water up a shelving beach. They are sometimes compelled to emerge when only partly out of the water. Petalura, which forms burrows or canals in the peat or mud of small mountain-swamps (Plate IV, fig. 1), hauls itself out of its hole (A) by means of its legs, and ascends a convenient reed-stem for about a foot. It is thiekly coated with mud.

When the larva has selected its position for transformation, it fixes its tarsal claws so firmly in position that the exuviae remain clinging tightly to their support long after the imago has emerged. The larva then becomes quite motionless, while the internal swelling of parts increases (B). This swelling becomes particularly pronounced in the region of the eyes, and on the back of the thorax. The actual splitting of the skin first appears along the mid-dorsal line of the thorax, and quickly extends forward on to the head. It seems to be caused by the inseet arching its baek strongly, in an attempt to withdraw its head into the thoracic cavity. The thorax bulges out through the crack, so that the withdrawal of the head is quickly accomplished. As soon as head and thorax are free, the legs and wings are gradually withdrawn from their ${ }^{\prime}$ sheaths (c). By the time this is accomplished, the abdomen is only partly free. The inseet next usually hangs for some time with its head downwards, while the action of sun and air hardens its legs (D). As soon as these are strong enough, the inseet waves themabout in an elfort to find something to catch hold of. Nothing being usually available, it attempts to jerk itself upwards, and sooner or later succeeds, by a great effort, in seising the head of the exnviae, or the reed-stem above it (a). Next, holding firmly on to the stem, the inseet withdraws its abdomen from the larval skin, and uspally climbis a little way above it, so as to be quite free. The Gomphinae crawl straight ont of their skins, often with barely any rest for the drying of the legs.

The translomation is completed by the elongation of the abtomen and the expansion of the wings (F, a). The abdomen is nsually broal, short, and very soft when first withdrawn. In Petalura and in most Aeschninte, it is already a considerable length, and reaches its full extent before the wings have completed their growth. In other forms, the abdomen usually completes its lengthening after the wings are fully expanded. The process is, however, always correlated with the growth of the wings. There scems to be no doubt that the mechanism of expansion is a combination of a rapid pulsation of the blood with the swallowing of a large amount of air into the alimentary canal, and, partieulirly, into the crop. Thus, not only is the abdomen considerably expanded, but blood is displaced by air within it,
so that a large supply is available for pumping into the wings. These latter appear at first as small, crumpled, greenish or yellowish bags. While the blood is being forced in, the wings are alternately slightly opened and shut, thus aiding the pulsations of the heart. The expansion of the hollow bag of the wing takes place with remarkable rapidity, and is a wonderful example of quiek growth. The basal portions expand first, the wing becoming gradually smoothed out as far as a big transverse crinkle marking the nodus. The apieal half expands with great rapidity. When the wing is fully expanded-a result accomplished in many cases in less than ten minutes--the two wing-surfaces lie parallel against one another, only actually fusing along the veins. The space between the two is otherwise filled with blood plasma. The presence of this fluid gives the wings a pale greenish colour, while the additional refraction of the rays of light through the still-separated media gives a beautiful iridescence to the surface. This does not disappear until the wings are yuite dry und strong,a consummation which takes from an hour or two to several days, aecording to the state of the weather. The wings are generally protected from damage during expansion by an outward arching of the thorax, so that they hang clear of the abdomen (a).

The assumption of the imaginal colour-pattern may be either slow or rapid. In Petalura, the larval skin is very solt and unpigmented. The imaginal colour-scheme begins to shew up even before emergence. By the time the ablomen has become filly extended, the coloration is very vivid, rich brown and pale yellow. As the insect matures, the eolours become duller, the yellow markings finally turning greyish, or merging into the darkened brown. Many Gomphinae assume a bright black and yellow colour-pattern with great rapidity, the yellow later on turning to greenish or to yellowish brown. But, in most cases, the colourpattern is only slowly assumed, the imago appearing at first of a peeuliar pinkish fleshy tint. Brilliant heliochromes, such as bright blues and reds, are often not developed for weeks. An imago which has not developed its mature colouring is called a teneral form. Teneral males usually resemble their corresponding females in colour.

The times given for the different stages of metamorphosis in
fig. 43 are perhaps a little shorter than usual for most Dragonflies. The times vary not only with different species, but also according to the strength of the sun's rays, temperature, humidity, and also for looth local and individual causes in each separate case. Most Dragonflies emerge at or near dawn. Dragonfly larvae whieh have been previonsly disturbed, and have retreated again to the water, generally emerge about. midnight, as do also some of the large Aeschnince habitually. Many Dragonflies emerge just before. or even during thunderstorms. The most rapid emergence ever witnessed by the author was that of a large number of larvae of Hemigomphus heteroclitus just before a storm. The imagines appeared with great rapidity, crawling straight out of their exuviae. Within ten minutes, many were fully coloured and expanded, and made off quickly into the forest before the stom broke.

An examination of a cast larval skin shews elearly how the linings of the great tracheal trumks are withdrawn. The dorsal intimae are withdrawn through the mesostigmata, the viscerals through the metastigmata. They are to be seen projecting from the thoracie split in a twisted and shrivelled manner. The ventral intimace are withdrawn through the eighth pair of abdominal spiracles, and can be seen lying tightly stretehed along each side of the abdomen, just above the pleurae. From them, branches proceed to each of the other seven pairs of abdominal spiracles. All the spinacles beome fully linctional at netamorphosis.

At metamorphosis, as at eacle edysis, the whole of the stomodacal and proctodacal linings are cast off, and shrivel up. The dental folds of the gizzard, which are thicker and more resistant, may often be found within the alimentary eanal of the freshlyemerged imago. The gizzard itself becomes reduced in size, and often loses all its teeth. Non-functional remnants of the rectal gills of Anisoptera remain over in the imago.

CHAPTER V

THE ALIMENTARY AND EXCRETORY SYSTLMMS

As the alimentary and excretory systems of the Dragonfly are closely related, both morphologically and physiologically, we shall deal with them together, in a singlc chapter.

The Alimentary Canal (fig. 44).
In the Dragonfly, as in all insects, the alimentary canal is formed of three main regions. The most anterior of these (fore-gut) is formed as an invagination of the ectoderm in the region of the mouth. Hence its epithelium is continuous with the hypodermis around the mouth, and is covered internally by a fine chitinous lining or intima, corresponding and continuous with the cuticle. In like manner, the most posterior region (hind-gut) is a similar invagination of the cetoderm, and its epithclium is similarly covered by a fine internal chitinous intima. Separating these two regions lies the mid-gut or mesenteron ("chylific stomach," "ventriculus") formed from the endoderm. In the Dragonfly it is the mid-gut alone which carries on the processes of digestive secretion and absorption. The fore-gut simply serves to prepare the food for digestion, while the hind-gut

Fig. 44. Alimentary canal of Aeschna brevistyla Ramb. A. Imago
 Hind-gut of imago $(\times 3)$, to shew
remnants of rectal gills $\left(b r^{\prime}\right)$. an remnants of rectal gills $\left(b r^{\prime}\right)$. an
anus; bc buccal cavity; br brananus; be buceal cavity; br bran-
chial basket; cr erop; 9 gizzard ; il ileum; mg mid-gut; mp Malpighian tubules; ces oesophagus; pa pre-rectal ampulia; r rectum sg salivary glands; si short int testine; v vestibulc. Original. is concerned with the removal of the waste left over.

The boundary between fore and mid-gut is marked by the zone of invagination of the gizzard, which projects into the anterior end of the mid-gut(fig. 46). The boundary between the mid and hind-gut is marked liy the entry of the Malpighian tubules, which open into the alimentary canal at the extreme anterior end of the hind-gut. The following table shews the principal divisions of the alimentary canal in the larva and innagn:

Region	Division	In Larva	In Imago
Fore-gut	$\left\{\begin{array}{l} \text { Buccal cavity and } \\ \text { Pharynx } \\ \text { Oesophagus } \end{array}\right.$	$\left\{\begin{array}{c} \text { Undivided, without } \\ \text { salivary glands } \end{array}\right.$	$\left\{\begin{array}{l}\text { Undivided, with } \\ \text { salivary glands }\end{array}\right.$
	$\left\{\begin{array}{l} \text { Crop } \\ \text { Gizzard (or Pro. } \\ \text { ventriculus) } \end{array}\right.$		
Mid-gut	(Annular Zone -Digestive \%one		
	$\int_{\substack{\text { Small Intestine or } \\ \text { Ile }}}^{\substack{\text { In }}}$	Short Intestine \{Pre-rectal Ampulla	Undivided
llind-gut	$\left\{\begin{array}{l}\text { Rectum } \\ \text { Rnus }\end{array}\right.$	$\left\{\begin{array}{c} \text { Branchial Basket }{ }^{1} \\ \text { Anal Chaniber or } \\ \text { Vestibule }{ }^{1} \end{array}\right.$	Undivided

The relative lengtlis of these parts in larva and imago differ very greatly, chicfly because of the difference in the lengths of the segments containing them. Thus, for example, the mid-gut, normally contained in abdominal segments $3-(i$, is the shortest region in Anisopterid larvac, but the longest in all imagines (cf. fig. 44 A and B).

As our present knowledge of the alimentary canal in Dragonflies is principally derived from a study of the larva, and as its structure also presents more points of interest in the larva than in the inago, the following account will be understood to apply chiefly to the larva. The more important differences in the imago are noted at the end of caeh section.

The Fore-Gut.

1. Buccal Cavily and Pharynx.

The mouth-parts, which properly form part of the digestive system, in so far as they prepare the food by chewing, have been already dealt with (chap. II). Within the month is a wide undivided cavity, bounded above by the labrum and epipharynx (p . I_{4}), below by the labium and hypopharynx (p. 17), and laterally by the jaws. The
hypopharynx stands up in the cavity like a tongue, but appears to be an organ of toueh rather than of tastc. The epipharynx, on the other hand, is only slightly convex, and does not project appreciably into the eavity. The base of inscrtion of the hypopharynx lies far back on the labium. Quite close to it, in well-grown larvae and in imagines only, opens the duct of the salivary glamds.

The Salivary Glands (fig. 45) have been investigated by N. Poletaieff [122, 123] and Bordas [12]. They are two in number, very small, and phaced laterally in the prothorax, on cither side and close to the oesophagus. Each complcte gland consists of a large number of tiny acini or grape-shaped glands (fig. 45 D), ranging

Fig. 45. Salivary glands. A. Libellult depressa Linn. n. Platycnemis pennipes Pallas. c. Agrion puella Linn. D. Lestes viridis Vand. r. Calopteryx
virgo Linn., reservoirs, ac acini; b posterior border of prothorax; bm Imse. virgo Linn., reservoirs. ac anini; b posterior border of prothorax; bm hnse-
ment membrane; c lumen of acinus; ep epithelium of acinus; g prothoracie nerve-ganglion; hyp hypopharynx ${ }^{\text {a }}$ oe ocsophagus; wh salivary duct; sg salivary gland; $s p$ spiral ridge of intimn of duct; sr salivary reservoir. In p the top left-hand acinus is shewn in section, and only a small portion of the whole gland is shewn, much enlarged. After Bordas.
from fifty in the smaller Zygoptera to over one hundred and fifty in the Anisoptera. The acini are usually broadly ovoid or pear-shaped. In Agrion (c), however, they arc elongated. Each is lined internally by a single layer of secreting cells (ep), hexagonal, and resting on an outer basement membrane (bm). A delicate chitinous intima (not visible in the figure) lines the lumen of the acinus internally. This is continued into the narrow mouth or duet of the acinus, and beyond into the main salivary duct (sd), where it becomes raised up into a spiral ridge (sp) resembling the spiral thread of tracheae. The salivary ducts are narrow, and pass forwards, one on cither side
of the oesophagus, towards the base of the hypopharynx. Just before reaching this, cach duet dilates into a salivary reservoir ($\mathbf{E}, s r$). Finally, the two ducts unite immediately in front of the reservoirs, and enter the pharynx by a single median opening.

The salivary glands of the Dragonfy are pecular the course of small size, (b) in having the incre salivation is of more importance, and the glands consequently more highly developed (as in the Cockronch), it is usial for the reservoirs to be developed apart from the ducts of the glands, with special duets of their own.

The salivary glands are usually confined to the prothorax. In Lestes, however, they pass backwards into the mesothorax, and become united across the oesophagus into a single mass.
2. The Oesophagus (fig. 45).

The pharynx passes posteriorly into a very narrow tube, the oesophagus. This tube passes upwards and backwards between the brain and the suboesophageal ganglion, as explained on p. 15, and leaves the head via the upper division of the posterior foramen. It then passes back through the microthorax and the whole length of the thorax to the base of the abdomen, which it enters for a short distance before expanding into the crop.

The oesophagus is wrinkled or ridged internally by a number of fomgitudimal folds. Histologically it consists of the following layers: (II) a fairly strong resistant cuticle or intima, lining the lumen internally, (b) a layer of eabical or slightly flattoned epithelual cells, which secrete the intima, (c) an incomplete internal muscular tupe formed of longitudinal fibres, collected into cords running along the courses of the longitudinal folds, (d) a complete and fairly strong external mascular tunic, formed of transverse circular fibres. At certain points along the course of the oesophagus, the circular fibres are strengthened and arranged in a double layer, so as to form a series of wak sphincters for contracting the lumen [1].

3. The Crop.

This is a large dilatation of the oesophagus, occupying part of the first and second abdominal segments in the larva, but usually the whole of segments 1-2 and part of 3 in the imago. Histologically
it is an undifferentiated portion of the ocsophagus, with the mnscular tunic slightly stronger, and allowing of greater dilatation. Posteriorly it is closed off from the gizzard by a strong sphincter. At metamorphosis, it becomes greatly dilated with air, as described on p. 97. In those Anisoptera in which the abdomen is swollen basally, the crop remains distended with air for a long time, thus allowing the swollen contour of the abdomen to become fixed and hardened.

4. The Gizzard (figs. 46, 47).

In the larva, the gizzard lies in the sccond abdominal segment. It is a fairly wide bottle-shaped chamber, very highly specialized. If the gizzard be slit open and cleaned, there will be seen, arranged towards the posterior end of the organ, a number of raised yellowish longitudinal areas, carrying teeth. These are the dental folds or fields. In Dragonflies they are nearly ahways either four, eight or sixteen in number. The number of the folds and the structure of the tecth are points of considerable systematic importance, which have been carcfully studied by Ris [131] and Higgins [74].

The structure of the gizzard may

Nis. 46. Invagrination of gizzard into mid-gut, in larva of Cordulephya mygmarra Sclys $(\times 9)$. Origimal,
cedar-oil preparation. be comprehended by a glance at a transverse section through the recrion of the tecth in any highly developed type, such as Cordulephya (fig. 47 в). We sce that the epithelium and cuticle remain weak and undifferentiated between the dental folds. Bencath the teeth, however, the cpithelinm becomes raised up into a strong ridge of tall columnar cells (ep). The cuticle is immensely thickened, and attached to the epithelium. in many places by numerous fibrillae ($f i$). Just above the columnar epithelium the cuticle is thick, soft and transparent (being apparently newly-formed). Further away, it forms a distinct darkened layer, which passes finally into the strong dark brown external layer of the teeth (t, t^{\prime}). The whole outer layer of cuticle, including the teeth, is cast off at each ecdysis, and a fresh layer (represented by
the soft inner cuticle in fig. 47 B) takes its place, becoming quickly hardened [145].

The muscular tunic of the gizzard is cxeessively strong, owing to the enormons development of the circular muscle-fibres (cm). The longitudinal fibres remain weak, forming only eight or sixteen separate strands ($l m$) placed externally to the cireular tunic. The latter consists of several layers, greatly increased and strengthened below the dental folds, where the fibres run directly inwards towards the cutiele. By insinnating themselves between the columnar cells,

Fig. 47. T.s. through larval gizzard. A. Synlestes weyersi Selys ($\times 80$). B. Cordulephya pugmuear Solys ($\times 4 \mathrm{~S}$). cm circubar musele; cur cutielg; $c u^{\prime}$ soft cuticle; l, t^{\prime} teeth. Original.
these fibres become attached directly to the soft innereportion of the cuticle. Such an arrangement is very exceptional, and points to the powerful nature of the operations of this organ.

For purposes of comparison, a transverse section through the less highly specialized gizzard of Synlestes is shewn in fig. 47 A .

The Dentition of the Larval Gizzard (fig. 48).

In the oldest type of gizzard, the dental folds are narrow and clongated, bearing numcrous small teeth, all of equal size, and pointing backwards towards the posterior end. The folds are
arranged into equal numbers of larger and smaller kinds, plaeed alternately. These are known as major and minor folds respectively. Thus the gizzard has a distinet radial symmetry. Sixteen appears to have been the original number, eight being major folds, and eight minor. A reduction to cight, and then to four major folds took place in some forms. In the Anisoptera, four is the regular number, except in the Petalurinae, where there are eight. In the Zygoptera, sixteen is the usual number, but there are many cases of reduction to eight.

Fig. 48. Dental folds of larval gizzards in Odonata. A. One major and one minor fold from gizzard of Diphlebit lestoundes Selys. B. The wame from Caliagrion billinghursti Martin. C. The same from Isehnaru heterostictu
Burm. D. The same from Synlestes weyersi Selys. F . The same from AustroBurm. D. The same from Synlestes weyersi Sclys. E. The same from Austrolestes analis Ramb. F. Complete dentition of Petalura giytuten Leach. a. Two folds from Hemigomphus heteroclitus selys. H. The same from Austroaeschua multipunctata Martin. J. The same from Anax pumensis Burm. k. The same from Cordulegaster annulatus Latr. L. The same from Cordulephya
pygmaea Selys. K. after Ris; the rest original, chitin preparations.

Many beautiful specializations of the teeth may be briefly noted. In the Zygoptera, the arehaic sixteen-fold gizzard is found (with occasional reductions to fourteen or less, and in a few cases to cight) throughout the Calopterygidae and all the Agrionidae, except the Platycneminae and Agrioninae, where the minor folds become cxcessively reduced, while the major folds develop the specialized dentition shewn in fig. 48 c . In the Lestinae therc are only eight folds, four
major and four minor, the former having a specialized dentition of three or five very large teeth, with very numerous smaller ones (E).

Amongst the Anisoptera, the Petalurinae (F) have a very reduced archaic dentition of cight folds, each carrying only from one to six small teeth. The Gomphinue (G) have four large (major) folds, of the original elongated form, bearing numerous undifierentiated teeth. In the Aeschninue (H, J) there are four large folds, each of which has become shortened, and carries a few strong teeth close together. The tendency in this subfamily is towards the accumulation of a few tecth on a raised central area, forming a kind of molar. There is also a slight diffcrenee of level between the two folds on one side of the gizzard and those on the other, the one pair lying more anteriorly.

In the Corilulegastrinae (κ) there are four folds, two on one side lying considerably more anteriorly than the other two. A single large tooth, in the form of a pyramid on a rather flattened triangular base, stands up from each'fold. The apex of the tooth is very sharp, and somewhat curved. The two posterior cdges are strongly denticulated. This form of gizzard is, of course, no longer radially symmetrical, but exhibits a distinct bilateral symmetry, due to the difference of level in the two pairs of folds. The gizzard of the Libellulidae (t) is essentially of the same type, but the more posterior pair of folds has become somewhat altered. The denticulation of the posterior ridges is lost, the apical tooth is strong and blunt, and a second sharper tooth has appeared on the anterior edge, not far from the summit.

In the imago, the gizzard is a eomparatively small, weak structure, apparently merely a survival of the larval gizzard in most forms, without any real functional use. The dentition is either completely lost, the folds being simply areas of slightly thickened chitin roughened with numerous fine points, or clse it is reduced to a simpler form. The reduction is least in Calopterygidae and Agrionidae. In the Lestidae and the Anisoptera, the dentition is quite lost in the imago.

Using Higgins' notation [74], a major fold is denoted by F, a minor fold by f, followed by the number of teeth on the fold. Where the teeth arc of two kinds, a'denotes larger, a" sinaller teeth. Very numerous teeth arc denoted by n. If each fold is divided into two distinct tooth-bearing regions, a fractional device is used, the
numerator denoting the more anterior region, the denominator the more posterior. The number of folds is denoted by a multiplying factor. We can now exhibit the eharacteristics of the gizzards in the varions groups, by means of the following table, placing the Zygoptcra ${ }^{1}$ first:

Group Zygortera	Symmetry	No. of folds	Shape of folds	Dental Formula
1. $\left\{\begin{array}{c}\text { Calopterygidae } \\ \text { + Agrionidae } \\ \text { (except 2) }\end{array}\right.$	\} Radial	$16(8 \mathrm{~F}, 8 \mathrm{f})$	Elongated	$8(F 7-20, f 3-10)$
2. $\left\{\begin{array}{l}\text { Platycneminae } \\ + \text { Agrioninae }\end{array}\right.$	Radial	16 (8 F, 8f)	Elongated	$8\left(F^{\frac{10-20}{2^{\prime}+n^{\prime \prime}}}, f \frac{2-10}{n^{\prime \prime}}\right)$
3. Lestinae	Radial	$8(4 F, 4 f)$	Dental area reduced	$4\left(F 33^{\prime}-5^{\prime}+n^{\prime \prime}, \int 0^{\prime}-l^{\prime}+n^{\prime \prime}\right)$
4. Synlestinae	Radial	$8(4 F, 4 f)$	Mueh reduced	$4\left(f 3^{\prime}-8^{\prime}+0^{\prime \prime}-1^{\prime \prime}, f 2^{\prime \prime}-4^{\prime \prime}\right)$
Anisoptera				
5. Petalurinae	Radial	8	Much reduced	$8(f 1-6)$
6. Gomphinae	Radial	$4(F)$	Elongated	4 (Fu)
7. Aeschninae	Slightly bilateral	$4(F)$	Of molar form	$(2+2)\left(r^{\prime} 2-8\right)$
8. Cordulegastrinae	Bilateral	$4(F)$	Large pyramids	$(\underline{2}+2)\left(F 1^{\prime}+n^{\prime \prime}\right)$
9. Libellulidae	Bilateral	$4(F)$	Large pyramids	$2\left(F 1^{\prime}+n^{\prime \prime}\right)+2\left(F 2^{\prime}\right)$

N.B. In 7-9, bilateral symmetry is denoted by separation of 4 into $\mathbf{2}+\boldsymbol{2}$. In 8-9, $n^{\prime \prime}$ indicates denticulation of the posterior edges of the pyramid.

Function of the Gizzard. In the less specialized forms, the gizzard appears to act merely as a strainer, and not as a triturator of the food. The great development of the teeth and muscles in the higher forms points to the definite assumption of a triturating function, though this has been denicd by some authors. The adoption of bilateral symmetry, whereby one pair of folds could work against one another at a diffcrent level, and without interference from the second pair, is strong evidence of a triturating function in these forms. The "molars" of Aeschninae in particular scem to be definitely formed for trituration, but of very little use for straining. The presence of a mass of elastic connective tissue beneath these "molars," as also beneath the pyramidal tecth of Libellulidae, is strong evidence in the same direction: We might add that the

[^5] phaea has 18 folds.
gizzard is probably also of use in compressing the triturated particles into a lorm suitable for passing into the mid-gut.
l'osteriorly, the gizzard narrows to a short portion which, histologically, elosely resembles a part of the oesophagus. This is deeply sumk into the anterior end of the mid-gut, the arrangement suggesting the top of a "safety" ink-pot. It is known as the oesophageal valve.

The Mid-gut (fig. 49).

The mid-gut of the Dragonfly, both in the larva and imago, is execptional in possessing no cacea. It is very clearly marked off from the gizzard above, and from the small intestinc below, the change in the character of the epithclial cells taking place quite suddenly along a definite transverse plane. The following description applies to the structure and functions of the mid-gut in the lavva [98, 187].

The mid-gat is gencrally of a distinct yellowish colour, owing to the prosence of yellow pigment granules in its epithelial cells. Anteriorly there is a short annular zone, which takes no part in the process of digestion. The cells of this region remain normal (i:e. they resemble the cells of the other part of the mid-gut during the period of rest). Their function is simply to elaborate the anterior end of the peritrophic membrane (sec below).

The rest of the mid-gut is made up of the following layers:
(a) A layer of mostly large, columnar epilhelial cells, bounding the intermal avity. These cells have large spheroidal nuelei (Λ, mu). The yellow pigment granules ($y p$), already mentioned, oceur towards their inner or free border. This free border ends in a peculiar delieate lamina (ib), destined to form part of the peritrophic membrane. Therc is no chitinous intima. Externally, the epithelial cells rest on a fine, delicate, but distinet basement membrane (bm).
(b) A weak tunic of circular muscle-fibres (cm), external to the basement membrane.
(c) A still weaker incomplete tunic of longitudinal musclefibres ($l m$), forming a loose investnient external to (b).

In order to understand the very remarkable physiology of digestion in the Dragonfly larva, and the extraordinary changes undergone by the cells of the mid-gut during the process, it must
be borne in mind that the normal state (A) represents a state of fasting. This is broken at irregular intervals by large and rapid meals, when the larva is fortunate enough to secure a victim. The larva can fast for long intervals without any danger of starvation'. In fact, as will presently be seen, the longer the larva fasts, the bigger becomes its capacity for dealing with the next meal when it does cventuate.

Fig. 49. Part of epithchim of midd-gut in larva of Aeschanep. (\times :330). A. Huring period of rest. as. During period of preparation. ©. During period of activity lamina of epithelium ; basements of secretion; $c m$ cireular musele; ib internal lamina of epithelium; $l m$ longitudinal muscle; $n s$ nests of developing eells; $n u$ nueleus of epithelial cell; $p m$ peritrophic membrane; $y p$ yellow pigneat
granules. After Voinov. granules. After Voinov.
We may divide the process of digestion into three periods, (i) the normal period, or period of rest, (ii) the period of preparation, and (iii) the period of activity. -
(i) The period of rest. Fig. 49 a shews the appearance of the cells of the mid-gut, after the completion of digestion of a heavy meal. We haje already described this state. We shall only add that, here and there, just within the basement membrane, there

[^6]ean be secn small nests ($n s$) of developing cells, destined to take the places of those destroyed during the period of activity. These nests were for a long time regarded as being of a glandular nature, and were termed "crypts."
(ii) The period of preparation (13). After a sufficient period of rest, the larva begins to prepare for another meal. This is marked by the begimings of a distinct swelling-up of the epithelial cells, owing to the claboration and storage of digestive ferments within them. The cells become distinctly more elongated, their nuclei sharing in this process. The digestive products collect at the internal or free ends of the cells, in the form of "balls of secretion" (bs). These push the internal border away from the rest of the cell. This border is then seen to consist of a fine continuous membrane, perforated by numerous very minute pores. As the balls of secretion increase, this membranc is pushed quite clear of the cells. It is then called the peritrophic membrane ($p m$). Its function is to envelope the food masses reccived from the gizzard, so as to prevent injury to the delicate epithclium of the mid-gut. If the arrival of the meal is delityed, claboration of the digestive ferments continues unabated, so that, in the case of a larva that has been fasting for two or three weeks, the mid-gut may be swollen to three or four times its original size, as shewn in c .
(iii) The period of activity (c). When the food reaches the mid-gnt, the epithelial cells are discharged. Some are thrown of whole, with murleus and contents completc. Others burst and cast out huge balls of secretion, some of which eontain only liquid farments, while others contain the yellow globules originally present in the cells. Thus the yellow colour of the mid-gut is lost after a heavy ineal. The cells which are diseharged whole mix with the food and are lost altogether. Those which only burst retain their mudei, and are capable of returning to the quiescent stage, and of reforming their contents again and again, until finally they too become thrown ofl complete. The digestive ferments may be forced up to meet the food while it is still in the gizzard.

Regeneration of the Epithelium. The loss of so many cells during the period of activity is quiekly repaired on subsidence by the activity of the nests. Their nuelci and cytoplasm divide rapidly, forming numerous cells which move outwards from a common centre,
taking the place of the lost cells. These new cells quickly develop a new internal lamina to take the place of the lost peritrophic membrane. The latter surrounds the food-mass, and remains around the faecal pellets after all the nourishment has been extracted.

The Process of Absorption. Voinov [187] shewed conclusively, not only that it is the cells of the mid-gut alone which produce the digestive ferments, but that these same cells can and do catry on the process of absorption of the resulting products at one and the same time. The cells of the mid-gut mature in longitudinal bands separated by nests of younger cells. By feeding the larva with methylen blue, the mid-gut was made to shew blue longitudinal stripes along the lines of the mature cells, with clear areas in between. By use of the same reagent, Voinov also shewed that, if the blood becomes overloaded with nourishment, the cells of the mid-gut can absorb nourishment from without, and pass it back into the lumen for temporary storage. It may be inferred that they can deal similarly with impurities in the blood, if the latter becomes surcharged with them. Voinov also shewed, by a clever use of various colouring matters, that the cells of the mid-gut can exercise the power of choice, absorbing certain kinds and rejecting others.

The Peritrophic Membrane. This peculiar formation has given rise to much discussion. According to Voinov, the cytoplasm of each separate cell claborates an independent internal filament. When secretion begins, these filaments fuse into a single complete lamina, which is cast off, as already described, in the form of the peritrophic membrane. The cells then proceed to form a new set of filaments. Thus we sce that the food pellets of the larva are only at first slightly shorter than the length of the mid-gut, each being enclosed in a complete peritrophic mombranc, as the result of a single act of digestion. After the extraction of nourishment, a considerable contraction, of course, scts in, so that the cjected faecal pellets are considerably shorter.

It should be added that other observers deny the formation of the peritrophic membranc in the manner described by Voinov, and hold that it is formed entirely from the anterior annular zone, in the form of a gradually descending slecve.

Mid-gut of the Imago. This differs from the mid-gnt of the larva in being excecdingly long (fig. 44) and in varying, during the
process of digestion, in length rather than in width. Thus it may extend sometimes only from the fourth segment to the sixth, while at other times it is somewhat wider, and reaches from the beginning of the second to the end of the seventh segment. It is always widest at its anterior end, where it receives the invaginated gizzard. For the rest of its length it is practically cylindrical. The physiology of digestion has not been closcly studied, as in the larva. We know, however, that the imago feeds more often and in smaller quantities than the larva does. Hence we may conclude that the processes of digestion are not marked by such violent changes as in the larva, though they are of the same typc. The peritrophic membrane is evidently not thrown off along the whole length of the mid-gut after each meal, since the faecal pellets are comparatively short and numerous.

The Hind-gut.
 1. Small Intestine or Ileum.

The mid-gut contracts sharply at its posterior end, to open by a narrow orifice into the anterior portion of the hind-gut, known as the small inlestine. The extreme posterior end is closed by a strong sphineter muscle, which effectively prevents the passage of any impmrities from the hind-gut back into the mid-gut. Immediately below this muscle lies the zone of entry of the Malpighian fubules (p. 117). These tubes do not enter separately, but unite into bundles of five or six, forming a common conduit. Thesc conduits become excessively narrowed, and open into the intestinc by a ring of minute porcs. Below this zone, another splincter muscle is strongly developed.

In the larva, the antcrior portion of the small intestine is narrow, and may be called the short intestine. The posterior part is dilated into a spherical bulb, called the pre-rectal ampulla [145]. The differences between these two portions appear to be only those of degree, and not of kind. In each case we note the return, for the most part, to the familiar formation already described for the fore-gut, and consisting of the usual four layers of cuticle, flat epithelium, circular muscle tumic and weaker longitudinal muscle tunic, from within outwards. The latter tumic is arranged in six bands. In the short intestine, however, nearly the whole of the ventral half of the epithelium is
r. I.
swollen up into an immense pad. In the pre-rectal ampulla, the same pad is present, but is divided into two parts projecting latero-ventrally into the cavity of the ampulla, one on either side (fig. 44, pa) and separated ventrally by a wide zone of ordinary flattened eells. Thesc pads are easily seen from without in the intestinc of the dissected larva. They are formed of high columnar cells, remarkable in having their nuclei all placed close under the cuticle, at the inner ends of the cells (fig. 50). Strong tracheal branches penetrate into these pads on either side.

The function of the pads is not known for certain. In the pre-rectal ampulla they are extremcly mobile, and can be protruded into the cavity, or retracted from it, by strong muscular action.

In the imago, the small intestine (fig. $44 \mathrm{~A}, i l$) forms a single complete whole, intermediate in form between the short intestine

Fig. 50. Lateral sagittal section through epithelium of one of the pads of the pre-reetal ampulla, from larva of Libellula ($\times 50$). After Sadones.
and the pre-rectal ampulla of the larva. It is of molerate lengrth, and shews the six longitudinal muscle-bands very elearly developed. The ventral pad appears to be divided into two portions, not sol lit apart as in the pre-rectal ampulla.

The small intestinc ends postcriorly with a strong sphincter, which is capable of closing it off entirely from the rectum.

2. The Rectum.

This portion of the hind-gut is of very small extent in the imago, occupying less than the last three segments of the abdomen, and is practically of the same structure throughout. In the larva it is considerably longer, extending from the seventh segment back wards.

It is in the larvae of Anisoptera that the rectum becones highly specialized, and it is in thesc also that our knowledge of this part of the hind-gut is most complete. In this suborder the larvae breathe
by means of internal trachcal gills, developed in the anterior portion of the rectum, which is greatly dilated to form a branchial basket (fig. Ah B) of great complexity. As this organ belongs physiologically to the respiratory system, we have dealt with it fully in chap. Ix. We shall only remark here that the gills are projections of the wall of the rectum, involving the cuticle or intima, which eovers them completely, and the epithelial cells, which become specialized for their respiratory function by fusion into a complete synoytium. An enormons number of traeheal capillaries ramify in these gills. The circular museular tunic remains complete, except for penetration of it by tracheae. The external longitudinal muscles are arranged in six bands, as in all other portions of the hind-gut. Reduced remnants of the gills persist in the imago (fig. 44, $b r$), but the basal pads (p. 188) are cast off [109].

Fig. 51. T.s. through one of the three rectal pads, from larva of Aeschna brevistyla Ramb. ($\times 210$). Original.

The hinder portion of the rectum, consisting of about one-third or less of its colire longth, remains molifierentiated, and exactly resembles the same portion in the Zygopterid larvac. This part, in the Anistpturial larvae, may be termed the mestibule, or stercorch chamber (lig. 44 s). In the Aeschnidue the branchial basket narrows posteriorly, and passes insensibly into the vestibule. In the Libellulidae, it strong sphincter musele definitely separates the two. A posterior sphincter, in both cases, closes the vestibule just in front of the anus.

The epithelium of the vestibule carries anteriorly three longitudinal pads, formed usually of high columnar cells (fig. 51). These pads lave for long been known as the rectal glands. As they are obviously not of a glandular mature, we follow Sadones [145] in rejecting this term, and shall adopt the term rectal pads. We know nothing certain of their functions, any more than we do concerning the pads in the small intestine.

$$
8-2
$$

In the larvae of Zygoptera, the rectum carries, throughout its entire length, three longitudinal pads of high columnar cells, closely resembling those found in the vestibule of Aeschna (fig. 51). One of these lies mid-dorsally, the other two latero-ventrally. Anteriorly, they are separated by short portions of flattened pigmented epithelium. Posteriorly, these pigmented portions become larger, and project as folds into the rectal cavity, being supported beneath by a mass of cells derived from the fat-body, and carrying tracheae. Folds closely similar to these separate the rectal pads in the vestibule of Aeschna.

In the larva of Calopteryx, Dufour and Hagen both recognized by dissection, long ago, the presence of threc longitudinal folds, which they considered to be gills. In sections of the rectum of this larva, these folds are seen to be the threc pads described above, but somewhat specialized in form. The epithelium is only about half as high as that shewn in fig. 51, though otherwise closely similar to it. The pads are thrown out into the rectal cavity in the form of three long double folds or loops, which overlap one another at their free ends. Calvert has recently discovered very similar folds in the rectum of Thaumatoneura.

It would appear that Zygopterid larvac do not rely wholly upon their caudal gills for respiration, but use the rectum as an auxiliary respiratory chamber. The rectal pads or folds are not, however, true tracheal gills, and must be carcfully distinguished from the highly specialized structures found in the rectum of Anisopterid larvae, since in no case are they known to possess any specially developed tracheal supply. Their action must be rather that of blood-gills, liberating carbonic acid gas from the blood into the rectal water supply, by diffusion, and recciving air in exchange.

In the imagines of all Dragonflies which I have so far examined, the rectum contains six large longitudinal pads, one being mid-dorsal, one mid-ventral, two latero-dorsal, and two latcroventral. These are homologous with the so-called "rectal glands" of other insects. Their epithelium closely resembles that seen in fig. 51. Curiously enough, the three pads which are not developed in the larva (viz. the mid-ventral and the two laterodorsals) tend in the imago to be more strongly devcloped than
the other three. There is also a tendency for cach pad to become constricted into two parts, inid-longitudinally, so that the rectum may shew, apparently, in transverse section, twelve pads closely pressed together.

The Anal Region. The anus is closed extcriorly by three small valves, representing the reduced parts of a twelfth segment, and known as the laminue anales (p. 32). Internally, the anal end of the hind-gut is furnished with six radiating dilatator muscles, inserted bctween the posterior ends of the rectal pads. Besides this, when a separate vestibule is present, the anus may be closed off by strengthening of the circular muscle tunic into a sphincter.

The Excretory System.

1. The Malpighian tubules (fig. 52).

Thesc are the principal organs of excretion in all insects. In the imago of the Dragonfly, as well as in all exeept the first few larval instars, they are very numcrous, ranging from fifty to seventy in number. The newly hatehed larva las only three; but, at caeh instar, an increase in the number takes phace, so that they soon become numerons.

The structure of a Malpighian tubule is very simple. Wach is a slender, very elongated tube, of about 0.05 mm . diancter. It lics freely in the haemocoele, and is thus bathed by the blood on all sides. The free end is quite closed. A small trachea accompanies each tube, and supplies

A.

Fig. 52. Malpighian tubule from
 ($\times 167$). s. Longitudinal section. B Transverse section. bm basement membrane ; $c n$ canal; ex excretory cells; $n u_{4}$ numleus of same; p peritoneal investment; $n u_{2}$ nucleus of same. Original. its cells with oxygen, by ramıfications over its outer surface. A delicatc peritoneal investment (p) forms the outcr sheath of the tube. Next to this fine cellular layer, there is an excecdingly delicate basement membrane (bm), very difficult to detect. Within this are arranged the excretory cells (ex), of somewhat irregular polygonal form, bounding a narrow central lumen or canal. The cells are large, with conspicuous nuclei $\left(n u_{1}\right)$. In transversc
sections, usually only from three to five cells are met with in the case of the Dragonfly, though six or more appears to be the usual number in most insects. The fine chitinous intima, which bounds the lumen in some inscets, has so far not been scen to exist in the Dragonfly.

2. Physiology of Excretion.

It is the function of the Malpighian tubules to extract nitrogenous and other waste products from the blood, in the form of wric acid and other compounds. Griffiths [59] has conchusively shewn this in the case of the Dragonfly, both by obtaining the crystals direct from the tubules, and also by the more delieate murexide test. It is supposed that the crystals are got rid of simply by being passed down the tubules into the hind-gut. The passage even of very minute crystals down the irregular eanals, in the casc of the Dragonfly, would be a matter of considerable difficulty.

The fat-body plays a sccondary part in the physiology of excretion, by reason of its general function as a store-honse for excess products. When the blood is so overloaded with impurities that the Malpighian tubules cannot adequatcly deal with them, the fat-body comes to the rescuc by storing up the excess in cortain of its cells. These impurities are later on given out again, when the tubules are able to deal with them.

Voinov [187] has shewn that the cell-wall of the heart can remove foreign matter from the blood, and pass it to the haemococle. Such an action does not really rid the blood of impurities, but only serves to clear the passage of the heart.

The Fat-body.

The fat-body is more conspicuous in the larva than in the imago. In neither, however, does it form so large a mass as in the majority of insects. It is a lobed mass of a whitish or ycllowish colour, forming a kind of sheath or envclope for the various internal organs. It is especially noticeable in the region of the heart, the alimentary canal, the large tracheal trunks, and more particularly the gomads.

The fat-body of the Dragonfly appears to consist of only two kinds of cells, known as adipose cells and pericardial cells. The uric-acid cells and bactericidal cells found in Orthoptera arr absent. or at any rate have not yet been noticed.

The adinose cells are very numerous, forming almost the whole bulk of the fat-body. They are of the usual type, closely packed together, so as to assume an irregular polygonal form, but appearing roumd and distended wherever their surfaces are frec. The nuclens is large and rounded, and the cell itself filled to overflowing with a store of fatty matter, held betwcen the meshes of a fine network of cytoplasm. In all sections previously treated with soap-alcohol, this fat is completely extracted by the reagent, leaving a very characteristic structure, the "skeleton" of the fat-cells (fig. 53, fb).

The pericardial cells (fig. 53, pc) are large oval or rounded cells of a brownish or yellowish colour, and frequently having two large nuclei. They stain darkly, and are not diffected by soap-alcohol. They are collected in two small bands along each abdominal scgment, close together and just below the heart. Wach band contains only a few cells, and not more than three or four are cut in any given section. They appear to be

Fig. 53. t.s. through region of heart in fifth abdominal segment of half-grown larva of Synlestes weyersi Selys ($\times 100$). $j b$ fat-body; h leart; $p e$ pericardial cells; $t r$ trachca. Original. supported by two loops of connective tissue, which partly close them off into two parallel chamels hencath the heart. They frequently contain brown or yellow excrement received from the blood, which collects in small crystals, usually towards the ends of the cells.

The fat-body has been shewn to arise from the mesoderm, by differentiation of cells in the walls of the coelomic sacs. When the hacmococle develops, the fat-body forms a lining to it. By proliferation of the cells in certain regions, this lining may eome to he several layers of cells thick. Thus the fat-body is everywhere in direct communication with the blood stream, from which it receives the nutritive products of digestion for stomge, as well as any excess of impurities which the excretory system may not be able to dcal with for the time being. It is therefore an exceedingly important adjunct, both to the alimentary and to the excretory system.

CHAPTER VI

THE NERVOUS SYSTEM

The Nervous System of the Dragonfly (fig. 54) consists of the following principal parts:
(1) The Brain or Supraoesophageal Ganglion, situated in the head, above the oesophagus.
(2) The Suboesophageal Ganglion, also situated in the head, but below the oesophagus, and connected with the brain by a pair of circumoesophageal commissures.
(3) The Ventral Nerve-Cord, running ventrally through the thorax and abdomen, and swollcn into paired ganglia at intervals.
(4) The Sympathetic Nervous System, innervating a portion of

Table of Parts of the Central Nervous System

Hrad Segment	Ganglion	Parts Innervated	Remarks
lst or Ophthalmic	Protocerebrum	Compound Eyes and	
2nd or Antennary	Deutocerebrum	Antennac and Median Occllus	$=$ Brain
3rd or Interealary	Tritocerolrum	$\left[\begin{array}{c}\text { [giver off Symputhetie } \\ \text { System] }\end{array}\right]$	
4th or Mandibular 5th or Maxillary 6th or Labial	Sub- \} oesophageal	$\left\{\begin{array}{l} \text { Mandiblos } \\ \text { Ist Maxillac } \\ \text { Labium } \end{array}\right.$	
Thorax			
Lst or Prothoracic	Prothoracic	Fore legs	
2nd or Mesothoracic	Mesothoracic	Middte legs, före-wings	
3 rd or Metathoracic	Metathoracic	Hind legs, hind-wings	Fused in imago
Abdomen			
lst 2nd	1st abdominal		
2nd	2nd "		Moves up into
	3rd ${ }_{\text {4th }}$		seg. 1 in imago
5th	5 th	duti 8 th), etc.	
${ }^{66}$	6 6th		
8th to ${ }^{\text {7th }}$	7th		
8th to l0th	8th		Innervates segs. 8-10 and reproductive organs

Fig. 54. Nervous system of Petalura gigantea Leach ($\times 2$). $a g_{1}$-a g_{8} athdominal ganglia; br brain; coe circumocsophageal commissure; $n_{1}-n_{10}$ segmental nerves ganglia; or brain; co circumocsophag nerve to reproductive organs; sog suboesophageal gangtion; $t g_{1}-t g_{3}$ thoracic ganglia; $t n_{1}-i n_{3}$ segmental nerves of thorax; 1-10 limits of abdominal scgments. Original, nitric acid preparation
the mouth and oesophagus, and connected with the brain at two points.

The first threc of these are often classed together as the central nervous system.

In the imaginal Dragonfly, the ventral nerve cord apparently contains only ten pairs of ganglia, though in the larva we can count cleven. This is duc to the fact that the first abdominal ganglion moves up into the thorax, and fuses with the metathoracie ganglion posteriorly. The ninth and tenth abdominal segments contain no ganglia; but the ganglion of the eighth segment is large, and innervates the last three segments.

The table on $\mathbf{p} .120$ shews the details of the Central Nervous System in a convenient form.

Fig. 55. Diagram of brain of Austrolestes leda Selys, constructed from transverso, sections $(\times 20)$. A. Dorsal view. Is. Ventral view. al antennary lobe; ant antennary nerve; co circumoesophageal commissure; e eye; fc frontal og optic ganglion; sog suboesophageal ganglion; ve ventral nervecorol. Original.

The Brain (figs. 55, 56, 57).
The brain is a large mass of nervous matter situated in the head, above the oesophagus, and extending transverscly across the whole space between the compound eyes. Its exact position with regard to the head-skelcton has already been explained
(p. 15). The threc parts composing it are (1) the protocerebrum, or ganglion of the first head segment, which forms the greater portion of the whole brain, (2) the deutocerebrum, or ganglion of the second head segment, which gives off nerves to the antennac, (3) the tritocerebrum, or granglion of the third or intercalary segment, from which the sympathetic nervous system takes its risc. These three parts are closely fused together, so that no definite boundaries can be made out.

As the optic ganglia, which are connccted with the protoccrebrum by means of the optic nerves, are exceedingly highly developed in the Dragonfly (excecding both in bulk and complexity the whole of the true brain or cerebrum), we shall deal with them in a scparate section.

In order to grasp the relative positions of the three principal parts of the brain, we must recall what we have already said about the changes in the position of the parts of the head. When the mouth became anterior in position (p. 10) the originally ventral portions of the second and third segments (i.e. the clypcus and labrum) became pushed up dorsally above it. In like manner, the deutocerebrum and tritoccrebrum have become pushed up above the ocsophagus, and have come to lie in front of the protoccrcbrum. Also, just as the clypeus lies above the labrum, so the deutocercbrum lies above the tritocercbrum. In fact, the latter does not really lie alove the oesophagus in the Dragonfly, but partly on either side of it and partly bencath it (fig. 56 в).

Fig. fr, shews a diagram of the brain of Austrolestes leda, constructed from transverse sections through the head of that species. These were 200 in number, and 10μ in thickness. The numbers given for the seven separate sections shewn in fig. 56 refcr to these sections, so that the reader will be able to place them, mentally, at their correct respective levels.

The Protocerebrum. This consists of two large lateral lobes, the procerebral lobes ($p l$), formcd of an immense number of ganglion cells (the cortex) cuclosing a mass of nerve-fibres (the medulla). The cortical cells are most abundant dorsally, and are of the usual unipolar form, with large nuclei. The two lobes are connected across the middle line by two commissures, (i) the central body ($c b$) and (ii) the pons or bringe of the procerebral lobes (br). The central
body in the Dragonfly's brain is small, and forms mercly a thick mass of transverse nerve-fibres enclosing a few small groups of

Fig. 56. T.s. through region of brain of Austrolestes leda Selys $(\times 41)$. The numbers give the order, from before backwards, out of a total of 200 seetions of the whole head. A (No. 88). Frontal ganglion. \mathbf{B} (No. 103). Deuto- and tritocerebrum. c (No. 108). Protocerebrum (anterior part) and subocsophageal ganglion. D (No. 127). Protocerebrum, median ocellus and optic nerve.
E (No. 130). The same, further baek. F (No. 135). The E (No. 130). The same, further back. F (No. 135). The same, with ealyx
(cal). a (No. 138). The same, with nerves to lateral ocelli. br bridge of (cal). a (No. 138). The same, with nerves to lateral ocelli. br bridge of
procerebral lobes; cal calyx; cl central body; lbn labial nerve; mb giant procerebral lobes; cal calyx; cl central body; lbn labial nerve; mb giant
cells of mushroom body; ocl lateral ocelns; ocln nerves to same; ocm median cells of mushroom body; ocl lateral ocellins; ocln nerves to same; ocm median
ocellus; ocn nerves to same; oel oesophageal lobe; oes oesophagus; op optic ocellus; ocn nerves to same; oel oesophageal lobe; oes oesophagus; op optic
nerve; ot optic tuborele; pl procerebral lobe; tc commissure of tho sul. oesophageal ring; $t r, t r^{\prime}$ tracheae. Other references as in fig. 55 . Original.
nerve-cells. The pons is a more slender commissure passing in the form of a flattened arch above the central body, and scparated from it by an arca carrying numcrous tracheae.

The large and deeply pigmented cerebral trachea (fig. 56 c, ir) ramifics in a fan-like manner upon and into the cortex of the brain, penetrating chicfly along the plane which appears to mark the original boundary between proto- and tritocerebrum.

The most conspicuous formation in the procerebral lobes of the Dragonfly is the much discussed pair of bodies known as the stalked bodies, mushroom bodies, or corpora fungiformia. Although these do not shew in the Dragonfly the very peculiar and specialized development which they attain in some other insects (c.g. the social Hymenoptcra), yct they are very strongly developed,

cl
Fig. 57. r.s. through right mushroom body of Aeschna Urevistyla Ramb. ($\times 60$) s. through right mushroom body of Aeschna brevistyla Ram
particularly in the large Dragonllies, such as Aeschna (fig. 57). Wach mushroom body consists of three parts, (i) a stalk or cauliculus (cl), (ii) a calyx (cal) and (iii) a large mass of giant nervecells ($g c$). The stalk is a single short cylindrical mass of nerve-fibres arising vertically upwards from the medulla of the proccrebral lobe, and terminating in the calyx. The calyx is a large undivided mass of small ganglion cells taking a very deep stain throughout. The cells of the calyx arc arranged in more or less radiating lines, all closely packed together. The calyx forms a kind of external support or "raised back" for the giant cells, and is not folded into the "cup" shape more usually seen in the higher insects. The giant cells of the mushroom body are collected into a large mass placed intermally to the calyx. These cells are flask-shaped, with
large clear nuclei, each carrying a large darkly-staining nncleolus. Many of them are of very great sizc. They have been compared with the cells of Purkinje in the ccrcbellar cortcx of Mammals.

Various authors have stated (i) that the mushroom bodies of the Dragonfly's brain are rudimentary, (ii) that this indicates, or corresponds with, the possession of a very low order of intelligence. Neither of these statements is justified by the facts. The mushroom bodies of the Dragonfly's brain are certainly not rudimentary. On the contrary, they are very well developed, though of a gencralized type which makes them appear poorly developed when compared with the highly-specialized structurcs to be seen, for instance, in the brain of the wasp. Nor is the intelligence of the Dragonfly by any means of a low order, in comparison with that of most insects. "Intclligence" may be developed through the use of the sense of sight as well as through other senses, but such intelligence is not to be placed on a lower order than that developed, for instance, through the senses located in the antennae. Judged broadly on its activitics and powers of perception, the Dragonfly must certainly be classed as a more "intelligent" inscet than many of those which possess morc complicated mushroom bodies, if indeed the word "intelligent" can be properly applied to these creatures. The implied assumption that the mushroom bodies are the sole seat of "intelligence" seems to be quite unwarranted.

The protocercbrum gives off the following nerves:
(i) The optic nerves, described in connection with the optic ganglion (p. 130). The optic abercle (or) is the intermal ternination, in the procercbral medulla, of the superior portion of the optic nerve.
(ii) The nerves to the lateral ocelli (ocln). Thesc are rather elongated, and about as thick as the antennary nerves. They arise from two small cell-masses placed in the upper posterior portion of the procerebral cortex.

The paired nerves to the median ocellus are said by the latest observers to arise from the deutoccrebrum. They are best dealt with here, however, since, in the Dragonfly at any rate, their whole course is to be followed within the protoccrchrum. Arising far apart and posterior to the level of the central body, they run obliquely upwards and inwards to ncet in the middle line, well
behind the pons. They then diverge again to enter the ocellus on either side. The diverging portions enclose between them a fair number of nerve-cells.

The Deutocerebrum. This consists of two rather small lobes, the unteniary lobes (al), forming slight rounded bosses antcriorly on either side of the middle line (fig. 55 A). These are connected by a transverse commissure lying above and a little in front of the anterior limit of the central body, and representing the so-called lorsal lobe of the insect brain. The antennary nerve (ant) ariscs from the antennary lobe, and passes transversely, and a little obliquely, outwards and forwards to the base of the antenna, where it divides into two. The nerves to the median ocellus, which are also supposed to arise from the deutocercbrum, are dealt with on p. 126.

The Tritocerebrum. The two lobes of the tritocercbrum are known as the oesophageal lobes (oel). Each lies below the corrcsponding antennary lobe, with which it is closely fused. The two oesophageal lobes are connceted by a slender transverse commissure, in the form of an inverted arch, called the commissure of the oesophagerel ring (fc). This passes between the brain and the suboesophageal ganglion, beneath the ocsophagus. Hence it/!. cannot be seen in fig. 5513.

The oesophageal lobes give ofl (i) the arched nerves to the frontal ganglion, known as the frontal commissures (fig. 55, fc), (ii) slender obligue commissures to the anterior ganglia of the paired sympathetic: system, and (iii) the very thick and short. circmmoesophageal commissures (eo fig. 55, coe fig. 56) which connect the brain with the suboesophageal ganglion.

The Optic Ganglion (fig. 58).

As we have alrcady stated, the optic ganglion or optic tract is the largest and most complicated portion of the cephalic nervemass. This, of course, is only to be expected, when we consider the marvellons devclopment of the sense of sight in the Dragonfly, since that sense supplies the stimulus to almost every act of the insect's life.

We shall follow Viallanes [186] in dividing the optic ganglion
into six main parts, which will be dealt with, in order, from the compound eye inwards to the proccrebral lobe.

1. The layer of post-retinal fibres, or terminal anastomosis (pr). Bach ommatidium (p. 141) rests upon the fencstrate membrane (f), and sends through it dclicate nerve-fibres, which at once collect together in bundles. These bundlcs quickly pass into a narrow layer of nerve-cells, which form with them a plexus. From this

Fig. 58. T.s. throngh right optic ganglion and eye of Austrolestes leda Selys ($\times 50$), with key below. The arrows indicate the part represented in the key. Txplanation in text. Original.
plexus the bundles emerge irregularly, being scparated from one another by large and thin-walled tracheae ($\left(r^{\prime}\right)$. They next enter another small layer of nerve-cells, forming a second plexus, lying just outside the ganglionic plate. All this complex structure is called the terminal anastomosis. The portion lying ncarest to the fenestrate membranc is hcavily charged with black pigment,
which excceds in intcnsity the layer of retinal pigment in the eye itself.
2. The ganglionic plate, ganglionic layer, or periopticon (gp). This is a kind of sereen placed across the path of the post-retinal fibres. It is chiefly formed of an outcr layer of cylindrical columns of nervous matter without nuclei (except for a nerve-cell here and there), and lying more or less in line with the ommatidial axes. The number of columns, however, bcars no definite relation to the number of ommatidia. Somewhat separated from this is an inner and much narrower layer of granular nervous matter enclosing numerous nuelei. The post-retinal fibres picrec both laycrs, and fill up the space betwecn them. Thus this sccond division of the optic ganglion is, like the first, somewhat complex.
3. The external chitasma (ec). After lcaving the ganglionic plate, the nerve-fibres from the cyc cross one another very completely, forming a distinct chiasma.
4. The external medullary mass, or epiopticon (em). This forms a large and very conspicuous U-shaped gutter, with its concavity towards the brain. It consists chiefly of a mass of granular nerve-matter, which reeeives the nerve-fibres from the external chiasma, and passes them on again to the internal chiasma. Its structure is, however, complicated by the attachment of four ganglionic masses, known as the ganglionic crown (gc), the corner ganglion (g), the anterior ganglionic mass (ag) and the internal ganglionic mass (iy). Each of these is formed of small unipolar nerve-cells, with prolongations passing into the main medullary mass. Their names sufficiently indicate their relative positions.
5. The internal chiasma (ic). The nerve-fibres from the cxtcrnal medullary mass, on passing out, cross again completely, forming a sccond chiasma.
6. The internal medullary mass, or opticon (im). This is a large semi-ovoid mass, whose convex surface receives the fibres of the internal chiasma. It consists of three scparate capsulcs of granular ncrvous mattcr. The most external and postcrior of these is directly united with the external medullary mass by fibres quite independent of the internal chiasma. The whole of the opticon is covered with unipolar nerve-cells, and is formed from

[^7]their prolongations. It gives rise internally and posteriorly to the optic nerve.

The Optic Nerve. This is a short but very distinct nerve, formed of two scparate bundles of nerve-fibres. Of thesc, the superior optic bundle arises from the posterior face of the external capsule of the opticon, and enters the brain by its upper anterior region. It complctely penctrates the cortcx of the proccrebral lobe, and enters the medulla of the protoccrcbrum, where it terminates in the optic tubercle (fig. 56 , ot).

The inferior optic bundle is much larger, and arises from the whole of the internal capsule of the opticon. It enters the brain by its lower latcral region (fig. $56 \mathrm{e}, o p$).

The Suboesophageal Ganglion (figs. 55, 50, sog).
This is a large and well-formed ganglion situated below the anterior portion of the brain, and connected with the tritocercbrum by the short stout circumocsophageal commissures (co). It is very compact, but still shews, in sections, cvidence of its paired origin. As in the thoracie and abdominal ganglia, the nerve-cells are chiefly collected ventrally below the nerve-fibres. This ganglion gives off three pairs of ncrves, (i) the mundibular nerves, from its cxtreme upper anterior corners; (ii) the maxillary nerves, from its lower anterior corners, at a level slightly bchind (i); (iii) the labial nerves (fig. $56 \mathrm{c}, l b n$), which arise latero-ventrally from the broadest part of the ganglion, well behind (ii).

This ganglion narrows postcriorly, and finally wives origin to the two excecdingly slender ventral nerve-cords, running very close together backwards through the lower lialf of the postcrior foramen, into the neck and prothorax.

The Ventral Nerve-Cord (fig. 54).

The two fine nerve-cords forming the double ventral cord may be either distinct enough to be seen separately under a low power, or they may be so closcly united (in the abdomen) as to appear single, though of coursc their double naturc is casily seen in transverse sections. These conditions appear to be correlated, not with the degrec of specialization of other parts, so much as
with the tenuity and length of the abdomen. Thus the very archaic Petalura (fig. 54) has the two cords so closcly fused that it is quite impossible to scparate them, whercas in the highlyspecialized but short-bodied Orthetrum they lie distinctly apart.

The Thoracic Ganglia. Soon after cntcring the prothorax, the ventral nerve-cord passes into the fused pair of ganglia called the prothoracic ganglion ($1 g_{1}$). This ganglion gives off nerves to the fore-legs (first crural nerves, $t n_{1}$) and to the prothoracic muscles. From this ganglion the two nerve-cords run backwards into the nicsothorax, gencrally diverging slightly from one another, to enter the large mesolhoracic ganglion ($\left(g_{2}\right)$, a fused structure similar in nature to the prothoracic ganglion. It lics just above the mesosternum, and gives off nerves to the middle legs (second crural nerves, $\left(n_{9}\right)$, to the muscles of the mesothorax, and to the forc-wings (first alar nerves). The last are best developed in the well-grown larva. In most Dragonflics, this ganglion is considerably larger than the prothoracic; in the Libellulidae, the two are approximatcly equal in size. The metathoracic ganglion lies close bchind the mesothoracic (with whieh it is sometimes fused), just over the metastcrnum. It gives off nerves corresponding with those of the mesothoracic ganglion.

We have already mentioned that, in the Caloplerygidae, the division between meso- and metapleura (first lateral suture, p. 23) remains distinct and complete, whereas in all other Odonata it becomes more or less obliterated. The condition of the mesoand metathoracic ganglia appears to be correlated partly with this fact, and partly with the degree of forward movement of the meso- and metasternum. We may exhibit in a short table threc recognizable stages in the cvolution of the thorax and its nervous system, arranged in phylogenctic order.

Stage	Pirst Lateral Suture	Synthoracic Ganglia	Groups
1	Complete	Distinet	Calopterygidae
2	Partly obliterated	Distinct	Petalurinae, Aeschninae
3	Partly obliterated	Fused	$\left\{\begin{array}{c}\text { Gomphinae, Libellulidae } \\ \text { Lestidae, Agrionidae }\end{array}\right.$

The Abdominal Ganglia. In the Dragonfly imago, the abdominal ganglia are arranged as shewn in fig. 54, i.c. one in the posterior half of seg. 1 , nonc in scg. 2, and one in the anterior half of each
of segments $3-8,-$ the position being close to the base of scg. 3, and gradually moving a littlc backwards in each succecding segment, until in seg. 8 the large ganglion lics close to half-way along that segment.

As, in the larva, there seem to be always eight abdominal ganglia, one situated in each of scgments $1-8$, it has long been a puzzle to entomologists as to what happened to the missing abdominal ganglion at metamorphosis. The problem was at once solved when I dissected the archaic Petalura (fig. 54). For there, very distinct, but attaehed posteriorly to the metathoracic ganglion in the thorax, was the missing abdominal ganglion ($a g_{1}$). It seems quite clear, though not yet definitcly obscrved, that this fusion must take place cither beforc or during mctamorphosis, and is correlated with (a) the decrease in the size of the first abdominal segment to a narrow ring, and (b) the great elongation of the abdomen of the imago as a wholc. This stretching out of the abdomen is also probably the cause of the other ganglia lying so far forward in each scgment; and, in particular, the cause of the second ganglion moving up into the first scgment. Stated in terms of the numbered segments, the positions of the ganglia appear highly irregular. But if we look at the figure of an actual dissection (fig. 54) we shall sce that it is the lengths of the segments which are highly irregular, and that the tremendons stretehing undergone by the nerve-cords at metamorphosis lias been so fairly distributed, as to give approximately equal intervals between the ganglia. It seems clear, too, that the first abdominal ganglion moved forward in correlation with the whole forward movement of the synthoracic sterna, when the thoracic obliquity of the imago became so great that the nerve-cord could not otherwise have stood the strain.

The first seven abdominal ganglia in Petalura are all closely similar in size and structure. Each gives off a pair of strong branching nerves to the segmental muscles of its own segment. Branches from these pass to the dorsal vessel. Smaller nerves are given off to the muscles of the alimentary canal. The eiglith abdominal ganglion $\left(a g_{8}\right)$ is much larger than any of the others, and clearly represents the three complctely fused ganglia of segments $8-10$. It gives off three strong pairs of nerves $\left(n_{8}-n_{10}\right)$
to the scgmental muscles of these three scgments respectively. A. strong branch from each of the first pair (eighth segment nerves, n_{8}) runs forward along the hicart. A branch from each of the last pair (tenth segment nerves, n_{10}) passes to the appendages. A fourth pair of strong nerves, placed anteriorly to the above-mentioned three pairs, supplies the reproductive organs. These are called the genital nerves ($\mathrm{r} n$).

The thoracic and abdominal ganglia arc closely similar in structure. Each is scen, in transverse scction, to be clearly compounded of two fused ganglionic masses, placed sidc by side, and closely fused along the median vertical plane. The nerve-cells in all cases lic chiefly ventrally, the nerve-fibres chicfly dorsally. The norve-cells are unipolar, and the cords are formed from their united prolongations or fibres.

The ventral nerve-cord of the newly-hatched larva (fig. 59) is very different from that of the imago. Relatively to the size of the animal, the ganglia are here inmense, while the nerve-cords are almost non-cxistent. In most Libellulidue, the ganglia actually touch one another like a row of flat beads. At each instar, the nervecords lengthen slightly, while the ganglia do not appear to increase to any appreciable extent. Hence the ventral chain becomes gradually attenuated, and the ganglia smaller and smaller by comparison with the sizes of their segments.

The Sympathetic Nervous System (fig. 60).

The presence of a complex and well-developed sympathetic nervous system in the Dragonfly was demonstrated by Brandt[15], whose work still remains the chief source of our knowledge of
these delicate structures. The system may be divided into two principal parts:

1. The unpaired Frontal System. This consists of a small triquetral frontal ganglion (fig. 56 A , fig. $55, f g$, fig. $60, f r$), situated in the middle linc, just in front of the brain. It is connected with the tritocerebrum by a pair of arched frontal commissures (fc), which enter the brain a little below and internally to the origins of the antennary nerves. The frontal ganglion gives off two fine nerves (m) to the mouth parts, and a long and very delicate postcrior median nervc-cord ($n v_{1}$) which passes bencath the brain, and runs dorsally along the oesophagus, crop and gizzard. The nerve-cells of the frontal ganglion

Fig. 60. Sympathetic nervous system of Libellula. explanation in text. br, $b r^{\prime}$ (dotted lines) boundaries of brain. After Brandt. lie dorsally over the nerve-fibres (fig. 56 A).
2. The paired Splanchnic or Stomatogastric system. This is formed by two pairs of small ganglia lying upon the ocsophagus. The anterior splanchnic ganglia (asg) are fused together in the middle line. They lie very close behind the brain, and are connceted with the tritoccrebrum by two very fine commissures. A pair of oblique commissures (cob) conncets them with the posterior splanchnic ganglia ($p \mathrm{sg}$). These are scparate, and lie onc on either side of the oesophagus, a little behind the anterior pair. They give off (a) a pair of ncrves ($n v_{2}$) obliquely backwards to the muscles of the oesophagus, and (b) a seeond pair ($n v_{3}$) running straight back along its latcral walls.

Peripheral Nerves.

In some insects, or at any rate in their larvae, the presence has been demonstrated of a peripheral nervous system quite unconnected with any part of the central ncrvous system, but forming a kind of general nerve-plexus beneath the hypodermis and the muscle-layer. Zawarsin [202], after examining the various peripheral
nerve-endings in the larva of Aeschna, found that they were all finally connceted with the ventral ganglia. Some of these finc endings innervate small sense organs, such as minute sensillae, cones, or tympanulae, on special parts of the cuticle (p. l $\mathfrak{I} 6$). Others end in special cnlarged hypoderm-cells, and serve to produce the effect of general sensation over the body-surface. There is no sepurate peripheral nervous system.

Physiology of the Nervous System.

We can only bricfly summarize the results obtained by experiments upon Dragonflies:

1. The Brain and Suboesophageal Ganglion control the power of coordination of movement, and almost the whole of the sensory functions of the nervous system. According to Faivre, the brain is the chief seat of sensation, the subocsophageal ganglion alone controlling the coordination of movement. A decapitated Dragonfly docs not, however, at once lose the power of movement. Large Aeschninue, whose heads have been accidentally struck off with the net, frequently live for as loug as two days, and can vigorously flutter their wings, flex their abdomen, or even climb up curtains by means of their legs. If, however, the head be crushed, the shock causes partial paralysis, from which the inscet recovers after the lapse of a time, to lead a fceble existence for a few hours, and then to die.
2. The Ventral Ganglia. Each of these acts as a motor centre for its own segment, coutrolling the muscles of that segment. Each is also a very fccble sensory centre, in connection with the peripheral endings of fine sensory nerves mentioned above. The movements of the scparate segments arc clearly coordinated together. The fact that the effect of a sudden shock is diffuse [6$]$ seems to prove that the power of coordination does not rest entircly with the subocsophageal ganglion. The behaviour of decapitated Dragonflics points in the same direction.
3. The mechunism of feeding is almost certainly centred entirely in the suboesophageal ganglion. If this ganglion be injured, without damaging the brain, the inscet is quite unable to fecd. Again, it has been shown, by at least two competent
obscrvers, that the terminal segments of the abdomen of a large Aeschnine Dragonfly may be snipped off with scissors and offered to the head, which will proceed to devour them with apparent relish. This points in the same dircetion, white it also emphasizes the independence of the ventral ganglia.

4: The cffect of mutilation, shock, dccapitation, etc., on respiratory movements has bcen studied in detail by Barlow[6$]$. The results shew that numerous external influences affect the rate and power of the respiratory movements; that the respiratory movements of each abdominal scoment arc to some extent indcpendent of the rest, provided the ganglia are not damaged; that decapitation docs not stop these movements, but diminishes their frequency and force; and, finally, that even severc shock, though it may stop them for a time, cannot prevent a fccble revival of them later on.

It scems quite clear that much more remains to be done in the way of devising interesting experiments on this subject, and that therc is still a great deal that we do not understand in the working of the very peculiar nervous system of the Dragonfly.

CHAPTER VII

THE SENSE organs
In the Dragonfly the sense of sight is extraordinarily welldeveloped, and is probably kcencr than in any other insect. This sense alone suffices for the chase and capture of prey. It is, however, supplemented by a fairly well-developed sensc of taste, located in - the labrum and cpipharynx. The scnse of touch is well-developed in most parts of the body, but particularly in the mouth-parts, legs and abdominal appendages.

Correlated with the great power of sight is the almost total absence of the sense of smell. The antennac, which werc originally the seat of this sense (if indeed it was cver well-developed in these insects), are much reduced, and incapable of anything beyond feeble sensition. The sense of hearing, as we understand it, is also practically absent; though there are certain minutc organs in the legs which are capable of receiving vibrations, and may be looked upon as feeble auditory organs.

The cyes are of two kinds, simple eyes or ocelli, and compound or furelled eyes, made up of numerons separate elements. The ocelli are used for near vision, their range probably lying between a feav millimetres and about an inch. The compound cyes, on the other hand, obscrve objects from an inch or so up to several Ieet off; while their pereeption of movement, as distinct from form, ranges very much further, probably up to fifty fect or more in some cases.

The Ocelli (fig. 61).

These beautiful organs have so far received little attention from biologists, though much has been written upon the compound eyes. 'They arc, neverthelcss, of very great interest, and descrve a more detailed study. They are threc in number, and are so
placed on the epicranium that they isolate a small central triangular area called the vertex. This, in many Anisoptera, is raised up into a tubercle or vesicle. The median occllus lies at the apex of the triangle, which is antcrior, while the two lateral ocelli occupy the base angles. The angle of the apex is always obtuse, lying usually between 120° and 170°.

The median ocellus is so placed as to look forward, while the laterals look sideways. This difference is especially marked when the vertex is swollen. The median occllus then becomes sunk into a pit, with the wall of the vertex rising like a cliff behind it. Thus all lateral and posterior rays of light are cut off. Again, the lateral ocelli become slightly raised up on the sides of the tubercle, so as to face somewhat horizontally outwards. Thus they receive chiefly lateral rays.

The median and lateral ocelli differ considcrably in structure. The former is always the larger, and is cither oval or reniform in shape, with its major axis transversely placed. Both by its structure and nerve-supply it shews signs of having been originally doublc. It is therefore to be regarded as the product of the fusion of two originally separate ocelli in the middle line. In structure it is bilaterally symmetrical. The lateral ocelli, on the other hand, are smaller simple oval bodies, not bilaterally symmetrical. Their parts are much contorted and shifted out of place, probably in order to accommodate the organ to the reception of lateral rays of light only.

Structure of the Median Ocellus (fig. 61 $1, \mathrm{c}, \mathrm{D}$).

Fig. 61 a gives a section of this organ in Austrolestes leda, passing obliquely through the middle of the lens and throngh the proximal set of rhabdomes, and including several layers of cells. The ocellar nerves are also shewn, thongh these are actually not quite in the same plane as the other structures. The ocellus consists of the following parts:
(i) A thick convex corneal lens (cnl). When examined in thin sections, this lens is seen to consist of a very large number of delicate layers of chitin, all of which are transparent, but not all colourless. The outer portion is absolutely clear, and extends to the border of the organ around its whole circumference, where
it is separated from the ordinary cuticle of the head by a shallow groove or depression ($g r$) of a deep red colour. The central part of the lens is mueh swollen and sunk inwards. Its component layers are very closely fused together, so as only to be distinguished with great difficulty. They shade from a transparent pink colour above to a deep clear ruby red below.
(ii) A layer of very clongated corneagen cells (cng). These are continnous with the hypoderm cells of the head, but differ from them in being quite colourless and transparent. They are the

Fis. (i). Ocelli of Austroles/es leda Selys. A. Oblique suction through median ocellus $(\times 154)$. 16. Tho samo thanght lateral ocellus $(\times 154)$. c. I.S. through habrome near haso ($\times 460$). D. The same noar distal end $(\times 460)$. cnt corncuger cells; eal corneal lons; or magima groovo; ne nervoechls; och ocellar nervo; pg pit
vishal cells. Original.
cells which secrete the corncal lens, and support it on all sides, as shewn in the figure. These cells, together with the lens, form the dioptric portion of the ocellus.
(iii) A retina formed by two series of visual cells or retinulae, viz. the distal retinulae ($v d$) and the proximal retinulae ($v p$), and surrounded by a layer of black pigment ($p g$). In the median ocellus the retina forms a thick half-ring, with the two ends dirceted forwards, so that the anterior portion is seen in section as two symmetrical parts, with two separate and diverging nervesupplies. This arrangement is strong evidence in favour of the
generally accepted view that this organ is formed by the fusion of two originally complete and separatc ocelli in the median line.

The visual cells are elongated, with the more basal portion swollen and containing the nucleus. They are arranged in sets of three, closely fused together (fig. $61 \mathrm{c}, \mathrm{D}$). Each set or triad gives rise, along the inner junctions of its component cells, to a very remarkable organ called the rod or rhabdome (rh), which is consequently, in transverse section, seen to be of triradiate form. It is semi-transparent and of a pale yellowish colour. Its function is generally held to be that of a light-transmuter (sec p. 148). Each rhabdome is of moderate length, extending practically the whole length of the triad of cells forming it. It is somewhat thicker basally than distally, but its threc radii are of about the same length throughout. In fig. 61 n , only the upper portions of the proximal rhabdomes are shewn cut [70].

The visual cells of the proximal group appear to be much better developed than those of the distal group. The latter are considcrably shorter. In Austrolestes I have not succeeded in detceting any rhabdomes connected with these cells, though such are certainly present in the larger occlli of Aeschna brevistyla. This suggests that, in some Dragonflics, the ocelli can only focns objects clearly at one fixcd distance, while in others the same organs are cffective for two separate distances. In both cases, the form of the lens shews that the objects viewed must be brought very close up to become visible.

The retina is surrounded by a layer of black iris pigment ($p,()$ developed in cells which are continuous with the corneagen cells, and hence with the hypodermis.

The ocellar nerve (ocn) is, as already explained, of a double nature, the two diverging portions being separated by a considerable number of nerve-cells ($n c$).

Structure of the Lateral Ocellus (fig. 61 B).

This organ shews exactly the same parts as the median ocellus. It differs from the latter, however, in being unsymmetrical in all scetions, and is obviously a single and not a double organ. We may remark that a section through the median ocellus taken along a vertical plane through the letters cnl and Λ in fig. 61Λ
would very closely rescmble fig. 61 13. The lateral ocellus clearly has its dioptric apparatus distorted for the purpose of lateral vision-in fact, it is set at a permanent and very effective "squint." The corncal lens is for the most part quite colourless, but the innermost part of the central "bulb" is coloured ruby-red.

The Compound Eye (figs. 58, 62-64).

We have already discussed (p. 11) the size and shape of these eyes in relation to the head. We have now to consider the structure of the eye itself. Each of the hexagonal facets already noticed on the outer surface of the eye corresponds with a single element of the compound eye, known as an ommatidium. An• ommatidium has been compared with an ocellus; but we shall see that there is sufficient difference in structure to make the comparison inulvisable. Moreover, it was until recently quite generally held that the compond eye arose as an aggregation of simple eyes similar to ocelli, and that the hexagonal form of the facets was produced by mutual pressure between numerous originally rounded elements crowding closely together. Though we must admit that crowding would in any case produce hexagonal faccts, we must at the same time negative the previous asscrtion on palacontological grounds, if on no other. lior the compound cye is an exceedingly archaic structure, found (in the Trilobites) woll developed right back to the Lower Cambrian. Moreover, in the Dragonflies at any rate, the compound eycs devclop in the embryo, whereas the ocelli do not begin to develop until near or at the close of larval life. As these insects are amongst the most ancient of the class, this fact is very significant.

In the compound eye of the Dragonfly, the number of facets, and hence the number of ommatidia, ranges from about 10,000 in the smaller Zygoptera to 28,000 or more in the largest Aeschnincle.

Struclure of an Ommatidium.

Fig. (i2 shews a longitudinal section through four ommatidia from the compound eye of Austrolestes leda. The hexagonal facel (f) is the external surface of the corneal lens (cnl). The latter is deposited by the agency of the corneagen cells (eng), which
are easily made out in the eye of the freshly-emerged imago. The corneal lens is slightly biconvex, and is made up of a thinner outer layer, which stains decply with eosin, and a thicker inner layer

Pig. 62. L.s. through four ommatidia from fig. $58(\times 330)$. At $1-\mathrm{a}$ are shewn seven T.s. through one ommatidium at the respeetive levels at which they are placed. cng corneagen cells; cnl corneal lens; f facet; fm fenestrate membrane; $i r$ primary, $i r^{\prime}$ secondary iris cells; $l m$ lumen; $n s$ nucleus of
Semper: $p e$ pseudocone; $r h$ rhabdome; $r p$ retinal pigment; $r l$ retinal cell; Semper; pe pseudocone; rh rhabdome; $r p$ retinal pigment; $r l$ retinal cell; tr trachea. Original.
not so easily stained. This inner layer is found to be in reality nade up of several fine laminae superimposed onc upon another.

The outer layer represents the original cuticle; the inner laminac are formed as a scrics of definite strata secreted by the corneagen cells. These latter appear to degenerate rapidly after the completion of the lenses, and their nuclei cannot be made out in the eyes of mature imagines.

Bencath the corneal lens lies a very beautiful structure, the crystalline cone or pseudo-cone ($p c$). This is a highly refractive body of a vitreous apparance, in the form of a cone with its apex inwards, and its broad outer end convexly rounded. It is formed from four elongated transparent cells, two being larger and two smaller (fig. 62 $1, \mathrm{~s}$). The nuclei of these cells lie close up to their outcr or distal ends, and are known as Semper's nuclei $(n s)$. These very peculiar nuclei appear to be filled with small clear refractive bodies closely packed between large chromatophil granulcs. Above each nucleus is a dense plate of deeply-staining matcrial. The inner end or apex of the pseudocone does not actually cud in a point, but the ends of the four cells stand slightly apart, forming a slight hollow, into which the distal end of the retinula is inserted.

Embracing between them the inner tapering end of each psendocone are two large cells shewing a semi-annular form in transverse section. These are the primary iris cells (fig. $62 \mathrm{c}, i r$). fateh hats a large clear mucleus, embedded in a dense mass of black pigment granules which completely fill the rest of the cell. Outside these two ceells are arranged numerous slenderer pigment cells of very clongate form. These are the secondary iris cells (ir'). These cells fall into two groups, according to the approximate positions of their nuelei. One set lies around the pseudocone at a higher level than the primary iris cells; their nuclei are very clearly to be scen lying between the inner halves of the pseudocones. A section through the pseudocone at about the level of fig. 62 в shews twenty or more of these secondary iris cells forming a close ring around the pscudocone, which thus appears to be encased in a ring of black pigment. Outside this ring other secondary iris eells are arranged, while small pigment granules also form a kind of hexagonal pattern around cach pseudocone. Lower down, at the level of the primary iris cells, the number of sccondary iris cells is much less, usually from six to ten (fig. 62 c). Passing next to
a level below the inner ends of the pseudoconcs, we find a second set of these pigment cells embracing the distal ends of the retinulac. Four of these are of considerable size, and very densely pigmented, especially at their distal ends, which are somewhat enlarged. They lie rather close in between the retinula-cells. Smaller pigment cells lie outside these. Their nuclei can be fairly casily made out.

The whole layer of pigment described above is known as the iris, or iris tapetum.

Below each pseudocone therc lics the excessively elongated portion of the ommatidium known as the retinula. This is formed from four visual or retinula-cells (r ! $)$, placed close together, with their long axes parallel. These cells are considered to be highlyspecialized unipolar nerve-cells, placed with the pole or nervous end in contact with the fenestrate membrane. The opposite or distal end is drawn out into an extremely long border, carrying a row of excessively fine fibrils, arranged like the teeth of a fine comb. The retinula-cells of each ommatidium arc so arranged that their fibrils pass inwards, and unite to form the peculiar structure known as the great rod or rhabdome ($r h$). The formation could be very roughly imitated by taking four ordinary long hair-combs and standing them up on end with their teeth all mecting inwards. The rhabdome itself appears to lave a pale central axis surrounded by a dark outcr portion. The fibrils which form it pass backwards right through the ecll to which they belong, finally emerging at the pole in the form of the nervefibre process. The rhabdome is supposed to receive a stimulus from the rays of light focussed on it by the dioptric apparatus of the cye (lens and pscudoconc), and to transmute this into the form of a nervous stimulus which is transmitted to the brain.

The retinula-cells themselves are somewhat flattencd, subtriangular or trapezoidal in cross-section, and stand out from the rhabdome in the manner scen in fig. 62 D-G. They contain pigment-granules throughout their entire length, but more especially thickly for about one-fifth of their length, at the level shewn in fig. 62, rp. This is called the retinal pigment.

The bases of the retinulae rest upon the fenestrate or basement membrane (fm), which forms the inner boundary of the eyc proper.

This membrane is formed of a peculiar fibrous connective tissue. It is not only perforated, at regular intervals, to allow of the passage of the terminations of the nerve-fibres to the retinulac, but it is also pierced with regular rows of larger cireular holes, through which tracheae of considerable size pass into the cye. Thus the fenestrate membrane resembles in appearance the bottom of a colander pierced with holes of two sizes. The tracheac, on entering the cye, occupy the large spaces or lumina ($l m$) which separate the slender bases of the ommatidia. It is usually stated $[10,152]$ that four of these tracheae surround the base of each ommatidium, though Calvert[30] shews six, arranged in a hexagon. I find that Calvert's statement is correct for the arrangement of the tracheae close to the fenestrate membrane (fig. 62, f). Λ s they pass further into the eye, however, they quickly tend to become arranged in parallel rows, with only a slight indication of the original hexagonal arrangement left.

It is generally agreed that the cyes of insects possess no power of accommodation. There arc no eyc-muscles, and the lens is absolutely fixed, both as regards position and shape. Vigier ${ }^{1}$, however, has described certain fibrillae in the eye of the Dragonfly which, he believes, enable the insect to shorten or lengthen its ommatidia. As the Dragonly uses its eyes chicfly during flight, it scems obvious that nothing short of a very complete accom-modation-apparatus would be of any value to it, owing to the rapid change of position of the objects to be viewed. It secms much more likely that the fixed focal length without accommodation is quite satisfactory, and that this is supplemented by the use of the ocelli for very near objects, which would otherwise be guite out of focus.

Variations in the form of the ommatidia. In the Zygoptera the ommatidia are all alike, and all decply pigmented. In the Libellulidue, however, they are sharply marked off into two groups. In the upper group, the facets are larger, the ommatidia consefuently further apart, the concs larger, and pigmentation is absent (fig. 63 A). In the lower group, the facets are smaller, the pigmentation very dense, and the ommatidia closely resemble those of Zygoptera. The line of separation between the two

$$
{ }^{1} \text { C. R. Acad. Sci., Paris, 1904, cxxxviI, pp. 775-777. }
$$

groups is marked in the living insect by a change of colour, the upper part of the eye bcing usually of a reddish hue, the lower greenish or yellowish. In the Aeschninae the two groups of ommatidia are present, and can be separated by the difference of colour, the upper portion being usually a brilliant green or blue, the lower more greyish. But there is an intermediate zone in which the size of the facets is graded, and the amount of pigmentation gradually dccreases from below upwards. Ommatidia of both groups appear to be all of equal length in the Aeschnidae.

The differcntiation of two groups of ommatidia is clearly correlated with a difference in the use of the

Fig. 63. A. т.s. through part of compound cye of Diplucodes shew transition from pismented trs unpigmented ommatidia. n. т.s. through median cye-line of Aesclina brevistyla Ramb. ($\times 45$). ep epicranium; fm fenestrate membrane; hy leypodermis. Original. two portions of the eyc. During flight, the lateral and lower portions of the eye receive the impression of the surrounding objects, while the upper portion of the cye reccives only rays of direct sunlight. It is not, therefore, necessary for this latter portion to be able to distinguish clearly the form of objects, provided that it is able to note the change in the intensity of light from above, produced by the veiling of the sum by clouds, or by the shadow of a possible enemy. While the absence of pigment undoubtedly renders this part of the eye unable to perccive definite forms clcarly, it must also tend to mitigate the direct glare of the sun, by allowing the rays of light to diffuse equally in all directions.

The Zygoptera, on the other hand, never hawk about in the way that the larger Dragonflies do. It is cssential for them, whether at rest or flying close to the surface of the water, to see surrounding objects clearly in all direetions. Hence no differentiation of the upper ommatidia has ever been necded in their casc, and none has arisen.

The Median Eye-line. We have already mentioned the fact (p. 11) that the large eyes of most Libellutidue and Aeschninate
appear to mect along a nedian eye-linc. A transverse section of this region (fig. 03 s) shews the true nature of the junction. The eycs are actually scparated by an excessively narrow space, occupied by two layers of hypoderm-cells, and bridged over above by a narrow arch of chitin. At the borders of the eye, the chitin is turned inwards on each side of this arch, and extends downwards almost to the level of the fencstrate membrane. This formation is clearly the last remnant of the cpicranium, which is therefore seen to be still actually eontinuous from vertex to occiput, even in the highest forms.

Frunction of the Compound Eye.

We lrave already stated that the compound eye of the Dragonfly is used for far vision; that is to say, far in comparison with the range of the ocelli. To the ordinary observer, a Dragonfly would appar very short-sighted, since it sees objects best at distances ranging from a lew inches to live or six feet. Compared with other insects, however, the Dragonfly may be reckoned long-sighted. It has been stated that no insect can sec beyond a distance of six feet. This may be so as regards perception of form. But in the case of the larger Dragonflies, perception of movement extends to a much greater distance. I have found that Pelalura gigantea can be frightened away by waving a net in the air at a distance of twenty yards; white, in the case of Itemicordulia the hovering motionless over a pool, a sharp movement at a distance of ten yards always proluces a sudden dodige sideways on the part of the Dragonlly. On the other hand, by moving slowly and stealthily, without any jerks, it is possible, though not easy, to stalk a large Dragonlly sitting on a twig, and to capture it with the hand. I have caught Anax papuensis in this manner.

Theories of Vision of the Compound Eye.

Space will not permit us to go fully into this fascinating question. We shall simply state the two chicf rival theories, and leave our readers to choose for themselves.

The Theory of Mosaic Vision was formulated by J. Müller in 1826 [9]]. Its principal supporters have been Huxley, Lubbock and Exner. It is casily understood from Lubbock's well-known
diagram (fig. 64). If a number of transparent tubes be arranged side by side in front of a retinal screen, and separated from one another by a coating of black, the only light which will traverse each will be those rays parallel to the long axis of the tube (e.g. $a a^{\prime}, b b^{\prime}, c c^{\prime}$). All oblique rays (e.g. av, $a y, b x, b z$) fall on the sides of the tube, and are absorbed by the black pigment. Now if the tubes be made very numerous, long and narrow, like the ommatidia of the compound eye, each separate unit would only perceive a very small portion of the total field of vision. The impression received through such an eye with 20,000 ommatidia would be in the form of a landscape made up of 20,000 little pieces, each accurate as to colour, distance and intensity. Anyone who has seen pictures constructed of mosaics will readily admit that such an impression would be an excellent representation of the scene, though not so perfect as the complete picture formed by the vertebrate eye.

Now, let us suppose that a very small object, so small as only to be represented on one of the 20,000 mosaic pieces, were studlenly to move. The nerve-ending receiving the impression through the corresponding ommatidium would at once respond to the movement; the mosaic would be altered by a sudden alleration in one of its pieces. Such a small movement might well pass unnoticed by the vertebrate eye. But the compound eye would be quick to register it, and the brain would act accordingly. If however the change were made very slowly and steadily, it would probably pass unnoticed. What we know of the power and method of vision of the Dragonfly exactly agrees with this. The quiver of an eyelid on the part of the collector is enough to frighten the coveted prize away, though the stealthy approach of the collector's whole bulk may not even be noticed.

Huxley accepted the Mosaic Theory, with the important addition that he considered the rhabdomes to be not merely light-transmilters, but light-transmuters. That is to say, they
change the form of energy which we call light into that other form known as nervous energy. In this form, the theory has found wide :uceeptince.

Exner [53] propounded what amounts to a modification of the Mossic Theory. Through a freshly cut-out compound eye of a Pire-fly, he obtained a photomierograph of a distant church steeple, together with a window-pane on which the letter R had been pasted in black paper. The image was erect and complete. He explained this by supposing that the images formed by the separate ommatidia overlap and merge, so as to give the impression of a complete whole. He termed these "superposition" images, as opposed to non-overlapping or "apposition" images. It can be casily understood that an alteration in the position of the pigment layers might convert a set of apposition images (forming a mossic) into a continuous image, by admitting just enough light to cause the boundaries to merge, and so obliterate the darkened borders of the mosaic pieces in a hexagonal pattern. It is probable that all insects with strong visual powers can modify the position of their pigment layers sufficiently to allow of such accommodation in various degrees of light-intensity.

The Theory of Dioptric Vision was enunciated by Lowne [80] in 1884. It differs entirely from the Mosaic Theory, both as to the method of vision and the limits of the eye. The supporters of the Mosaic Theory consider the fenestrate membrane to be the inner limit of the eye proper. Thus the eorneal lens and crystalline cone form the dioplrie portion of the eye, while the retinulac are the receptive portion or retina, in direct communication with the optic ganglion. All structures lying below the fenestrate inembrane are considered to belong to the optic ganglion. But, according to Lowne, the whole of the portion lying above the fenestrate membrane is dioptric in function, while the true retina is the pigmented portion lying helow the fenestrate membrane. The rhabdomes must then aet as another set of lenses, in such a manner that all the rays of light received by the whole eye are brought to a focus on the retina, yielding a complete image like that formed by the vertebrate eye. This image would be an erect one. Hickson [73] supports L.owne's view of the position of the retina.

Optical Phenomena of the Compound Eye.

When a Dragonfly is caught and hold in the hand, the eyes are seen to glow with a most bcautiful light, generally of a semimetallic green or blue colour, sometimes red, brown or grey. This is a reflection of light from the interior of the cye, and is called the Internal Light.

Again, if we peer into the eye, there will be seen, apparently decp down in the eye, a very distinct black spot, surrounded by six less distinct but similar black spots. These are the pseudopupils. The central pseudo-pupil is always exactly opposite the eyc of the observer, and moves with great rapidity as his position changes. Its formation is due to the almost complete absorption of the direct light passing straight in through the corneal lens, while part at least of the oblique light is reflected back. Thus the central area appears black, the surrounding parts bright. The six secondary pseudo-pupils are probably diffraction-images corresponding with the six sides of the hexagon surroming the central pscudo-pupil. If the curvature of that part of the cye gazed into be not approximately symmetrical (as, for instance, near the border of the eyc), the pseudo-pupils will not appeat rounded, but distorted and elongated.

Further, we can easily remark, in the eye of a live Dragonlly, two or thrce irregular greyish arcas, which, like the pseudo-pupils, move when the observer moves. These are pscudo-pupils of the third order, derived from the secondary pseudo-pupits in the same way that the latter are derived from the central one. They are actually twelve in number, but only two or three can fall within the limits of the cornea, for any given position of observation.

The Eyes in the Larva.

The compound eyes are functional, and of considerable size, in the newly-hatched larva. The ocelli, on the other hand, only appear at metamorphosis in the Anisoptera, and late in larval life in the Zygoptera. In the casc of the compound eye, the number of ommatidia, as well as the length of the retinulac, increases at each cedysis, while the optic ganglion becomes gradually more separated off from the brain proper, and increases
in complexity. It is interesting to note that the smallness of the larval eyc in the Libellulidae is due to the fact that only the smaller (pigmented) ommatidia are functional in the larva. These form the definitely projecting cye of the larva. Between these and the epicranium proper there is a rather flat unpigmented area, in which the elements of the larger (unpigmented) ommatidia are gradually formed during later larval life. At metamorphosis the functional eye of the larva becomes the lower pigmented portion of the imaginal eye, while the nearly flat unpigmented part becomes convexly curved to form the upper portion. In the larva, the optic ganglion is actually at first only in connection with the pigmented part, the connection with the unpigmented ommatidia being a late outgrowth of lateral nerve-elements from the ganglion.

The Antennae (figs. 2, 65).
The cxternal form of the antennac has already been dealt with in chap. In. They are of small size, both in the larva and the imago. They are, however, comparatively larger in the larva, and appear also to be more functionally active than in the imago. Their reduction is clearly correlated with the increase in power of the compound eyes. The largest antennac are found in some of the older Zygoptera, such as Synlestes (fig. $2 \mathrm{~F}, \mathrm{G}$), while the smallest oceur in the Libellulidae and Aeselninae, where the cyes reach their maximum development. The sense of smell, which has heen proved to be located in the antemate of insects, has in the Dragonflies become entirely subordinated to that of sight. It is donbtiful whether it was ever at all well-developed in the Order. The scent of carrion, which so powerfully attracts many insects, would be a matter of no moment to the Dragonfly, which feeds exclusively on living insects. On the other hand, their welldeveloped sense of taste is sufficient to enable them to reject any obnoxious morsel caught on the wing.

In the antennae of the larva of Aeschna, Zawarsin [204] has demonstrated the existence of a Johnston's organ (fig. 65). This is undoubtedly a sensc-organ. It may have an auditory function, but is more probably connccted with testing the purity of the water. It lics in the sccond segment or pedicel. It is not visible
in chitin preparations, being purely a nervous formation. It consists essentially of a ring of large bipolar nerve-cells (J), whose fibres run back to form two bundles passing into the two main divisions of the antennary nerve. It is difficult to understand how such an organ could respond to anything except the vibration or movement of the antennac as a whole, or, more particularly, to the movements of the distalia inserted into the pedicel just above it.

Fig. 65. Pedicel of antenna of larva of Aeschna $(\times 70) \quad D_{1}$ first distale;
J Johnston's organ; main branolies of the antennary nerve; P pedicel; S scape; th sensillae. Methylen blue preparation, after Zawarsin.

Fig. 66. Sensilla (tactile hair) from antenna of larva of Aeschna $(\times 140)$. can eanal; cut entiede; d eirenlar dise
of hard elitin; h hair; ne nerve. cell; nue its nueleus; nv nerve-endineMethylen blue proparation, after Zawarsin.

Each segment of the antenna carrics a few sensillae or sensory hairs (fig. 66). These are organs of touch. They are most numerous, though shortest, on the scape and pedicel. Each hair is freely movable, set in a rounded depression (d), from which a canal (can) runs inwards through the cuticle. This canal carries the fine nerve-ending $(n v)$ of a large bipolar sensory nerve-cell ($n c$).

Zawarsin also found tympanulae on the scape and pedicel. These are tiny circular grooves, with a raised wall covered over by a chitinous membrane. A canal lying in the cuticle, in close
proximity, carries the nerve-ending. Such an organ is responsive to waves of sound, and may be regarded as a very elementary anditory organ.

The extreme tip of the antenna was also found to be sensitive. Here the chitin becomes very thin and dclicate, forming a broad fumel-like canal with a short hair placed on each side. This seems to be an organ of touch. It is innervated by two or three elongated bipolar cells.

In the imago, the only sense-organs so far observed in the antennae arc tactile hairs and tympanulae. The hairs resemble those of the larva, but are less numerous. The tympanulac were discovered by Lespès [85]. A group of four, arranged in a line, were found on the third joint in Sympetrum, and on the fifth joint in Agrion. Lespès states that they contain statoliths, and are convex in profile view. This suggests a balancing or orientating function. Lespess also found, in Ayrion only, on the third joint, a peculiar tympanula closed by a stretched whitish membranc. Possibly this is a feeble auditory organ.

Experiments with Antennae.

It has been often asserted that Dragonflies deprived of one or both antennae are quite unable to direct their flight. In order to test this assertion, I have several times taken into the field with me a pair of fine dissecting scissors, with which I carefully cut off one or both of the antemnae of various Dragonflies captured. I have treated in this way a number of specimens belonging to the genera Hemicordulia, Anax, Aescluna, Ischnura, Austrolestes and Synlestes. In no single instance did the operation affect the insect in the least. Synlestes has the largest antennae of any Dragonfly known to me; yet the loss of them caused it no inconvenience. While returning late one afternoon, I captured a specimen of Anax, which, on examination, proved to be one whose antennae I hat renoved in the morning. It was hawking about in the ordinary manner. I can only suggest that it is not loss of the antennac, but shock caused by damage to the nerve, if the operation is elumsily done, that causes them any temporary inconvenience.

The Labrum and Epipharynx (figs. 67, 68).
The epipharynx (fig. 67, ep) is a soft chitinous outgrowth from the under surface of the labrum. It is undoubtedly an organ of tastc. The sensory portion consists of two curved rows of tiny circular organs, in the form of yellow specks on the surface. One of these taste-organs is shewn, highly magnified, in fig. 68. It consists of a minute chitinous cone (c) set in the middle of a thick

Fig. 67. Labrum (lbr) and epipharynx (ep) of Aeschna brevistyla Ramb. ($\times 20$). Underside, shewing brushes of hairs $(b r)$, taste-organs (t) and sensillac.
Original, chitin Original, chitin preparation.

Fig. 68. Section through one of the tasteorgans on the labrum of the $x n$ la of Aeschna \times loon). c cone chitin; nenerve orading. Methylen blue preparation, after Zawarsin.
dise of strong chitin of yellow colour (d), and connected with a canal ($c n$) carrying a fine nerve-ending ($n v$). Some of these organs are also found on the surface of the labrum itself. The epipharynx also carries two stiff brushes of hairs (fig. 67, br) pointing inwards. Numerous small seattered tactile hairs occur both on the habrim and epipharynx, and a row of strong hairs along the borter of the former organ.

The Hypopharynx (fig. 69).

The hypopharynx (fig. 69) is well-developed in Dragonflics. It is a soft chitinous outgrowth from the base of the labium, projecting into the buccal cavity in the form of a distinct tongue. It is usually regarded as an organ of tastc. It is, however, covered only with numerous long yellow hairs. Zawarsin [204] has shewn that the nerve-supply of these hairs is of the ordinary kind. He therefore concludes that the hypopharynx is mercly an organ of touch in the larva. We think the same holds good for the imago.

The opening of the salivary ducts lics at the base of the hypopharynx (fig. 45 e).

Chordotonal Organs (fig. 70).

The peculiar organs known as chordotonal organs (fig. 70), and supposed to be organs of hearing, occur on all the legs of Dragonfly larvac, and probably also in the imago. The larva of Aesclina was found by Zawarsin [201] to have three sets of these organs on cach leg, two on the trochanter and one on the tibia close to the kneejoint. Each set consists of a number of minute organs called otaria. Each otarium (fig. 70 в) is a small slit covered by smooth

Fig. 69. Hypopharynx of Aeschna Crevistyln Ramb. (\times 13). Original, chilin propration.

Fig. 70. A. Chordotonal organ Fig. 70. A. Chordotonal organ in knee-joint of larva of thesch-
$n a(x \neq 0)$. Section through a single otarium ($\times 1000$). a forngle otarium $n v$ nerve-endings; ot otaria; p^{n} pedal nerve: th sensillae; $t i$ tibia. Methylen blue preparation, after Zawarsin.
ehitin, under which is found a tiny rod or style. This rod is hollow, and carries a bundle of excessively fine nerve-fibrils. The total length of such an organ is only 0.01 mm .

Chordotonal organs differ from tympanulae in that the auditory vibration is received on a rod instead of on a stretched membranc or tympanum. Possibly such an organ only registers vibrations of much lower frequency than those which produce sounds. Their presence on the legs of the larva suggests that they may respond to currents set in motion by other animals in the water, and thus
warn the Dragonfly of the approach either of an eneny or a victim. They would be particularly useful at night-time, when the eyes are probably of little use.

Stridulating Organs.

Berlèse [10, p. 174] has figured two small processes (laminae stridulatoriue) situated one oneither side of the prothorax anteriorly, above the prosternum, in Aeschna. These he described as stridulating organs, which produce a sound by rubbing against two roughened patches behind the eyes, on cither side of the posterior foramen. I know of no other observations on stridulation in Dragonflies, nor have I ever heard them emit any sound, cxcept a sharp click of the wings occasionally when flying. In view, however, of the proved presence of minute auditory organs on the antennae, it is clear that more observations are required on this interesting point.

Other Sense Organs.

Minute organs of taste and touch occur scattered all over the mouth parts. They are however nowhere numerous, except on the labrum and epipharynx. Sensory hairs, with a tactile function, occur on many parts of the body, such as the anternac, the edge of the labrum, the legs, the abdomen, the anal appendages, and on the wing-sheaths of many larvae.

To sum up, the Dragonfly shares with the Bird the distinction of possessing the keenest vision of any animal in its Phylum. In both cases, the exceptional development of the sense of sight is correlated with an aërial cxistence. The senses of taste and touch are normally developed. But the senses of smell and hearing are very poor, the former being almost, if not quite, absent, while the latter is confined to organs of excessively minute size. To these five senses, as ordinarily understood, we must add the sense of direction or orientation, which is probably located in the tympanulae. The larvae may, perhaps, also posscss a kind of chemical sense for gauging the purity of the water.

CHAPTER VIII

THE CIRCULATORY SYSTEM

The Circulatory or Blood-vascular System of the Dragonfly has been very little investigated, chiefly owing to the excessive delicacy and fineness of the structures forming it. In the larva, the broader and shorter abdomen, and the more abundant blood supply, make the study of the blood-system more easily carried ont. We owe to Zawarsin [203] a very complete account of the heart in the larva of Aeschna.

It will be found convenient to treat the Circulatory System in three parts, (1) the closed system, (2) the open system or haemocoele, (3) the blood itself.
(i) The Closed System.

The Closed System in the larva is entirely dorsal, and consists only of the Dorsal Vessel. In the imago there is, in addition, a partly closed Ventral Vessel. The Dorsal Vessel is a slender tabe lying dorsally above the alimentary canal. It begins in the ninth abdominal segment, where it is widest, and rums forward to the second segment, where it narrows sharply to a very fine tube. This latter penetrates through the thorax into the head, opening into the haemocoele above the brain. The broader portion of the Dorsal Vessel is called the Hearl, the narrower portion the Aortu.

The Heart (figs. 53, 71).

The Heart proper diflers from the Aorta, not only in its greater width, but also in possessing definitely contractile walls. It consists of eight chambers, corresponding to the cight abdominal segments (vi\%. numbers 9 to 2) in which it lics. These chambers will be spoken of as the first, second, etc., beginning from the

Fig. 71. Dorsal vessel of larva of Aeschna $\left(\times 4 \frac{7}{6}\right)$. a.lig. anterior ligament; a.m. alary muscle; d.aort. dorsal aorta; ol osteole; ost ostia; pe perieardium (dotted outline); p.lig. posterior ligament; Th thorax; v valves of heart; 1-10 abdominal segments; i-viii chambers of heart. After Zawarsin.
posterior end. Hence the eighth chamber lies in the second abdominal segment.

In most insects, each separate chamber can not only propel the blood forward, but can also receive blood from the haemocoele by openings, or ostia, in its walls. The heart of the Dragonfly larva is, however, differentiated into two very distinct portions, which we shall call the Receptive or Hind Heart, and the Conductive or Fore Heart respectively.

The Receptive Heart consists of the first two chambers only, viz. those in the ninth and eighth abdominal segments (fig. 71, i and ii). Each chamber not only performs the ventricular function of pumping the blood forward (into the chamber in front of it); but it also carries out the auricular function of receiving the blood from the haemocoele by means of ostia. Each chamber has a pair of these openings (ost) sitnated dorso-laterally near the midlle of its wall. The wall is more museular, and its powers of contraction and expansion greater, than in the case of the chambers of the Fore Heart.

The first chamber (i) is firmly suspended above the posterior end of the rectum. Its walls are held in position by two strong alury muscles (a.m.), attached to the side walls of the ninth segment, and also by two posterior ligaments (p.lig.) passing backwards, and attached to the wall of the tenth segment ahove the anus. Posterionly the chamber is rounded off thindly; the anterior half is almost cyliudrical. 'The ostin (ost) open, one on either side, above hhe alary muscles. Their openings are ghated by valves directed slantingly forwards. Wach valve is continued forwards along the side wall of the heart to end in in larger flap (v) which forms the valve separating this chamber from the second.

The second chamber (ii) resembles the first, except that it is eylindrical throughout. It is supported by two strong alary muscles (a.m.) attached to the side walls of the eighth segment, and in front by two anterior ligaments (a.lig.) attached to the partition between the seventh and eighth segments. Its ostia and valves resemble those of i .

Close to each ostiun of the Receptive Heart lies a small phagocyle organ (not shewn in the figure). This is simply a mass of corpuscles enclosed in a skeletal network of fibres. These
organs lie just at the points where the blood-current is most intense. Their functions appear to be (1) the manufacture of fresh blood corpuscles, (2) the extraction of certain impurities from the blood stream. A pair of lymphoid organs also lie between the heart and the pericardium, opposite the ostia, and appear to pulsate with the heart.

The Conductive Hearl consists of six chambers (iii to viii) lying in segments 7 to 2 . All six are very closely similar. Each is cylindrical, and opens into the one before it by means of a pair of valves (v). There are no alary muscles, and no ostia. Hence the function of the Conductive Heart is purely ventricular; and even in this its action is not so powerful as that of the Hind Heart.

Replacing the absent ostia, on the wall of cach chamber of the Conductive Heart, is a pair of peculiar oval organs, called by their discoverer Zawarsin "ostia-organs." As they are almost certainly reduced and elosed-up ostia, we shall use the term osteoles. for them. These osteoles (ol) lie elose together on the dorsal wall of each chamber, a little in front of the middle. Where is also a single pair on the aorta. Zawarsin believes that they have been formed by the fusion of an original phagocyte organ with an ostium proper. Consequently their ehief function must be the manufacture of fresh blood corpuscles.

The Conductive Heart narrows slightly from behind forwards. In the second segment it ends abruptly, and passes by a pair of valves into the very marrow aorta (d.aort.).

Surrounding the whole heart, but only distinctly separated from it around the Hind Heart, is the Pericardium ($p c$), a space bounded by a delicate cellular wall supported by fibres of the alary muscles. On reaching the region of the heart, the muscle proper becomes differentiated into the so-called "elastic tissuc." This, by interweaving of its fibres with the pericardial epithelium, forms a kind of net-bag in which the hind-heart lies free, except ventrally, where the fibres pass on into the wall of the heart itself. Specially thickened portions of this elastic tissue form the anterior and posterior ligaments.

In the Fore Heart, the pericardial wall fuses completely with the wall of the heart, so that no distinet pericurdial cavity is recognizable.

IIistology of the Heart. The wall of the heart is composed of three layers, an outer adventilia, a middle muscular layer, and an internal intima.

The adventitia consists of a special fibrous connective tissue resembling that of the fenestrate membrane of the compound eye. It also encloses peculiar spindle-shaped cells and phagocytes. It is separated from the muscular layer by a fine membrane.

The muscular layer, which is the contractile portion of the wall, is formed of complicated muscle-cells, partly fused into syncytia. The cell-masses are so arranged that the heart is distinctly divided into two lateral halves, by longitudinal dorsal and ventral zig-zig lines, or sutures, and also by cross-sutures, in the form of half-rings lying alternately to right and left of the longitudinal sutures. The combined result is to divide the heart into hexagonal areas. The muscle-fibres are striped, lut there is no sarcolemma.

The intima is a fine internal membrane lining the lumen of the heart. It is almost certainly formed from the orginal sarcolemma of the muscular layer.

Innervation of the Hearl. On either side of the heart there runs a fine longitudinal nerve-cord, the alary nerve, derived probably from the eighth ganglion of the ventral nerve-cord. Each alary nerve gives off strong branches to the alary museles. Besides these, motor nerves derived from the nerve-supply to the intersegmental muscles, and hence connected with each of the ganglia of the ventral nerve-cord, enter the alary nerves at different levels, and give off a rich network of nerves all over the wall of the heart.

Functions of the Heart. Besides the principal function of pumping the blood forward in a closed stream, the heart has been shewn to perform other duties. Thus, Zawarsin [203], by injection of coloured substances into the blood, found that this foreign matter was quickly removed by the phagoeyte organs of the hind-hcart. Voinov [187] found that the entire wall of the heart was capable of removing certain soluble impunities from the blood, during its passage through the organ, and fixing it temporarily in the adventitia, by means of the phagocytes. Thus the heart is capable of performing a partial excretory function (see p. 118).
'в. D.-w.

The Aorta.

The dorsal aorta (d.aorl.) is a very delicate, straight, noncontractile tube, which carries the blood stream forward through the thorax to the head. It is not divided into chambers. Its chief peculiarity, in Dragonfly larvae, is the presence of a pair of small but distinct osteoles (ol) on its dorsal wall, in the middle of the thorax.

In the imago the dorsal vessel is excessively attenuated and elongated, owing to the eorresponding form of the abdomen. No detailed studies have been made of it, but its strueture seems to be essentially similar to that of the larva.

The Ventral Vessel.

The ventral vessel or ventral sinus of the imago is not really a closed tube, but a kind of groove overlying the ventral nerve-cord. A membrane placed on either side of the nerve-cord serves to separate it from the haemocoele. During the respiratory movements of the long slender abdomen, each contraction, by narrowing the abdomen transversely, forces the edges of these membranes up into a set of curved ridges, one pair in each segment. The blood is thus constrained to flow between these ridges, from before backwards. Thus an almost completely closed cirenlation is set up in the imago.
(ii) The IIaemocoele.

As in all insects, the general body-cavity is not the same as the embryonic coelome. The latter becomes reduced to the narrow pericardial space, and the lumina of the developing reproductive organs. A secondary enlargement of the blood spaces, on the other hand, forms the general body-cavity." This is termed the haemocoele. Owing to the position of the various organs in the body, the haemocoele forms a kind of imperfect sinus along either side of the middle line, chiefly ventrally. It extends into the legs and antennae. It is filled with blood plasma, in which a weak and irregular circulation of corpuscles, from before backwards, is easily noticeable.
(iii) The Blood.

The blood of Dragonflies is a lymph-likefluid, in which corpuscles of various kinds live and float. The fluid or plasma is not a bsolutely colourless, but is usually of a delicate yellowish or greenish tint. In the larvae of some Gomphinae it is a very bright green.

The blood corpuscles appear to be of only two kinds, miocytes and amoebocytes. The former are the more numerous. In a transparent larva they can easily be seen travelling up the dorsal vessel, or passing backwards round the bases of the legs, and along the edges of the abdominal segments. They are of an elongate oat-shape. In the newly-hatched larva of Anax papuensis they vary in length from 13 to 15μ. The probable limits of size, in larvae of different genera, may be placed at from 10μ to 16μ. In the very young larva, the number of corpuscles present in a single chamber of the heart at any given moment is usually only from six to ten; while, in the whole animal, there do not appear to be more than two or three hundred of them. There can be little doubt that, after each ecdysis, their number is largely added to by the manufacture of new corpuscles in the osteoles and phagocyte-organs. Both miocytes and amoebocytes are often spoken of as phagocytes, since they are supposed to play a part elosely similar to that of the leucocytes, or white corpuscles, of the blood of vertebrates.

The nmoebocyles differ from the miocytes ehiefly in their irregular amoeboid form. Voinov [187] states that it is the amoebocytes alone which undertake the function of phagocytes. But he also denies the presence of the phagocyte-organs described by Zawarsin. It seems possible that both the oat-shaped corpuscles and the amoebocytes are only variations of a single form of corpuscle. Both have been seen to undergo binary division. Under eertain circumstances the shape of the elongated corpuscle is known to alter. The distinction between them may therefore be only an arbitrary one.

There are no corpuscles in the blood of insects corresponding witl the red corpuscles of vertebrates. The presence of a complicated tracheal system renders oxygen-carrying cells unnecessary.

Wandering fat-cells are often to be seen in the blood of Dragonflies. The large cells known as oenocytes also appear to be present, at any rate in the abdomen of the larva; but I know of no definite observations concerning them.

One of the principal functions of the blood is undoubtedly to receive from the mid-gut the produets of digestion, and to carry them to the various organs, or to the fat-body for storage, until sueh time as they may be needed. The blood also dissolves the carbonic acid gas formed in the body of the insect. In the larva, it almost certainly plays some direct part in the process of respiration, by carrying this gas to points where it may be exchanged for oxygen from the water, by the ordinary processes of diffusion

The Circulation.

In the young larva, directly after hatching or ecdysis, the whole course of the blood can be followed with ease. The blood enters in two streams on either side of the hind-heart, the current passing quite suddenly from sluggish to rapid as the blood approaches the ostia. The pulsations of the hind-heart are fairly regular, and usually from 60-70 per minute. Each pulsation drives a considerable quantity of blood forward into the next chamber. Between pulsations, the corpuscles remain almost stationary in the chambers of the heart. On reaching the aorta the corpuscles are forced forwards in jerks, so that an irregular stream of them is seen to enter the haemocoele in the upper part of the head. This stream at once spreads out, passing at first slantingly downwards beneath the brain. The main stream then circles forwards and upwards over the brain, and finally divides into two separate streams passing slantingly downwards and backwards towards the neck, through which the blood passes in two closely contiguous streams, separated by the nerve-cord. Some of the corpuscles pass into the bases of the antennae, where a circulation can be seen in the scape and pedicel.

In the thorax, a circulation along either side of the nervecord inchudes the basal joints of the legs (coxa and trochanter). A weaker eurrent also passes backwards more dorsally. In the
older nymphs, blood circulates in the spaces around the tracheae of the developing wing.

On entering the abdomen, the circulation becomes rather sluggish. The weak dorsal stream passes slowly backwards along either side of the heart. Most of its corpuscles pass into the heart in the eighth segment. Ventrally, a somewhat stronger stream passes along either side of the abdomen, as well as medially above the nerve-cord. 'This stream passes right back to the anus, and, in the Zygoptera, bathes the bases of the caudal gills. It then turns upwards and forwards, entering the heart through both chambers of the hind-heart
${ }^{-}$As the larva grows, the haemoeoele extends further into all the appendages, so that blood ean circulate for a considerable distance into the antennac, the legs, and the caudal gills of the Zygoptera.

CHAPTER IX

THE RESPIRATORY SYSTEM

All insects breathe by means of tracheae, i.e. tubes designed to carry the oxygen supply direct to all the organs of the body. These tracheae are of ectodermal origin, being developed as paired segmental invaginations in the embryo. The mouth of the invagination becomes the spiracle or stigma. The tubes unite in the body of the insect to form a complete tracheal system consisting of paired longitudinal trunks, from which numerous branches arise. These branches divide again and again, until they end in exceedingly fine tracheae known as capillaries.

The structure of a trachea (fig. 72) is easily understood, if we bear in mind its ectodermal origin. In transverse section it is seen to be formed of two layers, an outer ectotrachea (ec), and an inner endotrachea (en). The ectotrachea is a cellular layer corresponding with the hypodermis. Its cells are flattened, hexagonal, with distinct broadly oval nuclei, whieh are often seen bulging out from the contour of the smaller tracheae. The endotrachea is a chitinous non-cellular layer secreted by the cells of the ectotrachea, and corresponding with the cuticle. On its inner side it is strengthened by a peculiar thickening known as the spiral thread ($s p$). This is not a single complete spiral, but consists of a number of short coils, each the product of a single cell. These

Fig. 72. A. Portion of a small trachea from larva of Symlestes weyersi Selys. B. T.s. through same ($\times 800$). ec ec totrachea; en endotrachea; $s p$ spiral thread. Original.
are so closely interwoven as to produce the appearance of a complete whole. The cross-section of the spiral thread in one of the larger tracheae of a Dragonfly larva is easily seen to be quadrilateral.

The tracheal system of the Dragonfly imago is of the type known as an "open" system, i.e. the spiracles are functional, and air is drawn into the system directly throngh them. It seems to be quite clear that the larva had originally an exactly similar system. With the adoption of the aquatic habit, however, the spiracles ceased to be useful, except on such special occasions (e.g. metamorphosis) as the larva was able to leave the water and breathe air directly. Hence the spiracles have persisted in the larva, although not generally functional, and often indeed quite closed up. The requisite oxygen is obtained by the agency of a system of specially developed tracheal gills, from which special branches known as efferents pass to the main tracheal trunks. Thus the tracheal system in the larva beeomes more complicated than that of the imago.

Traeheal gills are developed in the larvae of Dragonflies in three places:
(i) In all Anisoptera, within the anterior portion of the rectum, by specialization of the rectal epithelium and pads. The whole formation makes up the beautiful structure known as the branchinl baskel.
(ii) In most Zygoptera, on the three anal appendages of the larvac, i.e the two cerci and the appendix dorsalis. These are known as caudal gills.
(iii) Laterally, on certain of the abdominal segments, in a very few archaic Calopterygildae. These paired gills are remnants of original paired abdominal appendages, of which, in other Dragonflies, the only pair left are the cerci. They are homologous with the gills of the May-fly larva. The larvae possessing them also have caudal gills.

Besides these recognized forms of gills, there are the three rectal pads or folds of Zygopterid larvae, which probably function as blood-gills. These were dealt with on p. 116, and need not be further discussed.

We shall deal with the respiratory system under five headings:
(a) the tracheal system of the imago, (b) modifications in the general tracheal plan in the larva, (c) the branchial basket of Anisoptera, (d) the caudal and lateral gills of Zygoptera, (e) the movements of respiration.

A. The Tracheal System of the Imago.

1. The Spiracles (figs. 73, 74).

There are ten pairs of spiracles in the imago, two belonging to the thorax, and eight to the abdomen. They are situated on the last two thoracic and the first eight abdominal segments respectively.

The mesostigmata (fig. $73 \mathrm{~A}, \mathrm{~B}$), or anterior thoracic spiracles, are situated on the mesostigmatic laminae, as described on p. 24. Each is a rather large transversely elongated opening, guarded by two thickened chitinous lips, one of which usually carries a number of stiff hairs arranged in sets. Within this lip there projects the peculiar organ called the comb (B), a stiff chitinous framework formed by a number of regularly arranged projecting spines or teeth, supporting between them a kind of honey-comb network of weaker chitinous "cells." The size and arrangement of teeth and cells varies in different genera. Landois [83], who first discovered this

Fig. 73. Thoracie spirucles of Aeschnn brevistyla Ramb. A. Mesostigma $(\times 30)$. \quad B. Part of comb of same \times Original, chitin prepraration. comb, believed that it was a sound-producing organ. It seems to be simply a specialized portion of the closing apparatus, probably derived from an original single row of strong bristles.

The metastigmata (fig. 73 c), or posterior thoracic spiracles, lie in the lower portion of the metepisterna, as described on p. 24. Each is a small but distinct oval opening, about half as long as the
mesostigma, but much wider by comparison, and more regular in shape. It carries no comb, but a narrow chitinous flap or ridge lies below one lip. On this flap is a regnlarly arranged row of stifl curved bristles, projecting inwards.

The abdominal spiracles (fig. 74) lie in the anterior portions of the plenral membrane of the furst eight abdominal segments. They incrase in size from the first segment to the eighth, the seventh pair being fairly large, the eighth pair much larger than any of the others. They are of an elongated oval form. In the older groups they lie obliquely to the body axis; in the higher groups they become longitudinally placed. In structure they are usually not unlike the metastigma (fig. 74 B , cf. fig. 73 c). In some of the older Anisoptera, e.g. Petalura (fig. 74 A), they become highly developed, with an extraordinary array of bristles on both lips, reminding one of the cylinder of

Fig. 74. Abdominal spiracles ($\times 63$). A. Petalura giganten Lench, 7 th Br. 7 th segment. Original chitin preparation. preparation. a) musical box. Some of these bristles are elongated, and become curved inwards in two opposing rows, which completely close the opening when the lips become approximated towards one another. In the Libellulidae (fig. 74 13) the sternum becomes armed with spines in the region of the stigma. In some eases the whole sternum becomes densely spinulose. In the Zygoptera, the internal flap seems to be absent. .

2. The Tracheae (fig. 75).

The tracheal system of the imago consists of three pairs of main longitudinal trunks, with their numerous branches and capillaries. These trunks are named the dorsal, visceral, and ventral trunks respectively, from their positions [22].

The Dorsal Trunks ($D T$). These are the largest of the three, and the only pair to extend into the head. They rum from the
eighth to the first abdominal segment, on either side of the heart, ahove the alimentary canal. They are not directly connected

Fig. 75. Tracheal system of abdomen of Aeseluna br evistyla Ramb. δ ($\times 2 \frac{1}{2}$). Heart displaced to right, alimentary canal to left; left dorsal and ventral trunks and left testis removed. an anus; as air-sacs; cr crop; DT dorsal trunk; $h g$ hind-gut; $h t$ heart; $m g$ mid-gut; $m p$ Malpighian tubules; oes oesophagus; $S p$ abdominal spiracles; ts testis; vd vas deferens; VNT ventral trunk; dorsal dissection.
with the abdominal spiraeles, but each gives off six cross-hranehes to the corresponding ventral trunk, elose to the levels of the second to the seventh of these spiraeles. On entering the thorax, the dorsal trunks dip ventrally downwards, and run forwards to below the mesostigmata, from which they receive short strong branches. They also receive longer branehes from the metastigmata. On entering the head, each divides into two. As the tracheal supply of the head is practically the same in imago and larva, and as it ean only be followed satisfactorily in the latter, we have postponed a general account of this part to the next section.

Each dorsal trunk gives off the following principal branches:
(i) Branches to the three legs (pedal tracheae).
(ii) Branehes to the two wings (alar trunks, hest developed in the larva).
(iii) Branches to the thoracic museles.
(iv) Short branches with blind ends, eapahle of heing distended into air-sacs (as). These air-saes are of very irregular oecurrence (i.e. they are probably not notieed unless they are distended). Usually at least two pairs ean be found in the seeond segment, lying on either side of the usually more distended crop. I have also found small air-saes in other segments, partienlarly from the sixth to the eighth. Along this region, the dorsal trunk gives off branehes which ordinarily lie close alongside the main tromk, direeted backwards. In some eases the posterior ends are found to be distended, forming long sausage-shaped air-saes. I have notieed this partieularly in Orthetrum and Memicordulia, where the abdomen is dilated.
(v) The six eross-branehes to the ventral trunks, already mentioned. The most posterior of these is very slender, the others strong and thiek.
(vi) Numerous branches to the heart, particularly along the anterior half. These branches, on reaching the heart, hifureate into two widely diverging portions, one running anteriorly, the other posteriorly. From each of these, numerous smaller branehes arise, so that the heart is covered hy a complete net-work of tracheae.

At its posterior end, each dorsal trunk turns inward to enter
a. strong transverse branch lying in the eighth segment, by means of which it becomes connected with the ventral trunk of the same side. This cross-trunk is probably the highly developed homologne of series (v) ; its greater size being correlated with the great enlargement of the corresponding spiracle. The genital duct crosses it on the inner side. From it, two strong tracheae are given off to supply the last two segments and the anal muscles.

The dorsal trunks are easily recognized by their dark reddishpurple or brownish colour, as well as by their large size.

The Visceral Trunks (VT). These are smaller than the dorsal trunks, and of a much paler colour, either whitish or lightly pigmented in brown or pink. . They run closely alongside the whole extent of the mid-gut, laterally. Anteriorly, each visceral trunk bends inwards in a kind of "kink" in the region of the gizzard, then bends outwards along the surface of the crop, which it crosses dorsally, finally entering the dorsal trunk of the opposite side close up to the thorax. The right visceral trunk usually passes over the left, towards the anterior end of the crop. This point is called the visceral crossing. Posteriorly, each visceral trunk turns downwards in the eighth segment to join the ventral trunk, at its point of union with the large cross-trunk mentioned above. Each visceral trunk gives off the following branches:
(i) A branch to the crop and gizzard..
(ii) Six short branches to the mid-gut. Each of these, on reaching the gut, bifurcates into two diverging portions, which spread out anteriorly and posteriorly, ramifying over the surface.
(iii) A strong branch to the zone of entry of the Malpighian tubules. This divides into a number of short branches corresponding with the separate Malpighian conduits. Wach short branch quickly divides into five or six fine tracheae, one of which accompanies each Malpighian tubule along its entire length.
(iv) A strong branch to the hind-gut.

The Ventral Trunks (VNT). These are well developed and darkly pigmented, but not so large as the dorsal trunks. They lie ventrally in the abdomen, above the pleural membrane, one on either side of the ventral nerve-eord. Anteriorly they become very attenuated, and divide up into two or three small branches, one of which appears to reach the metastigma, or a branch arising
from it. Another small branch joins a branch from the dorsal trunk. Posteriorly the ventral trunk is connected with the dorsal and visceral trunks of the same side, in the manner already described. Each ventral trunk gives off the following branches:
(i) Eight short branches to the corresponding abdominal spiracles on the same side.
(ii) Six branehes to the dorsal trunk, as already described.
(iii) Seven branches to the seven abdominal ganglia of the ventral nerve-cord. Each of these runs inwards transversely, close to the corresponding ganglion. It then divides into two strongly diverging branches, of which the posterior is the largest. The anterior runs forwards to supply the nerve-cord; the posterior gives off a branch to the ganglion, and then runs backwards to supply the nerve-cord. The branches are so arranged on either side of the nerve-cord that the latter appears at first sight to be supplied from two continuous longitudinal tracheae.
(iv) Branchos to the gonads. In the male, the testis is supplied by four branches, arising from the ventral trunk in segments 5-8 respectively. In the female, an immense number of branches supply the ovary, particularly the anterior portion. These penetrate the fat-body, and then branch and re-branch in a complicated manner, forming a strong net, in which the ovary and its enveloping fat-sheath are firmly held.

B. Modifications in the Larva (figs. 76, 77).

More is known about the tracheal system of the larva than about that of the imago, not only because the broader and shorter abdomen, and the greater thickness of the tracheal trunks, render dissection easier, but also because, just after eedysis, almost the whole of the tracheal system of the larva can be followed under the microscope. The general plan is evidently the same, the three pairs of longitudinal trunks having the same relative positions, and giving off moch the same branches [111, 147].

Modifications in the Abdomen. The dorsal trunks are of great thickness, and of a peculiar semi-metallic reddish or coppery colour. They are strongly bent outwards in the region of the mid-gut in segments 3-4. Posteriorly, about the end of segment 7,
each divides into two branches. One of these turns inwards to supply the posterior part of the rectum, the anal region, and, in Zygoptera, the median caudal gill. The other turns sharply outwards to reeeive a short branch from the junction of the

Fig. 76. Tracheal system of larva of Dendroaeschna conspersa Tillyard, exelusive of liead ($\times 6$). $a l_{1}, a l_{2}$ alar trunks; $h t$ trachea to heart; p_{2}, p_{3} pedal tracheae; $p s$ branch to metastigma; R rectal efferents; $T A$ thoracic anastomosis; $V C$ visceral crossing; $V r$ visceral remnant; $1-10$ abdominal segments. Other references as in fig. 75. Original, from a dorsal dissection.
visceral and ventral trunks, and then runs backwards to supply the sides of the ninth and tenth segments, and, in Zygoptera, the lateral caudal gill. The tracheae developed in connection with the branchial basket in Anisoptera are dealt with in the next section. The visceral and ventral trunks unite in segment 7; from their junction a short branch runs to the dorsal trunk; a longer branch runs backwards through segments 8-9. The visceral trunks are very poorly developed in Zygoptera.

The abdominal spiracles are small and non-functional. The branches connecting them with the ventral trunks are short and thin. They appear to be solid except just before and after ecdysis, when the endotrachea is withdrawn through the temporarily open spiracle. The visceral trunks are shining white in colour; they cross one another at the visceral crossing ($V c$) as in the imago. Each ends up anteriorly on the second pedal trunk of the opposite side, close under the dorsal trunk.

Modifications in the Thorax. In the laval thorax, the dorsal trunks do not bend ventrally downwards, but pass forward in the synthorax dorsally, close under the pleural ridges. Each gives ofl two alar trunks, which enter the wings at the anal end of the base, forming a loop from which the wing-tracheae arise, and leaving it by the costal side. The alar trunk of the hind-wing then curves downwards, externally to the dorsal trunk, and finally enters the third pedal trachea close to the region of the metastigma. The alar trumk of the fore-wing follows a similar course, ending up on the second pedal trachea. Just in front of the level of this latter trachea, the two dorsal trumks converge closely, and become united by a short thick thoracic anastomosis (TA), from which small branches pass back to the metastigmata. . On reaching the level of the mesostigma, each dorsal trunk opens into a kind of chamber below that organ, formed by enlargement of a short cross-branch. In front of this, each dorsal trachea divides into two branches, which pass forwards to the head. In the Zygoptera, the second pedal trachea joins the dorsal trunk just under the mesostigma.

A peculiar formation connecting the anterior and posterior portions of the dorsal trunk, just in front of and behind the mesostigmatic chamber respectively, is the visceral remnant (figs.

76, 77, Vr), a short white loop which appears to be the severed anterior end of the visceral trunk. If that be so, the connection of the visceral trunk with the pedal tracheae is a secondary formation.

Tracheation of the Head (fig. 77). The labium is supplied by a pair of strong tracheae, which arise from a transverse loop, derived from the two first pedal tracheae close to their bases. All the rest of the head is supplied by the two pairs of large dorsal

Fig. 77. Tracheal system of head and part of thorax of larva of Synlestes weyersi Selys ($\times 13$). ant antennary trachea; ao anterior optie trachea; c cerebral trachea; E eye; f frontal branches; $l b$ labial trachcae; loc lateral ocellus; moc median ocellus; og trachea to optic ganglion; p_{1}, p_{9} pedal tracheae, anastomosis; $S t$ mesostigma; Th thoracic anastomosis; $V r$ visceral remnant. Original, cedar oil preparation.
trunks. Of these, the two uppermost, soon after entering the head, are united by a semicircular arch, the superior anastomosis (SA). From the two bases of this arch, large tracheae pass transversely outwards to supply the eyes, giving off branches to the postocular lobes by the way. Higher up on each side of the arch, smaller branches pass outwards and forwards to the anterior region of the eye. At the summit of the arch, in Zygoptera, two small tracheae
come off, each of which soon branches to supply the median ocellus, and the lateral ocellus of its own side. Thus the median ocellus receives a double tracheal supply. The lower branches of the dorsal trunks divide into two branehes below the bases of the arch. The more posterior of these two branches is very thick. It som divides up in a fan-like manner to supply the optic ganglion. The more anterior branch is slenderer. It runs forwards in a double curve to enter the antenna, giving off branches to the brain, the mandibles and maxillae, and the frontal region, on the way.

The above description was made from a nearly full-grown larva of Synlestes (fig. 77). In Aeschna, the superior anastomosis is comparatively weak, but the other main branches are much stouter than in Synlestes. There is no branch corresponding to the one from the arch to the anterior part of the eye. The branches to the optic ganglion and the brain are united for a short distance. They then separate, and spread out as two immense fans, deeply coloured with brown pigment.

Modifications in the Spiracles. The mesostigma in the larva is well formed and easily seen. It is shorter and broader than in the imago, somewhat resembling the metastigma of the latter, though not so rounded. It is open, and provided with a row of bristles beneath one lip. It is clear that this spiracle can beeome functional whenever the larva las need to leave the water for a time. Many Aeschnine larvae wander about on rocks or other damp places at night, using these spiracles for breathing. The metastigma is very small, being little more than a point. In the Anisoptera it is just open, by a slit; in the Zygoptera, it seems to be quite closed. With few exceptions, it appeurs, to be nonfunctional. The abdominal spiracles have been already mentioned.

An excellent account of the thoracic spiracles and abdominal tracheation of Anisopterid larvae has been given by Oustalet ${ }^{1}$ [111]. I know of no detailed account of the tracheae in the imago. An excellent short account is, however, given by Calvert [22].
${ }^{1}$ He, however, denies the existence of abdominal spiracles.

C. The Branchial Basket.

This unique, highly efficient, and very beautiful structure is only found in the larvae of Anisoptera. The "basket" is formed by expansion of the anterior two-thirds or more of the rectum, which becomes a wide barrel-like chamber. From its walls the gills project inwards in six longitudinal sets, developed originally, as I have recently shewn [179], from the six rectal pads, which remain undifferentiated in the posterior part of the rectum. The whole structure of the branchial basket is so complicated, that we shall divide our account into five sections: (1) the efferent tracheal system, (2) the types of gill-system, (3) the ontogeny and phylogeny of the types, (4) the histology of the gills, and (5) the physiology of respiration.

1. The Efferent Tracheal System (fig. 78).

Originally developed as a series of branches from the main trunks to the rectum, this tracheal system, on the birth of the larva, at once takes on a definite efferent function, conveying the gas received by the gills from the water to the main longitudinal trunks. Thus, while it is most convenient to trace the system inwards from the large trunks to the fine capillaries, we shall use an efferent notation in describing them. The arrangement may be gathered from figs. 76, 78.

There are six series of principal branches, or primary efferents ($e f_{1}$), to the gill-basket, arranged in three pairs. Two series come off from the dorsal trunk of each side, one from the visceral trumk. The ventral trunks have no part in the formation. Each primary efferent, on approaching the gill-basket, divides into two secondary efferents ($e f_{2}$), which pass through the muscular tunic to the bases of the gills. Here they break up in various manners, according to the type of gill. These branches enter the gill-base, and give off a very large number of tracheal capillaries, fine tubes without any spiral thread, destined to receive the gas from the water in the rectum. Each capillary forms a complete loop along the free border of the gill, finally returning to the same secondary efferent from which it originally arose. The different systems of branching, and the courses taken by the capillaries, will be best understood by reference to fig. 80 .

Fig. 78. Diagrammatic T.s. through branchial basket of Anisopterid larvae, to show types of gill-system. A. Undulate Simplex. B Foliate Duplex. C. Lamollate Duplex. $b p$ basal pad; $B r$ branchial basket; of eross-fold;
 each hemibranch, although six or more, only one lamellh is shewn cut in dotted trachone lie outside thix or more are really cut (see fig. 83 B). The doted tracheae lie outside tho true level of the section. Original.

2. The Types of Rectal Gill-System (figs. 78-80).

The gill-system may be either Simplex or Duplex. Distinct types of gill are found in both systems, and have been named according to their form [138, 179].

The Simplex System (figs. 78-79 A, 80, 1).
In the Simplex System there are six principal longitudinal gill-folds (the main-folds, mf) running the whole length of the basket, and arranged in the positions denoted by the even numbers on a clock-face diagram, i.e. in the same positions as the rectal pads of the imago. These are supported, to right and left alternately, by a double series of cross-folds (cf). A complete main-fold with its cross-folds is called a holobranch. The twelve sets of secondary efferent tracheae correspond with the twelve sets of cross-folds. Each, however, after supplying a branch to its cross-fold, continues on to enter the main-fold. Thus each main-fold receives a double tracheal supply, from right and left alternately. We sce, from fig. 78 A , that each main-fold, therefore, is in connection, by alternate tracheae, with two sets of primary efferents. Or, in other words, the two sets of secondary efferents, arising from one series of primary effcrents, do not enter a single main-fold, but pass, one to the left side of one main-fold, the other to the right side of the next main-fold. This complicated arrangement becomes much simplified in the Duplex System.

The main-folds are crinkled and grooved, projecting obliguely backwards into the rectum in the manner seen in fig. 79 A . The cross-folds are also crinkled, but do not project so far inwards.

There are two very distinet types of Simplex System known:
(1) The Undulate Type (figs. 78-79 A, fig. 80, 1). This occurs in the Cordulegustrinae, Petalurinae and in the genus Austrogomphus. The gill-folds remain entire, and are undulated along their whole length. The free edge of the gill carries minute spines at short intervals. The tracheal branches approach fairly near to the free edge, giving off capillaries along their whole length. These capillaries run nearly straight to the free border, and then turn round to form loops, returning to a near-by branch of the same secondary efferent. Pigment is seldom developed in these gills.
(2) The Papillate Type (fig. 80, 2, 3). : This occurs in most of the Gomphinae. The edges of both main and cross-folds are broken up into long slender papillae, along each of which a strong axith trachen rums almost to the tip. A small number of capillaries (about twenty) arise from this trachea, each forming a complete loop within the papilla. The papilla is strengthened externally by frequent short transverse chitinous rods. Purple or mauve pigment is developed below the bases of the papillae. This is clearly a specialization from type (1), and of greater efficiency, since the water bathes each papilla on all sides.

Fig. 79. Portions of the freshly opencel gill-lansket, to shew form of gills. A. Parts
 1. Tho sanio from Austrocteschnct mullipunctata Martin (iinplicate). O. Tho foliate). n. The same from Anax papuensis Burm (papilo-foliate) (norma same from Synthemis macrostigma Selys (archi.lanellate). F. Anterior hatves of three holobranchs from Diplacodes linematodes Burm. (neo-lamellate). Original.

The Duplex System (figs. $78 \mathrm{~B}, \mathrm{C} ; 79 \mathrm{~B}-\mathrm{F} ; 80,4-11$).
In this system, the main-folds may be present, but not functioning as gills (Aeschninae), or entirely absent (Libellulidae). The gills are formed entirely from the double series of cross-folds, which become enlarged to form twelve series, or hemibranchs, of separate obliquely-placed or transverse gills, arranged in six double series, or holobranchs. As will be seen from fig. 78, each holobranch

Fig. 80. Structure of rectal gills. 1. From main-fold in fig. 79 A. 2. From mainfold of Hemigomphus heteroclitus Selys (papillate simplex). 3. A single papilla of same, apioal third. 4. From a gill in fig. 79 в. 5. Two foliae from posterio portion of gill-basket shewn in fig. 79 c . 6. Two papillo-foliae from lig. 79 D . 7. A single papilla of same, apical half. 8. Three lamellae from fig. 79 n . 9. Three lamellae of Austrocordulia refracta Tillyard. 10. Supra-vortical $6,6, \times 40 ; 3, \times 460 ; 7, \times 680 ; 10, \times 570$.) Original, from photomicrographs.
lies with its axis of symmetry in a position corresponding with one of the old numbers on the clock-face diagram. This is because the holobranch is formed, not from the right and left sets of crossfolds originally supporting one main-fold, but from the right set of one together with the left set of the next. Now we have already shewn that two such sets have their trachea connected with a single series of primary efferents (fig. 78 A). Hence the Duplex System combines a definite increase in the complexity of the gill-system, with a very useful simplification of the efferent tracheal system. As the tracheae to the main-folds are aborted, cach separate gill now has its own secondary efferent, and each holobranch its own single series of primary efferents.

Three main types are easily recognized:
(1) The Implicate Type (fig. 79 B ; fig. 80, 4). This occurs only in the Braclytronini. The gills form a series of obliquely-placed projecting concave tiles, sliglitly overlapping one another from before backwards. The true axis of symmetry of a holobranch lies above the letter 13 in fig. 79. Owing to the main-folds being still present, but non-functional, the cross-fold character is not yet lost, and the overlapping ends of the gills from two consecutive holobranchs (to the left of s) are connected with the underlying main-fold. Thus the gills can be spread out on a slide so as to resemble very closely the Undulate Simplex Type, from which they have been clearly derived (cf. fig. 80, 4, 1). Pigmentation is very rarely present.
(2) The Folute Type (fig. $79 \mathrm{c}, \mathrm{j}$; fig. 80, 5-7). This is found only in the Aeschnini. Here the gills are constricted oft so as to form a series of separate leaves or foliae, the secondary efferent representing the stalk. The free ends of the gills are much enlarged, with capillary loops spreading all over them in inmense numbers. There are two sub-types, (a) the normal foliate sub-type, found in Aeschna (fig. 79 c ; fig. 80, 5), with the foliae resembling crinkled rhubarb or cabbage-leaves, and (b) the papillo-foliate sub-type, found in Anax (fig. 79 D; fig. 80, 6, 7), with the foliac swollen up into oval humps on short stalks. All over the free surface of these humps a number of minute papillae arise. These differ from the larger papillae of the Papillate Simplex Type in not containing any axial trachea, but simply five or six drawn-out
capillary loops. The free end of the papilla is armed with strong hooks. Pigment of a deep brown, purplish or even blackish colour is strongly developed in the foliate type. The total number of capillaries in the gill-basket of Anax reaches 100,000 or more.
(3) The Lamellate Type (fig. $79 \mathrm{e}, \mathrm{F}$; fig. 80, 8-11). This beautiful and unique type occurs only in the Libellulidae, with little variation throughout this immense family. Each gill is in the form of a separate flat lamella, set on a broad obliquely-placed base (figs. 81, 82). The number of gills in a hemibranch is from twelve to thirty. Near the anterior outer corner of the base of each gill is a prominent rounded disc of an orange or brown colour,

Fig. 81. A single lamella from the gill-basket of Hemicordulia tau Sclys ($\times 87$). bp basal . pad; e_{2} secondary efferent; lam blade of lamella; $t v$ tracheal vortex. Original.
the basal pad (bp). The secondary efferent trachea of the gill breaks up, beneath the base, into a number of strong tracheae close together. From each of these there comes off a whole brush or peneil of capillaries, which run up to the oval tip of the gill, and then turn inwards to form the very characteristic appearance called the tracheal vortex ($t v$), finally returning to join other pencils of capillaries.

The lamellae in a hemibranch overlap from before backwards (cf. fig. $79 \mathrm{~B}, \mathrm{E}$), and can be raised or lowered. They are prevented from damaging one another by the presence of three lamellar tubercles (fig. 82), one on the posterior surface ($t p$) towards the tip, and two on the anterior surface ($t a$) near the middle and base respectively. Fig. 82 shews three consecutive gills of Austrocordulia refracta, viewed in profile.

The secondary modifications in type may be briefly noted and named:
(i) Archi-lamellate sub-type. This occurs only in the Synthemini (fig. 79 s). There are only twelve widely-separated lamellae in a hemibranch, and the basal pads are of enormous size.

Fig. 82. Three lamellac from Austrocorilulia refracta Tillyard ($\times 87$) seen in profile. b lase; $b p$ basal pad; lam blado of lamella; svp supra-vortical papilla; ta auterior tubereles; tp posterior tubercle. Original.
(ii) Neo-lamellate sub-type (fig. 79 F). Here the number of gills is greatly increased; they are placed close together, and the basill pads are much smaller.
(a) Cordutine form. The lamella is irregular in outline, somewhat hump-backed or nodding at the tip (fig. 81). Each gill only overlaps the one following it. A very lovely mauve or pale purple pigment is nearly always present.
(b) Libelluline form. The lamella becomes nearly regular in form, with broadly rounded tip (fig. 79 f). Each one overlaps two or more following it. The tracheal vortex is weak or nearly absent. The gills may be pure white (Orthetrum), or pigmented as in (a), or even of a deep shining black colour (Diplacodes).

In Austrocordulia (fig. 80,9) there is an extraordinary development of a strong short terminal or supra-vortical papilla, armed with curved spines (fig. 80, 10 ; fig. 82, svp). It is clearly an evagination comparable with the papillae of Anax.

Main-folds are completely absent in the Lamellate Type.

3. Ontogeny and Phylogeny of the Types.

All newly-hatched Anisopterid larvae have a gill-system closely resembling the Undulate Simplex Typc. This persists throughout the larval life of the more archaic groups (Petalurinae, Cordulegastrinae and the genus Austrogomplus). In the Gomphinue the Papillate Type develops by evaginations of the gill surface, separated by constrictions. In the Aeschninae the larvac arc born with only the main-folds present. The cross-folds appear as small buds close to the secondary efferents, at the third instar. They increase in size, much rescmbling the Libellulid lamellac at first, only smaller. Later they overgrow the main-folds, and the latter lose their tracheae. The foliate type is cstablished in Aeschna
by the seventh instar. In Anax the humps devclop carlicr, and the papillae form as groups of tiny evaginations during the sixth and seventh instars. In the Libellutidue the larvac are born with six main-folds, each very short, and with only two main undulations. These are supportcd by only one or two cross-folds on cither side. The cross-folds are already as large as at the fourth instar of Aeschna; and, except for a slight crinkling, are clearly destined to bccome lamellae. At the next ecdysis, the main-folds lose their pigment, and become non-functional; the cross-folds become definite lamellae. At the fourth instar, the main-folds are quite gone; the cross-folds number from five to six in a hemibraneh. Lamellac continue to develop at each instar, until the full number is attained.

We may summarize this evidence as follows: The Undulate Simplex Type is the basic form of gill. The Papillate Simplex Type is evolved dircctly from it. The Implicate Duplex Type (ontogeny not yet cxamined) appears to be another simple modification in a different direction, the cross-folds alone forming the gills. The Foliate Duplex Type is a higher devclopment from the Implicate Type, by constricting-off of the separate cross-folds. This line culminates in Anax.

The Lamellate Type, though nccessarily classificd with the other Duplex Types, is a distinct line of development from the very base of the serics. It appears to have arisen at a time when only a small region of the rectum had become specialized
or a respiratory function. The main-folds were quickly lost, and the beautiful and very regular formation, which we now see, las been formed by constant addition of extra lamellac. In the Synthemini, the most archaic of Libellulidae, these still only number twelve in a row.

Fig. 78 shews diagrammatically the connection between the three main types.

4. Histology of the Rectal Gills (fig. 83).

All forms of gill have the same histological structure, with

Fig. 83. Tistolory of the rental gill. A. t.s. through base of gill from Aeschna brevidyla Panb. B. The same through several lamellae of Cor:lulephya pygmaea Selys ($\times 250$), bp basal pad; $c m$ eircular muscle; $h b$ hypobranclial tissue; lam blades of lamellae, eut at different levels in the one section; pg pigmented opithelial syncytium of gill; tr trachene. Original.
only unimportant differences of detail. The gill consists of the following parts:
(1) An external cuticle. This is continuous with the gencral intima of the hind-gut. It is cxcessively fine, and covers the gill on both sides. Where it turns over at the free cdge of the gill, it is armed with small spincs. It is quite colourless.
(2) An epithelial syncytium. This is a very flat laycr of completely fused cells, underlying the cuticle of the gill. It is a specialized portion of the epithclium of the hind-gut, and may be termed the "respiratory cpithelium." The nuclei are oval, numerous, and irregularly placed. Except at the basc, the syncytia of the two walls of the gill fuse together, blocking out the haemocoele, and only allowing of the passage of capillarics. Pigment granules are frequently scattered in the cpithclium.
(3) Tracheal capillaries. These run in the fused syncytial mass. They usually pass along into the gill closer to one wall, and return closer to the other. The lumen is minute, and collapses soon after death. There is no spiral thread. The nuclei of the ectotrachea are fcw, and jut out strongly at the sides of the lumen. The structure suggests great stretching of an originally shorter and wider tracheal loop.
(4) Basal pads (bp). At the base of the gill the two walls are not fused. A prolongation of the haemococle scparates them. In this cavity the larger tracheal branches ($t r$) run. Either on one side, or on both, the epithelium of the gill is seen to be enormously swollen, forming a huge pad, tensely filled with liquid. These pads arc only found on the anterior side of the gill in most forms; in the Aeschninae (a), they occur on both sides. In all forms cxcept the Libellulidae they are diffuse and non-localized, so that they are not noticcable on opening the gill-basket. In the Libellulidae, however, in correlation with the extreme separation of the gill-system into definite lamellae, the basal pads have become restricted and localized into rounded pigmented dises, which are very conspicuous objects in the opencd gill-basket. The pads possess huge oval nuclei, from which a fibrillar network radiates out. No scparate cell-boundarics can be scen. The protoplasm is restricted to the fibrils and the extreme borders of the pad; the spaces between the fibrils are filled with liquid, apparently water. The pads appear to form strong basal supports for the gills.

Just as the thin cpithelium of the gill is clcarly homologous with the undifferentiated rectal epithelium of other insects, so it seems highly probable that thesc basal pads are derived from the original swollen portions, known as the rectal pads.
(5) The hypobranchial tissue (hb). The spacc at the base of the gill, between the two walls, is more or less completely filled with a peculiar tissue surrounding the larger tracheac. This tissue consists of large rounded lobules, each with one or more rounded nuclci. The cell-boundarics are not very distinct. It has been called "connective tissuc," and also "adipose tissuc," but most resembles the latter. It appears to be a specialized development from the fat-body [245, 179].

5. Physiology of Respiration.

We cannot here enter into the details of the extremely problematical and difficult subject of insect respiration in general, and aquatic larvae in particular. No rcally acceptable explanation of the action of the rectal gills has yet been put forward. The solution, however, appears to lie along the simple line of cxplanation indicated by Ris [138], following Lowne.

It scems clear that the primary factor in rectal respiration is the eprithelial syncylium, and that its action is exceedingly simple. The presence of a layer of separate cells, in the unspecialized rectum, formed, I believe, a definite barrier to the rapid absorption of oxygen, when the larvac first took to the water. By fusion of the cells into a single protoplasmic syncytium, and by extensive stretching of the same to the necessary tennity, there is developed between the circulating water and the underlying capillarics a structure just strong enough to prevent injury to the latter, but sufficiently permeable to act as a diffusion mombranc. The action of such a membrane would be as follows:

When the larva hatches, the tracheal system is quickly filled with carbonic acid gas, derived from the region of the mid-gut, as alrcady described on p. 70. By this means, all the capillary loops become filled with gas. As soon as this is accomplished, water is drawn into the rectum, and regular respiratory movements begin. At the start, the pressure of CO_{2} in the capillaries is about 760 mm . In the water drawn into the rectum, the partial pressure of this gas is less than 1 mm ., while that of O is about 160 mm ., and that of N about 600 mm . It follows, thercforc, that CO_{2} must diffuse rapidly outwards from the capillaries into the watcr, and that it will be replaced, in the
course of time, by a mixture of N and O diffcring little, if at all, from atmospheric air. Experiments which 1 have made on newly-hatched larvae shew that equilibrium is practically cstablished in from one to threc hours after hatching.

Now the nitrogen is not required for the growing larva, but the oxygen is being continually drawn upon. Thus the partial pressure of the O in the tracheal system is always tending to diminish.

This is the driving force for the extraction of further oxygen from the water. The oxygen pressure must be kept up. For cvery cubic millimetre of oxygen extracted from the trachcal system for general use by the larvac, an equivalent volume passes in through the syncytium to the capillaries. There is no taking up of oxygen into chemical combination, as in the casc of red blood-corpuscles. The rectal syncytium is simply a diffusion membrane, preserving the equilibrium of oxygen and nitrogen on either side of it, and hence continually allowing the passage of oxygen inwards from the water to the capillarics, while preventing any increase in the amount of nitrogen.

As regards the basal pads, thesc, I believe, act as supports for the gills, and nothing else. In the Implicate Type of gill-basket, where the arrangement is such that the gills support one another, no basal pads are developed. In the case of the basal pad, the advantage of fusion of the originally separate colls is that the whole organ is enabled to act as a single cell. Its outcr wall becomes an osmotic membrane, allowing water to pass into the pad until the requisite condition of turgesecnec is obtaincd.

In conclusion, it is of interest to notice that the rectum of Anisoptcrid larvae has a three-fold function (a) that of respiration, (b) that of excreting the faecal pellets (as part of the hind-gut) and (c) that of propulsion. By squirting the water out of the branchial basket forcibly backwards, the larva propels itself forwards in a series of jerks. This is its usual method of progress.

D. Caudal and Lateral Gills (figs. 35, 40-42, 81-86).

Nearly all Zygopterid larvae posscss threc external caudal gills. Of these, the median caudal gill is dorsal, unpaired, and
developed from the appendix dorsalis, while the lateral caudal gills are placed latero-ventrally, one on either side of the anus, and are developed from the cerci. In a few cases (some species of Argia, and some Hawaiian species of Agrion) the gills are much reduced, and somowhat resemble the appendages of Anisoptera.

It is not possible yet to determine definitcly the actual value of these organs for respiration. Each is connccted with its base (i.e. tergite or sternite of segment 11) by a definite breaking-joint, so that it is casily cast off if seized by an cnemy. The larvac frequently lose onc or more of their gills, and continue to live without them until the next ecdysis, when they are reproduced in a shorter form. It seems quite clear that the larvae do possess an auxiliary means of breathing in water, viz. by means of rectal respiration. There is, however, no development of true rectal tracheal gills of the kind seen in the Anisoptera, and hence the rectim must be a much less efficient organ of respiration than ili that suborder.

In the young larva, the gills are filamentous and hairy. They soon acquire a triquctral form (i.c. triangular in cross-scetion). This triquetral form is retained in a few larvae, with slight modifications, throughout larval hifc. In most cases, however, it cither tends to swell up into a saccus, or to become flattened into a lamella. The histology of all these forms is essentially similar; their external forms, and the distribution of their tracheac, vary very greatly.

Further, the gill may be from the first cither a simple complete whole (simple gill) or it may have an extra distal joint (constricted gill). Gills developed along the latter lines shew a very definite constriction into two parts, in all except the most highly developed forms. These tend to obliterate the constriction, which may become reduced to a node (nodate form), i.c. simply the remains of the original joint on one side of the lamella; or the node may be lost, and its original position only marked by a spine, or by a difference in the consistency of the basal and distal portions of the gill. Also, it is possible for the whole distal part to be lost, so that an originally constricted gill becomes secondarily a simple gill. Such cases can only be determined by careful ontogenctic stadies.

The Triquetral Gill.

The best-known example of a triquetral gill is the lateral gill of the Calopteryginae (fig. 40). In cross-section this is an isoscelcs triangle with its longest side (base) placed internally, facing the median gill. The thickened mid-rib of the gill lies at the vertex of this triangle, externally. Therc are two main longitudinal tracheae. The edges of the gill may be spiny. The shape is evidently suitable for resting cither on the ground or against any moderately flat surface, while still exposing a large area to the water.

The Saccus, or Saccoid Gill (figs. 35, 84 c, 87).

Saccoid gills appear to be confined to the Epallaginae, Thorinae and Protoneurinae. In the first two cases, the saccus is a completc or simple one; in the last, it is very distinctly constricted, at a point somewhat distally placed from the middle. That the saccus is a development from the triquetral gill appears clear from a study of the genus Diphlebia. Here the young larva has triquetral gills. These gradually swell up, as the larva grows, until they assume a nearly rounded saccoid form (fig. 35).

In Pseudophaea (fig. 87) the gills are so swollen up as to appear quite rounded, except for a small tapering tip, which occurs also in Diphlebia. In Cora $[31]$ the gills are also swollen and rounded, but the apex is broad and irregularly broken off.

In the Proloneurinae (fig. 84 c) beautiful constricted sacei occur in Neosticta and Nososticta. 'The basal portion is a short thick sausage-shaped bladder; the distal portion arises from a very constricted base, swells out considerably, and then tapers to a point.

All saccoid gills are very dark and opaque, so that it is not easy to make out the course of the tracheae. There are from two to four large longitudinal tracheae in each saccus.

> The Lamellar Gill (figs. 41, 42, 84).

Lamellar gills are typical of the Lestidae and the Agrionitue. The median gill of the Calopteryginae is also a lamella.

Fig. 84. Types of caudal gill in Lestid and Aprionid larvae. A. Synlestes meyersi Sclvs $(\times 16)$. в. Austrolestes cingulatus Burm. ($\times 13$). . . Neosticta canescens Tillyard ($\times 13$). D. Isosticta simplex Martin ($\times 14$). E. Caliagrion billinghursti Martin ($\times 11$). F. The same, region of node ($\times 32$). o. Ischnura heterosticta Burm. ($\times 13$). H. Argiocnemis rubescens Selys ($\times 13$). a-F, median gills. $\alpha-1$, lateral gills. n node. Original. cedar-oil preparations. T. D.-F.

Lamcllae may be developed from an original triquetral form in two ways:
(1) As a horizontal lamella, by a gradual widening of the base of the triangle representing the cross-section of the triquetral gill, and a corresponding flattening of the other two sides below it. Thus the mid-rib, originally placed externally, becomes Inid-ventral in position, with the broad horizontal base lying dorsally above it ${ }^{1}$. This is a very rare formation, found only in Argiolestes (fig. 42 A). I do not know whether it is typical for the Megapodagrioninae or not, as we know hittle of the larvae of this subfamily. It is clearly a specialization to enable the larva to flatten its gills close against a rock, and still expose a large surface to the water. Argiolestes, when at rest, usually raises these gills, like a fan, slightly away from the rock surfacc. When disturbed, they are at oncc flattened closely down, so as to escape attention.
(2) As a vertical lamella, by elongation of the base, together with approximation of the other two sides towards it, in a vertical plane ${ }^{2}$ (fig. 86 c). This process is easily understood by comparing cross-sections of the lateral and median gills of Calopteryx. It clearly first arose as a specialization in the case of gills which no longer rested on the surface. Nearly all the forms which possess lamellar gills live freely in masses of water-weed, matted roots, ctc. The vertical lamella not only exposes its whole surface to the water, but the three gills together form an efficient parachute, used by the larva when descending through the water.

We can only bricfly mention the various types of vertical lamcllae known, together with the types from which they have been derived:
A. Lestidae (figs. 41, 84 $\Lambda, 3$). In all known larvae of this family the lamella is of the simple form, elongated oval in shape, often with a broadly rounded cnd, and usually of exceptional length. In the Lestinae (figs. 41, 84 B) the secondary or branch tracheae come off from the main trachea at right angles, and run nearly to the border of the lamclla before branching. The fincr
${ }_{1}$ This applies only to the lateral gills. The median gill has been formed liy horizontal flattening of a gill originally diamond-shaped in cross-section.
${ }^{2}$ This is the proeess for the lateral gill. The median caudal lamelia appears to be formed generally by symmetrical narrowing, in a vertical plane, of a gill in which the eross-seetion was originally diamond-shaped.
branches and eapillaries run along the edges much like the finer veins in a leaf. Bands of beautiful dark brown or purple pigment often cross these lamellae, and give them a striking appearance. In the Syndestinae (figs. 41,84 A) the gill is much shorter, and the tip slightly pointed. The branch tracheae come off somewhat obliquely from the main stem. [The median gill of Calopteryx also belongs to this simple type.]
B. Agrionitlae (figs. 42, $84 \mathrm{D}-\mathrm{H}$). There is considerable variety in the type of gill found in this family. It is probable that most of the forms have been descended from a two-jointed or constricted type, though many highly specialized forms shew little sign of this at present. The following types occur :
(i) Constricted Saccus (fig. 84 c). This is found in Nososticta and Neoslicta, of the Protoneurinae. The larvae are rok-dwellers. The shape of the gill suggests a candle surmounted by a flame. There are either two, three or four main tracheae, all of which penetrate through the constriction.
(ii) Constricted Lamella (fig. 84 D). 'Ihis very beautiful opaque gill occurs in Isosticta (Protoneurinae). It is clearly derived from (i) by flattening. The larva dwells frcely in weeds, roots, or débris. The change from saccus to lamella secms to be corrclated with the clange from the rock-dwelling to the frec-living habit of the larva.
(iii) Noilate Lamella (fig. $84 \mathrm{E}, \mathrm{F}$). This is a fairly common form of gill, found in many Agrioninue (Caliagrion, Pseudagrion, Austroagrion, lirythromma, Agrion). The node is a reduction from an originally complete constriction. The prenodal border is always armed with spines, which stop short at the node. The largest spine borders the nodc. The joint may be traced more or less completely across the gill, but is usmally only effective close to the node itself. The trachcation is often extremely bcautiful, and of a dendritic character. The tip is usually rounded.
(iv) Subnodate Lamella (fig. 84G). This common form also occurs in many Agrioninae (Ischnura, Enallagma). The position of the node is now only marked by the termination of the row of prenodal spines, together with a more or less faint trace of the transverse joint. The basal (prenodal) part of the gill is usually slightly thieker than the rest. The tip tends to become pointed.
(v) Denodate Lamella (fig. 84 H). When all trace of the node
is lost, except for a slight basal thickening, edged by a short row of minute spines, the gill may be termed denodate. The very narrow, sharply pointed denodate gill of Argiocnemis is clearly a step onwards in reduction from the type scen in Ischnura. The gills of Pyrrhosoma, Agrion mercuriale, and possibly Platyenemis appear to be denodate.
(vi) The form of gill found in Mecistogaster (Pseudostigmutinae) is very peculiar [31]. The basal portion is stalk-like, the distal foliate and pointed. Possibly the pointed gill of Platycnemis is related to this form.
(vii) The gills in the Argiini appear to be simple, and either triquetral or saccoid. They seem to be of a more archaic type than those mentioncd above, and suggest that the larvae are very sluggish creatures. Some spccies of Argia have very reduced caudal gills, the anal appendages differing little from the form seen in the Anisoptcra.

Types (i) to (v) appear to form a phylogenctic serics. A more complete study of these organs might help us towards a natural classification of the Agrioninae. They suggest, at any rate, that the tribal divisions at present adopted are not natural, but simply aggregations of a number of convergent forms.

Arrangement of the Main Tracheae. In the typical median lamella (fig. 85) there are two main tracheae or stems running close together beneath the mid-rib, which is more or less unsymmetrically placed. In the lateral lamellac, only a single trunk trachea (the lower anal branch of the dorsal trunk) enters the base of the gill. In the Agrioninae this divides into two almost at once. In the median gill, the base is broader transverscly, and receives both upper anal branches of the dorsal trunk, which run close together under the mid-rib. Thus each lateral gill is only connceted with the dorsal trunk of its own side, whereas the median gill is connected equally with both. The bifurcations of the dorsal trunks occur in the ninth scgment.

Structure and Histology of the Caudal Gills (fig. 86).

The Triquetral Gill possesses a thick cuticle, considerably swollen along the mid-rib. Bencath this lies a layer of pigmented hypoderm cells. In the interior of the gill there are two main longitudinal tracheae, with a number of obliquely-placed branches. Therc are also two main longitudinal blood-channels, one dorsal (efferent), the other ventral (affcrent); these become confluent

Fig. S6. Histology of the caudal gill. A. T.s. through basal third of saccus of Diphlebia lesiouiles Selys $(\times 47)$. B. Sinall portion of same ($\times 200$). c. T.s. D . Sinall portion of same ($\times 200$), al alveoli ; b blood-plasma; cu cuticlo; h_{i} haemocoele; hy liypoterm; nui nucleus of alveolus; $t r$ main longitudinal trachea; tr' branel trachea. Original.
distally. The tracheae and blood-spaccs are enclosed in a mass of reticulated tissue, which divides the interior of the gill into a large number of separate alveoli. This internal arrangement of parts is more fully explained in the account given for the saccus (sce below), the histology of the two forms of gill being closcly similar.

The saccus (fig. $86 \mathrm{~A}, \mathrm{~B}$) is covered by an unpigmented cuticle ($c u$), which usually carries small hairs at intervals. Bencath the cuticle is a continuous layer of polygonal hypoderm cells (hy) with large oval darkly staining nuclei. These cells are filled with a purplish-brown pigment. The boundaries between the cclls are palc. At certain points the hypoderm-layer is turncd inwards (B), so as to form a kind of delicate internal lamina, which probably helps to support the very flimsy internal structure of the gill. From the hypodermis of these laminae, as well as, apparently, from a number of points on the main periphery of the hypodermis, delicate strands of tissue pass inwards to form an immense number of more or less spheroidal chambers or alveoli (al) which almost completcly fill up the internal cavity of the gill. Each alvcolus has, at some point on its wall, a single large nuclcus ($n u$) not unlike the nuclcus of a hypoderm cell. Most of the alveoli appear to be quite émpty, but some clearly contain blood-plasma.

Near the base of the saccus there are usually four main longitudinal trachcac ($l r$), two of which remain symmetrically placed and unbranched for some distance. On cither side of these lies a very large prolongation of the haemococle, in which both blood-plasma and blood-corpuscles can be clearly seen. One of these large blood-channels is placed dorsally, the other ventrally, as in the triquetral gill. The two channcls become confluent distally. In the median gill, the dorsal channel is afferent, the ventral efferent; in the laterals, the circulation is reversed. The other two tracheae branch out into the cavity of the gill, the branches $\left(t r^{\prime}\right)$ travelling obliquely towards tke gill-border. Further along the gill, all four tracheae give off branches. Thesc branches in their turn divide, until there are seen very numcrous minute tracheae at all points of the periphery. Thesc, on reaching the hypodermis, turn so as to run parallel to and close alongside it, and in some places appear to press in so as to be almost contiguous with the cuticle.

The above description applies to the sacci of Diphlebia and Neosticta, which I have examined. Ris [137] has made a very carcful study of the saccus of Pseudophaea, which differs, apparently, from the above description in possessing within its alveoli peculiar branching tufts of fibrils, shewing beautiful moss-iike designs.

The lamellar gill (fig. $86 \mathrm{c}, \mathrm{D}$) is of simpler structure. The cuticle ($c u$) resembles that of the saccus in being unpigmented, but it does not usually carry hairs. The cuticle is thickened along the mid-rib (m), which is developed only on the outer side of the lateral gill, but on botli sides of the median gill. Bencath the cuticle is a layer of hypoderm cells ($h y$). Thesc, in the most flattened portions of the lamella, rescmble the hypoderm cells of the saccus. Where the gill is thickened, the hypoderm cells become elongated, and tend to assume a pyramidal form, with clear spaces interposed along their inncr cnds. The pigment is nearly all deposited in the layer of protoplasm lying closest to the cuticle, where also the nuclei are situated. The alveoli are much reduced in number, but can still be scen to be present, especially in the thickened part of the gills, under the mid-rib.

The inner ends of the hypoderm cells rest on a definite basement membranc. The basement membranes of the two opposite walls of the lamella are contiguous in many places. In others they are separated by blood-channels or cxtensions of the haemococle (h), or to allow of the passure of tracheae ($t r, t r^{\prime}$). Dither one or two main longitudinal tracheae ($t r$) run close under the mid-rib; in the median gill there are always two. The various types of branching of the tracheac from this main stem have been already described and figured.

It is instructive to compare the structure of a cross-section of a lamellar gill with that of a larval wing-sheath. The two organs are, histologically, somewhat similar, yet they serve two very different purposes.

Our knowledge of thesc caudal gills is insufficient to allow of any speculations as to their physiology. Some authors, indeed, deny their respiratory function, and will only allow that they act as π kind of tail-fan, after the manner of the uropods and telson in many Crustacea. We know that nany larvae use their caudal
lancllae as a kind of parachutc when desecnding through the water, and that most, if not all, Zygoptera can cxist without them. The problem as it stands offers an immense field for interesting original research.

Lateral Abdominal Gills (fig. 87).

These occur on either side of abdominal segments $2-8$ in the larvac of Pseudophaea, Bayadera, and Anisopleura, and on segments $2-7$ of the larva of Cora [31, 62, 104, 137]. Thcir position is distinctly ventral, and they appear to be remnants of true paircd abdominal appendages, scrially homologous with the thoracic legs. In shape they are slender filaments. Ris [137] states that their internal structure in Pseudophaea resembles that of the saccus, except for the extreme attenuation of the organ. The alveoli are few in number, and moss-like fibrils are absent.

E. Movements of Respiration.

In the imago of the Dragonfly, the respiratory movements can be followed with ease, by holding the live insect in the hand by means of its wings. The broad-bodicd Libellulinue are the best for this purpose. Inspiration is effected by an increase in the volume of the abdomen, the sternites bcing lowered and the tergites expanded latcro-ventrally. At the same time the whole abdomen becomes slightly lowered. By this movement, air is drawn into the spiracles. The act of inspiration is brought about simply by the relaxation of the transverse or dorso-ventral museles of the abdomen.

The converse movement, that of expiration, is brought about by the contraction of the transverse muscles. By it the abdomen is contracted, the sternites being raised and the tergites narrowed, while the abdomen as a whole is slightly raised. The movement, too, is quicker than that of inspiration. It scems, however, clear
that air can, if ncecssary, be prevented from escaping from the tracheae by the action of the combs of bristles, which lic just inside the spiracles, and close them from within, whenever the pressure is in that direction. Also, we know that the tracheae in the imago maintain an internal pressure greater than that of the atmosphere, since they collapse almost at once when the animal is dissected, whereas those of the larvae do not. Such a pressure could only be maintained, provided that the spiracles can remain closed during the movement of expiration.

We do not know for certain how insects get rid of their carbon dioxide. It is supposed that a great deal cscapes through the integument. In the larva, the act of ecdysis may be connceted with the removal of this and other impurities, which may help in the formation of the cuticle. In the larva also, rectal respiration must remove a great deal of this gas, by the ordinary processes of diffusion.

In the Anisoptcrid larva, the respiratory movements of the rectum arc casily watched. A large volume of water is drawn in rather quickly. This can be let out slowly, with no apparent effort, or it may be shot out with great force so as to propel the larva forward.

In the Zygopterid larva, no definite respiratory movements can be scen with the naked cye, beyond an occasional waving of the gills to and fro. In larvae which have lost their gills, the abdomen is often strongly arched; or it may be jerked quickly to and fro. Rectal respiration in these larvac can be watched by a careful use of carmine particles. The vigorous rectal respiration which takes place in newly-hatched Zygopterid larvac can be followed with case under a low power, owing to the transparency of the integument. The whole problem of the respiration of these larvae is, at the present time, much in need of further investigation.

The degree to which the spiracles arc functional in Dragonfly larvac was investigated by Dewitz [49] in a deeply intercsting and well-known paper. (See also Miall[94].)

CHAPTER X

THE BODY-WALL AND MUSCLES
The Body-Wall (fig. 88).

The Body-wall in the Dragonfly, as in other insects, is formed of a strong external non-cellular chitinous cuticle, with an underlying cellular layer, the hypodermis.

The Cuticle is not a single layer, but consists of several parallel laminae, of different staining intensities. It is formed as a secretion

Fig. 88. Section of body-wall of abdomen of larva of Synlestes weyersi Selys ($\times 1000$). cut t_{1} darkened outcr layers of cutiele; cut t_{2} clear inner layer of same; hy hypoderm; m musele-fibres; n nucleus of hypoderm eell. Original.
from the cells of the hypodermis. It may be quite clear and transparent throughout, but is more usually pigmented with black, brown or orange. The pigment is always densest in the outer layers $\left(c u t_{1}\right)$. The layer next the hypoderm ($c u t_{2}$) remains unpigmented. The outermost layer may be either smooth or sculptured, frequently by close and delicate striae. Often it is covered with minute hairs or bristles, each set in a tiny depression surrounded by a raised circular wall. In certain regions numerous minute pores occur in it [39].

At various points the cuticle is turned inwards into the body of the animal, forming structures designated as endoskeleton. Such are the tentorium, the posterior foramen, the apodemes of the thoracic and abdominal segments. At the spiracles it is also
turned in and thickened. The internal chitinous linings of the stomodaeum and proctodaeum are also directly continuous with the external cuticle, just as the cells secreting them are continuous with the hypodermis.

The Hypodermis ($h y$) is a continuous single layer of regular hexagonal flattened cells, closely underlying the cuticle throughout. It serves not only for the production of the latter, but also for the attachment of the body-muscles. The muscle-fibril is inserted into the inner border of the hypoderm cell, which shews in the region of attachment a change from a granular to a fibrillar structure of the cytoplasm (fig. 88, cells above m). Here and there, enlarged hypoderm cells are met with having larger nuclei than usual. These receive the terminations of sensory nerve-fibres, and serve to give a perception of general sensation to the body-wall, as distinct from the sense-organs. By this arrangement of museles and nerves it becomes clear how, at ecdysis, the cuticle is shed without any loeal damage to the underlying parts.

The Haemocoele. The large open space below the hypodermis is filled with blood, and is called the haemocoele (p. 162). It is quite distinct from the coclome or body-cavity of Vertebrates. This latter, in the Dragonfly as in all Arthropods, practically disappears after embryonic development is completed. Its only remnants are the pericardial cavity and the lumina of the developing gonads.

The Muscles.

In the Dragonfly all the muscles are striated, without exception. Zawarsin [203] has conclusively demonstrated the striated character of the alary muscles in the Dragonfly larva.

The muscle fibres are bound together into bundles or fasciculi, with or without an enveloping sarcolemma. In the larva, the muscles are all of one kind, closely resembling the striated muscles of Vertebrates. In the imago, we meet with two main classes of muscle, known as leg-muscle and wing-muscle respectively (Weissmann). The former class includes the head muscles and the segmental muscles of the abdomen. In these there is only a single bundle, with a definite sarcolemma. In the
wing-muscles, each separate muscle is formed of a number of bundles, bound together by a continuous inter-fibrillar substance, but without a sarcolemma. Most of the muscles are of a white. creamy, or pale greyish colour. The wing-muscles are exceptional in being dark yellow, inclining to orange. The cross-striation of

Fig. 89. Synthoracic musculature of Sympetrum $(\times 10)$. A. Inner or proximal view. B. Outer or distal viow. with per removed and ad cut short. Explanation of references for muscles in text. References to parts of thorax (in italics) in legend of fig. l. ac acetabulum. Adapted from Berlese.
the wing-muscles differs from that of the other mnscles. In the former the striae are thick, and light and dark alternately. In the latter the striae are all alike, not darkened, but carrying rows of small dots. In both forms of muscle the striae are broader and
more easily seen than in the striated muscles of Vertebrates. Further, whereas the nuclei of the leg-muscle fibres are situated peripherally, those of the wing-muscle fibres are placed centrally, and are much larger and more elongated.

The muscles may be attached, both at origin and insertion, either directly (as in the case of the body-muscles to the hypodermis) or by means of a tendon, i.e. a chitinous ingrowth from the cuticle. The ordinary tendon is conical, receiving the muscle-fibres into its broad hollow end; it is of a pale colour. Special strong tendons, of a dark colour and peculiar shape, occur in connection with certain muscles, notably most of the wing-muscles. Such tendons are known as cup- or cap-tendons, from their shape, which is either in the form of an inverted cup, a skull-cap, a flattened pyramid or wedge. The stalk of the tendon may be either long or short.

The development of the muscular system in the Dragonfly is very great. Even a brief account of all the museles in its body would take up far more space than a volume of this size ean afford. It will be suflicient here to tabulate the principal muscles of the various regions of the body, giving their names, their places of origin and insertion, and any further details that may be of interest to the

Fig. 90. Section parallel to notal plane through synthorax of Isch-
nura aurora Br. $(\times 20)$ Muscles as in fig. 89, oxcept $t a_{1}=$ tendon of ac . ao aorta; cut cuticle; d dorsal carina; di dorsal trachea trunk; $h s$ humeral suture; $h y$ hyporicrm: l_{2} second lateral suture; $n v$ nerve-cord; \boldsymbol{x} oeso phagus; tr trachea. Original. student. The use of Latin names has been avoided [10, 22, 84, 120, 121, 184].

206	THE	BODY-WALL A	and muscles	[CH.
	r Name	Muscles of the Head.		
Number		Origin	Insertion	marks
$\begin{aligned} & (1) \\ & (2) \\ & (3) \end{aligned}$	$\left.\begin{array}{l}\text { Elevators } \\ \begin{array}{l}\text { Depressors } \\ \text { Rotators }\end{array}\end{array}\right\}$of the Head	Prothorax and interior part of mesothorax	$\begin{aligned} & \text { Margins of pos- } \\ & \text { terior fora- } \\ & \text { men } \end{aligned}$	Small museles
(4)	Elevators of the labrum	By tendon from suture botween vertex and frons	Base of labrum	Two, right and left
(5)	Depressors of the labrum	Do., outside (4)	Roof of mouth behind labrum	Two, right and left
(6)	Flexor of the mandible	Postocular lobe	Base of mandible, inner side	$\underset{\text { Lhaped }}{\substack{\text { Large, } \\ \text { shan- }}}$
(7)	Extensor of the	Do., outside (6)	By tendon to base of mandible, outer side	Smaller, less powerful than (6)
(8)	Primary flexor of the maxilla	By tendon from back of head	Cardo and stipes, inner margin	
(9)	Secondary flexor of the maxilla	Back of head, behind (8)	By small ten. don into inner lobe of max., inner side	Strap-shaped, smaller than (8)
(10)	Extensor of the maxilla	Back of head, between (8) and (9)	Cardo, outer side	
(11)	Flexor of the inner lobe of the maxilla	Stipes, inner	Base of inner lobe, near inner border	
(12)	Extensor of do.	Stipes, outer side	Do., near outer border	
(13)	Flexor of the palp	Stipes, inner side	Base of palp, near inner border	
(14)	Extensor of do.	Stipes, outer side	Do., on outer border	
(15)	Adductors of the labium	Below posterior foramen	End of submentum, on either side	Two, united at origin
(16)	Submental	Submentum	$\begin{gathered} \text { Squame, on } \\ \text { either side } \end{gathered}$	Do. ${ }^{\text {Or }}$ Imago
(17)	Adductor of the median lobe	Do.	Base of men-	
(18)	Abductor of the lateral lobe	Do.	$\left.\begin{array}{l}\text { Base of lateral } \\ \text { lobe, on outer } \\ \text { side }\end{array}\right)$	
(19)	Adductor of do.	Do.	Do., inwards from (18)	Larva
(20)	Extensor of the	Behind hypopharynx	Base of mentum, ventrally	Larva
(21)	Flexor of the mask	On tentorium	Lateral margin of mentun, more dorsally $\|$	

Muscles of the Wings (Fig. 89)
(For abbreriations of thoracic sclerites, etc., see legends of figs. 1, 8)

Number (22)	Name Principal Elevator	Reference Letters pe	Homologue in other Insects First tergosternal	Origin Squame of furca	Insertion $F u: \quad$ By cap-tendon into wing-base below C. Hw: by short strong do. from C to $R+M$	Remarks Very large. Raises the wing
(23)	Anterior Accessory Elevator	k	Elerenth tergosternal	Cpper outer margin of $a c$	Do.	Small
(24)	Posterior Accessory Elevator	l	Sixth lateral	Do., just behind (28)	By pale tendon into wing-base below $S c$	Small
(25)	Anterior Depressor	$a d$	Third tergosternal	Squame of prefurca	By cap-tendon into ap	Large. Lowers the costal side of the wing
(26)	Anterior Accessory Depressor	$a c$	Fourth tergosternal	Sternoepisternal apodeme	By long cap-tendon, close to (25)	Short and small. Acts with (25)
(27)	Posterior Depressor	$p d$	Pleuroradial (Notopleural)	Sternoepimeral apodeme	By cap-tendon into pleural membrane at base of wing, below $R+M$	Large. Lowers the whole wing
(28)	First Accessory of Posterior Depressor	x	First Pleuromet. apteral	$F w$: ventral part of epm m_{2}. $H w$: hind margin of S_{3}	By slender pale tendon into wing-base below A^{\prime}	Small. Lowers the posterior border of the wing
(29)	Second Accessory of Posterior Depressor	y	Seventh Lateral	$F w$: interpleural apodeme. $H w$: posterior epimeral apodeme	By long tendon into wing-base close to (28)	Shorter and smal. ler than x. Same action as x
(30)	Adductor of the Se condary Anal Vein	$a a$	(Fulcro-alar)	Fulcrum of notum (opposite the level of M)	By short tendon into base of A^{\prime}	Very short and small. Pulls the wing backwards
N.B. The names adopted are essentially those of Poletaieff [120] and Calvert [22], except (30). In the figures, muscles of the fore-wing are indicated by the suffix " 1 ," those of the hind-wing by the suffix "2." The names denoting homology with the thoracic muscles in other insects are those given by Berlese [10] Lendenfeld's very verbose and involved paper [84] dealing with the thoracic skeleton and wing-muscles of the Odonata, is best disregarded; not only because his naming of the muscles is very fanciful, and based on false analogies with the muscles of the limbs of Vertebrates, but also because his interpretation of the thoracic sclerites is fundamentally erroneous.						

Number Name $\begin{gathered}\text { Reference } \\ \text { Letters }\end{gathered}$ Origin				Insertion	$\begin{aligned} & \text { Remarks } \\ &= \text { Notocoxal of } \\ & \text { protliorax } \end{aligned}$
(31)	First Flexor of Fore-leg		Pronotum	Procoxa	
(32)	Second Flexor of Fore-leg		"	Trochanter, lower wall	Noto-subcoxals
(33)	Extensor of Foreleg		"	$\underset{\text { wall }}{\text { Trochanter, upper }}\}$	Notosabcoxals
(34)	$\begin{array}{l\|l} \text { First } \\ \text { Flexor } & \text { of } \\ \text { Second } & \text { middlo } \end{array}$		Midventral ridge of furca	Coxa, internal lateral wall Coxa, posterior	
(36)	$\left.\begin{array}{c}\text { Flexor } \\ \begin{array}{c}\text { Third } \\ \text { Flexor }\end{array} \\ \begin{array}{l}\text { ar }\end{array}\end{array} \begin{array}{l}\text { or } \\ \text { hind- } \\ \text { leg }\end{array}\right\}$			external wall Coxa, anterior external wall	Sternopedals
(37)	Extensor of middle or hind-leg	el	" "	Coxa, posterior internal wall	$=$ Third pedal. Has two separate fasciae inserted together
(38)	Flexor of trochanter	ftr	Base of coxal wall	Base of trochanter, inferior	
(39)	Extensor of tro. chanter	etr	" "	Base of trochanter, superior	
(40)	Fenoro-trochanteric		Inferior wall of trochanter	Basal inembrane of femur	
(41)	Flexor of tibia	$f t b$	Whole length of inferior wall of femur	By strong tendon to baso of tibia, inferior	Long base of attachment, short tendon
(42)	Extensor of tibia	etb	Do., superior wall	Do., suparior	of insertion
(43)	Flexor of tarsus	fls	Whole length of inferior wall of tibia	By short tendon to base of tarsus, inferior	" "
(44)	Extensor of tarsus	ets	Do., superior wall	Do., superior	" "
(45)	Long Flexor of claws		Whole length of tibia	By very long tendon, branching distally into two slips, one for each claw	
(46)	Notocoxal	$n \boldsymbol{c}$	Metanotum	Wall of coxa, anteriorly	Has no homologue in mesothorax
		er	Thoracic Muscle	(fig. 89).	
(47)	Prosternal		Furca of mesothorax	Furea of prothorax	Only one pair
(48)	Protergal	$p t$	Anterior part of mesonotum	Antcrior part of metanotum	" "
(49)	Tergosternals of prothorax		Pronotum	Prosternum (prcfurca)	Two pairs
(50)	Lateral Thoracicoabdominal	$t a$	Furea of metathorax	lst abdominal sternite, anteriorly	One pair
(51)	Submedian Ventral Thoracieoabdominal	$s v$	Posterior epimeral apodeme, ventrally	2nd abdominal sternite, anteriorly	One pair, with commontendon of origin
(52)	First Auxiliary Sternodorsal	asd	Posterior process of furca of metathorax	lst abdominal tergite, anteriorly	These help to straighten the abdomen
(53)	Second Auxiliary Sternodorsal	$a s d^{\prime}$	"	2nd abdominal tergite, anteriorly	$\begin{aligned} & \text { out, aeting } \\ & \text { with (54) } \\ & \text { and (55) } \end{aligned}$

Segmental Muscles of the Abdomen.

Number	Name	Origin	Insertion	Romarks
(5.)	Superior Longitudinal Torgal (Thwo sets)	Anterior dorsal part of torgite	Posterior dorsal part of torgite of segment next in front	Straighton abdomen out.
(55)	Lateral Longitudinal 'Tergal ('I'wo sots)	Inferior lateral margin of tergite, and pleural membrane	Do., but placed ligher up in each segment	Do.
(56)	Longitudinal Sternal (T'wo sets)	Anterior part of sternite	Posterior part of sternite of segment next in front	Small. Bend the abdomen
(57)	Vertical or Dorsoventral(=Vertical Expiratory of Pla. teau)	$\underset{1-8}{\text { Tergites of segs. }}$	Second I ateral sternal processes of segs. 1-8	Contract the segments
(58)	Transverse Genital	Tergite of seg.2. Male only	$\begin{aligned} & \text { Sternite of } \\ & \text { seg. } 2 \end{aligned}$	Specially developed in connection with genitalia

The muscles connected with the Internal Organs are dealt with in connection with those organs.

Neture ant Mechanism of the Wing-Muscles.

The Dragonfly differs from all other insects in the fact that the great museles of the synthorax are directly connected with the wing-bases by means of tendons. In all other insects the muscles by means of which the action of the wings is controlled are not directly comected with those organs, but are connected with the notum. Those that pass from the notum to the sternum are called tergo-slernals (or dorso-ventrals). Those that pass from the notum to the pleurum are called laterals (or notopleurals). From the table on p. 207 it will be seen that all the wing-muscles of the Dragonfly, except one, are homologues of either tergosternals or laterals. The direct attachment to the wing-bases has been brought about by the development of special selerites, derived from the notum, in the formation of those bases.

The addluctor of the secondary anal vein is the exception mentioned above. It has no homologue in any otlier insect (except perhaps in the Locustidae). Its development is correlated with the peculiar formation of the vein to which it is attached (p.64).

Another peculiarity in which the Dragonfly differs from the more highly specialized insects, and resembles the lower insects of much less powerful flight, is the fact that fore and hind-wings are completely independent. Each has exactly the same musclesupply, and each works entirely on its own. The fore-wings can be destroyed without affecting the working of the hind, and vice versa. A number of authors, chiefly in text-books, have asserted that a strong ligament connects the bases of fore and hind-wings together. The error seems to have arisen from a misinterpretation of a well-known figure by Lendenfeld (see Sharp, Camb. Nat. Hist., Vol. v, p. 416; Packard, Text-Book of Entomology, p. 158) in which what appears to be the cut border of the thorax looks like a ligament. In his original figure, Lendenfeld left this piece unnamed.

A third point of interest is the presence of only one true axillary or wing-pivot in the Dragonfly. This acts as the principal fulcrum

Fig. 91. Diagram to illustrate antagoniem of two parallel museles acting on wing of Dragonlly. ax axillary; $d p$ depressor; el elevator; nt notum; pl pleurum; ${ }^{\text {of }}$ wing. Original.
of the wing. An examination of the position of this fulcrum shews us that it lies closer to the middle line than do the tendons of the depressor muscles. The tendons of the latter are inserted at a level external to it (i.e. further from the middle line). Those of the elevators, on the other hand, are inserted at a level internal to it (i.e. nearer the middle line). Thus the wing acts as a lever of the first order (i.e. the fulcrum lies between the power and the weight) for the elevators, but as a lever of the third order (i.e. the power between the fulcrum and the weight) for the depressors. By referring to fig. 91, we thus see plainly how two sets of muscles
which are antagonistic, but pull very nearly in the same direction, can both elevate and depress the wing. (This diagram is not in any sense intended to shew the true shape and positions of the structures indicated, but merely to explain their action.)

The Diaphragm.

According to Amans [1], who discovered it, the diaphragm is an elliptical membrane stretched across the body-cavity of the larva, between the fourth and fifth abdominal segments, in front of the Malpighian tubules. It is inserted externally, above and below, on to the inter-segmental muscles, and internally on to the circular muscle-tunic of the mid-gut. It shews muscle-fibres stretching in different directions. Amans considers that it plays an important part in respiration, defaecation, and especially in the play of the mask. The diaphragm is slightly inclined to the vertical plane. A contraction of the abdominal segments causes it to become taut, and consequently the blood exerts a forward pressure on the narrow cavity of the mask. This causes the movable hooks to shoot out suddenly, as explained on p. 79.

CHAPTER XI

THE REPRODUCTIVE SYSTEM

The Reproductive System in the Dragonfly consists of two very distinct parts (1) the internal organs, or gonads, with their ducts and accessories, (2) the external organs (external genitalia), which have to do with the processes of copulation and oviposition.

The Male.

1. Internal Organs (figs. 92, 93).

These consist of a pair of testes, with their ducts or vasa deferentia, together with a median sperm-sac or reservoir [128].

The Testes ($t s$). These are very elongated subcylindrical organs, very often of a dark brownish colour, but sometimes much paler. They lie dorsally on either side of the alimentary canal. The anterior end of the mature testis reaches as far forward as the fourth segment, the posterior end being in the eighth segment, in which it usually makes a small bend or loop, forwards and inwards. The testis is supplied with reddish brown genital tracheae as branches from the ventral trunk. The fat-body forms a more or less complete whitish sheath to the organ, with which it is fairly closely bound up by means of the tracheae.

The surface of the testis is irregularly grooved and wrinkled. This is seen, in sections, to be due to the fact that the body of the organ is formed of a very large number of separate lobules, of a more or less spherical shape. In each lobule a very large number of male cells are being developed. Just after metamorphosis, the more dorsally placed lobules are filled with rounded spermatidia (fig. 93, s_{1}). Towards the middle, these are seen to have become divided up into much smaller rounded cells, the immature
spermatozoa (s_{2}). On the ventral side, nearest the intestine, the lobules are filled with ripe or nearly ripe spermatozoa (s_{3}) of an elongated form. There do not seem to be any definite ducts to the lobules; we must therefore regard them as formed by foldings and constrictions of the original gonad-wall.

The process of spermatogenesis has not been studied in detail in the Dragonfly, though the later stages in the growth of the spermatozoa have been followed by Bütschli [20], in the case of

Fig. 92. Internal reproductive organs of Aeschnc brevistyla Ramb., of, dorsal
 nerve-cord; 4-10 abdominal seg. ments. Original, from a dissection.

Fig. 93. L.s. through portion of testis of a freshly-emerged male of 1 schnura aurora Br ., to show lobules; s_{1} spermatidia; s_{2} immature sper-
matozoa; s_{3} ripe spermatozoa ($\times 150$). Original. s_{3} ripe spermatozoa ($\times 150$)

Agrion and Calopteryx. Fig. 94 shews a mature spermatozoon of the latter genus. The head (h) is very short, 0.01 mm ., cylindrical, with elongated nucleus ($n u$). The middle piece (m) is five times as long as the head, and almost as wide. The tail (t) is of great length, nearly 0.2 mm ., excessively thin, and undergoes violent lashings by means of which the organism is propelled
forwards. In the Libellulidae, the tail is much shorter and less slender.

The vas deferens ($v d$) is a rather narrow tube, which runs along the middle of the inner side of the testis, being enclosed within that organ by the overgrowth of its lobes around it. It leaves the bent-up end of the testis in the eighth segment, and passes backwards to the ninth. There it makes a small bend or loop, turning forwards, inwards and downwards to enter a short common duct just above the genital pore. In the mature male, this common duct is dilated dorsally into a conspicuous spermsac (sr), lying above the points of entry of the two vasa deferentia.
 Fig. 94. Mature spermatozoon
of Calopteryx splendens Harris of Calopteryx splendens Harris
$(\times 250)$.h head; m middle-piece;- $n u$ nucleus; t tail. After Bütschli.

Fig. 95. Sperm-capsule of Aeschna brewistyla Ramb. ($\times 330$). Original.

If the vas deferens of a mature male be opened ${ }^{1}$, it is found to contain, not separate sperms, but a large number of little round balls, or sperm-capsules (fig. 95). Each of these is about 0.15 mm . in diameter, and appears to contain the whole mass of sperms derived from a single testis-lobule. The sperms are all radially arranged, their inner ends (apparently the heads) forming a slight spiral (about a turn and a half) around the centre. Externally, the capsule is enclosed by a thick coat, apparently formed of minute gelatinous globules, one affixed to each sperm.

The whole capsule is slightly sticky, and eninently suited for the difficult operation of the transference of the sperms externally from the ninth to the second segment.

The wall of the vas deferens is very thick, being formed of high columnar cells with large nuclei, each of which shews numerous chromatin granules and a conspicuous, deeply-staining nucleolus.

The genital pore opens mid-ventrally on the ninth sternite. It is guarded by two small chitinous flaps, the valvules, homologous with the valves or lateral processes of the ovipositor in the female.

2. External Organs (fig, 96).

The copulatory apparatus of the male Dragonfly is one of the most remarkable structures in the Animal Kingdom. The "palpal organ" on the pedipalp of the male Spider, and the hectocotylous arm of the Cephtalopod Mollnse, extraordinary as they are, do not defy all explanation, sinee in each case they are modifications of an appendage already present. But the apparatus of the male Dragonfly is not homologous with any known organ in the Animal Kingdom; it is not derived from any pre-existing organ; and its origin, therefore, is as complete a mystery as it well could be. It is useless to talk vagnely, as some observers have done, about relationships with the Progoneate Myriapods, which have the genitill opening far forward on the body. The true genital opening of the male Dragonfly remains far back, on the ninth segment. The copulatory apparatus of the second and third segments has nothing to do with that. It is an entirely new and unique development, for the reception of the sperms, and for their subsequent introduction into the female. All we can say with certainty is, that its formation is correlated with the great length of the abdomen, with the use of the anal appendages as claspers, and with the adoption of the "tanden" position during pairing. Backhoff [4] has shewn that this apparatus develops late in larval life (at the antepenultimate instar) from originally median unpaired hypodermal cell-masses, which later on assume a bilaterally symmetrical form. Thus it has nothing to do with the lost segmental appendages of the abdomen, which disappear in embryonal life.

The apparatus is developed from the whole of the second sternite, together with the anterior part of the third. It consists of a penis, a vesicle for the storage of the sperm-capsules, and a number of complicated acecssory structures arranged so as to protect the penis and also to guide and hold the ovipositor of the female during copulation. These are all lodged in a conspicuous depression of the second sternite, known as the genital fossa. This fossa opens posteriorly into a small sac, the vesicle of the penis ($v p$), developed from, and attached posteriorly to, the anterior border of the third sternite. From the distal end of this vesicle, which projects forwards, arises the strongly-chitinized median organ called the peris (p). Its lumen is continuous with that of the vesicle, and opens to the exterior near its distal end.

In the Anisoptera ($\mathrm{A}-\mathrm{C}$), the penis is complicated, threejointed, and bent somewhat in the form of the conventional figure of the fish known as the "sea-horse." The basal joint $\left(p_{1}\right)$ is large and strongly chitinized, and bent near its middle. It sonetimes carries a fringe of hairs, or a long fleshy process. The second joint $\left(p_{2}\right)$ is smaller, and generally more or less curved. The orifice of the penis (or) opens on its convex surface. The third joint $\left(p_{3}\right)$ is small, wider than the second, and very variable in shape. It consists of a hard middle piece $\left(m p_{3}\right)$ with two larger soft lateral flaps ($l_{p_{3}}$), which are folded up when at rest, but expanded when the penis is erected. Long fleshy processes and other outgrowths may occur on this joint. When withdrawn, the penis is protected by a chitinous arch arising from the floor of the fossa, and called the sheath of the penis ($\mathrm{A}, s h$).

In the Zygoptera (D), the form and disposition of the above parts is simpler. The penis (p) is not distinctly jointed, and occupies the same position as the sheath in Anisoptera (with which it is probably homologous). Its lumen opens basally into the body-cavity, not into the vesicle, and it does not open distally to the exterior. Also, whereas the penis of Anisoptera is supplied with muscles, nerves and tracheae, these all seem to be absent in connection with the penis of Zygoptera. It is difficult to say what part a poorly developed organ of this kind can play in copulation, unless it serves as a kind of hinge or link, by means of which the female pore is held in contact with the vesicle. The structure is primitive enough to
suggest that the whole of the accessory apparatns originally arose from a slight depression in the second sternite, close under the anterior edge of the third. In this, perhaps, the male originally deposited sticky sperm-capsules, which the female sought for, during pairing, by bending her abdomen forward under that of the male.

The accessory portions of the apparatus consist of the supporting framework of the genital fossa, together with one or two pairs of hamules for the guidance of the ovipositor into position. The framework consists of the following parts:
(i) laterally, the two latero-ventral margins of the second tergite $\left(\operatorname{tg}_{2}\right)$,
(ii) anteriorly, a specialized bifid plate, the anterior lamina (al), developed from the anterior part of the second sternite, and
(iii) posteriorly, a less specialized and narrower plate of the same sternite, bordering segment 3 anteriorly, and called the posterior lamina.

The hamules consist of anterior and posterior pairs. The anterior hamules only occur in the Aeschnidae; they are absent alike in the Zygoptera and the rest of the Anisoptera. They are of complicated form, and function as claspers. In Aeschna (a) we distinguish two principal parts: the hamular foll (hf), and the hamular process ($h p$) carrying a distinct tuft of bristles ($t b$). Posterior hamules ($p h$) occur in all Dragonflies. They are of simple form in the Zygoptera and Aeschnidae. In the Libellulidae, however, they beeome highly differentiated, with outer and inner: branches, the latter usually in the form of a sharp hook ($h k$). (See also fig. 176.)

In the Libellulidae (E) an additional complication is introduced by the projections of the postero-lateral angles of the second tergite, which form well-developed genital lobes (gl).

The anterior lamina (al) varies much in shape. In Zygoptera and Aeschnidae it has a deep median cleft (cl). In the former it is produced backwards to form two strong posterior lobes (pl), which probably play the same part as the anterior hamules of Aeschnidae. In the latter, a sharp spine ($s p$) often occurs on the lamina, on either side of the cleft. In the Libellulidae, the anterior lamina is hood-shaped, hairy, and either entire or slightly notched (F).

For further details of the almost endless variety of structure of the external genitalia, the reader should consult Selys [151], Thompson [161] and Backhoff [4]. The Gomphinae in particular shew the most extraordinary formations, especially in the penis.

The Female.

1. Internal Organs (figs. 97, 98).

These consist of a pair of ovaries with their oviducts, a bursa or spermatheca, and a pair of accessory eacs [128].

The ovaries (fig. 97, ovy) are very large, extending from the base of the abdomen down to the seventh segment, dorsally on either side of the alimentary canal. Anteriorly they are united by a median dorsal ligament, formed by fusion of the anterior ends of the egg-strings, and attached to the posterior wall of the thorax. Each ovary is enclosed in a thick sheath formed by the fat-body. Numerous tracheae given off from the ventral trunk pass to the lower ventral surface of the ovary, and ramify over its walls.

The ovary is formed of numerous separate egg-strings, arranged longitudinally, and held in place by the genital tracheae and the envelope of fat. Wach egg-string is moniliform, and consists originally of three areas, the end-filament, the germinal area, and the maturation area. These areas are best examined in the well-grown larva, since at metamorphosis the whole ovary is fairly well advanced. The end-filament is the narrower anterior portion in which the germ-cells are first formed. It is formed of a single row of cells in a long thread. Most of these primitive germ-cells develop later into oogonia, but a few form follicle cells. Posterior to the filament is an area in which the egg-string is seen to be enlarged, owing to the fact that the germ-cells here become crowded together and are increasing in size. This is the germinal area, in which the large rounded oogonia are formed, each with a double nucleus, and in which also the formation of the yolk is first noticeable. In the third portion, or maturation area, forming the whole of the posterior part of the egg-string, the moniliform appearance becomes most marked, because the developing ova have become fairly large, and are separated out from the germinal mass as a single string of eggs. They lie with their
long axes nearly parallel to the egg-string, and increase in size as they approach the oviduct. In this area, the oogonia ripen into mature ova, and the latter become surrounded by large masses of food-yolk. The whole mass of the egg becomes next enclosed in a delicate vitelline membrane formed from the egg itself. Round

Fig. 97. Internal reproductive organs and alimentary canal of Petalura gigantea Leach,, , dorsal view ($\times 1 \frac{1}{3}$). $a n$ anus; $a s$ accessory sac; b bursa ; $g z$ gizzard; h hind-gut; $m g$ mid.gut; $m p$ Malpighian tubules; ovd oviduct; Original from dominal segments.
this, a thick chitinous outer shell or chorion is deposited by the follicle cells, which imprint their faint polygonal outline upon the structure. The eggs are always elongated when first formed, but may become rounded in some forms, when fully completed [91].

Posteriorly, the egg-strings open into the oviduct (ovd), a thinwalled cylindrical tube, down which the eggs pass one by one. Fertilization is supposed to take place here. The two oviducts open posteriorly in the eighth segment into a large pouch, the spermatheca or bursa (b). The walls of this pouch are very thick and muscular, and are further strengthened by an internally projecting ring or collar of hard chitin. Its cavity is often found to be distended with masses of spermatozoa. Opening dorsally into the bursa, by the union of their two short ducts, is a pair of elongated ovoid sacs, the accessory sacs (as). In mature females these sacs are tightly swollen and smooth, their rounded ends direeted forwards and lying at the level of the eighth ganglion $\left(n g_{8}\right)$. At other times they are wrinkled and collapsed. In some forms they appear as coiled tubes or caeca. The genital pore opens between the eighth and ninth segments, mid-ventrally.

2. External Organs (figs. 99-104).

The external genitalia of the female Dragonfly consist typically of three pairs of ventral processes or gonapophyses, outgrowths of the integument in the region of the genital pore. They begin to develop early in larval life, but have nothing to do with the primitive paired segmental appendages of the abdomen, which, as already stated above, are lost during embryonic life. The three pairs together form the ovipositor, or organ for use in the process of egglaying. Van der Weele [192] has made an excellent study of the development and structure of this organ. As it is greatly reduced in a large number of Odonata (Gomphinae, Libellulidae), it is necessary to select a form having a well-developed ovipositor, if we would understand its structure correctly. For this purpose we have chosen Synlestes weyersi (fig. 99).

The three pairs of processes may be named anterior processes (ap), lateral processes or valves (v) and median processes ($m p$) respectively. The anterior processes ($a p$) are two sword-shaped structures, slightly curved, and with a short saw-like edge near the pointed distal end. Each process is fixed to a short base-piece, an outgrowth of the posterior part of the eighth sternite. Into these pieces are inserted the muscles whose contractions cause the ovipositor to emerge from its sheath. Together with the median processes, the anterior processes form that part of the ovipositor known as the aculeus or terebra.

The lateral processes or valves (v) are of a very different form, being rather broad, leaf-like, slightly convex lamellae. Their bases occupy the whole length of the ninth sternite, from which they are developed. The apex of each projects postero-ventrally under the tenth segment. At its end it carries a hard, pointed organ called the style, styloid process, or sternorhabdite (st). The structure of the style shews that it is a tactile organ. The outer border of the valve is finely denticulate, and there is a large tooth close to the style.

The median processes ($m p$) somewhat resemble the anterior ones, but the blade is narrowed in the middle, and the distal end carries a complicated set of saw-like teeth. 'The process is inserted into a short base-piece arising from the inner anterior side of the base of the corresponding valve. Into these base-pieces are inserted the muscles which retract the ovipositor back into its sheath.

From the above description, it is clear that the complete ovipositor of the Dragonfly is an archaic structure, homologous with the well-known form such as is found in the Sawflies. All the Zygoptera possess ovipositors closely resembling that of Synlestes, though seldom so highly developed for cutting. In the Calopterygidae, the organ is not so large in proportion to the size of the insect, but the parts are closely similar. In some Agrioninae (e.g. Ischnura) there is a ventral spine developed postcriorly on the eighth sternite, projecting under the base of the ovipositor, In many forms the valves are crossed by a diagonal ridge running to the style. A bunch of stiff hairs often takes the place of the large tooth seen in Synlestes.

The Aeschninae have a complete ovipositor, differing chiefly from that of the Zygoptera in the slenderness of the blades and valves, and in the fact that the style carries either a stiff bristle or a bunch of hairs distally (fig. $100 \mathrm{~A}, b r$). The action of the ovipositor is here suppiemented by the development of a hard projecting process, the dentigerous process (fig. $100 \mathrm{~A}, d p$), from the tenth sternite. In the Brachytronini (A) this forms a plate with a curved and strongly toothed distal border, projecting backwards below the styles. In most Aeschnini it is reduced to a rounded tubercle studded with fine denticles, the dentigerous tubercle. In the Gynacantha series it becomes a sharp fork, with two, three, or four prongs (B).

Fig. 100. A. Dentigerous plate and styles of Ausiro. phlebia costalis Tillyard, phe $\left.\begin{array}{l}\text { P ventral view. B. Fork } \\ \text { of Gynacantha rosenberghi }\end{array}\right)$ Selys, q. br bunch of hairs; $d p$ dentigerous plate; at style. ($\times 6$.) Original.

The Petalurinue have an ovipositor almost as perfect as that of the Aeschninae, though the processes are reduced in length.

We may now briefly follow the stages in the reduction of the ovipositor, consequent on the loss of its original function:
(i) In the Cordulegastrinae (fig. 101) the valves are reduced to minute rudinents, and the saw-teeth of the median processes are absent. The terebra, however, is hypertrophied, forming a very hard and conspienous organ projecting far beyond the end of segment 10. Ris [132] has observed these insects ovipositing in rough angular débris, formed by limestone deposits in small shallow streams in Switzerland. The insect flies in a vertical position, dipping its abdomen into the limestone deposit at intervals. Thus the hard point of the terebra protects the soft parts of the end segments from injury.
(ii) In the genus Gomphomacromia the valves are absent, and the anterior processes are blunt and basally united. The ovipositor appears to be at a reduction stage comparable with (i), minus the hypertrophy.
(iii) In the tribe Synthemini (fig. 102) a wide range in the reduction process is still to be seen___ Forms such as S. primigenia
and S. macrostigma appear to have long well-formed ovipositors; whereas others, e.g. S. claviculata, have none at all. An examination of the long ovipositors in this tribe shews us, however, that, as in (ii), the valves are absent, and the median processes reduced.

Fig. 101. Ovipositor of Cordulegaster annulatus Latr., 9 , lateral view ($\times 4 \frac{1}{2}$) $a p$ anal appendages; br bristles; ov ovipositor; t tubercle. Original.

Fig. 103. Vulvar scale (ws) of Tramea loēwii Br, , ㅇ $\left(\times 4 \frac{1}{2}\right)$. $p m$ median proOriginal, chitin preparation.

pa

Fig. 102. Ovipositor of Synthemis eustalacta Burm., ㅇ ($\times 6$). pa anterior processes; $p m$ median processes. Original, chitin preparation.

Fig. 104. End of abdomen of Uracis ovipositrix Selys, of, lateral view. After Ris.

It is the anterior processes which, by union of their bases, and widening of their distal ends, give the appearance of a large ovipositor. No species of this tribe uses its ovipositor for placing
its eggs, and the latter are of the rounded form found in all Libellulidae.
(iv) By reduction of the median processes to mere vestiges, and a decrease of the anterior processes to small flaps, we reach the stage seen in many Libellulinae and Gomphinae. Finally, the former quite disappear, while the latter become either the small valvula vulvae or the bifid or complete vulvar scale (fig. 103, vs) situated on the anterior side of the genital pore.

A few Libellulinae (e.g. Uracis, fig. 104) have recently reacquired a distinct ovipositor, by elongation of the vulvar scale into a sheath like process projecting from segment 8 . A similar process is devcloped from segment 9 , fronr near the basal rudiments of the original median processes; it is softer, and fringed with stiff hairs. The valves are absent.

We may sum up the position, as regards the gonapophyses, in the following table:

Name	Segment	P'osition	Oriter of Develop ment	Fate in 9				Fate in σ absent
				Zygontera Leselhinue \& Hetulurinate	Corduteyastrinae	Synthemini	Gamphinate \& Libellulinae	
Anterior Processes	8	median ventral	3	terebra	hyper-	basally fused or much	vulvar seale	
Median Processes	9	"	2	$\left.\begin{array}{c} \text { or } \\ \text { aculeus } \end{array}\right\}$	trophiod	redncod or absent	vestigial or absent	absent
Lateral Processes	9	lateroventral	1	valves	vestigia]	vestigial or absent	vestigial or absent	valvules

The Process of Oviposition (figs. 105-108).
As the form of the ovipositor is closely correlated, not only with the method of oviposition, but with the shape of the egg it will be advisable to deal with both of these here.

We may classily the method of oviposition broadly into two divisions:
(1) Endophytic Oviposition, or the placing of the eggs in the stems or leaves of aquatic plants, or other objects close to or under the water. Correlated with this habit are (a) the complete form of ovipositor, and (b) the elongate form of egg.
(2) Exophytic Oviposition, or the dropping of the eggs freely into the water, or in other ways placing them outside the tissues of plants. Correlated with this are (a) reduction of the ovipositor, (b) the rounded form of egg.
т. D.-т.

It will be seen that the Zygoptera, Aeschninae and Petalurinae practise endophytic oviposition, while all the rest practise exophytic oviposition. Reduction, however, is not complete in the Cordulegastrinae and some Synthemini, so that these may be considered in a measure as intermediate or linking forms.

Bearing in mind the description given above of the ovipositor of Synlestes, we can now easily understand the process of oviposition in this genus. After alighting on a reed-stem above the water, the Dragonfly feels about with its styles until it finds a suitable place. It then everts the terebra, and makes a small incision with the sharp points of the anterior processes. The ends of the median processes slip automatically into this small slit, which is quickly enlarged by sawing with their teeth. As soon as the hole is made large enough to take several eggs, an egg is expressed through the genital pore, and guided along between the blades of the terebra into the tissues of the plant. Three or four eggs are placed in each hole. The whole body is then moved a short distance downwards, and the process repeated on a new spot. Further holes are made in a gradually descending series, not at all regularly placed (fig. 105 A). Finally, the median processes are retracted, the anterior ones fall back

Fig. 105. Oviposition of Syntestes weyersi Solys. A. Reed-stem with punetures (x). B. A puncture enlarged $(\times 8)$. c. Section through reedstem to shew method of Original. with them as their muscles relax, and the valves close up automatically. Other Zygoptera carry on the process in the same manner, but many kinds only place one cgg in each incision. The eggs may be laid far above the water-level, at the water-level, or well beneath it. In the last case, the Dragonfly (either alone or accompanied by the male) descends down the stem under the water, where it appears as if silverplated, owing to its being surrounded by a complete film of air.

In the Aeschninae, some forms lay their eggs in soft tissues, as do the Zygoptera. The eggs are, however, gencrally more neatly and regularly arranged (fig. 106). This may be due to the increased efficiency of the styles, which perhaps measure off the distance between successive incisions. The terminal bristle or hairs would assist in this process. In the Brachytronini, the eggs are placed either in hard wood or in the matted roots of mosses or filmy fern growing on damp rocks. The hard wood is sawn across transversely by the dentigerous plate, before the egg is inserted. The process is slow, and attended with much danger to the Dragonfly, which shews great trepidation, and often leaves its sawing uncompleted. The oviposition of Gynacanthe has not been observed.

Turming now to the exophytic forms, we have already noticed Cordulegasler (p. 223). In some Synihemini, the large fused anterior processes help to regulate the flow of eggs, and to prevent them from exuding too far. In the great majority of cases, the Dragonfly lays her eggs while flying over the surface of the water, merely by striking the tip of the abdomen from time to time against the water, and so washing off the steady flow of exuding egg-masses. The gelatinous substance surounding these masses seems to dissolve on contract with water, so that the eggs spread out on the river bed. Gomphinace usually oviposit in the ripples of fast streans, Libellulinae over still water. This method of oviposition culminates in the genus Corlulephya, where the female performs extraordinary evolutions, with sudden dashes down to the water to lay its eggs. The movements are so swift and unexpected that the insect is almost invisible, and very difficult to capture.

In the genera Tetragoneuria (fig. 107) and Sympetrum, the eggs are laid in gelatinous ropes, attached to subnerged twigs. A number of females help in adding to the length of rope, which may contain many thonsands of eggs. It seems clear here that the rehatinous envelope does not dissolve, but rather tends to harden in the water [100].

Damage to the ε tems of the Blue Flag (Iris versicolor) has been observed by Needham [99] owing to the numerous punctures made by two species of Nearctic Lestinae. About one-fourth of the fruiting stems are killed annually.

Fig. 107. Egg-rope of Tetragoneuria cynosura Say. After Needham.

Fig. 108. Eggs of Dragonflies. a, Austrolestes leda Sclys ($\times 15$); b, Austropetalia patricia Tillyard ($\times 20$). c, Petalura gigantea Leach $(\times 20)$. d, Hemicordulia tau Selys ($\times 30$); e, Diplacodes bipunctata Br. $(\times 35)$. Original.

Fig. 108 shews the forms of egg typical of the endophytic and exophytic groups.

CHAPTER XII

EMBRYOLOGY

Structure of the Egg.

The egg, when laid, consists of the following parts:
(i) The germ-vesicle, or nucleus of the mature germ-cell. This is a large vesicular nuclens shewing a fine network of chromatin. It is deeply embedded in the yolk, near the centre of the egg.
(ii) A fine network of formative protoplasm, ramifying throngln the yolk.
(iii) The periplasm, a very fine Jayer of formative protoplasm completely surrounding the yolk.
(iv) The fool-yolk, an inmense quantity of homogeneous, structureless yellow material, in the form of originally spherical globules compressed by mutual pressure. Drops of fat are also present.
(v) The vilelline membrane, quite structureless, colourless and exceedingly fine. It is scercted from the egg itself, and closely invests the yolk-mass.
(vi) 'The chorion, a tough outer covering, overlying (v), and formed of chorionin. This is secreted by the follicle cells of the ovary, which leave a more or less definite irregular hexagonal pattern upon it (representing the boundaries of the follicle cells) except at the two ends, where the same pattern falls upon the thickened gelatinous envelope. At the anterior pole of the egg (i.e. the pole of attachment to the egg-string), the chorion is strongly thickened. A delicate canal, placed obliquely a little to one side of the central axis, pierces the chorion at this end. This is the micropyle, or passage for the entry of the sperm. The chorion is also slightly thickened at the posterior pole, but in a less pointed fashion.
(vii) An outer layer of gelatinous matter, serving to protect the
egg from eontaet with the air. This forms a more or less regular thin layer over the chorion. It is slightly thickened at the posterior pole. At the anterior pole it is very greatly thickened, forming a conical cap, known as the pedicel, by the apex of which attaehment is made to the egg-string. The surface of this cap shews the impress of the follicle eells more plainly than the chorion does.

The egg has a dorsal and a ventral side, the former being distinctly convex, the latter much flatter. The terms dorsal and ventral, applied to these surfaces, indicate the future position of the late embryo, but not of the early embryo, which is reversed.

The processes of maturation, fertilization and extrusion of the polar bodies have not been followed in the Dragonfly's egg, the immense mass of yolk making the investigation very difficult.

Embryonic Development (figs. 109-112).

The present state of our knowledge of the embryology of the Dragonfly is due to Brandt [13], Heymons [71] and Tsehnproff [181]. The work of Brandt on Calopteryx still remains the most valuable source of our knowledge. The other two authors have chiefly investigated problems concerning the germinal layers; their studies were made on Libellula and Epilleca. Much still remains to be done, particularly with regard to the early segmentation, and the formation of the various internal organs in later embryonic life.

Early Stages.

Cleavage or Segmentation of the Egg. The first segmentationnucleus is formed, as in all inseets, by union of the male and female pronuclei near the surface of the yolk. This nucleus then moves inwards, and sub-divides into a large number of daughter-nuclei. These nuclei then move outwards to the surfaee of the yolk, where each takes up a position surrounded by a small "island" of protoplasm. These islands are all actually connected together by fine threads. They finally fuse with the periplasm, and become marked off by constrietions between them, so that they soon take on the appearance of a single row of surface eells. This is the blastoderm. Since the cells are formed at the surface, this form of segmentation is known as superficial.

Vitellophags. While the blastoderm is being formed, eertain cleavage eells migrate inwards. These inerease by division to

Fig. 109. 'Ten stages in the embryonic development of Calopteryx. Lateral view, dorsal surface to the left, ventral to the right. A. Formation of ventral plate. B-D. Stages in the invagination of the embryo. $x-$-a. Formation of appendages. 1H-k. Rupture of amnion, and reversion of embryo towards its final position. ab abdomen; abd abdominal segment; ac amniotic cavity; am umnion; as union of amnion and serosa; at antenna; b lateral border cl cephalic lobe; emb embryo; ff stomodaeum; $h d$ head; $h g$ proctodaeum; $l_{1}-l_{g}$ legs; $l b r$ labrum; $m \ell$ mandible; $m x_{1}$ first maxilla; $m x_{2}$ second maxilla (labium); se serosa; $v p$ ventral plato; $y k$ yolk. After Brandt.
form large cells known as vitellophags, whose function it is to liquefy the yolk and carry it to the developing embryo. They grow to a great size, and possess enormous nuclei. They are not all used up by the time of hatching. Those that are left become finally enclosed, with their store of yolk, in the mid-gut of the young larva, where we have already met with them (p. 71)

The Ventral Plate (fig. 110, and fig. 109 1).
The first sign of the Dragonfly embryo is a slight thickening of the blastoderm on the posterior portion of the ventral surface of the egg. This thickening, known as the ventral plate ($(v p$), is caused by proliferation of the blastoderm cells, which here become several layers deep. The ventral plate grows forwards, and quickly becomes a very distinct oval patch, oceupying half or more of the ventral surface of the egg.

Near the posterior end of the plate--in that position, in fact, where the thickening first began-there next appears a kind of pitting-in or invagination of the blastoderm. Aecording to Heymons, this invagination in Libellula (fig. 110) takes the form of a primitive groove ($p g$) along the mid-longitudinal line of the ventral plate, running forwards from the point where it first began (known as the blastopore). A slight enlargement of the anterior end of this groove marks

Fig 110. Ventral plate (v_{1}) and primitive groove ($p g$) in Libellula. st stomo dacum. After Hoymons the position of the future stomodaeal opening (st). According to Brandt, in Calopteryx the invagination takes place by a sinking-in of the ventral plate at the blastopore in a gradual manner, beginning with the posterior end (fig. 109 3). The result is the same in either case

The cavity formed by the sinking-in of the ventral plate is known as the amniotic cavity. As the ventral plate passes in by the upper lip of the blastopore (B, c), and as undifferentiated blastoderm is drawn in along the lower lip, the walls of the amniotic cavity are dissimilar. The dorsal wall is formed of a single layer of cells, destined to become the amnion (am), while the ventral wall is several layers thick, and is formed by the ventral plate. At the
sides of the cavity, the amnion merges into the ventral plate. The part of the blastoderm not drawn into the cavity, but remaining surrounding the yolk, may from now on be termed the serosa (se).

Even before the invagination is completed, the ventral plate begins to change its shape by the upgrowth of its antero-lateral borders, so that the anterior border becomes slightly concave in the middle (fig. 109 c). This marks the beginning of the formation of the head. By the time the invagination is completed, the two large cephalic lobes ($c l$) are very distinetly formed, lying just inside the blastopore

Amnion and Serosa. We may here follow out the further development of these single cell-layers. As the invaginated ventral plate takes on the distinct form of the embryo, the amnion grows out ventrally on either side of it, in two folds. These finally grow completely round the embryo, and unite together to enclose it within the amniotic cavity. The latter is filled with a fluid called the amniotic fluid. The eavity is finally completed in the region of the blastopore, where the amnion fuses with the serosa. The function of the ammion is to protect the early embryo from shocks. Except just at the closed-up blastopore, amnion and serosa are definitely separated by a large amount of yolk. Thus all the embryo except the head now lies well within the egg. This condition is known as the "immersed germ-bumd." Other insects which share with the Odonata the peculiarity of having an immersed germ-band are the Lepidoptera, most Hemiptera, and a number of Orthoptera.

The Germinal Layers.

We must now pause to follow the formation of the three germinal layers, or layers of cells, from which all the embryonic structures are derived.

The Ectoderm. This is formed directly from the outermost layer of cells of the invaginated ventral plate. These become diflerentiated off from the cells underlying them at a very early stage, by the assumption of a compact columnar form, due to mutual lateral pressure. The ectoderm covers the whole of the ventral surface of the embryo. At first it passes insensibly, on
either side, into the smaller flattened cells of the serosa. When the amnion is completed, the serosa is cut off from the ectoderm, which then beeomes continuous, on either side, with the cells of the amnion. It should be borne in mind that, during this process, vitellophags are at work in the yolk dorsally above the ectoderm, so that a continuous supply of nourishment is furnished to the cells of that region.

The Mesoderm. The main portion of the mesoderm in Odonata seems undoubtedly to be formed by the ingrowth of the primitive groove; though it is very probable that the lateral parts of the mesoderm are formed from isolated cells wandering in from the blastoderm. The cells which form the sides and floor of all the middle portion of the primitive groove become enlarged, so as to differ gradually more and more from the cells continuing the edge of the groove above, which become the ectoderm. Finally, the groove becomes flattened and closed in by overgrowth of the ectoderm above it. The lumen of the groove is lost, and its cells spread out as a slightly convex layer, several cells deep, beneath the ectoderm. This layer is appropriately termed the lower loyer, since, in many cases, both mesoderm and endoderm are derived from it. If, however, Meymons' observations be correct ${ }^{1}$, the endoderm has a different origin in the Odonata; so that we may speak of the lower layer cells in this case as forming the mesoderm.

The mesoderm soon shews signs of splitting into two layers, an upper and a lower ${ }^{2}$. The upper or ventral layer tends to become closely applied to the ectoderm, and is terned the somatic or parietal layer. From it are developed the segmental muscles. The lower or dorsal layer tends to become closely applied to the yolk-cells lying dorsal to it, and is termed the splanchnic or visceral layer. From it are developed the museles of the mid-gut. The
${ }^{1}$ Heymons studied chiefly the Odonata, Orthoptera and Aptera. The more recent work of Hirschler, on the embryology of the Coleoptcra (Zeil. wiss. Zool., xan, 1909), challenges many of Heymons' main conclusions, and appears to offer more reasonable explanations of eertain difficult points. But researches male upon the Odonata camnot be disproved by work done on the Coleoptera, however exeellent it may be, since the embryology of these two Orders differs in many important points. What is required is a thorough re-investigation of the embryology of the Order Odonata itself.
${ }^{2}$ In considering the germinal layers, the ectoderm is taken as the uppermost, although actually the most ventral layer.
space between the two layers is the true coelome or primary body-cavity. It is never very large in the Insecta. Its fate in the Odonata is meertain, but it is believed to give rise only to the humina of the gonads and the rednced pericardial space.

It must be borne in mind that the segmentation of the embryo (see below) extends to the mesoderm, subdividing it into blocks forming the mesodermal somites, which correspond with the external segmentation. The result of this is that the coelone is constricted off into separate spaces or coelomic sacs. These have not been studied in the Odonata. It also follows that the heart and muscles, which are formed from the mesoderm, are formed segmentally.

The Endoderm. The origin of the lowest of the three germinal layers, or endoderm, in the Odonata, is still a matter of dispute amongst embryologists. There can be little doubt that Isehuproff is correet in stating that, in the Odonata alone amongst insects, the mid-gut is not formed entirely of endoderm, but consists at first largely of vitellophags. This is clear from fig. 111, where the huge vitellophags (vil) are seen to form the greater part of the middle portion of the wall, while small nests of endoterm cells (en) lie here and there outside them. After hatching, when the contents of the vitellophags are absorbed, these eells themselves disappear, and the endoderm spreads out to form the deep columnar cells of the mid-gut.

The difficulty, however, lies in determining the origin of these endoderm cells themselves. We can only give our readers the facts so far observed, and leave them to choose between the rival theories. Before, however, we can follow these

Fig. ill. L.s. through midgut of embryo of Epiheca bimacuata Charp., endoderm cells. n the three portions of the mid-got; musc musclelayer; p moctodaeum; st stomodaeum; wit vitellophag. After Tschuproff. facts, we must trace the part played by the ectoderm in forming the alimentary canal.

When the primitive groove was formed, its anterior end deepened into a pit, the stomodacal invagination, marking the position of the future mouth of the embryo. This pit gradually deepens and lengthens out posteriorly, so that its blind end at last comes to project elose up against the yolk-cells in the region of the future mid-gut. At a later period, when the anal plate (see below) of the embryo is formed, a similar but smaller invagination appears at the extreme posterior end of the embryo, on the eleventh (or possibly the twelfth) segment. This pit is the proctodaeal invagination, marking the position of the future anus. It grows longer in an anterior direction, and thus finally pushes its blind end close up to the yolk-cells in the region of the mid-gut in front of it.

When these two pits are small, a cluster of small but very distinct cells appears around the blind end of each, beneath the mesoderm. These clusters soon become crescent-shaped, and then spread out like two pairs of horns advancing towards one another on either side of the mid-gut. Finally the two horns of each side mect and coalesce. These form the endoderm cells (fig. 111, en), arranged, as already seen, in a series of nests close outside the vitellophags. But only the middle portion (m_{2}) of the mid-gut is thus enclosed. According to Tschuproff, a short anterior part $\left(m_{1}\right)$ is formed from the end of the stomodaeum, by constriction off, where its blind end opens to the mid-gut; while a similar short posterior part $\left(m_{3}\right)$ is formed from the proctodacum.

We thus have this remarkable result in the Odomata, that the whole of the alimentary canal, except the middle portion of the mid-gut, is of ectodermal origin.

Now it is this middle portion which is still in dispute. The two views may be stated thus:
(a) Grassi (1884), Nussbaum, Kowalevski, Wheeler and Hirschler, with" others, consider that the "nests" of cells which form the mid-gut are undoubtedly derived from the lower layer. Thus they are correctly termed endoderm cells, and the middle portion of the mid-gut is of endodermal origin.
(b) Heymons (1895), with some more reeent supporters, holds that these "nests" are of ectodermal origin, since they first appear close up to the stomodaeum and proctodaeum, which are admittedly
cetodermal. If this be so, the alimentary canal is entirely of ectodermal origin, and no true endoderm exists in the Odonata.

Students interested in these rival theories will find them fully diseussed in Korschelt and Heider [81$]$ to whom they are referred. Supporters of Gaskell's theory will, no doubt, see in Heymons' statements some further evidence for their views.

Formation of the Segments and Appendages (fig. $109 \mathrm{D}-\mathrm{G}$).
After the first appearance of the cephalic lobes, and the completion of the sinking-in of the ventral plate, the embryo gradually elongates at the end opposite to the future head, the extreme end becoming curved over as in D. This curvature remains for the rest of embryonic life. On the curved end a slight enlargement marks the anal plate, on which, soon afterwards, the proctodaeal invagination begins to form. The body of the embryo very soon begins to shew signs of segmentation, by the formation of slight transverse constrictions, indicating the limits of the future body-segments. The constrictions only shew up on the ventral surface of the embryo, which tends to become more convex. On either side of the mid-ventral line, the convexity indicating a future segment very soon begins to take the form of a pair of latero-ventral swellings---the first rudiments of the appendages. The first distinet swellings to be seen are three pairs at about the middle of the ventral surface of the embryo. These represent the rudiments of the future thoracie legs ($\mathrm{F}, l_{1}, l_{2}, l_{3}$). Next to these, nearer the head, three very similar swellings can be made out, destined to become the appendages of the montly (e, $m d, m x_{1}, m x_{2}$). At the same time, the cephalic lobes alter in shape. From their more ventral part a pair of swellings arises similar to that mentioned above, but destined to form the antennae. Just in front of this, a median unpaired swelling arises, forming the front of the head. Thestomodaeal invagination takes place just posterior to this.

The appendages gradually elongate, but at unequal rates, the most posterior pair (third legs) soon becoming the longest, while the others decrease from behind forwards in order, up to the mandibles (r). The antennae, however, soon become longer than
the mandibles and first maxillae. As the appendages grow, they become directed backwards.

Posterior to the third legs, the segmentation of the body continues backwards. Rudimentary pairs of appendages are said to be discernible for a short time on all the abdominal segments; but they soon disappear, except on the eleventh segment, where they persist as the cerci.

This stage in the growth of the embryo is completed by its stretching or straightening out, so that the head is drawn inwards towards the posterior pole of the egg, and comes to lie in line with the rest of the body (G). At this stage it will be noticed that the cephalic lobes have extended back more dorsally, while they have also fused ventrally with the median front of the head, which now is seen to form a kind of flattened lobe, destined to become the labrum and elypeus. Thus the head is much more completely formed than it was before the straightening process set in. It should be noticed that the amnion and serosa are still fused at a point near the original position of the blastopore, and that the embryo now lies longitudinally within the egg, with its head downwards and close to the posterior pole.
Rupture of the Amnion, and Reversion of the Embryo (fig. $1091 \mathrm{H-K}$).
The embryo now undergoes a remarkable series of changes in position, during which great alterations take place in the amnion and serosa. The latter appears to thicken and contract, drawing all the yolk left near the posterior pole of the egg forwards towards the anterior pole. The increase of pressure consequent upon this movement, and upon the steady growth of the embryo, causes the amnion to rupture along the portion above the head, where it is fused with the serosa. The amnion here splits into two halves. As the scrosa goes on contracting, the pressure causes the embryo to project head first through the split (H). The head of the embryo, once freed from the amniotic envelope, turns round and follows the contracting serosa upwards, towards the anterior pole. The rest of the body of the embryo follows the head in due course, so that the embryo is for a time curved round on itself, while segment after segment passes out through the rent (n, J). Fimally, the head comes to lie below the anterior pole of the egg, while the
rest of the embryo is in line with it, ruming back to near the posterior pole, where the bent up end of the abdomen lies. These movements of the embryo are termed blastokinesis. All the yolk is now contracted into the space dorsally above the embryo, which lies with all its appendages facing outwards along the ventral surface of the egg.

During the above changes, the remains of the amnion have gone on contracting with the serosa, until finally the two membranes become sufficiently reduced in area to form a tight covering for the dorsal yolk-plug ${ }^{1}$. Thus, at stage k , we may see how the embryo is really only formed laterally and ventrally, while the whole of its dorsal portion consists of this huge yolk-sac. By a gradual extension of the ectoderm and mesoderm laterally, and then latero-dorsally, over the yolksue, the latter comes at last to lie completely within the body of the embryo. The final closure takes place along the mid-dorsal line.

Further Changes.

The embryo now grows steadily, so that the head comes closer and closer up to the anterior pole of the egg. The antemae, second maxillae and the three paits of legs are soon seen to be distinctly jointed. The segmentation of the whole body becomes distinct and amnular. Reddish pigment areas on either side of the head indicate the first formation of the compound eyes, which soon appear blackish in the middle. The yolls-pling steadily contracts, and finally becomes all used up, except for

P, $p_{2} p_{1}$

Fig. 112. Anterior half of egg of Anax papuensis Burm., just before hatching, ventral view ($\times 60$). ant antenna; cl clypeus, e compound eye; llm labiun ; llr labrum; $n d$ mandible; $m x$ first maxilla; $p_{1}-p_{3}$ legs Original. the portion enclosed in the mid-gut. The mandibnlar and maxillary teeth appear, and the bases of
${ }^{1}$ The actual fates of the amnion and serosa are doubtful. It is believed that the serosingradually hicuks uf and mingles with the yolk, while the fimal fate of the ammion is not definitely known.
the three-jointed second maxillae fuse in the middle line, indicating the first formation of the labium. A pale brownish cuticle can be seen enclosing the whole embryo.

Just before hatching, the position of the cephalic and thoracic appendages is as shewn in fig. 112. It will be seen that the original front lobe of the head is now divided into clypeus and labrum. The antennae are two-jointed and slender. The mandibles and first maxillae point rather inwards, and shew their definite shapes. The second maxillae lie parallel and backwards, resembling a pair of legs. From this point the reader may continue the narrative by turning to the account of the hatching of the larva on p. 67.

Origin of the Parts of the Embryo.
 A. Parts of Ectodermal Origin.

1. The hypoderm is derived directly from the ectoderm, which comes finally to enclose the whole body of the embryo as the layer of hypoderm cells.
2. The cuticle is secreted by the hypoderm. Two cuticles are formed, one inside the other, during late embryonic life. The outer one forms the pronymphal sheath (p. 69).
3. The tentorium is developed from two pairs of ectodermal invaginations in the forepart of the head. The details have not been worked out in the Odonata.
4. The nervous system. On either side of the mid-ventral line of the body of the embryo, the ectoderm becomes thickened into a longitudinal cord. This pair of cords sinks below the rest of the ectoderm, which grows ventrally over them. The cords then become segmented, and give rise to the ventral chain. The two cords fuse in each segment to form the paired segmental ganglia, from which the longitudinal nerve-eords grow out separately later. The development of the brain and oesophageal commissures has not been worked out in the Odonata.
5. The compound eyes. These organs become fairly well developed during embryonic life. Their early formation, however, has not been studied in the Odonata, so far as I am aware. The ocelli do not develop at all in the embryo.
6. The trucheal system arises from paired segmental ectodermal invaginations. The original apertures persist, and become the spiracles. The details of the embryonic growth of this system, and of the first formation of the branchial basket of Anisoptera, are unknown. In the embryo, the tracheal system is not filled with air, but with a fluid whose origin is doubtful. The endotrachea and spiral thread are secreted in the embryonic period.
7. The stomodueum. We have already followed the development of this invagination. It gives rise to the whole of the epithelium and intima of the fore-gut, i.e. the buccal cavity and pharynx, with the epipharynx and hypopharynx, the salivary glands, ducts and reservoirs, the oesophagus and crop, and also the gizzard and its armature. Also, we have seen that a small anterior portion of the mid-gut, probably corresponding with the annular zone (p. 109), is derived from it.
8. The proctodatum. This has also been dealt with. It gives rise to the epithelium and intima of the anus, the rectum and its pads, the branchial basket of Anisoptera, the small intestine, together with the Malpighian tubules, as blind ontgrowths from its extreme anterior end. A small posterior portion of the midgut, probubly corresponding with the sphincter region (p. 113), is also terived from it.

B. P'arts of Mesodermal Origin.

1. The heart is formed from two strings of cells called carchoblasts, derived from the latero-dorsal walls of the mesodermal somites. These strings become pushed up inwards dorsally, until they meet and fuse in the middle line. They enclose between them a pair of blood lacunae, which later on fuse to form the lumen of the heart. The formation of the ostia, osteoles, alary museles and other details has not been studied in the Odonata.
2. The coelome is the reduced remnant of the cavities of the somites. It forms only the pericardium and the lumina of the gonads.
3. The blood-corpuseles are either somatic mesoderm cells which have wandered into the haemococle, or they may have arisen from the yolk-cells.
r. $1 . \mathrm{Fr}$.
4. The haemocoele is a secondary enlargement of the blood lacunae, formed in the mesoderm. This increases enormonsly, and forms the general body-cavity of the insect.
5. The fat-body is formed by proliferation of the cells lining the haemococle.
6. The muscles and connective tissues are formed from the somatic layer, except the muscles of the alimentary canal, which are derived from the splanchnic layer.
7. The gonads and their ducts are derived from two longitudinal strands of cells formed in the somatic mesoderm. These genital cells, from which the gonads arise, are formed very early in embryonic life, as specialized mesoderm cells lying towards the posterior end of the ventral plate. Later, they spread out from the seventh to the second abdominal segments. Undifferentiated mesoderm cells form an epithelium surrounding the true genital cells.
C. Parts of Endodermal Origin.

The only part formed in the Dragonfly from the endoderm is the epithelium of the mid-gut, excepting the short anterior and posterior pieces already mentioned as being of ectodermal origin. As already stated, even this is doubted by Heymons.

> Length of Embryonic Life.

The time elapsing between the laying of the egg and the hatching of the larva is about three weeks in the case of the Zygoptera, a little less in Aeschnidae. But some Libellulidae, at any rate, if not all, hatch out much sooner. Diplacodes haematoles hatches out five days after the eggs are laid, and some other species almost as quickly.

Figs, 1-8, Hllustrating correlation between coloration and habitat in podopterix and Argio-

 1iss. $2-8, \times 1 / /$. LSerments $4-10$ omitted. $]$ Higs. $9-16$, some beautiful types of bady

 20. Figs. 22-24, Agriocnemis hivacinthus Tillyard ($\times 2$); firs. 22 , δ; jis. 23 , normin! ify. 24, heteronorplic (rufous) $\frac{9}{}$. (Uriginal water-colon deawings.)

CHAPTER XIII

COLORATION

No Order of Insects can surpass the Odonata in the beauty, variety and brilliancy of its coloration, except it be the Lepidoptera. In intricacy of colour-pattern the latter are undoubtedly supreme. But practically the whole of the colouring of the Lepidoptera is found on the wings; whereas, in the Odonata, not only do we find certain groups with brilliantly-coloured wings, but there is in nearly all cases a wonderful development of body-coloration quite unequalled in the Lepidoptera or in any other Order. The wings of Dragonflies have no efficient unit for the localization of colour-pigment, such as the scales of Lepidoptera. It is not surprising, then, that wing-colours are confined to special groups. The wonder rather is, that those groups should have attained such beauty as they possess, on so insufficient a basis as a wing carrying neither hairs nor sciales.

The Nature of Colours

No investigations have so far been carried out as to the nature of colours in the Odonata. Hagen, however, who knew the Order well, has given an excellent general classification of the colours of insects, which seems readily applicable to the Dragonflies, with slight modifications. Simple experiments are easily devised to shew that Hagen's different types of colour do all exist in this Order. Of these there are two principal kinds, the second divisible into various separate types:
${ }^{1}$ Recently an undescribed species of Lestes from New Guinea has been found with a curious development of hairs at the postero-distal end of the petiole of the wing. This is quite unique in Odonata.

A. Optical or Interference Colours.

These colours do not really exist as pigments, but are produced by the interference of the light reflected at the two surfaces of the double wing-layer, or by combined relraction and reflection of light which falls on to a body-area pigmented in a special manner. If the wing be unpigmented, the interference coloration takes the form of iridescence, a kind of delicate rainbow or mother-of-pearl effect varying with the angle of vision. This can be seen in the freshly-formed wings of all Odonata. It seems to be due to the presence of a liquid layer (pale greenish blood) between the two wing-membranes. Thus there are, in all, three superimposed layers with different refraetive indices. As soon as the wing is dry, the two wing-membranes fuse, and the iridescence gives place to hyalinity, in which no interference effects are usually visible. In the Calopteryginae, however, the mature wings retain a delicate iridescence of pale green, mauve or purple. This seems to be due to the arrangement of the numerous narrow parallel and unpigmented cells of the wing, which obviously produce an interference effect on the light falling on certain parts of each cell. No cases of permanent iridescence are known in wings in which the cells are large, polygonal, or irregularly arranged.

The phenomenon of metallic coloration is the effect produced by superimposing an interference effect upon a dull-coloured underlying pigment. We shall therefore deal with this under the next heading.

B. Pigmentation or Natural Colouring.

These colours are produced by the deposition of certain coloured substances either in the wing or the body-integument, in the form of fine dust or particles, called pigment-granules. Almost all pigments are elaborated by cells of ectodermal origin, though a few appear to originate in certain mesoderm cells, and to migrate later into the ectoderm. We may classify the pigments found in Dragonflies ${ }^{1}$ as follows:

1. Cuticular or Permanent Pigmentation. This occurs in all Odonata, but in very varying amount. The pigment is actually
${ }^{1}$ We are here only concerned with external coloration. Pigments are also elaborated in many internal organs, e.g. the mid.gut and the tracheae.
embelded in the cuticle in the form of fine granules, called "pigment nuclei," deposited in the outer layers of chitin. Since the pigment is protected from decomposition by the presence of the underlying clear layers of the cuticle, it follows that, at death, when the lyypoderm cells decay, the cuticular pigments remain unaffected. Hence they are called permanent; though, as a matter of fact, continuous exposure to light, for a long time, causes them to fade. These colours form the ground-colours of Dragonfly body-pattern. Blacks and browns of all shades and degrees on the body, the same colours on the wings, with the addition of the yellow stain called saffroning, and of the rich reds found in some genera, are all cuticular pigments. Orange and fulvous are formed, in part at least, by the same type of pigment.

Metallic colours, both on wings and body, are to be classed under this heading. They are formed by an interference effect superimposed on a cuticular pigmentation. The effect is produced by a special arrangement of the pigment-granules, whereby the light received becomes split up in a certain manner. All the refracted rays except those of one colour become absorbed by the pigment, while the excepted colour is reflected back, and produces the well-known metallic effect. All these colours are "permanent," in the sense explained above. The commonest metallic colours in Odonata are emerald green, bronze-green, copper. blue, violet and purple.
2. Hypodermal or Subcuticular Pigmentation. These are pigments formed either in or above the hypoderm cells themselves. In the Odonata, the pigment is chiefly formed on the outer surface of the cells, and may be extruded to form a definite layer beneath the cuticle. Owing to their position, these pigments are all liable to suffer from decay on the death of the insect. They are, however, always beautifully preserved by immersion in alcohol. Rapid drying may also be employed with more or less success for preserving them.

These colours are nearly all brilliant, viz. sky-blue, bright red, bright orange, lemon yellow, pea-green, French grey, and other rich shades.
3. Pruinescence or Exuded Pigmentation. This is a special form of colouring connected, just as in the case of fruits, with
maturation. It is always far more evident in males than in females. The pigment appears to be a product of the process of maturation of the gonads, and is therefore to be considered as of mesodermal origin. It is, however, sooner or later taken up by the hypoderm cells, and excreted through the fine pores of the cuticle, so that it appears as a supraculicular pigment, which can often be removed by rubbing. The most extraordinary case known to me in Odonata is that of Argiolestes griseus albescens, in which the pruinescence of the thorax resembles an abundant growth of white fungus.

Pruinescence in Odonata is always of a whitish or pale bluish colour. By combination with a subcuticular red pigment it may give a purple appearance to the insect. It is distinguished from all other forms of colouring by its gradual growth or onset, beginning long after metamorphosis. The parts first affected appear to be those associated with special sexual organs, e.g. either the second or the ninth abdominal segment. From one or other of these centres it may spread all over the body. In some cases only the thorax becomes pruinescent. In most Odonata the ventral surface of the abdomen becomes pruinescent after a time, in both sexes, even when the rest of the body is not affected. In the females, there seems to be a factor inhibiting pruinescence until late in imaginal life, after most or all of the eggs are laid. A very old female may become rapidly pruinescent, so as to resemble the male in coloration.

Body-Coloration (Plutes I, TII).

In this section, I propose to give a phylogenetic treatment of the subject of Odonate colour-patterns. based on a careful study of all the forms known to me.

The most obvious fact is that the bicolorous type of pattern not only predominates, but forms a basis for the production of those unicolorous patterns known to occur. Many species in whieh the males are unicolorous have bicolorous females. Moreover, the newly-emerged males also shew signs of the bicolorous pattern for a greater or less period of time. All this points to the fact that the bicolorous pattern is the most archaie form of pattern in the Odonata.

The pattern was evidently originally formed segmentally, the pattern of each segment being the same. In the head, owing to fusion of the segments, omly certain special features of the pattern can be dealt with satisfactorily. In the thorax, alterations in the original shape and direction of the segments have altered the original plan, which can, however, always be more or less correlated with that of the abdomen. In the latter, eertain segments (particularly the second) tend to become specialized beyond the rest. It must be understood, therefore, that the classification of colour-patterns here attempted is based primarily on the study of an unspecialized abdominal segment, such as the fifth or sixth. The colour-schemes of the head and thorax will be correlated with these in subsequent sections.

The origin of the bicolorous pattern is to be explained on the ground of the bilateral symmetry of the disposition of the internal organs beneath the dorsal integament. The ventral parts do not come into the question. Bright colours are called forth by the influence of bright sunlight. An aërial habit is then, above all; favourable to their formation. Thus the Dragonflies share with their Vertebrate analogues, the Birds, the distinction of possessing the brightest body-colourings in the Phylum. As regards the bilateral symmetry of the pattern, the basis for this is the method of deposition of the ground-colour or cuticular pigment. This may be deposited along the sides and middle line of a segment, leaving two clear areas above the pigmented dorsal tracheae, ar. apmanenty, exactly the reverse may be the case. The former I have termed the ceniral type, the latter the marginal. The terms refer to the position of the chief areas of bright coloration. The marginal type appears to be the older, and probably dates from a period before the pigmentation of the dorsal tracheae set in. We may define the two types as follows:
A. Marginal Type. On each tergite, the ground colour forms two longitudinal blocks, one on either side of the middle line. The anterior and posterior borders, the middle line, and a large lateral area on each side, have their cuticle unpigmented, so that the brilliant colours of the hypodermal pigment appear in these areas.
B. Central Type. The pigmentation is exactly opposite to that of A. The ground-colour is only absent in the two longitudinal
blocks, in which brilliant hypodermal pigment becomes developed. The middle line and all the area surrounding the blocks is darkened by cuticular pigmentation.

We shall now trace the development of these basic patterns in turn:

A. Marginal Types (fig. 113).

The most archaic marginal type still extant appears in Petalura pulcherrima. Even in this archaic genus itself, the marginal type rapidly tends to become altered, assuming the form which we may call annulo-marginal, in which, by further growth, and later by fusion of the two dark blocks of ground-colour, the hypoderm

a.

b.

C.

d

Fig. 113. Marginal types of colour-pattern. a, archaic type; b, c, d, , stages in the
pigment becomes at last restricted to narrow transverse zones or annuli at the base and apex of the segment, together with latero-ventral patches not shewn in the diagrams. This annulomarginal type is found, amongst Anisoptera, in the Gomphinue and Petalurinae, the hypoderm colouring being in all these cases bright yellow, greenish-yellow or brownish-yellow, rarely reddish.

In the Zygoptera, the original margimal type may still be seen in many Agrionidae, particularly in the females. Much more commonly, however, it becomes reduced to the annulo-marginal type. The hypodermal pigments in this suborder are generally bright blue or red, sometimes orange, pink, straw, pale green or cream. Dull greens and greenish-blues predominate in the females.

If we now eompare the marginal patterns found in the Anisoptera with those of the Zygoptera, we see at once that the former are correlated with a forest-loving habit, the latter with a sun-loving habit. We shall term the former hylochromes, the latter heliochromes. In the former, the hypoderm pigment is predominantly green or yellow, in the latter, bright blue or bright red.

We cannot here follow out in detail the wonderful specializations of the marginal pattern to be found in the Agrionidae. A study of the second segment alone will shew the lengtlis to which pattern-forming can be carried. Perhaps the highest development of colour-pattern to be found in the Zygoptera is the tricolorous pattern, e.g. in Ischnura aurora or Xanthagrion erythroneurum (Plate III) in which bright blue and red occur in the same insect.

Metallic coloration may be formed on the two blocks of gromnd-colour, usually giving rise to a dark bronze-black or bronze-green effect. If the annulo-marginal stage is thus affected, the abdomen appears definitely metallic. Finally, the annuli may be suppressed, and a unicolorous metallic pattern produced, either bronze, green or blue. These stages can be followed out in the Lestidae and Calopterygidae.

B. Central Types (fig. 114).

The original central type of colour-pattern is preserved for us with very little modification in the long hylochrome series of the Aeschninae, in which there is very little tendency towards ammulation. The paired longitudinal iblocks, which in this type carry the bright hypoderm-colouring, early tend to become oval. By various changes in shape, and by splitting-up, the wonderful patterns in this subfamily have all been formed from the original central type. Fig. 114 shews a series of these. The hypoderm-pigments are usually green or yellow, sometimes bright blue, more rarely brown, grey or cream. The most primitive type is found in the Petaliini, where the blocks are still
 of colour-pattern. a, arclaic type; b, c, stages in the development of the spotted Aeschinine type,
by interpolation of the by interpolation of the
supplementary transverse supplementary
carina. $d, e, f, s t a g e s$ carina. d, e, f, stages
leading to the annulocentral type (f). Original. much elongated.

One sub-division of the Brachytronini has branched off along a colour-line of its own. The bright hylochrome pattern becomes gradually suppressed, and a uniform dark brown pattern supervenes. Traces of the original pattern are always to be found on the thorax (remmants of bands), on the head, and often on
the second abdominal segment. Brown bands of pigment are often developed on the wings. This line culminates in Telephlebia, Austrophlebia and Linaeschna. The effect produced is that of almost complete invisibility during flight, particularly during the late afternoon or early evening, when these insects usially fly. I have termed this form of colouring aphantochrome (178). The same tendency is manifested in a less degree in some species of Aeschna and Gynacantha. In Anax, with the adoption of a sun-loving habit, the formation of heliochromes has set in.

Hylochrome patterns of the central type are also retained in the Synthemini, and in some Macromiini, besides in many other genera scattered throughout the Libellulidae. In most Macromiini and in the Cordulegastrinae, we meet with an advance to the annulo-central type (fig. 114, $d-f$). Here the two pale blocks fuse across the middle line, become shortened, and finally form a central annulus across the segment. This type also occurs in the Tetrathemini and Cordulephyini. We can contrast this with the corresponding annulo-marginal type, where the annuli are formed at the ends of the segment.

In the Libelltilinae, the main advance has been in the production of heliochromes. These insects have forsaken their ancestral forest-loving habits, and now rival the Zygoptera in their love of bright sunshine. Consequently the older bicolorous pattern is ehanged, either by substitution of bright red or orange for the older yellow or green, or by the production of a metallic colour, or finally by becoming changed to a unicolorous helioclarome, generally bright red or pruinescent bhe. The stages in this latter process may be followed by studying a series of teneral and mature males and females in such genera as Libellula, Orthetrum, Sympetrum or Diplacodes. Taking the three common Australian speeies of Orthetrum as an example, we see that, whereas O. sabina has retained the ancient bicolorous pattern in both sexes, in the male of O. villosovittatum it becomes overlaid with brilliant red, while in the male of O. caledonicum (and later, also, in the female) it is overgrown by blue pruineseence. Metallic developments are the usual rule in the Corduliinae, where the varions stages in the passage from an original bicolorous pattern to a uniform metallic colouring may be studied in Somatochlora or Hemicorlulia.

C. The Thoracic Pattern (fig. 115).

That the basic differenee between marginal and central types is not, wholly lost on the thorax can be seen by comparing the thoraces of an Aeschnine and a Gomphine Dragonfly. In both, pale bands alternate with dark areas of ground-colour. But, on the whole, we may say that the pale and dark portions are reversed in the two cases. In the typical Aeschnine thorax, the two pairs of broad bands correspond with the two pale central areas of two abdominal segments. In the Gomphine thorax, the pale bands correspond with the middle lines and sides of the abdominal segments, so that an opportunity arises for the production of the many-banded pattern seen so often in this subfamily. Likewise, the marginal type is preserved in the formation of an anterior transverse annulus, not complete, it is true, but of great interest, in that, by fusion with the dorsal bands, it produces the peculiar "seven-marks" so distinctive of this subfamily. In connection with this, a study of the thorax of Petalura is of interest (fig. 115).

$\frac{1}{a} \frac{x^{2}}{b} \frac{{ }^{2}}{c}$

Fig. 115. Dorsal thoracic colour patterns, marginal type. a, Petalura pulcherrima Tillyard. l, c, formation of the Gomphine "seven-marks." Original.
In the Zygoptera, the sides of the thorax tend to become uniformly pale, by loss of the metathoracic ground-colour bands. Thus only two isolated pale bands are left, one on either side of the mid-dorsal carina. A very interesting correlation can be established between the thoracic colour-pattern and the nature of the habitat in eertain genera, e.g. Argiolestes (Pl. III, figs. 2-8), where rock-dwellers tend to become dark, while orange or red are developed in the dense.jungle, and blue or grey in the open sunlight.

In many Aeschninae the thoracic bands become narrowed, divided up into spots, or even abolished, particularly the dorsal bands. In the Libellulidae, when a heliochrome or metallic pattern is produced on the abdomen, the thoracic bands also become masked or abolished. The thorax, however, assumes the heliochrome colouring more slowly than the abdomen, so that many speeies with bright red or blue abdomens have only brown thoraees.

D. The Head Pattern (fig. 116).

We shall only mention here two striking formations which illustrate the effect of the marginal and central type of pattern, respectively, on the head.

1. The Post-ocular Spots of Agrionidae. The formation of these by stages from an original marginal epicranial pattern is illustrated in fig. 116 A .
2. The T-mark on the Frons in Aeschninae and Libellulidae. The formation of this mark by stages from an original central frontal pattern, and its subsequent reduction to a "clear" front (usually yellow), is illustrated in fig. 116 b. The jewelled frons appears to have been produced by an exactly opposite process, i.e. extension of the ground-colour, instead of reduction.

Indications of the original marginal or central type may also be found by studying the clypeus and labrum.

Fig. 116. Colour-patterns of the head. A. Four stages brilliant postocular spots of Agrioninue from an original marginal type. B. Four stages in the development of the T-mark and of the "clear" frons from an origi nal central type. Original.

We can profitably conclude our account of the Body-Coloration of Odonata by appending a short table of the principal types of colour-pattern.

Type . Marginal Types Grou	
Marginal $\left\{\begin{array}{l}\text { Hylochromes }\end{array}\right.$	Petalurinae
Marginal Heliochromes	Agrionidae
Annulo-marginal $\left\{\begin{array}{l}\text { Hylochromes }\end{array}\right.$	Gomphinae, Petalurinae
Tricolorous (Helioclromes)	Agrionidae, some Lestidae and Calopterygidae
Tricolorous (Heliochromes) Metallic Unicolorous	Some Agrionidae
Metallic Unieolorous	Calopterygidae, Lestidae
Central Types	
Hylochromes	Aeschninae, Synthemini, Macromioui
Central Aphantochromes	Some Brachytronini, Aeschna, Gynacantha
Bicolorous Heliochromes	Libellulinae, Eucorduliini
Unicolorous Heliochromes	Libellulinae
Annulo-central (Hylochromes)	T'etrathemini, Macromiini, Cordulegastrinae, Cordulephyini
Metallic Unicolorous	Eucorduliini, a few Libellulinae

Wing-Coloration (Plate I).

Most Odonata have colourless (hyaline) wings. In a very large number of forms, however, a small deposition of yellowish pigment occurs, known as saffroning. This is most commonly found at the base of the lind-wing, less extensively in the fore-wing. Pantala flavescens and Sympetrum flaveolum are well-known examples of this very common form of colouring. Several species of Anax are "saffroned" towards the middle of the wing. In the females of many species, pale yellow or brownish shading oeeurs at the tips of the wings, or even all over them. In many instances, the tips of the wings are clouded with dark brown or grey pigment.

Red, brown or black pigment often overlies the patch of saffroning at the wing-base, or may entirely replace it. In some forms (e.g. Tramea) the basal patch is dark red in the male, brown in the female. In others (e.g. Libellula, Leucorrhinia) it may be quite black.

Fugitive pigmentation of the wing is fairly common. In many forms, particularly in females, pigment is deposited at metamorphosis and afterwards lost. In other cases, the pigmentation only sets in with old age.

Apart from the above instances of slight wing-coloration, there are certain gronps of Dragonflies in which all, or nearly all, of the species have a definite colour-pattern on the wings. We shall deal with these under four headings:

1. The Petaliini. The colour-scheme of the wing in this group (Plate I, fig. 1) is quite unique. It is better developed in females than in males. A series of irregular or rounded spots or patches is arranged along the costal border, each being of a rich transparent brown or ruby red colour, surrounded by black. These spots glow like rich jewels on the wings of the live insect.
2. The aphantochrome Aeschninae. The coloration of the wings in this group is purely auxiliary to the body-pattern. In its highest development. it forms a broad brownish band along the entire wing, either along the costa or slightly below it. The huge Dragonfly Austrophlebia costalis, with its rich brown body and wing-bands. is quite invisible at a distance of a few feet, when resting on the mid-rib of the frond of a tree-fern. The body looks
like the mid-rib of the frond, the four outspread wings like the mid-ribs of four pinnules of the frond. A transverse dark band crosses the wings in a few forms.
3. The Libellulinae. The production of an elaborate colourpattern on the wing seems to have developed in two groups of this subfamily. In the more archaic forms, it appears first in the Libellulini, and culminates in the Palpopleurini, Perithemis shewing the highest development in the series. A much more extensive production, however, took place in the more caenogenetic tribes, beginning with the Sympetrini. Here we need only mention the lovely Pseudoleon superbus, and the remarkable genus Neurolhemis, where we can trace all stages from the basal black patch in N. oligoneura right up to the almost completely brown or black wings of many other species. Correlated with this colour-development there arises a secondary proliferation of cross-veins, apparently to assist the deposition of pigment. Over three thousand separate cells have been counted in a single wing in a male of this genus. The females, on the whole, lag behind the males in colour-production. Thus there arises the peculiar phenomenon of venationally dimorphic femades, as seen in N. stigmatizans, where both deeply coloured and densely-veined (homochrome) and lightly coloured and open-veined (heterochrome) females are known to occur. The latter is clearly the more archaic, and shews the form of the genus before it went in for wing-colouring. In the Leucorrhimiini, the genus Celithemis offers an interesting study in the formation of beautiful wing-patterns. It is however in the lovely genus Rhyothemis (Trameini) that the culmination of wing-coloration in the Libellulinae occurs. These butterfly-like creatures have sacrificed all the strength of their wonderful wing-formation for the sake of producing a brilliant pattern. They are helpless fluttering creatures which rise up from the ground, as one approaches them, to flutter gaudily in the sunshine, or float gently to and fro upon the breeze. Many of them are easily eaught by hand. Some forms have blaek wings, others brown, or brown and yellow, often with lovely metallic sheen of green or purple or bronze, or intricate pattern like an ancient runic seript (R. graphiptera). The most beautiful though by no means the most complicated pattern is that of R. resplendens (Plate I, fig. 3), where about
two-thirds of the wing is of a glorious metallic blue colotr. This latter species has forsaken still waters, and competes with the gaudy Caloplerygidae upon the broad flowing rivers of Papua and North Queensland.
4. The Culoplerigitae. This family, so well named the "beautiful-winged" Dragonflies, shews us the development of metallic coloration carried to perfection. The colours are practically confined to the males alone. These are, indeed, the Birds of Paradise amongst Odonata. In a number of forms, e.g. Anisopleura, Diphlebia, only black pigment is laid down. In the beautiful gemus ILetaerina and its allies, a lovely transparent red pigment (apparently the same as in the Petaliini) more or less overspreads the wing. In a few forms (e.g. Diphlebia lestö̈des) a transverse milky-white band appears (cf. Tholymis in the Libellulinae). In advance of these, we note the glorious effect of the superimposed interference coloration in such cases as Pseudophaea, Matranoüles and Neurobasis (Pl. I, figs. 6, 7), where either part or all of the pigmented portion of the wing scintillates in radiant blue or green. Finally, in Rhinocypha (PI. I, figs. 4, 5) the play of metallic colours. in a combimation of flashing reds, mauves, puphes. bronzes and greens, utterly balles description. The development of small clear areas or "windows" in such a wing as that of R. qualrimaculuta, or R. fenestrellu, only serves to heighten the effeet of these radiant ranbow hues.

Larval Coloration and Colour Changes.

The coloration of Odonate larvae is very uniform, but may be divided into two classes: (a) those shewing no definite pattern, (b) those with a pattern. All larvae which live hidden in sand or mud, or under débris, need no colour-pattern. and most of them have none. The few that have owe it apparently to the fact that they have only recently taken to hiding away. Larvae that live either on the river bottom, or amongst water-weed, shew a definite pattern, which helps to render them inconspicuous to enemies and prey alike. In bottom-dwellers, the pattern is a beautiful mottling of pale brown or straw with dark brown or olive (e.g. most Eucorduliini and Libellulinae) In weed-dwellers, a ground colour of semi-transparent green, yellow, or olive, is overlaid with darker
markings in black, dark brown, or deep olive-green (e.g. many Agrionidae and Lestidae). The most beautiful larvae of all are those of $A n a x^{1}$, dwelling freely in water-weed, with their dark olive-green patterns on a rich green ground-colour. Larvae that dwell on sticks may become dark brown or even jet-black, with either partial or entire secondary loss of their pattern (e.g. many Brachytronini). Rock-dwellers are either black, dark grey or brown, according to the colour of the rocks which they frequent.

It is a fact that Dragonfly larvae can change their colours to suit their environment. To shew this, it is only necessary to take larvae of the same species of Libellulidae from, say, a pool in a ehalk-pit and a neighbouring pond with dark bottom-soil. The latter will be found to be twice as dark as the former. An even more startling colour-change came to my notice one year in the case of Aeschna brevistyla. This larva is of an almost uniform brown tint. It happened that a small dam was newly formed. Masses of the reeds, dug out from the banks, floated on the surface of the water. As these decayed, their root-stocks and roots became a bright brick-red. On hauling them ashore I found six Aeschna larvae elinging to thems All of these had their ventral surfaces, including the mask and the undersides of the legs, a rich brick-red. Other larvae from the sides of the dam were of the normal brown colour.

These larvae, placed in my aquaria, remained red until the next ecdysis, when they resumed their brown colouring. Hence it is clear that the change is not produced voluntarily, through the eye, as in the case of the Chameleon, but is due solely to what I may term a chemical plasticity on the part of the fresh pigments formed at ecdysis. When freshly formed, it seems clear that this pigment can be turned red by red surroundings (as in the case of the red light from the dead reeds acting on the pigment of the Aeschna larva), brown by brown surroundings, black by black, or green by green. Whether the change would extend to blue, orange or purple, we do not know. I think that a similar plasticity, at metamorphosis, has helped to determine the formation of hylochromes and heliochromes in the imagines.
${ }^{1}$ It is a peculiar fact that these larvae, when young, dwell on twigs or matted roots, and are often found to be whitish, marked with black in broad transverse bands. Later on, they migrate to floating weed-masses and become mottled green.

Colour Dimorphism (Plate III, figs. 17-24).

Apart from what is known as sexual dimorphism in colour (i.e. the male and female differing in colour)-a phenomenon of wide occurrence in the Odonata-there is a very interesting group of Agrionini in whieh two forms of females nearly always occur. This group embraces the genera Ischnura, Ceralura, Anomalagrion, Agriocnemis and Austrocnemis. In all cases, one form of female is commoner than the other. The eommoner form may be called the "normal," the rarer one the "heteromorphic" female. Either of these may be similar to the male (homochrome) or unlike it (heterochrome). Where the heterochrome is normal, it is usually of a dull blackish, olive, or greenish colour. Where the heterochrome is the heteromorph, it usually assumes a rich orange or red form. I offer a short table which embraces all the different types known to me:

Male	Normal Female Homochrome		Hetcromorphic Female	Sprecies
Bronze and blue			Heterochrome (orange and black)	Ceratura and many speoies of Ischnura
Bronze and blue	Homochrome		Heterochirome (red and bronze)	Austrocnemis (PlateIII, figs. 20, 21)
Bronze and blue	Hetorochrome blackish)	(dull	Homochrome	1schnura heterosticta
Bronze and blue	Heterochrome hlackish)	(dull	Heterochrome (orange and black)	I. ramburii, 1 . perparva
Bronze and grey	Heterochrome olive-green)	(rich	Heterochrome (orange and black)	1. pruinescens (Plate III, figs. 17-19)
Bronze and yollow	Heteraehrome and black)	(bronze	Hetcrochromo (orange and bronze)	Anomalagrion
Red, bronze and blue	Heterochrome blackish)	(dull	Homochrome	I. aurora
Bronze and red	Hetcrochrome blackish)	(dull	Heterochrome (orange and black)	Most species of Agriocnemis
Bronze and red	Heterochrome blackishı)	(dull	Heterochrome (red and black)	Agr. hyacinthus ${ }^{1}$ (Plate III, figs. 2224)
Silver	Heterochrome blackish)	(dull	Heterochrome (red and black)	Agr.argentea

${ }^{1}$ Agr. pygmaea Ramb., of which Agr. hyacinthus is probably only a subspecies, has an oranye female. In series of this insect from the Seychelles, Campion has
notcd the oecurrenee of structural as well as colour dimorphism in the females, the noted the occurrence of structural as well as colour dimorphism in the females, the prothorax having its hind-margin distinctly lobed. In view, however, of the facts that the form of the prothorax is elosely correlated with that of the appendages of the male, and thitt no males were taken with this supposed new form of female, it seems more likely that this will really prove to be a new species.
T. D.er.

CHAPTER XIV

CLASSIFICATTION

The Classification of recent forms adopted in this chapter differs from all hitherto published systems chiefly in attempting a more comprehensive scheme for the Zygoptera. The classification of the Anisoptera has engaged the attention of many authors, prominent amongst whom have been de Selys, Ris, Calvert, Needham, R. Martin, Williamson, Karsch and others Consequently the points still at issue are only minor ones. We still need a thorough study of the Gomphinae, the present division into two tribes being only tentative. The position of the Petaliini as a tribe within the Aeschninae is open to question on the ground that the differences between them and the rest of the subfamily are perhaps great enough to warrant their elevation to subfamily rank. The true relationships of the Gomphinae with the Aeschninae on the one hand, and the lower Libellulidae on the other, still need careful study. It may be necessary to elevate all the subfamilies of the Anisoptera, except the Libellulinae and Corduliinae, to the rank of families, the differences between the two latter being of a lower order than those between the others. The division here made of the immense subfamily Libellulinae into tribes follows in the main Ris's excellent modern classification, with the exception that Old and New World parallel groups are reduced to the rank of series within a single tribe.

In the Zygoptera, the two chief alterations proposed are the separation of the family Lestidae on entirely new characters, and the elevation of the "légions" of de Selys to the rank of subfamilies. Only in the case of the Platyeneminae is this step open to doubt, since these forms grade very closely into the Protoneurinae. The tendency of asthenogenesis has been all along towards the
production, by convergence, of closely similar, highly reduced types. It is the duty of the systematist to try to separate the converging threads of descent, to give due weight to the imaginal characters still left over, and, by a judicious study of larval forms, to separate those groups in which the imaginal characters fail or are deceptive. The recent separation of Synlestes from the Megapodagrioninae is a case in point [176].

The classification here given does not go beyond tribal limits, except in indigating here and there the existence of two or more series withinatarge tribe. For a list of genera, arranged in their correct zoo-geographical regions, the reader is referred to the tables in the section on Entogenic Fauna in chap. xv, and to the section on Palaeogenic Fauna in the same chapter.

Order ODONATA.

Suborder ANISOPTERA.

Wings held horizontally or depressed in repose (exeept Cordulephya). Hindwing always more or less considerably broader than forewing near the base. Radius branched, the radial seetor erossing two branches of the media. Oblique vein and bridge present. Discoidal cell differentiated into triangle + supertriangle. Eyes large, often meeting mid-dorsally, never separated by a space greater than their own diameter. Labium variable. Male with two superior and one inferior anal appendages, all placed dorsally above anus; the inferior may be bifid or trifid. Penis jointed. Female with superior appendiges but no inferior appendage. Ovipositor variable.

Larva proctobranchiate (i.e. with gills in rectum). Anus closed by an anat pyramid formed of three spines, one medio-dorsal (appendix dorsalis) and two lateral (eerei). Gizzard with four to eight dental folds.

Family 1. Aeschnidae.

Triangles of fore and hindwings similar or nearly similar in shape, placed equally distad from arculus. Antenodals of first and seeond series not corresponding, except two eonspicuonsly thickened triangular ones (usually the first or second, and one between the fourth and ninth). Hindwing of male angulatel (except in the Anax-Series). Auricles nearly always present on seg. 2 in malc, sometimes also in female. Labium with well-developed median lobe, not overlappell ly lateral lobes; the latter with movable hook and endhook. Nearly always a bieolorous body-pattern.

Larva with abdomen usually somewhat elongated. Mask flat (except in Cordulegasisinae). Gizzard with four to eight fields, radially symmetrieal (except Cordulegastrinae). Rectal gills simplex or duplex, but never lamellate.

Subfamily 1. Gomphinae.

Triangles short or moderately so, that of hindwing slightly more elongated than that of forewing. Subtriangles present in all wings. Median space always free. Anal loop absent or rudimentary. Eyes quite separate; epieranium ending posteriorly in a sharp occipital shelf. Labium with median lobe complete, not incised. Inferior appendage of male strongly bifid. Ovipositor of female reduced to a pair of valvula vulvae at end of eighth sternite.

Larva with variably-shaped abdomen. Legs modified for digging, fore and middle tarsi 2 -jointed. Antennae reduced to four joints, and more or less swollen. Mask with flat median lobe, lateral lobes with narrow rounded apex and strong movable hook. Gizzard with four elongated fields, carrying numerous undifferentiated teeth. Gills simplex; undulate or papillate.

Tribe 1. Ictinini (fig. 117).
Moderate to large-sized Gomphinae with triangles crossed, at lcast in one pair of wings. Membranule present or absent. Distal side of triangle often

Fig. 117. Wings of Ictinus australis Selys, \boldsymbol{J}^{\prime}, Queensland. (Hw. 38 mm .) Original.
distinctly broken near distal angle. Larva of variable shape. A heterogeneous tribe including two series:

Series 1. Gomphoides-Series. Membranule absent or reduced. Larva with elongated abdomen. New World (exeept Davidius and Sieboldius).

Series 2. Ictinus-Series. Membranule distinct. Larva with short rounded abdomen (fig. 36 a). Old World (exeept Cacus).

Tribe 2. Gomphini (fig. 118).
Small to moderate-sized Gomphinae with triangles free. Membranule almost or quite absent. Larva with oval or elongated abdomen (fig. 36 в). Gills simplex papillate (except Austrogomphus).

Fig. 118. Wings of Gomphus pulchellus Selys, đ, France. (Hw. 30 mm .) Original.

Subfamily 2. Chlorogomphinae (fig. 119).
Triangle of forewing equilateral, that of hindwing transversely elongated. Median space crossed. Hindwing with broad anal field and anal loop. Eyes very slightly separated. Labium with median lobe slightly ineised. Larva unknown.

Fig. 119. Wings of Chlorogomphus magnificus Selys, ㅇ, Java (Hw. 46 mm .) Aftor Needham.

Subfamily 3. Petalurinae (fig. 120).
Triangle of forewing slightly elongated transversely, that of hindwing slightly elongated longitudinally. Subtriangle of forewing large, reticulated; that of hindwing simple. Median space free. Anal loop absent or rudimentary. Eyes well separated. Labium with ineised median lobe. Female with eomplete ovipositor. Inseets of large size.

Fig. 120. Wings of Petalura gigantea Leach, đ, New
South Wales. (Hw. 57 mm .) Original.
Larva subcylindrieal, with short 7 -jointed antennae (fig. 43). Mask flat, with thick, slightly hollowed lateral lobes and short movable hook; no setac; median lobe triangular. Gizzard with eight ficlds, dentition much redueed. Gills simplex undulate.

Subfamily 4. Cordulegastrinae (fig. 121).

Triangles equal, slightly elongated; subtriangles ineomplete. Median spaee free. M_{2} not waved. Eyes nearly or just touching. Labium with incised median lobe. Female with large projecting ovipositor with valves of seg. 9 absent.

Larva hairy, with oval abdomen, slender 7 -jointed antennae, divergent wing-sheaths (ef. fig. 33). Mask spoon-shaped, with mental and lateral setae; lateral lobes with small movable hook and complicated dentition. Gizzard with four bilaterally symmetrical fields. Gills simplex undulate.

Subfamily 5. Aeschninae.

Triangles approximately equal, elongated longitudinally, crossed; subtriangles weak or absent. Strong eompact anal loop formed between A_{2} and A_{1}. Median space free or crossed. M_{2} waved. Eyes meeting middorsally for a long distance (except Pelaliini). Labium with median lobe slightly incised, or with a longitudinal depression. Female with complete ovipositor.

Larva with elongated abdomen and slender 7 -jointed antennae (fig. 29 A-D). Mask flat, without setac (exc. Gymacantha); lateral lobes narrow, with apex of variable form; long movable hook. Gizzard with four radially symmetrical fields carrying a few large specialized teeth. Gills duplex, but not lamellate.

Fig. 121. Wings of Cordulegaster anmulatus Latr., ©, Britain. (Hw. 46 mm .) Original.

Tribe 1. Petaliini (fig. 122, also Pl. I, fig. 1).
Triangles only morlerately elongated, very elose to areulus and to base of wing. Rs unforked. A series of clark brown or red blotehes along eostal

Fig. 122. Wings of Austropetalia patricia Tillyard, ${ }^{\circ}$, Now South Wales. (Hw. 38 mm .) Original.
border of wing. Eyes only just touehing. Male with inferior appendage trifid, longer than superiors. Larva with broadly upcurved lateral lobes on segments 3-8 (fig. 37).

Tribe 2. Brachytronini (fig. 123).

Triangles considerably elongated, reticulated. Rs either unforked, or symmetrieally forked before level of $p t$. Rspl straight, placed only 1-2 eellrows below the lower branch of $R s . \quad M s p l$ straight, similarly placed with respect to M_{4}.

Fig. 123. Wings of Brachytron hafniense Müller, ơ, Britain. (Hw. 35 mm .) Original.
Larva with superior appendage pointed at tip, never bifid.
A heterogeneous group including two series:
Series 1. Boyeria.Series. Rs unforked.
Series 2. Brachytron-Series. $R s$ forked.

Fig. 124. Wings of Gynacantha rosenberghi Selys, ${ }^{*}$, Queensland. (Hw. 49 mm .) Original

Tribe 3. Aeschnini (figs. 124, 172, also, PI. II, fig. A).

Triangles mueli elongated, retieulated. Rs either unforked, or asymmetrically forked near or under the level of $p t$. Rspl curved concavely to $R s$, lying three or more cell-rows below the lower branch of $R s$ at its middle. $M s p l$ similarly curved and arranged with respect to M_{4}.

Larva with superior appendige usually bifid at tip.
This tribe includes threc series:
Series I. Oynacantha-Series. Female with a projecting fork under seg. 10; larva with lateral setae on mask.

Series 2. Aeschna-Series. Female with dentigerous tuberele under seg. 10 .

Serics 3. Anax-Scrics. Anal angle of hindwing in male rounded.

Family 2. Libellulidae.

Triangles of fore and hindwings very different, that of forewing transversely elongated and far removed from arculus, that of hindwing longitudinally elongated and elose to or under arculus. Subtriangle of forewing well-developed, often reticulated; that of hindwing often absent. Antenodals of first and seeond series eorresponding, none specially thickened; one or more distal ones may be incomplete. Anal loop present. Eyes united dorsally for a long distance (exc. Diastatops). Labium with median lobe reduced to a small trimgular piece, completely overlapped and closed in by the large lateral lobes, which have no movable hook. Vertex a vesicle or tuberele with the oeelli grouped round it. Female with ovipositor usually reduced to a pair of simple valvula vulvae or a single vulvar seale (secondarily enlarged in Uracis and others). Body-pattern bicolorous or mieolorous.

Larva with broad oval body, and short 7-jointed antennae. Mask spoonslaperl, with wide lateral lohes meeting medially in a series of elosely fitting teetli; mental and lateral sotae present. Gizzard with four fields, bilaterally symmetrical. Gills duplex, lamellate.

Subfamily I. Corduliinae.

Triangle of forewing not excessively narrowed. Aual border of hindwing angulated in male (exe. Hemicordulia). Anal loop very variable. Eyes with a slight sinuous projection near middle of posterior edge. A tibial keel present on forelegs in the male. Anal appendages of male strongly differentiated in the different species, but genitalia of seg. 2 not strongly differentiated. Auricles present in male (exc. Hemicordulia). Body-pattern bicolorous, or metallic unieolorous. Abdomen long, eorduliform or eylindrical. Larva with deep or moderate dentition of lateral lobes.

Tribe 1. Synthemini (fig. 125).
Triangle of hindwing distad from arculus. Median space crossed. Anal loop short, rounded, three or more cell-rows in width. Inseets of slender build and graceful flight. Larva resembles that of Cordulegastrinae, hairy, with divergent wing-sheaths (fig. 33); lateral lobes of mask deeply dentate; legs short.

Fig. 125. Wings of Synthemis claviculata Tillyard, ơ, Queensland. (Hw. 30 mm .) Original.

Tribe 2. Macromiini (fig. 126).

Triangle of hindwing distad from arculus. Median space free. Anal loop as in Tribe 1. Large insects of strong build, Aeschnine appearanee, and rapid light. Larva with smooth rounded body, long legs, projecting eyes, and a prominent pyramidal horn on the front of the head, between the antennae (fig. 36 o); lateral lobes of mask decply indented.

Fig. 126. Wings of Macromia pacifica Hagen, δ, N. America. (Hw. 40 mm .) Original.

Tribe 3. Idocorduliini (fig. 127).
Triangle of hindwing distad from arculus. Median space free. Anal loop never more than two eell-rows wide, variable in length, without a widened "toe." Abdomen usually slender, not markedly corduliform. Flight weak, graceful. Larva (Austrocordulia) short, with hard spiny body, very flat beneath; short legs; lateral lobes of mask deeply and irregularly broken (fig. 36 D).

Jig. 127. Wings of Austrocordulia refracta Tillyard, δ, Queensland. (Hw. 29 mm .) Original

This somewhat heterogeneous tribe includes two series:
Series 1. Oxygastra-Series. Torewing with M_{4} and $C u_{\mathrm{I}}$ parallel (except in Gomplomacromia).

Sories 2. Iflouyx-Sories. Forowing with M_{4} and $C u_{1}$ slightly divergent.

Tribe 4. Cordulephyini (fig. 128).

Triangle of hindwing distad from arculns. Costal side of triangles of both fore and hindwing broken. Anal loop reduced to two or three large cells. Hindwing very narrow at base. Reduced forms with zigzag dodging flight; wings folded vertically over abdomen when at rest. Abdomen narrow, cylindrieal. Larva of typical Eucorduline form (fig. 38), but with peeuliar long deep narrow incisions on the lower half of the lateral lobe of the mask.

Tribe 5. Eucorduliini (figs. 129, 173).
Triangle of hindwing completely recessed to level of arculus. Anal loop elongate, two cell-rows wide at base, and with a more or less distinetly widened "toe" distally; mid-rib well-developed. Abdomen very distinctly corduliform. Larva with short oval or rounded abdomen, flattened beneath, smooth (cf. fig. 38); long legs; mask with lateral lobes regularly orenated along inner margin.

Fig. 128. A. Cordulephya pygmaea Selys, ${ }^{*}$, New South Wales. (Hw. 21 mm .) Venation of base of wings enlarged is shewn in B (male) and a (female). Note the hairs which replace the membranule. Original

Fig. 129. Wings of Cordulia aenea Linn., do, France, (Hw. 33 mm .) Original.

This well-marked tribe includes two series:
Series 1. Neurocordulia-Series. Forewing with M_{4} and $C u_{\mathrm{I}}$ slightly divergent.

Series 2. Cordulia-Scries. Forewing with M_{4} and $C u_{1}$ eonvergent.

Subfamily 2. Libellulinae.

Triangle of forewing usually excessively narrowed. Anal border of hindwing rounded in both scxes. Anal loop present, very variable. Eyes globular. No tibial keel on forelegs. Anal appendages of male only slightly differentiated in the different speeies, but the genitalia of seg. 2 very lighly differentiated. Auricles absent. Abdomen mostly relatively short, broad and distended. Body-pattern in males mostly unicolorous, rarely metallic. Larva with the lateral lobes of the mask with very shallow crenulations (exc. Tribe I and Pantala); logs usually short.

Tribe 1. Tetrathemini (fig. 130).
Triangle of forewing nearly equilateral, or with eostal side broken. Sectors of arculus united for a long distance, and then separating sharply at an acute angle. Mspl absent or rudimentary. Arc. usually distad from $A x_{y}$. Base of hindwing narrow; anal loop reduced, small or absent. Small weak forms with a primitive blaek and yellow body-pattern. Larva (Nannophlebia) with lateral lobes of mask moderately crenate (as in Eucorduliini).

Fig. 130. Wings of Tetrathemis cladophila Tillyard, ot, Queensland. (Hw. 21 mm .) Original.

Tribe 2. Libellulini (figs. 131, 155, 175).
Triangle of forewing with eostal side considerably shortened, rarely broken; followed by two or more rows of post-trigonal cells. Forewing with st woll-developed. Annl loop varinble, often with outor angle projecting far beyond level of triangle. Sectors of arculus shortly united (exc. Libellula). Numerons $A x$ in forewing, last one usually complete. Female mostly with very small valvula vulvae, and lateral edges of seg. 8 frequently widened. Larva with eomparatively elongated abdomen, hairy; head squarish in front, with cyes at antero-lateral angles (fig. 36 F).

Tribe 3. Palpopleurini.

Wing vari-coloured, relatively broad. Anal loop elongated, with nearly straight mid-rib. Sectors of arculus separate in forewing, slightly fused in hindwing. Arc. between $A x_{1}$ and $A x_{2}$. Supplementary $B x$ present. Prothorax with large lobe. Larva with head of somewhat triangular shape, the eyes placed mid-laterally.

Fig. 131. Wings of Libellula fulva Müller, $\begin{gathered}\text { (Hw, Britain. } \\ \text { (H3 mm.) Original. }\end{gathered}$
Tribe 4. Brachydiplacini (fig. 132, also PI. I, fig. 2).
Sectors of arculus fused, but less so in fore than in hindwing. Arc. mostly between $A x_{1}$ and $A x_{2}$. Anal loop variable, often extending far beyond level of triangle. $M_{2}, R s$, and $R s p l$ run parallel to one another up to the wingborder; Rspl often broken. Mspl absent or rudimentary. Triangle of hindwing often distad from arc. Supernumerary $B x$ and $C u x$ often present. Larva (Nannothemis) very hairy, with head rounded in front and belind, eyes well-rounded and placed at antero-lateral angles.

This tribe includes two series:

Series 1. Brachydiplax-Series. Old World.
Series 2. Uracis-Series. New World.
Tribe 5. Sympetrini (fig. 133).
Arculus and its sectors as in Tribe 4. Last $A x$ in forewing usually incomplete. Rspl well-formed, concave to $R s$. Mspl usually distinct. No supernumerary $B x$ or $C u x$ (exc. Neurothemis). Hindwing with broad anal field;

Fig. 132. Wings of Brachydiplax denticaula Selys, ${ }^{\text {s }}$, Queensland. (Hw. 23 mm .) Original

Fig. 133. Wings of Sympetrum striolatum Charp., ס', Britain. (Hw. 28 mm .) Original.

Fig. 134. Wings of Leucorrhinia dubia Vand., ס', Britain. (Hw. 27 mm) Original.
anal loop well-formed, variable. Genitalia of seg. 2 of male with divided hamuli. Female with prominent valvula vulvae. Larva usually smooth, with large head somewhat triangular in front; eyes large and rounded; body and legs short (fig. 36 a).

Tribe 6. Leucorrhiniini (fig. 134).

Sectors of arculus separate or only slightly fused. Lobe of prothorax large, erect, divided and strongly ciliated (as in some genera of Tribe 5 also). Wings at least partly coloured, usually with a dark patch at base of hindwing. Other characters as in Tribe 5.

Tribe 7. Trithemini (fig. 135).

Forewing with nodus considerably distad from the middle of the wing; a consequent increase in the number of antenodals; the last one usually incomplete. Sectors of arculus united, less so in fore than in hindwing. Arc. usually between $A x_{1}$ and $A x_{2}$. Anal loop long, with outer angle reaching far beyond level of triangle; toe well-developed; midrib complete from base

Fig. 135. Wings of Dythemis velox Hagen, δ, Central America. (Hw. 32 mm .) Original.
to toe, and bent at an obtuse angle, sometimes approaehing a right angle. Lobe of prothorax usually slender. Male with divided hamuli, but the outer lobe reduced. Female with very small vulvar scale.

Larvae resembling those of Tribe 5.
This tribe includes two series:
Series 1. Trithemis-Series. Old World.
Series 2. Dythemis-Scrics. Now World.

Tribe 8. Trameini (fig. 136, also Pl. I, fig. 3).
Sectors of arculus cither scparate or only slightly united in forewing. Arc. betweon $A x_{1}$ and $A x_{2}$. Anal field of hindwing exceerlingly wide, mostly with numerous cells arranged in numerons rows transversely to the wing-axis. Anal loop long, with well-formed toe, and complete mid-rib bent at an obtuse angle. Often A_{2} gives olf at its basal thitd a sector separating off the narrow-

Fig. 136. Wings of Tramea loëwii Br., $\hat{\delta}$, Queensland. (Hw. 37 mm .) Origimal.
celled proximal anal ficld from a portion containing larger cells, between it and the loop. Last $A x$ of forewing ineomplete except in the last four gencra. Lobe of prothorax sinall. Larva somewhat Eucorluline in appearanee, with oval boly, longish legs and huge houl, the eyes exceedingly prominent, the mask immense (ligs. $29 \mathrm{e}, \mathrm{F} ; 36 \mathrm{f}$).

Suborder ZYGOP'TERA.

Fore and hindwings dosely similat in form, with narrow or petiolate beses. Radins mbrimehed. An extra branch of the media (tho Zygopterid sector $M s$) takes the place of $R s$ in the Anisoptera. No bridge or oblique vein (except in Lestidae). Discoidal cell in the form of a simple quadrilateral, crossed or free. Wings in ropose folded baek vertically abovo abdomen (a few exceptions). Eyes button-shaped, projecting laterally at sides of head, sepanated by a space greater than theil dorsal diameter (exeept Epiophlebia). Labiom with middle lobe deeply eleft. Male with four anal appendages, two superior and two inferior. Penis not distinctly jointed. Female with superior appendages only. Ovipositor complete.

Latrve cercobranchiate, with threo caudal gills projecting from ond of abiomen, one medio-dorsal, the other two latero-ventral; the rectum also used for breathing, but not possessing true tracheal gills as in tho Anisoptera. Lateral abdomimal gills very rarely present. Abdomen slender, of en clongated. Gizzard with eight to sixteen radially symmetrical fields.

T D.-F.

Family 1. Calopterygidae.

Wings seldom distinetly petiolate. Nodus not gencrally close to base of wing. Antenodats gencrally numerous, always considerably more than two. Venation close and rieh, with numerous secondary sectors. Ms arises from M_{1-2} far proximad to nodus. M_{2} arises from M_{1} at subnodus, or a little distad from it. Quadrilateral regular or fairly so, never with a sharply acute distal angle. Wings iridesent, generally beautifully coloured, often metallic. Body-pattern usually dull unicolorous, or metallic, sometimes bicolorous. Larva very variable; gizzard nearly always with sixteen fields, earrying numerous undifferentiated tecth. Mask of variable form, but without setac.

Subfamily 1. Epallaginae.

Sectors of arculus arising elose to, or a little above, the middle of the arculus. Quadrilateral regular or nearly so. Pterostigma long, regular. Larva rather broad and thick-set, with rather short abdomen. Mask fat, with median lobe entire or only slightly eleft. Antennae with short pedicel. Ciudal gills saccoid. Lateral abdominal gills sometimes present.

Tribe 1. Epallagini (fig. 137).
Wings not petiolate. Numerous antenodals, those of first and second series nearly all corresponding. Nodus placed between one third and middle of the wing-length. Arculus close to base, far removed from nodus. Larva with 6-7 pairs of lateral abdominal gills; candal gills in the form of ovoid sacs, ending in a point (fig. 87).

Fig. 137. Forewing (24 mm .) of Pseudophata tricolor Sclys, of,
Tribe 2. Libellagini (figs. 138, 153, also Pl. I, figs. 4, 5).
Wings petiolate. Numerous antenodals, but those of first an 1 second series not corresponding beyond arculus. Nodus placed between one-third and middle of wing-length, usually close to the former position. Areulus

Fig. 138. Forewing (32 mm.) of Rhinocypha unimaculata Selys,,$?$ India. Original.
about half-way between base and nodus, or nearer to base (mueh nearer in Philoganga). Larva not known for certain'.

Tribe 3. Amplipterygini (fig. 139).
Wings petiolate. Few antenodals of the first serics, only $2-3$ in seeond series. Areulus nearer to base than to nodus. Larva withont lateral gills; caudal gills of saceoid form, tapering to a point (fig. 35).

Fig. 139. Basal half of forewing (total length 32 mm .) of Diphlebia nymphoüles Tillyard, ${ }^{*}$, New South Wales. Original.

Subfamily 2. Thorinae (fig. 21)

Sectors of areulus arising from top of arculus; henec quadrilateral irregular, with basal side longer than distal side. Pterostigma long, regularly formed.

Lavva (Cora) similar to that of the Rpallaginae, with lateral abdominal gills; caudal gills not tapering to a point, but irregularly truncated. Mandibles biramous.

Subfamily 3. Calopteryginae (figs. 140, 151, 177, also Pl. I, figs. 6, 7).
Sectors of arculus arising from lower third of areulus. M_{1-2} arching strongly upwards from M_{1}, so as to approach R very closely, and, in some cases, even fusing with h. I'terostigma mueh reduced, false, or completely absent.

Fig. 140. Forewing (36 mm .) of Vestalis amoena 1 Iagen, s , Borıeo. Original.
Larva of slender build, with moderate or long legs (fig. 40). Antenna with hypertrophied pedicel, longer than the other six segments taken together.
${ }^{1}$ Stee, Iowever, Karsch., Berliner Ent. Zeit., 1893, xxxvin, fig. 11 . This larva from Togoland resembles that of Diphlebia, and is very probably a Libellago.

Mask elongated, hollow, with the elongated median lobe decply incised medially. Caudal gills peeuliar, the median one short, lamellar; the laterals long, triquetral. No lateral abdominal gills.

Family 2. Lestidae.

Wings distinetly petiolate. $M s$ fused with M_{2} for some distance, leaving it via an oblique vein. A long bridge formed from the latter back to near the bifureation of M_{3} from M_{1-2}. Antenoclals variable in number. Very little arrangement of eross-veins into transverse sets. Pterostigma long, regular. Wings rarely coloured. Body-pattern bicolorous, or metallie unieolorous.

Larva of slender build; abdomen long and eylindrical. Mask with highly specialized forms of lateral lobes; gizzard with cight large specialized fields, earrying both large and small teeth. Caudal gills in the form of simple lamellac.

Subfamily 1. Epiophlebiinae (fig. 141).

Wings only slightly petioled. Nodus close to middle of wing. Numerous antenodals, those of the first and second serics not corresponding, except two (the first, and one between the third and sixth) which are specially thickened (cf. Aeschnilae). M_{2}^{*} arises at subnodus. Bridge connects proximally with

Fig. 141. Wings of Epiophlebia superstes Selys, Japan. (Hw. 31 mm .) After Needham.
M_{1-2} a little distad from M_{3}. Quadrilateral of hindwing broader than that of forewing, with longer costal side. Insect of rather stout build, resembling the Gomphinae; eyes elose together in male; body-pattern bieolorons. Larva unknown.

Subfamily 2. Lestinae (fig. 142, also Pl. II, fig. E).
Wings very distinctly petioled. Nodus at about one-third of the winglength from base, or slightly more distad. Arculus half-way between base and nodus. Sectors of areulus arising high up close to R. Bridge connected as in Epiophlebiinae. M_{2} arising from M_{1} distad from subnodus. Antenodals two only (rarely three), the second plaeed in line with the arculus. Quadrilateral of both wings narrow, with very acute distal angle.

Fig. 142. Forewing (95 mm.) of Lestes aryas Kirby, z, Britain. Original.
Larva slender, with long legs (fig. 41 b). Mask with incised median lobe; lateral lohes irregularly cleft, with large movable hook bearing two or three setac; mental and lateral setac also present. Caudal gills with secondary tracheae at right angles to gill-axis.

Subfamily 3. Synlestinae (fig. 23 A).
Wings very distinctly petioled. Nodus at about one-third of the winglength from base, or less. Arculus nearer to nodus than to base. Sectors of arculus arising a lit tle above half-way along the arculus. M_{2} arising from M_{1} far distad from nodus. M_{3} arising from M_{1-2} at, or a little proximad to, the subnodus. Bridge comected proximally with M_{3} elose to its origin. Antenodals two only (rarely three), the second placed in line with the areuhs. Quadrilateral of hoth wings very marrow, with sharply acute distal angle; On, leaving it with a strong upward arch. General plan of venation resembles that of the Megapolngriominge ly convergence. Antema with very elongated pecticel.

Larva (Synlestes) very stender and clongated, with exceedingly long spider-like legs (fig. 41 A). Mask with ineised meditn lobe; lateral lobe narrow, eleft into two sharp teeth, and with a denticulate inner border; movable hook long and slender; no setac present. Antenna with gieatly elongated pedicel. Caudal gills with secondary tracheac somewhat oblique to the gill-axis. Gizzard with dentition reduced to a few large tecth on cach field.

Family 3. Agrionidat.

Wings distinetly petiolate. Nodus placed at from one-seventh to one-third of the wing-length, rarely a little more distad from base. No bridge or oblique vein. M_{2} leaves M_{1} far distad from nodus. $M s$ generally arising at subnodus, M_{3} a little before (some exeeptions). Antenodals two only (exc. Nenrolestes and Thummatoneara), the second placed cither in line with the areulus or
a little proximal to it. Quadrilateral variable in shape, but always frec. Wings rarely coloured. Cross-veins usually more or less completely arranged in eross-sets. Abdomen slender. Body-pattern variable, often brightly coloured.

Larva variable in form. Caudal gills usually lamellar, constricted, nodate, or subnodate, the division tending to disappear in the higher forms. Gizzard of $8-16$ fields, variable in dentition.

Subfamily 1. Megapodagrioninae (figs. 23 D, 143).

Nodus placed at from one-third to one-fourth of the wing-length from the base (in Thaumatoneura, one-sixth). Quadrilateral somewhat irregular, the distal angle being acute but not sharply so; $C u_{1}$ leaves it without arching strongly upwards. Pterostigma regular, short or long. M_{2} leaves M_{1} nearer to nodus than to pterostigma, rarely half-way between. Nearly always Ms

Fig. 143. Hindwing (45 mm.) of Podopteryx roseonotata Selys, Queensland. Original.
arises at subnodus, M_{3} somewhat proximad to it. $A x_{2}$ in line with arenlus (cxcept Nesolesles). Main veins diverging towards distal end of wing, thus allowing development of intercalated sectors.

Larva (Argiolestes) short, thick-set (fig. 42 A). Mask short, flat, without setae, resembling that of the Epallaginae. Caudal gills in the form of simple lamellac, broadly foliate, horizontally spread out. Gizzard of 14-16 gencralized fields.

Subfamily 2. Pseudostigmatinae (fig. 144, also Pl. I, fig. 8).
Nodus placed very elose to wing-base, at one-sixth to one-seventh of the entire length. M_{2} arising very far distad from nodus. Quadrilateral fairly regular, distal angle slightly acute. Postnodals very numerous, continued across the wing as complete transverse veins. Two or more intercalated sectors, with branehes in the more riehly veined forms. Pterostigma weak, diffuse, abnormal or absent. Abdomen very slender, excessively clongated.

Fig. 144. Hindwing (62 mm .) of Mecislogaster lucretia Drury, ふ, Brazil. Original.

Larva (Mecistogaster) with comparatively short abdomen, and short legs. Mask with triangular projecting mechan lobe, not incised; lateral lobes and movable hook small; lateral setae present, but not mental. Gizzard with sixteen generalized folds. Caudal gills with the basal portion forming a stalk, the distal portion foliaceous, pointed.

Subfamily 3. Platycneminae (fig. 145).

Nodus placed at from one-fourth to one-third of the wing-length from the base. Quadrilateral regular or slightly irregular (the distal angle acute, but not sharply so). Cu2 not reduced (except in Chlorocnemis). Pterostigma short, regular. No intercalated sectors, execpt the postnodal onc. Ab sometimes alsent. Tibiae of middle and hindlegs often dilated, espeeially in the male.

Lirva (Platycnemis) short, rather broad. Mask with projeeting median lobe, not incised; mental and lateral setac present. Gizzard of $\mathbf{1 6}$ folds with specialized dentition. Caudal gills in the form of thickened lamellae, with long pointed tips.

Fig. 145. Forewing (21 mm .) of Platycnemis pennipes lallas, た̂, Britain. Original.

Fig. 146. Forewing (18 mm .) of Caconeurn solitaria Tillyard, δ, Queenslend. Original.

Subfamily 4. Protoneurinae (fig. 146).

Nollus placed at from one-fourth to one-third of the wing-length from the hase. Qualrilateral regnlas. Pterostigna short, trapezoidal (except Les(oiden). Un, redneed to a short eross-vein descending to the wing-bordor; $C u_{1}$ sometimes reduced in length. $A b$ very often absent. No interealated sectors, exeept the postnodal one. Small delicate insects with very slender bodies and narrow wings.

Larva moderately short, with short legs (fig. $42 \mathrm{~B}, \mathrm{c}$). Mask flat, without setae. Cizzard with sixteen generalized folds. Caudal gills strongly constricted, saccoid or lamellar.

Subfamily 5. Agrioninae.

Nodus placed at from onc-fourth to somewhat bcyond one-third of winglength. Quadrilateral irregular, with distal angle usually very sharply acute. Pterostigma short, rhomboidal or trapezoidal, rarcly abnormal. No intercalated sectors except the postuodal one. Ab always present. Che, nomal.

Larva of slender build, with short or moderate legs (fig. $42 \mathrm{D}, \mathrm{E}$). Mask
with projecting median lobe, not incised; mental and lateral setae present. Caudal gills usually slender tamellae, nore or less pointed, and held in the vertieal plane; either distinctly nodate, subnodate, or secondarily simple. Sceondary tracheac placed obliquely to the gill-axis. Gizzard of 8-16 fields, with speeialized dentition.

Tribe 1. Argiini (fig. 147).

Wings only petiolate to level of $A x_{1}$. $A c$ falls on to A^{\prime} at a point slightly distad from the distal end of the potiole. Moderatcly robust forms. Legs with long bristles. Larva with eaudal gills short, thick, simple.

 Argia apicalis Say, + , N. America.

Original. | Agrion mulchellum Vand., $\begin{array}{l}\text { O., Britain. } \\ \text { Original. }\end{array}$ |
| :--- |

Tribe 2. Agrionini (fig. 148, also Pl. I, fig. 9).
Wings more petiolate than in Tribe 1, to between levels of $A x_{1}$ and $A x_{2}$. $A c$ falls on to A^{\prime} at a point slightly distad from the distal end of the petiole. Slenderer forms. Legs with short or moderate bristles. Larva with caudal gills variable, nodate, subnodate or denodate, nsually fairly long (rarely redueed and non-functional). Gizzard with sixtcen specialized ficlds.

Tribe 3. Pseudagrionini (fig. 149, also Pl. II, fig. C).
Petiolation of wings as in Tribe 2. Ac falls on to the angle between the petiole and the eurved portion of the postcrior border of the wing, or slightly proximal to it; henec A^{\prime} is completely fused with the wing-border. Slender forms. Larvac as in Agrionini, but gizzard sometimes with only eight fields carrying large teeth (Caliagrion).

Fig. 149. Forewing (20 mm .) of $P_{\text {seud }}$ agrion aureofrons Tillyard, ${ }^{\circ}$, New South Wales. Original.

Fig. 150. Forewing (25 mm .) of Treinobasis rufilhorax Selys, ot Jorres Straits. Original.

Tribe 4. Teinobasini (fig. 150).
Wings very slender, petioled almost to level of $A x_{2} . \quad A c$ falls as in Tribe 3. $M s$ and M_{3} arise exceedingly close together. Extremely slender forms. Tarsal claws reduced, without an infcrior tooth. Larva unknown.

CHAPTER XV

ZOO-GEOGRAPHICAL DISTRIBUTION

Space will not allow us to deal with this important question as fully as it descrves. We shall, however, use the somewhat novel method which I have already introduced in this subject [175]. The six main zoo-geographical regions of the earth, as defined by Sclater and Wallace, are accepted as valid, while Polynesia, witl its obviously negative or non-continental characters, is treated as an appendix. The fauna of each region is then subdivided into three portions, which may be briefly defined as follows:

1. Palacogenic Groups, or those archaic remnants whose distribution is discontinuous, extending over one or more regions. They are the last remains of groups which were once much more widely spread.
2. Entogenic Groups, or those groups which form the autochthonous or peculiar fauna of cach region. They are not necessarily confined to a single region, since they frequently develop sufficient energy to spread over two or more regions. A group is, however, only enlogenic in that region in which it forms a definite zoocentre (region of greatest density), placed definitely within the region.
3. Ectogenic Groups, or those groups which, being entogenic in a neighbouring region, have invaded the region under discussion, and have gained a footing in some part of it, thus modifying the composition of the fama of that part. No zoocentre is formed by any group in the region in which it is ectogenic.
lt is the entogenic groups which give the special character to the regional fauna. The ectogenic groups modify the fauna of outlying parts of a region, but are absent or small over the greater part of the region. Palaeogenic groups follow no definite rules
of distribution. They are ahways small in number of species, with related forms widely separated, and usually only oceupying small isolated areas. Thus the total fauna of a region resembles a picture produced by the "threc-colour process," in which the three separate elements, palaeogenic, entogenic, and ectogenic, merge into one complete whole.

A number of genera have become so firmly established in more than one region, that they may be considered to have formed definite zoocentres in two or more of them. These are termed polyentogenic groups (di-, tri-, tetra-, penta- or even hex-entogenic). Special cases of these are known as Holaretic (2), New World (2), Old World (4), Austro-Malayan (2), Bipolar (4), Cireumtropical (4), or Cosmopolitan (6) groups. In the table of entogenic genera, these are included under the regions in which they are entogenic, with a number in brackets following each genus, to indicate in how many regions it may be considered to be so ; e.g. Orthetrum (3), Pantala (6).

We shall now proceed to discuss separately the palacogenic, entogenic and cetogenic Odonate faunas of the World.

- The Palaeogenic Fauna.

From the definition of palaeogenic groups, we see that they should not be particularly associated with any one region. Even if to-day a palaeogenic group is only found in one region, we indicate, by including it in this fauna, that we believe it to be, not a truc portion of the entogenic fauna of that region, but the remains of a fauna that was onee far more widely spread. There are five isolated groups which may be regarded as palaeogenie. Four of these are subfamilies, and one is a tribe:

1. Subfamily Petalurinae. This very ancient group has to-day a very typical palaeogenic distribution. In Neotropica, the genus Phenes (1 species) is confined to S. Chili. In Nearctica, the genus Tachopteryx has one species in Nebraska, and one species in New York and Pennsylvania. In Palaearetica, the same genus has one species in Japan. In Australia, the principal genus Petalura is represented by three species; while in New Zealand the genus Uropetala is represented by one species. All the species are of large size, occupy only small areas, and bear all the marks

of being archaic remnants. Ancestors of the group occurred at Solenhofen in Upper Jurassic times.
2. Subfamily Chlorogomphinae. This is another archaic group, but not so typically palacogenic as 1 , since it is at present confined to the Oriental region. Its distribution within that region is, however, so diseontinuous that it satisfies the definition. The genus Chlorogomphus occurs in Sumatra and Java; Orogomphus is found in the Himalayas, in Bornco, and also in the Philippines!
3. Tribe Petaliini. In the forests of Southern Chili this tribe is represented by six species, comprised in the genera Petalia, Phyllopetalia and IIypopetalia. On the Blue Mountains of New South Wales, a single species, Austropetalia patricia, occurs. This might be claimed as a case of distribution from an original common Antaretic centre. But the group is so clearly archaic, and had snch near relatives at Solenhofen in Upper Jurassic times, that it is much safer to treat it as strietly palacogenic.
4. Subfamily Epiophlebiinae. We have here almost certainly the very last stage in the distribution of a very arehaic group. The single genus Epiophlebria is represented only by a single species from Japan! The genus seems to be a remnant of an carly Lestid fauna dating back to Jnrassic times, and bears somewhat the same relationship to Lestes that the fossil Heterophleliinae bore to our present-day Synlestinae.
5. Subfamily Synlestinue. This group is represented by two species of Synlestes in Eastern Australia, and five species of Chborolestes in South Africa. It is obviously an archaic group, but is still fairly flourishing, and only in the first stages of discontinuity. The commonest species, Synlestes weyersi, ranges from Vietoria to North Queensland, and is in process of sub-division into a number of regional forms or sub-species.

The Entogenic Fauna.

The entogenic groups, being essentially those which make up the fauna peculiar to each region, must be dealt with separately under the six main headings. I have thought it best to do this by means of a complete table, which will serve the double object of exhibiting at a glanee the entogenic faunas of the six main regions (and, in addition, those genera which are entogenic in

T'able of Entogenic Genera

of Odonala (continuel).

Palaearetic	Ethiopian	Oriental	Australian
Epallage	-	Anisopleura, Bayadera, Para-, Dys-, Cali-, Pseudo-phaea (= Euphaea), Notholestes	,
-	Libellago	Micromerus, Rhinocypha, Rhinoneura, Philoganga	,
一	-	Devadatta	Diphlebia
Calopteryx (2), Mnā̈s (2)	Pentaphlebia, Phaon, Umma, Sapho	Neuro-, Climaco-basis, Matrona, Matronoides, Echo, Archineura, Psolodesmus, Mnais (2), Vestalis	,
Sympycna, Lestes (5)	Lestes (5)	Meja-, Platy-, Orolestes, Lestes (5)	Austrolestes
-	Neuro-, Allo-, Neso-, Proto-lestes	Rhinagrion, Podo-, Rhipido-, Pseudo-, Amphi-lestes, Mesopodegrion	Podopteryx, Argioles. tes, Walunesia, T'rineuragrion, Met. agrion
-	-	-	-
Platyenemis	Tato-, Lepto-, Para-, Mela-, Allo-, Meso-, Chloro-cnemis	Copera, Coeliccia, Cali-, Priono-, Steno-cnemis	Idiocnemis
-	Disperroneura (2)	Platy., Proto-sticta, Caco., Caeno-neura, Disparoneura (2)	Noso-, Iso., Neo., Austro-, Ori-sticta, Selysioneura, Lestoidea
-	-	Onychuergia	Palceargia
Pyrrhosoma, Wrythrom. ma, Agrion (2), Ischnura (6), Nehallenia (2)	I'hermagrion, Ischnura (6), Argiocnemis (2)	Ischnura(6), Argiocne. mis (2), Agriocnemis (2)	1schnura (6), Oreagrion, Agriocnemis (2), Austrocnemis, Hemiphlebia
Hnalltyma (3)	Mombagrion, Argiagrion, Ceriagrion (2), P'seudagrion (2), Enallayma (3)	Xiphiagrion, Pseudagrion (2), Ceri. agrion (2)	Cali-, Austro-, Papu-, Xanth-agrion, Xanthocnemis
-	Aciugrion (2)	Aciagrion (2), Archi-, Teino-basis, Ampli-, Peri-cnemis	Nesobasis

more than one region), and of giving, in a fairly compact form, a full list of genera for all the subfamilies and tribes,-except, of course, the five dealt with above in the Palacogenic Fauna. By combining this table with the classification given in chap. xiv, the student can not only obtain at once a full list of genera for each tribe, but at the same time he will be able to note the distribution of those genera. The table is supplemented by a short discussion on the chief eharaeteristies of the autochthonous fauna of each region.

The Neotropical Region.

This region includes the whole of South America and adjoining islands, Central America and the tropical parts of Mexico, and the whole of the West Indies. It is, in the Odonata as well as in other groups of animals, the most self-contained of all the six regions of the earth. Out of 135 genera known to occur, no less than 111 , or 83 per eent., are peculiar to or entogenie in the region ${ }^{1}$. Being for the most part a tropical region, it is execedingly rieh in Odonata. The total number of speeies deseribed from it far exceeds that of any other region, as also does the total number of entogenie genera.

A glance at the table shews us how the various subfamilies and tribes are represented in the region, so that it is not necessary to go into details here on that point. We shall, however, notice the more striking peeuliarities of the region. With the exception of two genera (Hagenius and Sieboldius) the whole of the Gom-phöldes-Series of the Ictinini is confined to Neotropica. A similar distribution holds for the Palpopleurini, the Uracis-Series of the Brachydiplacini, and the Dythemis-Series of the Trithemini. The whole of the New World genera of the Megapodagrioninae, Protoneurinae, Teinobasini and all but one of the New World Pseudagrionini also belong to this region. The Thorinae and Pseudostigmatinae (Pl. I, fig. 8) are exelusively confined to Neotropica. As against this wonderful wealth of forms, we notiee a great paucity of Corduliinae and a complete absence of Platycneminae. The Corduliinae are essentially a temperate group,
'In calculating these "Regional Percentages" for the six regions, genera which are entogenic in more than one region have been excluded.
and, apart from the Macromiini, the Oriental region shares with the Neotropical this paucity of forms. The Platycneminae, however, are essentially a tropical group. It is peculiar that the Oriental and Ncotropical agree in possessing rieh developments of Megapodagrioninae and Protoneurinae, but differ in that the former alone has a rieh development of Platycneminae.

I an inelined to assoeiate the absence of Plaiycneminae in Neotropiea with the presence of the unique Pseudostigmatinae. These latter will, I believe, eventually be shewn to be the lost Plutycnemine stock of the Neotropical Region, which has reached its present form through a hypertrophy of wings and abdomen, brought about in correlation with the adoption of the extraordinary habit of breeding in the epiphytic Bromeliads of the dense tropical forests.

The Nearctic Region.

In this region we inelude the whole of the North American Continent, together with the temperate parts of Mexieo. The region is not nearly so well differentiated, as regards its Odonata, as the Neotropical. Out of 59 genera known to oceur, only 24 , or 41 per cent., are peculiar or entogenie ${ }^{1}$. The chicf reasons for this are (i) the presence of a fairly abundant Holarctic fauna eonsisting of genera shared in common with Palaearetica, (ii) a considerable southern ineursion of eetogenie genera from Neotropiea, together with other genera whieh may be regarded as dientogenie for both Nearctiea and Neotropiea.

The most striking point about the Nearctic fauna is the rieh development of the tribes Gomphini and Eucorduliini. The seven genera of the latter tribe confined to Nearetica probably represent the highest expression of the ideal Odonate-type yet reaehed by the Order, and ean only be paralleled by the Australian ILemicordulia-group.

The Nearetie region is as poor in Zygoptera as the Neotropic is rich. Only 15 genera, belonging to three subfamilies, occur; and of these, only two are peeuliar. But for the presence of IIctaerina (fig. 151) and Argia, which seem undoubtedly to have come originally from Neotropiea, there would be left only a

[^8]small remnant composed of Holarctic genera and their derivatives. The Tertiary fossil-beds of this region prove, however, that the Megapodagrioninae existed fairly abundantly in Miocenc times. We can only conclude that this group was unable to resist a subsequent lowering of the temperature over those areas in which it existed, and so became extinet within the region.

Fig. 151. Fore-wing (30 mm .) of Heluerina americana Fabr., i, Mexico. Original

The Palaearctic Region.

This enormous region includes the whole of Enrope, together with the temperate parts of Africa (north of the Tropic of Caneer) and of Asia and the Japanese Arehipelago. The boundary is usually drawn along the western watershed of the Indus, thence along the Himalayas into Thibet and China, north of the Yang-tse-kiang watershed. Although the region is of such great extent, it is by far the poorest in Odonata in the whole world. Japan is the only part of it that contains at all an abundant or striking Dragonfly fauna.

Out of 59 genera known to occur, only 14, or 21 per cent., are peculiar to or entogenic in the region ${ }^{1}$. The principal portion of the fauna is supplied by the development of the twelve Holaretic genera shared in common with Nearctica, viz. Corlulegaster, Gomphus, Ophiogomphus, Boyeria, Somatochlora, Cordulia, Libellula, Sympetrum, Leucorrhinia, Calopteryx, Agrion and Enallagma. The development of Anisoptera is on the whole less marked, of Zygoptera more marked, than in Nearctica. There are no peculiar genera of Gomphini, and only two of Corduliinae, Oxygastra (fig. 152) and Epitheca. But in the Zygoptera, there are the

[^9]five peculiar genera Epqlluge, Sympycna, Platycnemis, Erythromma, and Pyrrhosoma.

Japan. This group of islands forms a distinct province of the region. It is marked by two special characteristics: (i) the presence of Planaeschna, Aesclnophhebia and Epiophlebia (peculiar), and Mnaïs (Japan and China); (ii) a strong incursion of Oriental

Fig. 152. Wings of Orygastra curtisi Dale, \hat{O}^{\prime}, France. (Hw. 35 mm .) Original.
forms, amongst which the most striking are undoubtedly the magnificent insects of the genera Epophthalmia and Azuma. Judging from mumerous alhusions to the Odonata in Japanese literature and poctry, the fauna seems to be one of striking beanty and coloration, and has impressed itself upon the mational consciousness.

The Elliopian Region.

The Ethiopian region inchudes the whole of Afriea and Arabia south of the Tropic of Cancer, Madagascar, Mauritius, the Scyehelles and other islands adjacent to them. Though neither so rich nor so varied as those of the Neotropical and Oriental regions, the Ethiopian fauna is a very distinct one, and fairly rich both in genera and species. Out of 105 genera known to occur, 70 , or 67 per cent., are peculiar to or entogenic in the region ${ }^{1}$. A great deal of work

[^10]still remains to be done on this fauna, and the number of species is sure to be largely increased in the near future. The chicf features of the fauna are the numerous genera of Gomphini (if indeed most of these can be accepted as anything more than sub-genera!), the rich development of Tetrathemini, Trithemini and Platycneminae, and the peculiarity of the Corduline and Calopterygid faunas. It is very remarkable that there is an almost total absence of entogenic Aeschninae, the only genus that can possibly be considered entogenic being the widely-spread Hemianax, possessing only one species. There is a close parallelism between the Ethiopian and Oriental faunas in the following groups: (i) Idocorduliini, (ii) T'etrathemini, (iii) Libellayini (Libellago parallels Rhinocypha and Micromerus), (iv) Megapodagrioninae and (v) Platycneminae. The fact that Proloneurinue are absent (except for Disparoneura) coupled with the fact that the Ethiopian Plalycneminae possess some forms (c.g. Chlorocnemis) which are so reduced that they might almost be classed as Protoneurinae, points to the origin of the Old World Protonearinae from a Platyenemin. stock.

Madagascar. As in other groups of animals, so in Odonata, this great island forms a very definite province, marked by many special features. Out of 85 known species, 58 are peculiar to the island, while all but six of the remainder are species occurring only on the mainland of Africa besides. The fauna is distinguished by the presence of seven genera peculiar to it, viz. Isomme, Nesocorlulia, Calophlebia, Neophlebia, Archueophlehia, Neodyhemis and Nesolestes.

The Oriental Region.

This region includes the tropical parts of Asia south of the Palaearctic region, Ceylon, Sumatra, Java, Borneo, Formosa, the Philippines, and all the other smaller islands to the west of Wallace's Line. Celebes, usually included in the Australian region, may be regarded as Oriental as far as its low-lying coastal regions are concerned, and forms a kind of "no-man's-land" between the two regions. The geographical uneonformity of the region makes it difficult to give a satisfactory aceount of the fauna. Apart from India, Burmah, and Cochin-China, every one
of the great islands has a rich and, in some respects, characteristic fauna of Odonata. Borneo, although comparatively little worked, call already boast of more species than can be found in the whole of the great Palacarctic region! The total number of Oriental genera slightly execeds that for the Neotropical, but the number of known species is considerably less. Also, the presence of a large number of Austro-Malayan genera (i.c. genera entogenic both in the Oriental and Australian regions) reduces the proportion of genera peculiar to the region. Ont of 136 genera known to occirr, 82 , or 60 per cent., are peculiar to or entogenic in the region ${ }^{1}$.

The Oriental region is essentially the home of the Calopterygidae (exclusive of the Neotropical Thorinae). Out of 20 genera and 141 species of Epallaginae so far deseribed, 12 genera and 107 species are Oriental. Out of sixteen known genera of Calopteryginae, nine oceur in this region. The glorious development of

> Fig. 15:3. Hind-wing (17 mm.) of Micromerns limeatus Birm., O. India. Grinal.
wing-coloration in these Oriental Calopterygidae makes them one of the most striking and gorgeous groups of insects in the wortd. The tiny Micromerus (fig. 153) is the most reduced Calopterygid genus known.

The Oriental region parallels the Neotropical in the following points: (i) a great development of Ictinini, of the Ictinus-Series (paralleling the Gomphödes-Series); (ii) the large number of species of the Gynacantha-Scries of the Aeschnini; (iii) an exceedingly rich development of the Libellulinae (for lists of genera, see the table) ; (iv) an abundance of Megapodagrioninae and Protoneurinae, (v) a searcity of Corduliinae. A comparison with the Ethiopian region has already been made. Further striking points about the fama of this region are (i) the occurrence of the Chlorogomphinae (dealt with under the Palaeogenic Fauna), (ii) abundance of genera
of Gomphini, (iii) strong development of the Macromiini, (iv) the development of the tribe Teinobasini, including some rather large speeies which suggest the beginnings of a hypertrophied or "gerontic" group.

The Australian Region.

Besides the continent of Australia, Tasmania, and the isolated province of New Zealand with its adjacent islands, this region includes the immense Papuan province, which embraces all the islands lying to the east of Wallace's Line. Chief amongst these are Celebes (at least the highlands of this island), Timor, New Guinea, the Solomons, the New Hebrides, New Caledonia, and Fiji. The latter must be included, not only on account of the recent geological demonstration of its continental origin, but also because of the presence of three essentially continental genera, viz. Synthemis, Hypothemis and Nesobasis.

The fauna of the Papuan portion of the region is so different from that of the rest that one may well question the wisdom of including the two within one region. In the Odonata, at any rate, the Papuan fauna, so far as we know it at present, has closer affinities with the Oriental than with the Australian fauna proper. It is advisable, however, not to proceed to any definite decision yet, because the highlands of Papua are not yet explored. It is just at these higher levels that the Australian character of the fauna may be expected to make itself felt, whereas the Oriental portion is flagrantly noticeable along the overleated coast-line, as it is also in North Qucensland. Within the last few years such essentially Australian genera as Synthemis and Diphlebia have been found in Papua, and we may confidently look for more.

Taking the region as a whole, out of 110 genera known, 61, or 55 per cent., are peculiar to or entogenic in it ${ }^{2}$. This low proportion is wholly due to the immense irruption of Oriental forms into the tropical part of the region. This is more fully dealt with in the section on Eetogenic Fauna.

The autochthonous Odonate fauna of the Austrahian region consists chiefly of a very rich archaic complex of forms not to be paralleled in any other region. Besides the occurrence of Petalurn,
${ }^{1}$ Sce foot-note on p. 286 .

Uropetala, Austropetalia and Syntestes, which are incheded in the section on Palaeogenic Pama, for the reasons there stated, we note the occurrence of the following groups: (i) two very archaic genera of (Gomphini, (ii) a very rich Aeschnive fama belonging to the Brachytronini, and paralleling the development of Aeschna in the Northern Hemisphere, (iii) the very interesting and graceful tribe Synthemini, (iv) six gencra of Idocorduliini, (v) three genera of Tetrathemini, (vi) a special development of numerous small bronze and blue Lestinac (Austrolestes), bionomically parallel with Agrion and Enallagma of the Northern Hemisphere, (vii) a fairly rich famna of Megapodagrioninae and Protoneurinae, (viii) six peculiar genera of Agrioninae.

The immense development of Corduliinae, totalling 16 genera and 52 species, is probably the most striking feature of the Australian fauna. Besides the arehaic forms already mentioned, we inust also notice the extraordinarily specialized Cordulephya, the mysterious Pentalhemis, and a fairly strong development of Eucorlutiini, paralleling that of the Northern Hemisphere. 'The species of the latter have been referred to Somatochlora, Procortulia and Hemicordulia. Of these the last genus is the most specialized, and resembles $A n a x$ in the adoption of a rounded hind-wing in the male, and also in the startling suecess of its new eareer, since it has already overrun the Oriental region and Madagasear.

Besides the very archaic groups which form the basis of the famma, there are a number of isolated side-branches, all highly specialized, which seem to have found their way into the region long ago, and followed their own lines of development. Of these we may mention Austrothemis (paralleling Leucorrhinia of the Northern Hemisphere), Diphlebia (the most Agrionid-like of all ('alopterygidue), the wonderful little Memiphlebia, and the excessively reduced Australian Protonewinue. These last probably represent the most highly asthenogenetic Dragonflies yet evolved. The very remarkable genus Lestoidet (fig. 154) combines an essentially Protoueurine venation and facies with certain Megaporlugriomine eharacters.

In the Papuan province the most striking facts are the rich developments of the Gignacanthe-series and of the Libellulinae,
together with the total absence of Gomphinae (except Ictimus australis).

Tasmania. This island is poor in Odonata, though rich in large rivers. Most of the Dragonflies are still-water forms. 'Whis suggests that the fauna chiefly crossed from Australia at a time when the land-connection (Bassian Isthmus) was too small to earry many running rivers, and only possessed isolated ponds or shallow lagoons [174].

New Zealand. This isolated province is very poor in all forms of insect life. There are only eight known species of D ragonflies, comprised in the seven genera Uropelala, Aeschna, Somulochlora, Procordulia, Diplacodes, Austrolestes and Xanthocnemis. Of these, the first and last are peculiar to the island.

For an interesting eomparison of the faunas of the three main southern land-masses of Australia, S. Africa, and S. America, the reader is referred to the introduction in Ris [13ij].

Fig. 154. Fore-wing (20 mm .), and portion of hind-wing of Lessoidea conjuncti Tillyaril, ó, Queensland. Original.

Polynesiu.

Polynesia comprises all the islands (of non-eontimental origin) lying in the Pacific Ocean eastwards from the boundary of the Australian region. The principal groups are the Marshalls, Gilberts, Tonga, Samoa, the Marquesas, Tahiti, and the Hawajian Islands. The interesting fauna of the Hawaiian Istands has been fully dealt with by Perkins [114-116]. There are two peculiar genera, Nesogonia (Libellulinae) and Megalagrion, besides a large number of species referred to the genus Agrion, whose larvae live in water colleeted at the bases of the leaves of plants, and possess reduced caudal gills.

The non-continental character of the fauna of the Polynesian Islands is shewn by the absence of all subfamilies except Aeschminae,

Libellulinue and Agrioninae. The most noticeable forms are Anuciueschnu juspidea and a few widely spread Trameini.

The Ectogenic Fauna.

It is obvious that a group which becomes ectogenie in any given region must be a failly vigorous group. The more vigorous it is, the more likely it will be to invade other regions and spread far into them. Thus a very large percentage of the ectogenic fauma is made up of Libellulinae and Agrioninae, which are the dominant and most vigorous groups of to-day. A further point which influemees the formation of cetogenic groups is the change of climatic conditions met with in passing the barrier from one region to another. The most obvious ease is that of the boundary between a Temperate and a Tropical region, e.g. between Nearctica and Neotropica. In this case, it is clear that change of temperature will be the most important factor. This factor works wholly in favour of the more tropical region. For the groups emigrating from the warmer region to the cooler will hug the coast-line, and will thus have a contimous (or, in the case of a chain of islands, almost continuous) land-area along which they ean work their passage omward. On the other hand, the groups emigrating from the colder region to the warmer will tend to seek higher and higher altitudes. As soon as the mean annual temperature of the coastal lands excecds a certain amount, those lands will be absolutely barred to them. Thence onwards their advance must be confined to the high lands, which usually offer only a diseontinuous and precarious foothold.

In the case of the Odonata, it is clear that the nature of the barrier between two regions is of great importance in determining the amount of the ectogenic faunas on either side of it. A desert barrier is impassable to all but the hardiest drought-resisting genera. A high and continuous mountain-range will bar the passage of all but a few alpine forms. On the other hand, a seaharrier, unless sufficiently wide, will not prove as effective for the strong flying Odonata as it is for most groups of animals. Hence we find that Wallace's Line has not proved a very effective barrier between the Oriental and Australian regions.

The Neotropical Region. This region is very self-contained,
being only penetrable along the highlands of the Istlimus of Panama. Hence the ectogenic fauna, received from Nearctica, is exceedingly poor. Several species of Erpetogomplus, three species of Libellula, one of Sympetrum, and one of Anomalagrion, appear to form the only undoubted ectogenic fauna. There are, however, a few groups whose zoocentres seem to lie actually in or near to the Isthmus. I have considered these as dientogenic in both Neotropica and Nearctica. Macromia seems to penetrate occasionally into the region, and the very beautiful Pseudoleon has also a foothold there.

The Nearctic Region. This region is penetrable from Neotropica (a) along the coast-line northwards from the Isthmus of Panama, (b) along the chain of the Antilles into Florida. It appears also that in fairly recent times Lower California received a considerable influx of Neotropical forms, possibly by a more direct route than any at present existing. Thus we find the fauna of the southern portion of Nearctica, particularly along the coast-line, considerably modified by the influx of a large ectogenic fauna, consisting chiefly of Libellulinae. The following Neotropical genera form this ectogenic fauna of Nearctica: Gomphö̈les, Negomphö̈les, Cyclophylla, Aphylla, Gynacantha, Orthemis, Cannaphila, Micrathyria, Erythrodiplax, Erythemis, Brachymesin, Dyfhemis, Paltothemis, Brechmorrhoga, Hyponeura, Telebasis, Telagrion. Most of these do not penetrate beyond the Lower Sonoran.

Libellula quadrimaculata and Enallagma eyathigerum range through the whole of the Northern Hemisphere, exeept the tropical parts. There seems to be no evidence to shew whether they originated in Palaearctica or Nearetica. They are best included in the entogenic fauna of both regions. The barriers between the two regions are very effective in the case of the Odonata, chiefly because of the lowness of the mean annual temperature at the point where the two approach most elosely together (Behring's Straits).

The Palaearctic Region. In spite of its very long frontier to the Ethiopian and Oriental regions, this region seems to be very well contained, the nature of the barriers (deserts and high mountain ranges) making the passage of Odonata very difficult. From Ethiopia, Hemianax and Trithemis have penetrated into the
region. From the Oriental, it is probable that a considerable list of Libellutine genera could be drawn up which have reached, in China, beyond the somewhat arbitrary boundary of the Yang-tse-kiang Valley. Southern Japan has also received a fairly rich Oriental fauna, among which we must notice especially the very striking genera Epophthalmia and Azuma (Macromiini), and representatives of the genera Ictinus, Davidius, Gynacantha, Lyriothemis, Rhyothemis, Pseudophaea, Neurobasis, Copera, Ceriagrion, Pseudagrion. The widely spread Diplacodes trivialis also reaches into Japan. A single species of Argia (A. kurilis) has colonized the Kurile Islands from Nearctica.

The Ethiopian Region. It is very difficult to determine what is the true ectogenic fauna of this region. Though it is now almost completely shut off by desert from Palaearetica, and by a wide stretch of sea from the Oriental region, yet there is a great deal of evidence to shew that not so very long ago Odonata passed quite casily from both these regions into Ethiopia. Though Lhave inchded in the entogenie fanna a large number of Gomphine genera which are very closely related to Onychogomphus or to Ciomphus, it might very fairly be argued that these genera actually form a very considerable invasion of essentially Palaearctic forms. Such a conclusion is strengthened by the fact that Ethiopia has no entogenic genera of Aeschninae except Hemianax. The only diflerence is that the Gompline settlement is the older of the two. Are these Comphine genera sufficiently differentiated from their parent stock to merit the term "entogenic"? That question camot be answered except by someone far more familiar with the Ethiopian fauna than myself.

From Palacarctica, the region has received Platyonemis, Agrion, Anux imperator, Sympetrum fonscolombei and Lestes lurbarus. From the Oriental, we notice the following genera: IIelineschnu, Anutiaeschna, Memicordulia (reaches to Madagascar), Tetruthemis, Agriocnemis, and the widely spread Anax guttatus, Diplacodes trivialis and Ischnura senegalensis. The elose parallelism between celtain Ethiopian and Oriental genera, and the large number of dientogenic genera common to the two regions, suggest that a dase connection formerly existed between them, via Madagascar, Mauritius and the Seychelles.

The Oriental Region. This is the least isolated of all the regions of the earth, being penetrable from cach of the other three regions of the Old World. Palaearctic genera are excluded on account of the great rise in the mean annual temperature south of the barriers. From Ethiopia, the region has received species of Acisoma, Urothemis, and Lihellago. There remains Wallace's Line. Here we have a case elosely parallel with that of the Isthmus of Panama. A large number of tropical Oriental genera have penetrated eastwards into the Australian region. but very few of the Australian forms have passed westwards into the Oriental. We note especially IIemicordulia and Dipltcodes, which have spread far and wide beyond their Australian zoocentres; the genus Argiolestes, which appears to have passed just across the barrier; Protorthemis, Nannophya, and C'elebothemis.

Fig. 155. Wings of Ayrionoptera insignis allogeness Tillyawd, s,
Queenstand. (11w. 23 mm .) Original.
The Australian Region. This is only now penetrable across Wallace's Line, by strong-flying species. There is evidence, however, of a separate immigration stream into the Australian continent via Timor, at some not very remote period, is well as some indication of the remains of an original Antaretic fauna driven northward through Tasmania. Australia proper, as distinct from the Papuan sub-region, has a rich Gomphine fauna, which scems certainly to have entered long ago via Timor, sinee Gomphinae (other than Ictinus) do not oceur in Papna. The presence of Diplacodes nebulosa, Orthetrum pruinosum, Zycomma petiolatum and other species on the mainland points in the same direction. The following genera have penetrated into Papua and
across Torres Straits into Queensland: Ictinus, Gynacantha, IIeliteschna, Telrathemis, Lyriothemis, Potamarcha, Orthetrum, Raphismia, Aeflericumenta. The following genera appear to be well enough establishod in both the Oriental region and the tropical part of the Australian to be considered as dientogenic: Aunciaeschna, Macromia, Metaphya, Nannophlebia, Diplacina, Nesoxenia, Lathrecista, Agrionoptert, Brachydiplax, Neurothemis, Zygonyx, IIydrobasileus, Macrodiplax, Zyxomma, Camacinia and Rhyothemis. They are, however, all ectogenic for the Australian Continent itself. This shews us how very different the faumas of lapua and Australia proper really are.

Aeschna brevistyla is common in temperate Australia, especially in Tasmania. It also oceurs in New Zealand. It seems to be a remmant of an old Antarctic famia. Species referable to the Holaretie genus Somatorhlore have been deseribed from New Kealand and Chili ; and the presence of the arehaic Austropetalie on the Bhe Mountains may perhaps be a third link in this stender chain of evidence.

Census of the Odonata of the World.

The census here given is based upon Kirby's Catalogue (1890) and upon the Zoological Records up to May, 1913. For the Wthiopian and Anstralian regions, the records are complete to the end of 1914. For the Nearetic region, Muttkowski's Catalogne (1910) was made the basis. In the case of the Libellutinae, Cordubinare and Aeschnince, the eensus has been rearranged on the hasis of the Selysian Monographs on these groups by Ris and Martin. By the introduction of the trinomial system in the Libellutime the nmmber of species has been very considerably reduced. A similar result maty be expeeted in the Agrionidue, and perhaps also in the Calopterygidae, when a similar modern treatment is accorded to those sublamilies.

The numbers in brackets placed after the generic totals indicate the number of genera peculiar to, or entogenie in, the given region, but does not include genera entogenic in more than one region. The "Regional Percentage" gives a fairly reliable measure of the "self-contanimedness" of each region. It is caleulated from the ratio of genera in brackets to the total.

$$
\left.\stackrel{N}{0}\right|_{-\infty} ^{0} \mid
$$

$11^{\text {N }}$	$1 \stackrel{10}{7} 1$	$\|1\| 18$ ¢ ¢ ¢ ¢
$11 \frac{9}{6}$	$\left\|\widehat{C l}_{\square}\right\|$	

CHAPTER XVI

THE GEOLOGICAL RECORD

It is not to be expected, either from their structure or their habits, that the Insecta could ever have yielded a fossil record commensurate with their great numerical preponderance in the Animal Kingdom. Scarcely any are marine, and comparatively few are aquatic. Consequently, the record is only a partial one. In the case of fresh-water deposits, it embraced only those groups that were wholly or partly aquatic, or others that lived and died amongst dense vegetation, which liter on went to form plantbearing beds, such as our coal-measures. Waifs and strays from land-living groups were also often washed down and embedded in lacustrine deposits, and even in shallow marine beds formed from fine mud derived from adjacent land-areas.

Undoubtedly the most complete record furnished by any group of insects is that of the Cockroaches. No aquatic group furnishes us with a record which can in any way approach that of these dwellers in damp and rotting vegetation. But, poor as it must be judged by comparison, the record of the Dragonflies is more complete than that of any other aquatic group. The actual mumber of fossil specimens is small; but the ancestry thereby made known to us is a very long one, and very fairly complete.

Chitin, which forms the hard parts of all insects, is very resistant to strong reagents, such as acids and alkalies. But it is nevertheless slowly dissolved by water. Hence it is not found in the fossil state, except in those cases where it has been protected from the action of this liquid, as in the case of the insects enclosed in Baltic amber. Fither it becomes impregnated with, and finally replaced by, another substance, or else it simply dissolves away, leaving only an impression of the living organism. Most insect fossils
are of this latter charaeter, being usually impressions of wings or parts of wings, very seldom of the whole inseet. This fact should make a classifieation based chiefly on the wing-venation, as in the cace of the Odonata, more fully appreeiated. In the ehain of phylogenetie evidence, the value of a single impression of a com-plexly-veined Odonate wing may easily outweigh that of a large number of impressions from a group sueh as the Coleoptera.

Fossil inseet remains have been reported to oeeur as far back as Silurian times. We are, however, on safe ground if we follow Handlirseh in rejecting all those of this Age so far brought to light. The Devonian strata have so far yielded none, nor have the Lower Carboniferous beds. But, in the Upper Carboniferous roeks, we suddenly eome upon the remains of a wild riot of teeming inseet life. As it first diseloses itself to our view, the geological reeord shews us the Inseeta in many ways almost at the maximum of their development, partieularly in regard to size. Unless, then, we postulate a rise of startling rapidity, we must admit that our reeord does not reaeh back anywhere near the origin of the Class, but rather starts near the middle, at what we may eall the Giant Age of Inseets. Those who would study interesting theories as to the origin of inseets are referred to the hypotheses of Lameere ${ }^{1}$ and Handlirseh [67]. In this book, we shall give a review of the various stages in the evolution of the Odonati, as far as our reeord enables us to do so, together with a short aeeount of the eonditions whieh probably prevailed in the four great Odonate-bearing beds from whieh our information is chiefly derived, viz. Commentry, Solenhofen, Florissant and Oeningen.

The Palaeozoic Record.

Our reeord opens, then, in the rieh eoal-measures of Commentry, near St Etienne in Franee, where the labours of Brongniart[17] and Meunier [93] have exposed for us a wonderful eolleetion of fossil inseets of bewildering variety. These are eharaeterized by two points--the large average size of the inseets, and the density of their wing-retieulation. Even the Coekroaehes, whieh are the first to be reeognized as approximating to a present-day type,
${ }^{1}$ Manuel de la faune de Belgique, Tome II, A. Lamecre, Brussels, 1000.

had a very rieh venation, and a size that would be considered embarrassingly large in our modern world. Of the others, it may be briefly said that a general survey shews that none of them can be strietly plaeed in existing Orders, although the Orthoptera, Plectoptera, Hemiptera and Odonata are almost certainly direct deseendants of forms similar to those found at Commentry. Most of these inseets, however, are plaeed in a separate Order, the Palaeodietyoptera. From these, probably, side-brameles broke away, to give origin sooner or later to our existing Orders, while the main mass died out.

One of these side-branehes, undoubtedly allied to the Palacodictyoptera, but just as undoubtedly allied to the Odonata of to-day, was the Protodonata. Only some seven or eight species are known, eomprised in five genera and three families. But the fossils are so well preserved, and have beeome such a eentre of interest, that we eannot underestimate their value towards a eorreet view of the origin of the Odonata. Probably the best known, and eertainly the most wonderful, of all the Commentry fossils is Meganeura monyi (fig. 150), the gigantic Dragonfly whose restoration was first attempted by Brongniart. This magnificent inseet had a wing-expanse of 27 inches, thus far excecding the largest inseets at present existing. It was undoubtedly a Dragoufly, and would fall within the Order Odonata in its general form of body and wing, and in the definition of its mouth-parts. But it had four-jointed tarsi, and its wing-venation lacked those wellknown speeializations eharaeteristic of our present-day Odonata, the pterostigma, nodus, and the quadrilateral or triangle. Unfortunately, in Brongniart's time little was known of the true signifieanee of mueh of the details of venation as we view then, to-day. Handlirseh [67] has already eorreeted Brongniart's restoration, as far as it fails to agree with the obvious design of the preserved parts of the fossil wing. In fig. 156, I offer a further restoration, ineluding the probable design of the head and thorax, based on a study of the allied Meganeurula selysi. This latter speeies differs from Meganeura monyi, and agrees with our reeent Zygoptera, in possessing an unbranehed radins in all four wings. In M. monyi, the radius is unbranehed in the hind-wing, but in the fore-wing it has two large branehes arising rather close
together. This eondition is unparalleled amongst reeent forms. The other interesting points about the wings of this inseet are:
(1) The presence of an unveined membranous preeostal area, not found in any recent Dragonfly, (2) the passage of $S c$ almost to the extreme tip of the wing, (3) the slight separation of M basally as a fine vein just below R, foreshadowing the complete fusion seen in recent forms, (4) an undulation of $C u$ and A near the base, (5) the regular arrangement of the interpolated seetors and eross-veins.

In Meganeurulu selysi, there is a further marked advanee towards the true Odonate type by the fusion of $S c$ with the anterior border of the wing, at a point less than half the total distanee from base to tip. This foreshadows the formation of a true nodus. The radius, too, runs into the same margin at about the region of the more modern pterostigma, thus suggesting the origin of that organ as a very long and narrow membranous thiekening between C and R at this position. One of the most arehaic of surviving Anisopterid subfamilies, the Petalurinae (fig. 18 13), has a pterostigma not far removed from this form.
The reeent diseovery by Bolton [11] of portion of a Meganeuril wing (M. rudstockensis) in the Forest of Dean eoal-measures in England, throws further light on the genns. Only parts of the basal half are preserved, but we ean note two new peenliarities. The preeostal area is absent, but the eosta itself is mueh thiekened basally, and has a coriaceous border. A remnant of this eondition still obtains in Pelahure. Purther distad, the eosta is ribbed in the regular manner seen in reeent Dragonflies. More interesting still, the slanting eross-vein $A c$, reeently shewn by me[176] to indieate the point where the true anal vein diverges from $C u$, is elearly to be seen. Hence it would appear that $C u$ and A were fused basally, as in all reeent forms. Thus the gap between Protodonata and Odonata is being gradually lessened, until to-day we may almost eertainly see in the Meganeuridae the giant relatives of the direct ancestors of some at least of our reeent families.

Only two other families of Protodonata are known, eaeh represented by a single genus and speeies. The Paralogidae (Paralogus aeschnö̈les Seudder) had a rather short and broad wing, with $S c$ ending about half-way, and $R+M$ eompletely
T. D. -1 .
fused basally. The Protagrionidae (Protagrion audouini Brongniart) had R and M separate, with a kind of areulus joining them some way from the base. Sueh an arrangement plaees them as a sidebraneh of the Order, whieh left no deseendants even amongst Mesozoie forms.

An interesting faet in eonneetion with Commentry is the non-oeeurrenee of larval forms. Without unduly stressing this faet, we may eouple it with the immense abundanee of imaginal forms whieh seem to have been suited to a life amongst damp vegetation. Then we may well ask ourselves whether the larvae of the Protodonata did not dwell in damp earth rather than in water. The formation of the larval traeheal system (chap. ix) undoubtedly proves that this was at one time the ease. It may well have been so in Carboniferous times.

The inseet-beds of Commentry oeeupy a eomparatively small portion of the total strata. They belong to the highest division (Upper Zone) of the highest or Stephanian stage of the Upper Carboniferous roeks of that region. Thus they really form a passage-bed between the Carboniferous proper and the Permian. The prineipal plant remains of this zone are the Giant Mare's-tail (Calamites), eharaeteristie of the eoal-measures, and the large Cyead Zamites, most abundant in Jurassie strata. Had the inseet-beds been isolated, instead of occurring at the top of a long series of undoubted Carboniferous rocks, such a flora would have plaeed them in the Permian. Emphasis is laid on this fact, beeause the only known Permian Dragonflies are Megancurids. One of these, Ephemerites rückerti Geinitz, is from the Lower Permian of Germany, where a similar flora prevailed. The other, Tupus permianus Sellards [160], is from the Permian of Kansas. It is of interest in possessing a branehed radius in all four wings, with signs of a weak bridge and an oblique vein.

We may pieture to ourselves the giant inseets of Commentry as inhabiting the shores of a large, shallow, nearly stagnant lake. In the muddy ooze around its borders grew forests of the Giant Mare's-tail; while, further baek, on the sandy slopes, the graceful Cyeads and other extraordinary plants formed a more diversified medley. There amidst rotting vegetation, these inseets lived and - bred. In sueh almost amphibious eonditions, it may well be tliat
the larvae of Protephemeroidea and Protodonata first began that series of adaptive ehanges whieh finally led them to adopt a purely aquatie mode of life.

The Mesozoic Record.

A. The Liassic Dragonflies.

With the close of the Palueozoic Age, the Protodonata pass from our ken, and the Giant Age of Inscets gives place to a period of great activity, in which reduetion in size begins to work hand in hand with speeialization in strueture and funetion. The reeord of the Trias proper is very poor in inseets, and no Odonata are known from it. But, in the Lias, the eurtain is onee again raised. We see before us a Transition Period, in whieh the giants, already considerably redueed in size, are either dying out, or evolving to higher forms.

Three Liassie beds yield fossil Dragonflies. These are the beds of Cheltenham and Dumbleton in Britain, and Dobbertin in Meeklenburg. The first belongs to the Lower, the other two to the Upper Lias. The fauna of all three is elosely similar, and is remarkable for the oceurrence of an undoubted. Gomphine, Gomphö̈les brodici Buekmann. This establishes the first connection with present-day Anisoptera. For the rest, putting aside a number of ineomplete wings whieh were very probably also Anisopterous, but in which the base of the wing is missing, there remains that remarkable Dragonfly fama ealled by Itandirseli the Anisozygoptera. These eonsist of three separate subfamilies, the Architheminae, Tarsophlebiinae and IIeterophlebiinae. Judged by the condition of the radius, whieh is unbranehed, and by the absenee of any true triangle-formation, these all seem to be undoubtedly Zygoptera of an early unreduced form. As sueh I propose to treat them, placing them as subfamilies of the Celopterygidac and Lestidue.

The Archilheminue (fig. 157) had a eomplete arculus, but suffered from weakness in the region of the quadrilateral, whieh seems to have tended to become merely an area of undifferentiated
${ }^{1}=$ Diastatommidae Handlirsch. Diastatomma Giebel is prooceupied by Ditsiatommat Brauer, a genus of recent Gomphinae.
polygonal eells. Henee they probably soon died out, from weakness of flight, and left no direet deseendants.

The Tarsophlebiinae (fig. 158) had an ineomplete arculas. Consequently the quadrilateral was open basally, as is the case in the hind-wing of the living Hemiphlebia (fig. 22). They were undoubtedly Calopterygidae, and were ehiefly remarkable for their very long slender legs, with elongated four-jointed tarsi. Probably they used their legs for both walking and elimbing.

Fig. 157. Basal portion of wing of Archithemis lurodiei Geinitz ($\times 2 \cdot 6$), Lias, Dobbertin. After Handlirseh.

Fig. 158. Portions of leg and wing of Tharsophlebia westuoodi Giebel ($\times 1$), Lias, Cheltenlam. of quadriateral; $t_{1}-t_{1}$, the four joimu of the tarsus tib tibia. After Hagen.

Fig. 159. Wings of IEelerophlebia dislocala Brodio and Westwood ($\times 2$), Lias, Cheltenham. After Westwood.

The Heterophlebiinae (fig. 159) were fairly elosely related to the living Epiophlebia of Japan. The fore-wing quadrilateral resembled that of the latter genus, but was eonsiderably wider. The hind-wing had a peeuliarly stretehed and distorted quadrilateral, with a horizontal eross-vein separating off a lower triangular portion. This formation was essentially unstable, sinee the upper side of the "triangle" was not eontinued by any main vein, as it
is in the true Anisoptera. The most important point to notice in this genus is the undoubted presenee of the oblique vein and elongated bridge of the Lestidae. Further, sinee this bridge-vein is eontinued back to join M_{3} instead of M_{1-2}, we must plaee the genus in close relationship with the Synlestinae. Its relationship to this latter subfamily seems to be elosely similar to that whiels Epiophlebia bears to the Lestinae.

The only other Liassie genus, Protomyrmeleon, is an extraordinary aberrant Zygopterid, with Sc redueed to a mere remnant. It seems to have had no near allies, and eertainly left no deseendants. Probably it was the last of some Protodonate side-braneh.

It is perhaps fitting to reeord here the reeent diseovery of a beautiful Dragonfly wing from the Ipswieh eoal-measures of Queensland (Trias-Jura). I have named it Mesophlebia antinodalis (fig. 160), placing it in a new subfanily Mesophlebiinae, probably belonging to the Anisoptera. Only the distal two-thirds

Fiz. 160. Portion of hind-wing of Mesophlebia antinotalis Tillyard ($\times 3.3$), Trias Jura, ${ }_{\text {[sswich, }}$ Queensland. A. 'Tip of wing. B. Region of nodus. Original.
of the wing is preserved, but it shews a beautiful pterostigma, and a very distinet nodus of remarkable form. There is also a great reduetion in the length of the wing eompared with its breadth. The row of elongated post-trigonal eells, $D s$, resembles that of Epiophlelvia.

B. The Jurassic Dragonflies.

The reeord of the Upper Jurassie beds is not only very eomplete, but is the most valuable ehapter of Odonate phylogeny that has yet been revealed to us. From the Dogger of Ust Balei, Siberia, we have a series of reeords of Dragonfly larvae, the Sumaruinue. These had no lateral abdominal gills, but three short oval eaudal gills. They may be provisionally elassed as Calopterygidae. In Britain, the Purbeek beds, and the Stonesfield Slates of Oxford, supply a few interesting fossils. But it is to the splendid mass of material derived from the lithographie slates of Solenholem and Eiehstatt in Bavaria that we owe our ehief knowledge of the Dragonflies of this horizon [60].

These beds are probably best known beeause of the discovery there of the wonderful fossil Archaeopteryx, whieh so beantifully links the Birds with the Reptiles. Thus, as students of the Odonata, we gaze for the last time upon the remnants of the former giant raee, the Kings of the Air, whose domain is now about to be wrested from them by the Birds. From heneeforth they are eondemned to follow the diffieult path of high speeialization either for rapid flight or for eoneealment, if they are to escape destruetion at the hands of their more powerful enemies.

A remnant of the Palacozoie giants is found in the wonderful subfamily Isophlebiinae, of whieh the best known speeies is Isophlebia aspasia Hagen (fig. 161). This beautiful inseet had a slender body six inehes long, while the expanse of its wings was about eight inehes. The wings were long and slender, and evidently of Calopterygid design, exeept for the peeuliar strueture of the anal area, partieularly notieeable in the hind-wing. $C u_{2}$ deseends sharply from the quadrilateral, and gives off a proximal braneh almost meeting the strongly eurved anal vein at its ending on

Fig. 161. Portion of bases of wings
 hofen. After Hagen.
the wing-margin. The result is to broaden the hind-wing basally. Even so, the wing is only of moderate width when its great length is taken into account.

In the Stenophleliinae we meet with another group of large Dragonflies, ranging from five to seven inehes in expanse, and having exeessively slender wings. The quadrilateral in this group had a sharply aeute distal angle. A short eross-vein divided it into a weak triangle and super-triangle. The radius, however, was umbranched, and in other respeets these inseets exhibited distinet Calopterygid structure.

Three species of Tarsophlebia give us a elose eonneetion with the Lias.

Zygoptera belonging to reeent subfamilies are for the first time represented, by two genera of Epallaginae, Euphaeopsis and Pseuloenphaea. The former (fig. 162) had the eostal margin

Fig. 162. Part of hind-wing of Euphaeopsis multinervis Hagen
$(\times O)$, Upper Jurassic, Solenhofen. q quadrilateral. After Hagen.
mised nour the base into an obtuse-angled swelling, recalling the similar formation in Cora. The genus Steleopteron appears to have laul Lestine alfinities; but the nodus was weakly formed, and there were five antenodals.

In the Anisoptera, we find a eonsiderable assemblage of forms whieh ean be plaeed definitely in the Gomphinae, Cordulegastrinae and Petalurinac. The triangular region of Mesuropetala koehleri Hagen elosely resembles that of Petalura. Exeept for greater density of venation, Cymalophlebia eomes very elose to Cordulegaster. The Gomphinae are represented by Nannogomphus, while Protolindenia seems only doubtfully referable to the same subfamily. The most interesting of all the Anisoptera represented at Solenhofen are undoubtedly the Acschnidiinac, eharaeterized by the density of their wing-reticulation, and by having the triangles elongated transversely to the wing-axis in both wings. Of these, the best
preserved is Aeschnidium densum (fig. 163), remarkable for the width of the wings, and the immense number of eross-veins and tiny areolets filling up the spaees between the main veins and their branehes. Between C and $S c$ prenodally, and again between C and R postnodally, these areolets form two or more rows. The boundary between eaeh pair of rows tends to beeome a straight line, thus forming a slender longitudinal.vein parallel to the main veins. By this means there arose an apparent prolongation of $S c$ beyond the nodus, eomparable with a similar formation in the recent genera Telephlebia (fig. 19D) and Staurophlebia, but more extensive. The Aeschnidiinae seem to have died out in Cretaeeous times; unless, indeed, the reeent Chlorogomphus (fig. 119) be a elose ally or a deseendant of them.

Fig. 163. Wings of Aeschnidium densum Hagen ($\times 1 \cdot 3$), Upper Jurassic,
Solenhofen. From Handlirsch, after Deichinüler.
There are two outstanding features of the Solenhofen beds. These are, firstly, the extreme fineness of the grain of the stone, and, seeondly, the great searcity of fossils. With regard to the first, the Solenhofen slate was undoubtedly formed from a very fine sediment deposited in shallow marine bays and inlets, and derived from the adjaeent land. In sueh plaees, Crustacea, Fishes and Reptiles lived together, and their remains are beautifully preserved for us in the fine-grained slates. Inseets do not strietly represent a part of the true fauna of these bays. But a number of inseets, ineluding Dragonflies, were earried thither, probably by floods, from the neighbouring streams. Henee their remains are mingled with those of the true fauna. With regard to the seeond feature,-the paueity of fossils-it must be clearly grasped
that these beds are in reality exeeedingly poor in speeimens. It would be impossible for anyone, visiting the quarries, to pick up more than one or two fossils, even though he searched assiduously for days. It is only hecause of the eommereial value of the slate, which is in areat demand by lithographers, and the eonsequent opening up of immense quarries extending for many miles, from which millions of tons of stone have been stripped, that we can reckon the total of Solenhofen fossils as a great one, and, in the ease of the Odonata, exeeeding in number and variety the total from any other beds known to us. Every fossil has been earefully preserved by the workmen, who obtain high priees for them, chiefly beeause of the exquisite outline of the impressions in the fine-grained slate.

The eolonr of the stone is for the most part pale oehreous, and so finely grained as to appear artifieially smoothed. At first sight, one of the Solenhofen Dragonflies might well be taken for a "fake," so exquisitely is the outline of body and wing preserved. It is only when one eomes to study the details of venation that the disadvantages of this fine grain beeome obvious, many of the finer cross-veins being found to be almost or quite obliterated. This aletracts mueh from the value of the fossils for detailed study. Their charm lies ehiefly in the perfeetion of outline and of the main venational plan.

In concluding this aeeount of Solenhofen, it may be remarked that we cannot expeet these beds to yield mueh further information in the future. They have been very extensively worked, and it seems most mikely that any more new forms will be found. We may, however, still hope for the discovery of better preserved specimens of some of the more interesting genera, from whieh to gain further information of their finer venational eharaeters.

C. The Crilaccous Dragonflies.

The only Cretaeeous fossil Dragonfly known is Aeschnidium flindersiense Woodward. It was found, in company with the fresli-water bivalve Aucella, in the ehoeolate-eoloured limestone of the Flinders River beds in Queensland. It shews us that the Aesclemiliinue were onee widely spread, and perhaps lingered on in Australia after their extinction elsewhere.

The Tertiary Record.

This, as might be expeeted, is fairly extensive. Hossil Dragonflies are known from the following beds:

In the Eoeene, the Monte Bolca beds of Italy, and the Green River beds of Wyoming, U.S.A. In the Oligoeene, the beds of Roan Mountain, Colorado, U.S.A. (where the first fossil Corduline, Stenogomphus carletoni Seudder, was found), from Sieblos in Bavaria, Sehlossnitz in Sehleswig, Covent and Aix in France, and in Baltie amber. In the Mioeene, the Radoboj beds, the beds of Gurnet Bay, Isle of Wight, of Falkenau in Bavaria, of Florissant in Colorado, and of Oeningen in Switzerland. It is in the two latter beds only that Odonata oeeur at all abundantly. Henee we may profitably eonfine our attention to them alone, in this ehapter.

A. The Florissant Beds.

The ehief importanee of Florissant lies in the interesting evidenee whieh it affords us of the true deseent of the Agrionilue. The deposit is only a small one, of Mioeene Age and laenstrine origin. It is situated a few miles west of Pike's Peak, in Central Colorado. Its present altitude is about 8000 feet. The lake was about fourteen miles long, but narrow. Numerous volcanoess existed in the neighbourhood. The deposit was formed of fime voleanie dust, which was either washed down or fell into the lake, until it was finally silted up. Insect remains are numerons, in conjunetion with the leaves of many interesting plants, and the skeletons of fresh-water fishes. Probably most of the inscets were killed during eruptions, and were then washed down into the lake by storms and floods. Thus they beeame buried in the silt, whieh has now beeome a fine-grained soft shale of a greyish or buff colour.

The flora of Florissant was of a warm temperate type. Palmetta and Sequoia grew side by side with poplars and pines, while many well-known Nearetie shrubs and plants seem to have been eommon. Coekerell [45] elaims that the Proteaceae were represented there. But his figures of Lomatia leaves are quite uneonvineing to anyone who knows the Australian flora. As regards the Inseeta, the most abundant Order was the Hymenoptera, partieularly bees and ants.

Many beetles and flies oceur; also the larvae of Pleetoptera, Chironomus and other aquatic insects. Dragonflies are not common, and not all of them well-preserved.

The question of altitude is a very interesting one. At the present day, no Libellulinae, Gomphince or Calopterygidae reaeh a high elevation in a elimate like that whieh Florissant possessed. A typieal high-altitude Odonate fauna would eonsist of Corduliinue, Aeschninae and Agrionidac. The two latter groups only have so far been found at Florissant. We may therefore eonelude that the lake lay at a eonsiderable altitude in Mioeene times, even as its remains do to-day.

The Odonata of Florissant have been ehiefly eolleeted and deseribed by Scudder [148, 140] and Coekerell [43-47]. The Aeschninue all appear to belong to the older genera of the tribe Aeschnini, sueh as Oplonaeschna, having an unbranehed $R s$ and a long pterostigma.

Fig. 164. Fore-wing of Phenacolestes mirandus Seudder ($\times 4$), Miocene, Florissint. Original restomation from mady comphete wings figured by Calvert.

The Agrionitue are of greater interest, sinee it is here that we lind positive evidence of the former existence of a stage in the evolution of that family, in which the reduetion of the prenodal area was still incomplete, and the number of antenodals still greater than two. Here we refer partieularly to the beantiful and interesting genus Phenacolestes (fig. 164), of which two species, P. mirandus Sendder, and P. parallelus Cockerell, have been found, both in a very good state of preservation. One specimen of the latter is almost eomplete, and lies with wings outspread. This suggests that Phenacolestes used to rest, with outspread wings-a habit still preserved in the allied Australian genera Argiolestes and Podopteryx, but long since lost in the great majority of Agrionilae. The venation is typieally Megapodagrionine, exeept for the extra antenodals, and the greater distanee of the nodus
from the wing-base. The Neotropieal genus Thaumatoneura is another Megapodagrionine remnant whieh has stopped at about the stage exhibited by Phenacolestes in the Mioeene; but it is not so elosely related to the latter as are some existing genera with only two antenodals. Calvert [33] has reeently disenssed Phenacolestes very fully in an exeellent paper, to which the reader is referred for further information.

Cockerell [44] plaeed Dysagrion, from the Oligoeene of the Green River beds, together with Phenacolestes, in a new subfamily Dysagrioninae. It is elear that this subfamily eannot stand, but must be merged in the Megapodagrioninae. The restored wing of Phenacolestes makes this quite evident.

Another interesting Agrionil, with two antenodals, and a general elose resemblanee to Argia, was deseribed by Seudder as Trichocnemis aliena. The generie plaeing is here evidently wrong. An Agrionid larva with eaudal gills eomplete has also been found. Seudder deseribed it as Agrion telluris. But the remarkable banded pattern of the legs is very marked in the Megapodagrioninae, to whieh subfamily this larva probably belonged.

B. The Oeningen Beds.

The Oeningen beds are situated in the Rhine Valley, between the towns of Constance and Schaflhausen in Switzerland. They eonsist of a series of marls, sandstones and limestones, some being marine and some fresh-water. Beds of brown coal are interpolated here and there. It is the uppermost strata whieh eontain the inseets, in eompany with the remains of fresh-water fishes, a few Crustaeea, reptiles, birds and mammals, a number of Araehnida, the very eommon bivalve Anodonta, and an abundant flora shewing distinet Nearetie affinities. The eomplete formation eovers the whole of the flat lands of Switzerland, some 150 square miles, and is of eonsiderable thiekness. The uppermost strata are known as the Upper Fresh-water Molasse, and are of late or Upper Miocene age.

More than three hundred speeies of inseets are known from these beds, whieh have evidently been formed by slow aeenmulation of sediments in a lake fed by springs of water strongly impregnated
with earbonate of lime. The region was voleanie; hot springs and geysers probably oceurred. Thus we have at onee a eomparison and a eontrast with Florissant. For, on the one hand, the general eonditions were somewhat similar; but, on the other hand, the altitude was very much less. In a low-level lake at the present day, we should expect to find an Olonate fanna ehiefly eonsisting of Libellulinae and Agrionidae, with some Aeschninae, while a few Calopterygidae inight visit the lake, though breeding in neighbouring rivers. This is just the kind of fauna revealed to us by the Oeningen beds.

A very extraordinary eireumstanee is the oceurrenee at Oeningen of a very large number of Libellulid larvae, while the imagines are mueh less eommon. In a thin stratum from one of the quarries, larvae in all stages of growth were found jumbled together in perfect swarms. Some had the labial mask projeeting as if in the act of striking their prey. The only possible explanation of this phenomenon seems to be that, in the spring of one year, before many of the imagines were on the wing, a sudden eatastrophe overtook the lake-bed. Through volcanic agencies, either by an eruption, or a sudden uprush of hot water, or a burst of poisonous gases, these larvae met a sudden and violent end, and died in their natural positions ${ }^{1}$.

The Oeningen speeimens are not well preserved, the rock in which they are enelosed being rather hard and brittle, and cleaving very unevenly. In such a ease, speeifie and even generie determinations are not to be absolutely relied upon. The famna seems, however, to have been undoubtedly elosely allied to that of Holaretiea as we know it at the present day.

General Conclusions.

The Coekroaches are the only group of insects in whieh the geologieal record is so eomplete that a fairly aceurate phylogenetie tree ean be eonstructed. The reeord of the Odonata, as inseet reeords go, must be reekoncd a rieh and valuable one. Moreover, there are hopes that more careful working of some of the lesser known beds, and perhaps also the diseovery of new ones, may yet fill up the wide and lamentable gaps to whieh we have at

[^11]present to confess. I would here refer to two disturbing questions that inevitably faee us. Firstly, what was the true relationship between the Protodonata, as we take farewell of them in the Permian, and the abundant and varied Mesozoie Odonate fauna whieh we meet with in the Lias? Somewhere between these two points, in late Permian times may-be, or in the Triassie, the "old order" ehanged, "yielding plaee to new." To-day the veil is not yet fully lifted, and we ean only partly grasp the nature of the profound ehanges by whieh the beautiful Odonate wing, with its nodus, its pterostigma, and, in the Anisoptera, its intricate triangle and radial-seetor formations, eame into being. For European workers the problem is not to be solved, sinee the Permian and Trias in that region offer little seope for sueh diseoveries. We may turn with some hope to the rieh eoal-measures of New South Wales, and to the Mesozoie shales and later coalmeasures overlying them in that State and in Queensland. There, bearing in mind that, all along, Australia has probably lagged somewhat behind Palacaretie in the types of her insect fauna, we may still hope to find the solution of this interesting problem.

Sceondly y_{k} what is the history of the Libellulinue, that faseinating dominant group of to-day? Its origin is lost in obseurity. Neither palaeontology, ontogeny, nor eomparative morphology has so far been able to enlighten us. The absenee of Libellutinue from Solenhofen, and again from Forissant, may possibly be only due to the nature of these deposits. We need to discover low-lecel lacustrine deposits for the solution of this problem. We know only of a single gencralized species of Corduline from the Oligocene. On the whole, it seems likely that the Libellulinae are a later Tertiary offshoot of an older Corduline stem. They may have arisen in Oligocene or early Mioeene times, spread and inereased with great rapidity, and thus quiekly beeome dominant over the older groups of Anisoptera.

On the other hand, let us look at the positive results of our reeord. It tells us for eertain that the Gomphinae, Petalurinae, Cordulegastrinae and Epallaginae were well established in Jurassic times, and differed little from these groups as we know them to-day, exeept in a tendeney to the possession of useless exeess eross-veins. Both ontogeny and eomparative morphology agree with the

Fig. 165. Phylogenetic diagram of the Odonata, from Carboniferous to recent times. Original.
geologieal reeord in plaeing these groups as the most arehaie of present-day Odonata. So that here, at any rate, we are on safe ground.

Again, the value of the Florissant beds for us lies in their undoubted demonstration of the deseent of the Agrionidue from more eomplexly veined forms, with a larger prenodal area and less petiolation of the wing-base. As our studies in the ontogeny and morphology of this family point with ever-inereasing eertainty in the same direetion, we may dismiss for ever the old iden that a simple venation was neeessarily archaie. We shall thus learn to see, in the Agrionidae, the highly speeialized and excessively redueed deseendants of Calopterygid-like aneestors, whieh-though by the very opposite means, it is true-have attained to a suceess only eomparable with that of the Libellulinae of to-day, and which far outnumber all other existing families.

The attaehed phylogenetie diagrarn (fig. 165) is an attempt to reeonstruet the phylogeny of the Odonata from the available evidenee. A dolled line indicates that there is no divect evidenee for the supposed line of deseent. Where definite evidenee is to hand, the line of deseent is represented by a comtinuous black line, whose thiekness is made to vary somewhat in proportion to the relative abundanee of speeies in eaeh group. Thus, at the present day, the Libellulinae and Agrioninae are the two dominant groups, and lie at the two opposite extremes of menogenetic and asthenogenetie speeialization respeetively. Hence, in the diagram, they not only have the thiekest lines of deseent, but are placed farthest apart.

Fig 1.

Fig. 2.
Fig. 1. A mountain swamp near Moss Vale, N.S.W ; elevation 2000 ft . Typical dragonlly fauna: Petalura, Synthemis, Nannophya, Argiolestes. The white-
trunked trees in the back trunked trees in the background are tea-trees (Melaleuca) growing on the
edge of the swamp. Fig. 2. A rapid mountain

2800 ft . Typical dragonfly faunat: Austrofomplus Mts, N.S.W.; elevation 2800 ft . Typical dragonlty fauna: Austrojomphus, Austropetalia, AustroTho tree-ferns belong to the genera Dieksonia and Todera, Syntestes, Argiolestes.

CHAPTER XVII

BIONOMICS, ETC

In this chapter I have eolleeted together not only those facts which are strietly classed as bionomical, but also others which, as they fail to fit in anywhere else, may perhaps be permitted to be included here. The resnlt forms a heterogencous mass of facts which will, I trust, be found of eonsiderable interest to the student of Odonata.

Habits and Flight.

Although Dragonflies pass their early stages in fresh-water, yet the imagines are by no means confined to the same neighbourhood. It may be said of the females of almost all groups that they quiekly remove themselves to cover, and seldom appear flying upon the water except when pairing or ovipositing. A eollector who eonfines himself solely to catching the Dragonflies which are to be seen upon the ponds and rivers will most certainly return home with a very large majority of males. The only exeeption to this rule is the Aeschninue, in whieh both sexes hawk about with equal vigour. Owing to the superior speed of the males, it is quite usual for more females to be captured. He who would add good series of females of the other groups to his eollection must seareh carefully in out-of-the-way places, elearings in the forest, paths through long grass, low bushes and hedges, and even railway euttings.

Many groups have their home in the forest. This applies to the great majority of the Gomphinae, some of which disappear into the forest immediately after emergence, and are seldom or never seen on the wing. The Calopterygidue which have irideseent but uncoloured wings, in the Oriental region, live in the forest
T. 1,.-F.
and jungle, while those with brilliantly eoloured wings fly up and down the rivers.

Most of the Lestidae and Agrionidae eongregate close to the banks of rivers, lakes or ponds. They tend to form "colonies"; i.e. a speeies may be very abundant on one pond, or along a certain streteh of river, but absent from another near by. Many of these eolonies may be due to the phenomenal suecess of the progeny of a single pair, or of a few pairs, whieh visited the loeality for ovipositing in a previous year. Besides these brightly eoloured little gems, the most sun-loving of all the Dragonflies are the Libellulidae and the genus Anax.

The differences in flight are very great, both in style and in speed. The Zygoptera on the whole use their wings in the manner known as "seulling," their passage over the water elose to the surfaee no doubt suggesting this metaphor. Amongst the Aeschnidae in general, a "darting" method of flight is very evident, the inseet progressing by a series of jerks. This is varied, in the larger Aeschninae, by "hawking," a term whieh indicates a strong steady flight up and down some particular "beat," with a view to driving off all other intruders, and seeuring all the food to be found. In the Libellulidae, we miss the jerking movement as well as the power of the Aeschnine-flight, whieh is, in most - eases, replaced by a "skimming" or "soaring" mode of flight. The Trameini, whieh have the broadest hind-wings of all, float airily about with very little effort. Some of the smaller Libellulidue develop a great power of "dodging." The Sympetrini foil attempts at eapture by short darts forward, sideways, or even backwards behind one's net. Cordulephya and the Tetrathemini perform zigzag spirals up into the air in the most tantalizing manner. For perfeetion of evolutions during flight, the Eucorluliini must be given first place. Many of these can fly baekwards for short distanees!

As regards speed, many Dragonflies are notoriously swift. Estimates of the speed of a small object are very apt to go astray. Of the genera known to me, Macromia and Austrophlebia are by far the swiftest on the wing. As the latter flies regularly up and down small mountain streams, I had an opportunity once of timing it over a measured streteh of between eighty and ninety
yards. This distanee was covered in three seeonds; so that this Dagonfly can fly at the rate of nearly sixty miles per hour! 1 doubt if any greater speed than this oceurs amongst Odonata.

Resting-Positions (fig. 166).

The resting-positions of Dragonflies are well worth studying and recording. Ability to eseape from an enemy depends not only on the speed of flight, but also on the method and quiekness of the "takc-off" from rest. Most Zygoptera ehoose their resting-position for conealment. When danger threatens, they are as likely to "orientate" themselves, by moving round the

 litue. © Ciomphimae. E. Cordulephya. F. Diphlebin and Aryiolestes. © Lestes, II. Agriomidae. Orignal.
reed-stem to the side away from the approaehing enemy, as they are to fly ofl. Diqhlebin and Argiolestes, however, resemble the (iomphimae in their method of rest. They sit on rocks, sand or twigs, with wings horizontally poised for flight. From sueh a position they move off very rapidly. The Aeschninae alone, of all the groups, regularly adopt a "hanging" position, which is alvantageons for concealment, but undoubtedly unsuited for a quick take-ofl. In the Libellatinae, there is a similar habit of ust, on the whole. to that of the Gomphinae, but with a tendency
to depress the wings. Many of the smaller forms are very quick "off the mark," but the larger Trameini are very clumsy and easily eaptured. The most diffieult genus to eapture, known to me, is Aethriamanta, whieh is always a few feet up in the air (when one strikes at it) above the position one believed it to oeeupy! Cordulephya rests on roeks or tree-trunks with wings closed; but it is very quick at the take-off, and not easy to catch.

The question of protective eolouring need not be gone into here; the reader is referred to ehapter xinl, from which he can draw his own eonelusions. The bright red tip developed on the abdomen of eertain very small Libellulinae (Plate I, fig. 2) gives these inseets a vieious and wasp-like appearanee, but is not a case of true mimiery, sinee no true wasps oceurring with them have a similar eoloration.

Size (Plate I).

No Dragonfly at present existing ean eompare with the immense Meganeura monyi of the Upper Carboniferous, whose expanse of wing was somewhere about twenty-seven inehes. The Liassic and Jurassic Dragonflies were not very markedly larger than those of to-day, exeept perhaps in the average size of the Zygoptera. This latter suborder has undergone, on the whole, a progressive reduetion in size and wing-venation, eulminating in the smallest known forms of to-day. On the other hand, the Pseulostigmatinue have all the marks of a hypertrophied group, and may be rightly considered to be now mueh larger than the more Platyenemine-like ancestors from whieh they probably sprang.

As size eannot be measured by any single eharaeter, I have seleeted three points on which we may judge the size of a Dragonfly. These are (i) length of abdomen, (ii) expanse of wings, and (iii) robustness.
(i) Length of abdomen. There is nothing to approach the Pseudostigmatinae (PI. I, fig. 8) in this, but the abdomen in this group is excessively slender. The longest abdomens in robust speeies are found in Petalura and Tetracanthagynal. The shortest
${ }^{1}$ Dr F. F. Laidlaw (in litt.) has recently informed mo of the discovery in Borneo of a species of this genus exceeding in size any Dragonfly yet deseribed. I have, however, no details concerning this.
abdomens in slender species oecur in the genus Agriocnemis; in robust species, Nannophya (Pl. I, fig. 2).
(ii) Expanse of wing. We may judge of this by measuring the hind-wing. Here again the long slender wings of the Pseudostigmatinue are easily first (Pl. I, fig. 8). In the robust species the same two genera as above lead the way. For the small species, the rather long-bodied Hemiphlebia vies with Agriocnemis (PI. I, fig. 9) in shortness of wing.
(iii) Robustness. For general robustness of build, but especially for the great thiekness and strength of its wing-veins, Petalura stands unrivalled. For exeessive slenderness of build, one might single out perhaps Aciagrion, Protoneura and Caconeura as the slenderest amongst a large number of delieate species.

These results are shewn in the following table:

Species	Length of abdomen in mm .	Length of hind-wing in mm.	Breadth of abdomen in middle of body	Remarks
Mecistognster lucretia Drury		$\begin{aligned} & 8.59-65, \\ & \hline \quad 59-85 \end{aligned}$	-	The longest abcomen known
	$0_{i}^{996-102,}$		-	The femule has the longest wing known
Pethluri ingentissima 'Tillyard	\% 99.9894	371, 770	-	The most robust species known
	Ot 80, ¢ 70	\$ 75, 980		
T'etractonthrignat plagiatu				
Aciayriom fruyilis Tillyara	-	-	${ }_{\text {o }} 0.15 \mathrm{~mm}$.	'The slenderest species
Hemimhtelsin utirratilis.Selys	\% 19-23	す105-12		
Agriocemisis hymeanthus 'Tillyard	d) $10-18$	¢ 10-10-5		
Agriornemis rubricouda 'tillyard	${ }_{3} 16,17$	$8^{8} 9-9.5$		The smallest of

Courtship.

A few interesting observations on this subjeet are available. In the ease of Rhinocypha fenestrella, the mature male has the surface of the tibiae whitened. These it displays to the female, while dancing in the air before her [82]. The male of Calopteryx maculatu possesses a shining white ventral spot at the tip of its abdomen, whieh it displays by eurving the abdomen upward and forward, the fore-wings being held motionless, the hind-wings lluttering rapidly [as]. A more prolonged courtship takes place in
the ease of the little Hemiphlebia mirabilis. This metallie green Dragonfly is almost invisible on green reed-stems, exeept for its long ribbon-like white appendages (fig. 14 I). These are displayed as a sign to the female, by raising the abdomen and bending it slightly sideways, while valking up the reed-stem. The female replies by moving the whitened end of her abdomen from side to side in a peeuliar manner. Finally, the little ereatures fly out from the reeds, and engage in a miniature "pas de deux" before pairing [173].

Comparative Abundance of the Sexes.

The eauses of the eapture of more males than females by most collectors have been already indicated (p. 321). It is quite possible to reverse the proportion by ehoosing the right locality. Thus, an afternoon's eolleeting along a deep railway-entting in the tropies (ineluding the mouth of a tumnel, in whieh I seeured several females of Gynacantha) yielded me over sixty females of various speeies, but only two or three males. An even more extraordinary result than this was obtained by working three or four small streams in dense palm jungle in Queensland. Argiolestes amabilis was to be seen on every roek. In a week I had taken 195 females, but only a single male! Though I sought for the males high and low, they were not to be found. Probably they lived in the sunlight, on the tops of the giant trees, more than a hundred feet above my head.

As the result of breeding out many species during the last ten years, I find that two conelusions may safely be drawn.
(i) The number of males and females is approximately equal. My reeords shew about 5 per eent. excess of females. The most vigorous larvae were nearly always females.
(ii) The females emerge, on the average, a few days before the males. They should therefore be sought for early in the season, before pairing has begun.

Habits of the Larvae.

The habits of the larvae are, if anything, more varied than those of the imagines. A general résumé of this question has already been given, as far as the correlation between habitat and
eolour-pattern goes, on p. 255. We may offer on p. 328 an attempt at a elassification of the different habitats of Dragonfly larvae. In this table, the letter A indieates the commonest habitat for the group, while 13, C, I) indicate less usual habitats, in descending order.

As the table is based chiefly on observations made on Australian species, it is to be hoped that observers in other regions will eompare it with the case of their loeal fauna.

For the question of the mode of progression and method of stalking the prey, the reader is referred to the aeeount of the rectal and eandal gills in chap. Ix, and to the aecount of the labial mask in ehap. iv.

The larvae of Dragonflies are not without means of defence against their enemies, though they rely ehiefly on coneealment, both for avoiding their enemies and for the eapture of their prey. If a leg or a eaudal gill be seized, the breaking-joint at the base of the organ enables it to be east off at onee. The sharp dorsal and lateral spines on some larvae, and the aeutely pointed anal pyramid in the Brachytronini, may be used as a means of defence if the larva is seized. These same spines are probably of great use to the larvae in the ease of a sudden rush of water during flood-time.

Food.

Litule definite is known as to the food of Dragonflies, beyond the fact that it is captured on the wing, and eonsists exclusively of live insects. Poulton [ter] and Campion [35] have collected together all the definite reeords, whieh inelude representatives of the Plectoptera, 'Trichoptera, Lepidoptera, Hymenoptera, Coleoptera and Diptera, besides, of course, smaller Odonata. As definite observations eoneerning gnats and mosquitoes being captured for food seem to be few or laeking, I may add here that I have repeatedly seen Aeschninae feeding on these pestilent inseets in the late afternoon. A speeimen of Telephlebia godeffroyi was onee observed llying round and round a small bush about 7 p.m., when the mosquitoes were particularly troublesome. After ten minutes, it was captured. I found its mouth so full of mosquitoes that it was unable to shut it. There must have been over a hundred,

all tightly paeked into a black mass. I have frequently seen Aeschna brevistyla take gnats and mosquitoes in dozens, while on the wing. There can be no doubt that those Dragonflies which fly late in the day are of great value in checking the spread of the various objectionable Culicidae that are on the wing from just before sundown.

The largest Dragonfly that I have ever seen eaptured was Synlestes weyersi, seized by Aeschna brevistyla while on the wing. The wings were quiekly bitten off, and fluttered to the ground. The whole of the long body was ehewed up in a few minutes, but the thorax was mostly disearded.

As regards Dragonfly larvae, they seem to relish almost anything they ean eateh, but more partieularly smaller speeimens of their own or other species of Oclonata. When young, they feed readily on Protozoa. A little later, they are expert at eatehing water-fleas and other small Cristacea. Later on, I find they prefer the larvae of May-flies or mosquitoes to anything else. As an experiment, I onee kept a larva of Synthemis macrosligma without food for a week. I then offered it mosquito larvae in large numbers. It used its nask with sueh vigour that I eounted no less than sixty larvae swallowed within ten minutes. After that, nothing would tempt it. As regards the large Aeschnine larvae, I find that they will stalk Agrionid or Lestid larvae with persisteney and comning. They will also stalk one another, and woe be to the one that is in front! They also attack tadpoles and even small fish, but always refuse to eat more than a small portion of them.

Enemies.

In the imaginal state, the Dragonfly has a number of enemies, most of which ean, however, only eompass his destruction if they eome upon lim just after metamorphosis, before his wings are ready for flight. Amongst the plants, the giant sun-dew (Diosera binata) takes heavy toll of those Australian Zygoptera whieh frequent swamps and marshes (fig. 167). Spiders prey upon Dragonflies, both by capturing them in their webs, and by pouncing upon them at metamorphosis [196]. Gomphinae appear particularly liable to attack at this latter time, sinee they do not
usually leave the ground. Lizards and snakes are, eurionsly enongh, expert at catehing Dragonflies. I onee saw Diphlebia lestoides alight upon the tail of a lizard whieh was sunning itself on a rock. The lizard eaught it, by a stroke as quiek as lightning! Birds frequently attaek Dragonflies; but, as far as my observations go, seldom sueeced in eatehing them. The kingfishers are an execption, as they are wonderfully expert at eatehing Dragonflies skimming close to the water. The most deadly enemy of all is the trout. In Tasmania, the introduetion of the English trout has redueed the-Odonate fauna of the rivers to a minimum. A $2-\mathrm{lb}$. trout whieh I eaught on the Maequarie River in Tasmania had in its stomaeh the undigesteck heads of thirty-five Dragonflies, twenty-eight belonging to the rather rare species Procordulia jacksoniensis. There were also the remains of one beetle.

Fig. 167. Austrolestes amatis Ramb., 8, :und a number of smaller insects, captured by Drosera binuta Lalbill, (\times) Original drawing by P. Tillyard.

The trout is also an enemy of the larvae, especially of those Libellulidae which live on the bottom of slowly moving rivers. The voraeious larva of the beetle Dytiscus frequently attacks Dragonfly larvae. But the latter has no enemy to eompare with his own near relatives, if they happen to be of a somewhat larger size.

Parasites (figs. 168, 169).

These may be divided into true parasites and false parasites. Of the former, the best known are the tiny Hymenoptera of the families Tetragrammidae and Mymaridae, or "fairy flies." Three speeies (Anagrus incarnatus, Polynema ovulorum and P. natans) have been deseribed as laying their eggs within the eggs of Calopteryx. The grub hatehes out and feeds on the contents
of the Dragonfly's egg, which it devours completely in a few days. It then pupates, and emerges as an imago ten or twelve days later. The female uses her wings for swimming, and by this means seeks out the eggs of Calopteryx, which are laid in the leaves of water-lilies [an].

I have found the epithelium of the mid-gut in the larva of Ischnura heterostictl almost eompletely destroyed by a large undescribed species of Gregarine Sporozoan (fig. 169), four or five of which eompletely filled the lumen of the gut. The larva can live for days with this parasite inside it, but gradually beeomes weak and sickly-looking, owing to its inability to digest any food.

Hig. Wis. Polymant nataus Lnbbock. , Bridain ($\times \geq 0$). Aftur Miall, from lubbock.

Fig. 160. T.s. throurh mid-gut of larvn of /seh mure thetrasticha Burn., conaffixed to its wall ($\times 75$). Original.

De Selys found a large Filario in the abdomen of Sympetrum flaveolum.

The imagines do not, however, appear to suffer much from true parasites. Dragonflies whose larvae live in still water (Libellulinue, Ayrioninae) are frequently found eovered with a speeies of small red mite (family IIydrachnidae). These are false parasites, usually found clinging to the underside of the thorax, the bases of the wings, abdomen and legs of males and females alike. All the mites on the Dragonfly are young ones. I have reeently succeeded in finding the mature female of this speeies, whieh is a rather large animal ($3-4 \mathrm{~mm}$. diameter) of a brilliant earmine colour.

It seems probable that it attacks the Dragonfly at metamorphosis, plaeing either eggs or viviparous young in the positions already deseribed. The young mites cling to the Dragonfly without doing it any harm, and are earried by it to other ponds or lagoons, where some of them at any rate drop off. Thus the Dragonfly is used as a means of dispersal by this peeuliar Araehnid [34].

The Confervoid Alga Oedogonium is very abundant in stagnant water or slowly-running streams. I have found it growing, not only on roeks, wood, and even stones and soil, but also on various animals whieh live in such loealities, sueh as aquatie Hemiptera, and also the larva of Aeschna brevistyla. As the latter takes two years to mature, it usually retires for the winter, and becomes very inactive. In the early spring (Aug.-Sept.) this larva ean be frequently taken around Sydney with a thiek growth of Oedogonium upon it. There is no question of parasitism here. I found, by means of sections, that the Oelogonium does not penetrate the eutiele of the larva, but simply grows on it as it grows on everything else in sueh places. On one larva of Aeschna there were no less than three speejes of Oelogonium, fifteen speeies, of Diatoms, and a large number of Voricella. The exereise of a little imagination ean, of eourse, claborate a theory of symbiosis in a ease like this. But, as this method of ereeting a seientifie mountain out of a small natural mole-hill has already been used to perfeetion by Kammerer [78], I shall content myself with stating my opinion that such methods are not to be eonsidered seientific. Kammerer's Aeschna larvae eould not avoid becoming overgrown with Oelogonium in the filthy surroundings in whieh he found them. But to give a list of "advantages," both on the side of the alga and on the side of the larva, is quite another question, and one that can be safely left for common-sense to deeide.

Larvae in Brackish Water.

Dragonflies are known to breed in eoastal lagoons, where the water is braekish. Osburn [110], by a series of experiments, shewed that the larvae could withstand a salinity up to a density of 1.01 (sea-water 1-026). At that point the larvae could live, but coukl not undergo metamorphosis. At a density of 1.015 the larvae
suffered greatly, and soon died. The Dragonflies known to inhabit braekish water are (as might be expeeted) eertain speeies of Libelluhinae, Anax, and some Agrioninae; to which we may add, in Australia, a few species of Austrolestes.

Hibernation.

In Europe, only one small Dragonfly (Sympycna fusca) passes the winter in the imaginal state. On warm days it may come out and fly about, but it spends most of the time hiding away under dead leaves. In Sydney, where the winter is mild and short, both Diplacodes bipunctata and Austrolestes leda hibernate regularly through June, July and the early part of August. On sunny days in those months, I have oecasionally found them flying.

Migration.

As Dragonflies are frequently seen and even eaptured far from land, it has been assumed that the Odonata as a whole are readily dispersed, and overcome natural barriers with great ease. The evidence does not, however, warrant this. Dragonflies quickly take eover when bad weather is at hand, and are seldon likely to be caught in a storm or driven out to sea. The only species that are at all liable to spread are those with strong migratory instincts. Of these, Libelluln quadrimaculata is the most conspicuous example. Immense swarms of this speeies have been recorded in different parts of liurope on many oeeasions. These swarms sometimes pass out to sea, and may travel hundreds of miles. A few large Aeselminute sometimes aecompany them. In Australia, Hemicordulia tau oeeasionally swarms in like manner, and appears to travel a long distanee, though not yet reeorded at sea. It has, however, reeently eolonized Tasmania, aeross a strait two hundred miles wide! On the other hand, the strongflying and equally eommon Anax papuensis, has so far failed to do this. Puntala flavescens and some speejes of Tramea travel far and wide, and have overspread the whole of the Tropies. Apart from these few examples, the migratory instinet is not developed in Odonata. It may be safely stated that a very great majority of the Order never travel far from their favourite launts, and are as strongly "held" by natmal barriers as are many inseets of much weaker flight.

Drought.

It is a widespread belief that the appearance of a swarm of Dragonflies heralds a drought. There is some truth in this. Observations which I have made on the drying-up of water-holes in the Sydney distriet lead me to conelude that, of all the larger aquatie life in the pond, the Dragoufly larvae will last out longest. As the volume of water deereases, the amount of food to be obtained with ease increases, so that the larvae take toll of everything that eomes to hand. Thus, if they mature before the final drying-up of the pond, a huge swarm of Dragonflies will emerge, and preeede the worst part of the drought. The other side to the picture is not so likely to be notieed, but it is this:-In the spring of 1908 , the pond I was observing dried up early in September, whereas it usually lasted until Deeember or later. On the hot eaking mud of the pond, I eounted over three hundred nearly full-fed larvae of Anax papuensis. Every one of these perished. In a week or less, had the water held out, they would have appeared as a huge swarm of Dragonflies, "heralding" a drought that lasted for several months!

The larvae of eertain Dragonflies ean resist prolonged drought. In the ease of Synthemis [170] I have kept the larva in dry sand for three months. At the end of this period they were apparently dried up, and so light that, when placed in water, they floated! But they soon revived, and, after some struggling, forced their way to the bottom, where they at once burrowed in the usual way. Several of these were bred out later on. The larvae of Austrocordulia ean also resist drought, as probably also can those of many of the Sympetrini. But laek of water is fatal to most Zygoptera and Aeschninue. The peeuliar larva of Telephlebia has a slimy integument, and prefers to live out of the water rather than in it[178].

Economic Value of Dragonflies.

The Odonata appear to tonel the life and aetivitics of man only very lightly. Were they to disappear from the earth, most of us would probably not feel their loss in the slightest. On the other hand, there are so many injurious and obnoxious insects about us at every turn, that we may take a pleasure in contemplating the fact that the Dragonflies are a benefieent and not a maleficent
race. Apart from the single reeord of Anax larvae destroying the young fry in fish hatcheries, all the evidenee is in favour of them. We do not yet know the value of their serviees to us in the destruction of millions of other inseets, both larvae and imagines, in the areas whieh they frequent. I feel persuaded that this service is greater than it appears. Not only are the Dragonflies the most powerful determining factor in preserving the balanee of inseet life in ponds, rivers, lakes and their surroundings, but they do most eertainly make war upon the flies, mosquitoes and gnats whieh we all desire to see exterminated. I believe that a suceessful ehecking of the mosquito pest in the ornamental waters of parks and gardens could be readily obtained by the introduction of species whose larvae, as well as the imagines, would prey upon the nuisance. If a sneeessful planting of a eolony of Dragonflies in such a position were to be tried, the speeies selected might also be chosen for its eolouring, and thus add a new note of interest to the loeality. The glorious red Orhetrum villosoviltatum has now become well established in the Botanieal Gardens at Brisbane, and eertainly adds a vivid toueh of eolour to its lovely surroundings.

It is extraordinary how the idea that Dragonflies are harmful, and possess a powerful sting, continues to hold sway even amongst people who claim to be educated. 'The old proverb "Give a dog a bad name, and hang him" is partieularly applicable to this ease. If an insect is known to all the country-side as a "horse-stinger," how cin a mere scientist hope to eonvince them that it does not sting horses. In the course of my travels in Australia, I have collected evidence, on the solemn word of various settlers in Queensland, that the gigantie Petalura and Anax have not only done to death various horses and eows, but in one instance even attacked the farmer's wife! Fortunately the Dragonfly now forms one of the stock objeet-lessons in the Nature Study eurrieulum of the Queensland schools. So we may hope that this ignorance will soon be a thing of the past.

There is a record of Dragonflies being used as food by man. It is said that the inlabitants of eertain Malay Islands, where these insects are very numerous, smear long stieks with a kind of bird-lime. By deftly wielding these stieks, they capture a large number of Dragonflies, whieh are made into a kind of paste
for food. Neither this nor the loeust is ever likely to figure in the white man's menu.

The Dragonfly has uneonseiously rendered one very great serviee to mankind, by providing in itself the natural model for the modern aeroplane. As long ago as 1883, Amans [2] suggested that the Dragonfly would serve as a suitable model for a flying maehine, to be propelled by eleetrieity. The idea took root in the fertile minds of his eountrymen, and Franee has ever sinee led the way in this new braneh of seience. One of the first Freneh monoplanes to be manufactured on a large seale was called the "Demoiselle," thus eommemorating Amans' original idea. Later models, if anything, approach the natural model even more eompletely than the earlier ones. A study of the different effeets on flight of angulated and rounded hind-wings, as well as of the arrangements of braees and cross-pieees suggested by various parts of the Dragonfly's wing, might well lead to further improvements in our models, and might even suggest a solution for "hovering" on simpler lines than anything yet attained.

Folk-Lore.
I have been able to gather very little on this interesting topic. In North Queensland there is a very remarkable Dragonfly, Podopteryx roseonotata (Plate IV, fig. 1) of a rich blaek and pink colour, which sits about with outspread wings in the dense tropical jungle. The aboriginals know this Dragonfly well, and call it "Wongera-wongera." They seem to regard it with some reverence, but I have not definitely aseertained that it figures in their system of totemism.

Folk-lore has gathered around the Dragonfly in Japan, where the people all know these lovely inseets and are proud of them. It is said that this love of the Japanese for their Dragonfly fauna arose from the remark made by an Emperor who aseended Fujiyama. Viewing his kingdom spread out before him, with its widely indented coast-line, he is said to have compared it witl a gigantie Dragonfly with outspread, wings. The remark was, of course, taken up by the eourtiers, and the phrase "The Land of the Dragonfly" passed into current use. Representations of Dragonflies in art, and allusions to them in literature, are, I am told, very numerous in Japan.

Local Names.

The eommonest epithets for Dragonflies in English-speaking countries are "Horse-stingers," "Mosquito-hawks," "Devil's Darning-needles" and "Snake-doctors." The small Agrionidae are known as "Damsel-flies." In Victoria, the larvae of Hemicordulita are called "Mud-eyes" (an excellent deseription!) and are much sought after as bait for trout and pereh.

Foreign Names.

Country	Name	Country	Name
Frates	Demoiselle (maiden)	Russia	Strekoza
"	Libellule	Denmark	Guldsmed
Germany	Wassernympfe (water-nymph)	Holland	Juffer
"	Wasserjungfer (water-maiden)	Sweden	Trollslanda
	Libelle	Japan	Tonbo
Ataly	Cevettone		
"	Saeltal (arrow)		

The Name Libellula.
\therefore Whe origin of this name, seleeted by Linnaeus as the generic title for what is now the Order Odonata, appears to be somewhat obscure. We find in Littre the following guess: "Etym. On eroit que Libellale est um diminutil de libellas (petit livre), et que cette dénomination vient de ee que ees inseetes tiennent leurs ailes ethendues comme les fenillets d'un liore." Littré might have gone farther, and given the etymology as libellulus instead of libellus. For we find the double diminutive libellulus used in Martianus Capella (about 425 a.d.). Hence we have the following derivation ${ }^{1}$:

Lat. Liber, properly the bark of a tree (and henee "a book").
Diminutive Libellus, the inner bark of a tree. •
Double diminutive Libellulus (with same meaning as libellus).
Generie derivative Líbellula Linnaeus, a genus of Dragonflies.
Professor MaeCallum has, however, suggested that Linnaeus used the feminine termination as a diminutive from libella (a balance) on account of the way that these inseets poise their wings in flight or at rest.
${ }^{1}$ I have to thank Mr R. II. Bode, M. A., of Sydney Grammar School, for tracking down the etymology of this word.

CHAPTER XVIII

BRITISH SPECIES

The table of British Species given in this chapter is based mainly on a study of a large collection of British and Continental specimens received by exchange during the past ten years from many kind correspondents, and embracing specimens from almost every country in Europe. It is many years since I collected British Dragonflies in their native land. Some of the rarer species I have never seen alive. Information as to coloration, habits, larvae, etc., has been obtained from the excellent works of Lucas[88], Ris[133] and from numerous smaller publications. Lack of space forbids the complete description of any species here. Only those characters which I have found most reliable are included. To use the table, the student must first make himself thoroughly conversant with the classification in chap. xiv down to Tribes, as far as this comes within the purview of the British List; always remembering that the most important characters, without which the specific diagnosis may well go all awry, are therein to be found. The measurements which are given for every species seek to include the extremes of possible variation in size. In the case of closely related species, figures illustrate the most reliable points of difference. In Aeschna and Somutochlora, the form of the male appendages is a sure guide (figs. 170, 174); in Sympetrum the hamuli of the male (fig. 176) and the valvula vulvae of the female, though the latter cannot always be seen in dried specimens, unless a chitin preparation be made. Undoubtedly the most difficult genus is Agrion. Here the males may be reliably determined, preferably from newly caught specimens, by the colourpatterns of segments $1-3$ (iig. 179). Thise are, however, subject to individual variation within limits, so that a certain allowanee
should be made for possible changes in details. The females of Agrion are very difficult to separate. The best rule is always to try and capture males from the same spot; if possible, in coitu. Where two or more species of Agrion occur together (as on the Norfolk Broads) pairs in coitu should be taken. The student may then study them carefully until he is familiar with their facies. A reliable key can be constructed from a comparative study of the outlines of the prothorax in both sexes.

The classification of the larvae is a difficult matter, partly owing to the great similarity of the larvae in some genera (e.g. Sympetram, where even the expert is at a loss to find specific differences) and partly because many species are still not known for certain in their larval forms. The student is referred to figures of larval forms typical of the different genera. Having mastered these, he may then use the short descriptions given, which summarize the principal differences for the known larvae.
(N.B. All measurements are given in millimetres.)

$$
\begin{gathered}
\text { Suborder ANISOP'NERA (Characters, p. 259). } \\
\text { Family Aescunidae (Characters, p. 259). } \\
\text { Subfamily Gomphinae (Characters, p. 260). } \\
\text { Tribe Gomphini (Characters, p. 261). }
\end{gathered}
$$

Ginus I. Giomphus Leach (fig. 118). Coloration black and yellow; thorax with lorsal, antr-humeral and humeral back bands.
 Ublack. Occiput straight, yellow, with black hairs. Abd. with a min-dorsal yellow tine on 1-7; 8--9 considerably dilated. App. sup. short, blaek, suddenly pointed; inf. with divergent cornute branches. of abd 34-35, hw 31--32, pt 3. Stouter; whd. thicker, more cylindrical; yellow markings in general more evident. Very rare. Junc.

Subfamily Cordulegastrinae (Characters, p. 262).

(Gemus 11. Cordulegostor 1.each (fig. 12]). Robust Aeschma-like species. Colmation black ant ycllow; 9 with hard black ovipositor reaching beyond end of 10 (fig. 101).
2. \because. antulthus Latreille. ô ubl 55-58. hw $41-48, p t 4$, black; memb. whitish; 6 yrllowish in fromt. Themer with dree pairs of wide and one pair of marrow yellow bands. Abel. black with median murrow yellow bands
interrupted dorsally. App. sup. short, black, divergent, pointed; inf. truncated. ㅇ $a b d 58-62$, hw 46-50, pt 5. Closely resembles ó.

Fairly common. June-Aug.

Subfamily Aeschninae (Characters, p. 262).
 'Tribe Brachylronini (Characters, p. 264).

Genus III. Brachytron Evans (fig. 123). Rs symmetrically forked proximad to $p t$. Rspl and $M s p l$ only one cell-row below $R s$ and M_{4} respecetively. $P l$ very narrow. $A a$ of $h w$ angulated in δ. Eyes mecting only for a moderate distanee. Aurieles present in δ.
3. B. hafniense Miiller (= B. pratense Müller). of abd 40-41, hw, 35—31; $p t 4 \cdot 5$, yellowish brown; memb. small, white. Thorax and abd, hairy, dark brown with bands and spots of yellow, green or blue. App. sup. long, eurved; inf. short. ㅇ abd $38, h w 35$. Dorsal thoracie bands redueed to spots; other markings yellower. Local. July.

Tribe Aeschnini (Characters, p. 265).
Genus IV. Aeschna Fabr. (Plate II, fig. A). Seetors of arc. arising ne:u middle of arc.; $p l$ long, of moderate width. Rs unsymmetrieally forked elose to level of $p t$. Rspl and $M s p l$ curved, 3-4 cell-rows below $R s$ and M_{4} respectively at middle. $A a$ of $h w$ angulated in δ. Aurieles present in δ.

Fig. 170. Anal appendages of males of Aeschna, dorsal view. A. Ae. gramdis Linn n. Ae.junces Linn. c. Ae. conrulea Ström. D. Ae. mixta Latr. E. Ae. cyanea Müller. r. Ae. isosceles Müller. Original.
4. Ae. grandis Linn. ơ abd 55—57, hw 48-50, pt 3. Wings yellowish brown all over. Aa of $h w$ as in No. 5. biyes closely contiguous. From.s without a T-mark. Coloration brown, thorax with two pairs of lateral yellow stripes. Abd, constricted at 3 , with very small blue or yellowish spots. App.
 Abd. not constricted at 3, almost uniformly brown; apps. 3, leaf-likr. Fairly common; Southern. July-Sept.
5. Ae. juncea Linn. of ult 53-59, hw 43-48, pt 4. Wings liyaline, C yellowish. Aa of $h w 2$-celled (fig. 171 a). Hyes closely contigunas. Froms with a T-mark. Thorax with narrow dorsal and broader hateral ycllow bands.

Alml. much constricted at 3 ; lamge bhe and small yellow spots on all segments. Amp. smp. 1, imf: 3; shiped as in fig. 170 B .
 not constricted; blue replaced by green; " $/ p$, s. $: \cdot 5$, sleuler, leaf-like. Fairly common. dune Nepl.
(6. Ae. coerthen Ström. ($=$ Ae. borealis,

A.

B.

c.

Fig. 171. Anal angle of hind-wing of male in Aeschna. A. Ale. Müller. c. Ae. isosceles Müller. Original. pt 3-4. Wings hyaline, C yellow. $A a$ of hw as in No. $\overline{6}$. Wyes only meeting for a short distanec. Frons with a T-mark. Thorua: with narrow dorsal and lateral bhe stripes. Abil. much constricted at 3; 1-2 mostly blue, rest with numerous large blue spots. App. sup. 4, inf. 2, shaped as in lig. 170 c . 9 a abl $43-45$, $h w 38-40, p t 4$. Abd. not constrieted, spots smaller, some yellowish; apps. 4, leaf-like. Rare; Northern. June.
7. Ae. mixtu Latreille. of abd 44-45, hw 37-39, pi 3. Wings hyaline, O brown. Aa of $h w$ as in No. 8. Hyes closely contiguous. Frons with T-mark. Thorex with small dorsal yellow speeks and broad lateral yellow bands. Abul. slightly constricted at 3 ; fairly large blue spots on cach seg. App. sup. 4•2, ilf. $2 \cdot 5$, shaperl as in lig. 170 o . \& $a b d 44-40$, haw $38-40, p t 3 \cdot 5$. No dorsal speeks on thorax. Abd. not constricted, spots smaller, blue-green and yellow; "phs. S. slemder, Jeaf-like. Rawe; South-eastern. Aug.-Oet.
8. Ae. cymea Mäller. s abol 54-58, hwe 45-50, pi 2•5. Wings hyaline. A" of hw; ;-chlled (fig. 171 n), rardy 4-5-colled. Eyes mollerately contiguous. froms with T'merk. Thorex with harge oval yellowish-green dorsal marks and broad ydlow lateral bands. Alde. constricted at 3 , with fairly large blue

 colous as in ; "pps. 4.5, leaf-likn. Fiaily common; Southern. July-Oct.

1. Ac. isoseeles Möller (Ae. rujescems Vanderlinden). of ald 47-49, hur 41-42, pl 3. Base of hw deeply salfroned. $A a$ of $h w 3$ - 6 eells with large dark memb. (lig. 171 c). Eyes closely eontiguous. Frons without a T-mark. Thorax brown with yollow lateral lines, no dorsal markings. Abel. brown, scarcely eonstricted at 3, a large yellow triangle on 2 . App. sup. 5, inf. 2, shaped as in fig. 170 p . T abd $50-52, h w 41-42, p t 3 \cdot 5$. Slightly stouter than $\dot{3}$, closely similar; apps. 3-5, leaf-like. Rare; Fens and Norfolk Bronds. May---Jme.
(Genus V. Amax Lemelh (fig. 172). Upper sector of are arising close up to R, lower one at abont midalle of are. Rsph and M sph muel eurved, 5-7 cell-rows below R s and M_{4} respeetively at middle. $A a$ of $h w$ rounded in both sexes. Auricles absent.
2. A. imperator Leath ($=$ A. formosns Vanderlinken). of abd n5-56, hu' $46-47$, pt $4 \cdot 5$. Wings liyaline; hw with long narrow memb., whitish basally. biyes closely contiguons, blue. Thorax greenish, with dark lateral
lines. Abl. much swollen at 1-2, slightly constricted at 3, bright bhe with an irregular mid-dorsal black band. App. sup. 5 , thickened in middle, imer border curved, tips rounded; inf. $1 \cdot 5$, broad, truneated. q very similar to \hat{b}, but eyes and abd. greenish; apps. 5-5, leaf-like. Fairly common; Southern. May-Aug.

Fig. 172. Wings of Anax imperator Leach, of (Hw 46 mm.). Origimal.

Family Tambludamak (Chameters, p. 266).
Subfamily Corduliinae (Characters, p. 265).
Tribe Ilducortuliini (Characters, p. 267).
Genus VI. Oxygastra Selys (fig. 152). Fw with 2 rows of post-trigomal cells. Al without a toe. JIw with a weak st; 1 free in all wings.
11. O. curtisi Dale. of abd 36-38, hw 33-30, pt 2. Bases of wings slightly saffroned; C yellowish brown; memb. whitish. Eyes only slightly touehing. Colour metallic green; ald. slightly chbibed, with long lanceolate mid-dorsal yellow markings on $1-7$; 10 with a compressed yellow pice projecting between apps. App. sup. short, subcylindrical, hairy, divergent; iuf. blunt, slightly bifid. \quad o $a b d$ 33-36, $h w 32-34, p t 2 \cdot 5$. Wings clouded with yellow. Coloration as in δ; no projecting piece on 10; apps. short, conieal. Very rate; Southern. June-July.

Tribe Eucorduliini (Characters, p. 267).
Genus VII. Cordulia Leach (fig. 129). Fw with 2 rows of post-trigonal cells, followed later by 3 . No $s t$ in $h w$; t erossed in $\int w$, free in $h w ;$ memh, large. $A l$ with a distinct toe and a straight sole. App. inf. of σ forked.
12. C. aenea Linn. ơ ablul 33-36, hw 32-34, pt 3.2. Wings well-saffroned at buses. Colour metallic bronze-green; thorax covered with brownish down; notum reddish brown. Abd. strongly clubbed; without markings. App. sup. $2 \cdot 8$, blunt, divergent; inf. $1 \cdot 8$, very strongly bifurcated. \& similar to ó, but abd. broaler, not elubbed; apps. $2 \cdot 5$, leaf-like. Rare; Southern. May-July.

Genus VIII. Somatochtora Selys (fig. 173). Venation as in VII, but hw with a weak $s t$, and t either crossed or free. App. inf. of of simple.

13. S. metallica Vanderlinden. of abl 33-38, luw 33-37, pt 2-2.5. A tomeli of affroming at extreme bases of wings. Colour metallic bronze-green. Alor. much constricted at $3,1-3$ with small yellow spots. Apps. as in fig. 174 A . of abd
 Int with broal unconstricted abd.; apps. 4, slember, lameoolate. Very mare. July-Aug.
14. S. areliet Kethostext. o abd 3.1-35, hw 31-32, pr 2.斤. Wiags slightly salfroned at bases, and partly suffused with yollow near midalle. Coloration broue, eoppery, or even steel black; sides of thorax metallic green. Abd. much constricted at 3 ; $1-3$ with small yellow spots. Apps. as in fig. 17.1 m . $\frac{\text { q alnd }}{}$

A.

Fig. 174. Anal appendages of males of Somatochlora dorsal view. A. S. metallica Vand. B. S. arctic Zett. Original. $33-35$, $h w 30-32, p t 2 \cdot 5$. Similar to ó, but wings yellower; ald. less constricted, wider, almost black; apps. 3, slightly lanecolate. Rare; Northern. June-July.

Subfamily Libellulinae (Characters, p. 269).
Tribe Libellulini (Characters, p. 269).
Genus IX. Lihelhulu Limm. (fig. 131). Fw with about $12 A x$, the last complete. Sectors of arc. arising just separated; t erossed in both wings.

Wings eoloured, at least by a dark basal pateh on hw. Ahel. short, considerably widened and depressed. Lobe of prothorax small.
15. L. quadrimaculata Linn. of abd $28-29$, hw 35-36, pt 4. Wings with a yellowish-brown band along C, hroadest at base; a small dark pateh at nodus; a large triangular dark brown pateh at base of $h w$; tips of wings sometimes smoked; pattern variable. I'horax hairy, hrown, with latiral yellow bands edged with bhack. Abd. brown, shaded with black; lateral yellow spots on 3-8. Apm. sup. 4, pointed, inf. 2 triangular, tip slightly bifid. ㅇ abd 28-29, hw 33-30, pt 355. Similar to ${ }^{3}$, but abrl. broader; apps. 35, leaf-like. Common. Apr.-Sept.
16. L. fulva Müller (fig. 131). © abd 20-27, hw 33-34, pt 25. Wings hyaline exeept for a modium-sized triangular baek pateh at base of $h w$, and short brown lines in $c u$ of $f w$ and $s c$ of $h w$; tips sometimes clouded. Thorux hairy, brown. Abd. of adult pale blue with terminal segments black. App. sup. $2 \cdot 5$, pointed; inf. 2, triangular. of same size as $\overline{3}$; wings suflused with yellowish-brown along C; tips smoky. Abll. brown with irregular dorsal black markings on 3-10; apps. 2, pointed. Local. June-Aug.

Fig. 175. Wings of Orthetrum coertlescens Wabr., f($1 / w 28$ mm.). Original.
17. L. depressa Linn. ơ abd $26-27$, hw $35-37$, pt 35 . Winys hyaline, with an elongated dark brown patel at base of $f w$, and a larger trangular patch at base of $k w$. Thorax very hairy, brown, with bluish or yellowish dorsal stripes. Abd. excessively wide and depressed; bhe in adult; 3-6 with yellow lateral spots. App. sup. 2, slightly toothed beneath; inf. 15, slighty notehed. 우 similar to ô, but abd. brown; apps. very short. Very common. Apr.-Aug.

Genus X. Orthetrum Newman (fig. 175). Fw with ahout $12 A x$ in $f w$, the last completc. Sectors of arc, united; t once crossed in fiw, free in $h n r$. Wings hyaline. Abd. only moderately widencl. Lobe of prothorax large.
18. O. coerulescens Fahricius (fig. 175). of ulul 25-26, hw 28-29, pt 35, yellowish; memb. white. Only 1 cell-row between Rs and Rspl. Therna blackish, with bluish or yellowish dorsal lines. Abd. of adult blue. App. sup.
$2 \cdot 5$, bitck, pointed; inf. triangular. Pabd 26-28, hw $30-31, p t 3 \cdot 5$. Wings slightly sulfused. Thorax brown; abd. brown or yellowish, with darker mid-dorsal line; apps. 1.5 pointed. Loeal; Southern. Junc-Sept.
19. O. cancellturm Limm. क abd 30-31, hw 37-38, $p^{2} 2 \cdot 5$, dark; memb. greyish-blaek. Two eell-rows between hs and Rsph. Thorax brownish; able blue in adult, with tip darkened; abrl. broader than in No. 18. App. sup. ©.5, back; inf. triangular. qabd 31-32, hw 39-40, pt 3. Abd. brown or yellow, with two black dorsal bands; apps. short, black. Local; Southern. May-July.

Tribe Sympetrini (Characters, p. 270).

Gemis XI. Sympetrum Newman (fig. 133) (=Diplax Charpentier) (fig. 176). Fw with less than 10 Ax , the last incomplete. No dark pateh at base of $h w$, but frequent saffroning. Disc. field of f_{w} narrowed towards wingborder. Seetors of arc, united in both wings. Ald. not dilated. Important specific differentiation of litumuli on seg. 2 of δ, and of $v . v$. of 9.

Fig. 176. Lateral view of appendages of second abdominal segment in the males af Sympetrum, A. S. striolatam Charp. n. S. velgatum Linn. c. S. fonscolombei Selys. D. S. stmpuineum Müller. w. N. danae Sülzer. F. S flucolum Lim. Original (except r. drawn hy Mr H. Knight).
 redulish. Wiugs just tinged with salron at bases; venation reddish-brown. A black line beeween vertex aul frons, not extending to eyes. Thorax brown, hairy. Abed. red, 3-8 with small black spots posterionly, 8-9 with mid-dorsal black spot. Hamahas with long straight inner branch (fig. 170 A). \quad 个 similar, but abo. brown with larger black markings. V.v. not prominent, notched. Very variable speciss. (S. migrescens Lacas, 1912, is a varicty superficially rescombling No. 25) Very common, Junc-Nov.
21. S. vilgatum Limm. o abd 26-27,hw27-28, pt 2.5. Closely resembles No. 20, hut darker in colour. Black line between vertex and frons extends downwards alongside the eyes. Hamulus with short hooked inner branch, not so long as outer brimeh (fig. 176 is). V.v. of \mathcal{q} very prominent, not notehed.个 the 24-25, hw 27--28, \boldsymbol{t} 2.5. Rare; Sonthern. July-Sept.
22. S. Jomsrolmmbei Selys. © rald $28-29$, hu, 29—30, pt 3, yellow or reddish. Venation red. $H w$ with a small saftion pateh at base. Hamulus
very small (fig. 176 c). Colour searlet all over. \& hav $30-31$, ph ycllinw. Coloration yellowish brown. V.v. very small, not prominent. Very rare; Southern. May-June.
23. S. flaveolum Linn. ot ubl 24-25, hw 28-29, ph 2, red. Venation dark, C yellowish. Fw with large basal pateh of saffron; hw richly safftoned throughout basal half. Thorax dark red; abel. light red. Hamuhes with short equal branches, the inner much bent (fig. 176 F). $\frac{q}{}$ similar but olive yellow; wings even more saffroned; v.v. very small, triangular. Local; Southern. Aug.-Sept.
24. S. sanquineum Müller. © $\begin{gathered}\text { abd } 22-23, h w 27-29, ~ p t ~ 2: 5, ~ d a r k ~ r e d . ~\end{gathered}$ Venation reddish black. Bascs of wings slightly saffroned. Thorax reldish brown. Abd. constricted at 4 , deep red, except 1 and base of 2 black; $3-7$ with two tiny black spots; 8-9 with mid-dorsal black streak. Hamulus large, with nearly straight inner branch longer than outer (fig. 176 p). \quad q abd $24-25$, $h w 29-30, p t 2 \cdot 5$, deep red. Coloration olive-yellow; ahd. tapering posteriorly. V.v. small, triangular. Local; Southern. July-Oct.
25. S. danae Sülzer ($=S$. scoticum Don). उ ald $21-22$, hw 24-2(i), pt 2, broad, black. Wings hyaline; venation black. Coloration back. Abd. mueh constrieted at 4, diated at 8 . Hamulus large, with both imner
 pt 2.5. Coloration orange-brown, reddish-brown or brownish-blatk when mature, yellowish with black markings when immature. Alul. tapering posteriorly. V.v. large, very prominent, pointed. Common. July-Oct.

Tribe Leucorrliniini (Characters, p. 272).
Genus XII. Leucorrhinia Brittinger (fig. 134). Fw with less than (1) An, the last one complete. IIw with a dark patch at base. Sectors of are slightitly separated in $f w$, united in hw. Dise, fied of $f w$ widened towards wing-bowher.
26. L. dubia Vandertinden. S abd 26-27, he 27-28, pl 1:\%-2, dark brown. A dark brown triangular patch at base of $h w$; a small dark spot at base of $f w$. Thorax black with two crimson dorsal stripes, also sonur hateral stripes and lines. $A b d$. subeylindrical, black, with erimson spots. App. sup. 1.5, black; inf. truncated. 吕 abd 25-26, hw 27-28, ph 2-2.5. Conspicuous saffroning around basal matk of hw. Crimson of 5 replaced liy yellow. V.v. wide apart at bases, eonverging, blunt at tips. Local; Northern. July-Aug.

Suborder ZYGOPTERA (Characters, p. 273).
Family Calopterygidae (Characters, p. 274).
Subfamily Calopteryginae (Characters, p. 275).
Genus XIII. Calopteryx Leaeh (fig. 177). Wings broad in middle. No regularly formed p. No cross-veins in $m s$.
27. C. virgo Limn. ö abd 35-39, hw, 27-36 by 10-11 wide, pt absent. Wings dark brown, with bight metallie bluc reflections, except at extreme hase and tip. Body metadic blue. of hw about 1 mm . narrower. Wings uniformly dark brownish; a sumall white false p present. Body metallie green; a median yellow line on abut, 8-10. Common. May-Sept.
28. C. splendens Harris (fig. 177). of abd 33-39, hw 27-36, by 9-10 wide, pt nbsent. Wings hyaline, with a large dark pateh extending from level of nodus to within 4 mm . of apex, shewing metallie blue reflections. Body metallie blue, tinged with green. of $h w$ about 1 mm . narrower. Wings uniformly pale translueent ycllowish-green. Body metallic green, end of abll. eoppery; 10 with a median yellow line. Common; Southern. May-Sept.

Fig. 177. Fore-wing (35 mm) of Calopiteryx splendens Harris, 9.

Tamily Lestidale (Characters, p. 276). Subfamily Lestinae (Characters, p. 277).
Gemus XIV. Lestes Leach (fig. 142). M_{2} leaves M_{1} about 3 cells thistad from nodes. Althe considerably longer than wings. δ with app, sup. forejpate. Metallice eolomention.
 pt 1-1.5, batk. Robust buik. Colour bronze-green; powdered blue on underside of thorax, and on nbed. 1, part of 2, and 9-10. Apps. black, as in fig. 178 A . of $p t$ dark brown. Colour more coppery, especially on abd. 8-10. No blue powdering. Very rave; Wens. June-Aug.
30. L. sponsa Hansemam. ơ abd 2530, hw 18-21, pl 1-1.5, very narrow, dark brown. Slender build. Colour bronzegreen; powdered blue ou undersile of thorax, aud on ald. 1-2 and 9-10. Apps. black, as in fig. 178 is. f with stouter olnh, more coppery colouring, and no blue powdering. Common. July-Oet.

Family Agrionidae (Characters, p. 277).

Subfamily Platycneminae (Characters, p. 279).
Genus XV. Platycnemis Charpentier (fig. 145). Quad. rcetangular elongated. Tibia 2-3 dilated especially in of (fig. 9 B).
31. P. pennipes Pallas. के abd $27-28, h w 20-21, p t 0.8$, rhomboidal, brown. Thorax black with green dorsal lines. Abd. blue with black markings; apps. very short. \ddagger abd $26-30, h w 20-25, p t$ l. Abll. stouter, hlue replaeed by greenish-yellow. Local; Southern. May-Sept.

Subfamily Agrioninae (Characters, p. 279).

Tribe Agrionini (Characters, p. 280).

Genus XVI. Ischnura Charpentier (fig. 18 J). Quad. with sharply atcute distal angle. M_{2} arises 4 cells distad from nodus in $f w, 3$ in $h w . \quad I t$ in $f w$ of σ bicolorous, proximally black, distally white. Postocular spots present. End of seg. 10 in $\hat{\sigma}$ projecting upwards; q with a ventral spine under seg. 8 . Coloration greenish-black, slightly metallic; a little bluc on δ. Dimorphic femates.
32. I. elegans Vanderlinden. of abd 22--24, hw 13-17, put.6. Postoculau spots, thoraeic bands and abd. seg. 8 bright blue, 9-10 black. q abd 22-26, hw 15-20, pt 0.8 , unicolorous. Normal form of q closely resembles $\begin{gathered}\text { on } \\ \text {, but }\end{gathered}$ abd. stouter. Heteromorphic form has head, thorax, legs and abld. 1-2 orangc, with black markings. Very common. May-Sept.
33. J. pumilio Charpentier. óald 18 24, hw $2 \mathbf{2 - 1 7}$, pt 0.5. Resembles No. 32, but abd. 8 blackish, $9-10$ pate blue. q hww 13-19. Normat form of of has blue replaced by yellowish-green on head and thorax; able, fairly stout, greenish-black. Ifeteromorphic form (var. aurantiaca) has head, thorax, legs, abd. J-2 and part of 3 orange. Rare; Sonthern. Junc--Sept.

Genus XVII. Agrion Fabricius (fig. 148). Quat. with slarply acute distal angle. M_{2} arises $5-6$ cells distad from nodus in $f w, 4-6$ in $h w$. Pl unieolorous. Postocular spots present. of with alud. seg. 10 mot uphermed. of with a ventral spine under seg. 8. Colours bronze-black and bright blue.
34. A. armatum Charpentier. ơ abd $29-32, h w 16-19, p t 0 \cdot 6$. Abst. 1--3 as in fig. 179, a. App. inf. large, longer than seg. 10. ㅇ culut 27-32, hw 18-21, pt 0.6. Abd. stouter, blue colour less bright, or greenish; seg. 2 with black mark pointed basally. Very rare; Norfolk Broads. May-June.
35. A. pulchellum Vanderlinden. of abd 23-32, hw $10-20, p t$ 0-fi. Very slender build. Abd. $1-3$ as in fig. 179, l. App, inf. small. of abd 25-29, $h w$ 18-22, pt 0.6; head and thorax with blue replaced by greenish; abd. a little stouter; seg. 2 with apical two-thirds or more black, the black mark coneave or three-pointed basally. Local. Apr.-Sept.
36. A. hastutatum Charpentier. of able 28-34, hat 17-20, pt 0-7. Slender build. Abd. 1-3 as in fig. 179, c. App. inf. small. q c ubd 29 - $32, h w$ 18-.22, $p^{t} 0.7$; abd. stouter, the blue replaced by greenish; seg. 2 with black mark along the whole length. Very rare; Inverness-shire. Junc-Aug.
37. A. mercuriale Charpentior. of abd 21-26, hw 15-19, pt 0.5. More robust than No. 36. Abd. $1-3$ as in fig. 179, d; app. inf. small. of abd 21-27, $h w 15-19, p t 0.5$; elosely resembles No. 36, but able stouter, pt shorter; blue replaced by greenish. Rare; New Forest. May-Aug.
38. A. puella Linn. of abd 24-29, hw 17-20, pt 0.7. Very slender speeies, of larger size than Nos. 36,37 . Abd. 1-3 as in fig. 179, e. ㅇ $a b d$ 23-29, $h w 18-23, p t 0 \cdot 8 ;$ abl slender, seg. 2 with black mark along its whole length; bhe replaced by green, blue-green or yellowish. Very common; May-Sept.

Genus XVIII. Erythromma Charpentier. Venation as in XVII. No postocular spots. No ventral spine under seg. 8 in φ. Coloration of \hat{O} bronze-black and pale blue. Eyes reddisll in δ, golden-brown in \circ.

Fig. 179. Colour-patirn (bright the and bronze-back) of first three abdominal segments in the males of ligrion and Enallagma. a, Agrion armatum Charp.;
1, A. pulchellum Vianl: c, A. hastulutum Clarp.; A, A. mercuriale Clarp.;

39. Ah. waius Hamstmomn. ©o abl 25-28, hw 20-24, pt 0.9. Thorax bhek above, without dorsal stripus. Abl. pale blue on 1, sides of 2 , and all 9-10. App. sup. stout. of cbld 2(i-29, hw 22-25, pt 0.9; thorax with two yellow dorsal lines; aded. I yollow with a lilack spot; rest bronze-black, sutares 2-1 yellow, 7-! bue. Local; Southem. May-July.

Gemus XIX. P!rrhosomut Charpentier: Characters as in XVIII, but abol. real, we red and baek.
 $p t 0 \cdot 9$. Robust species. Thorax black with narrow red bands. Alfl. bright rel, 7 black, 8-9 partly black. Q qulud 25-29, hw 22-25, pt 1; abde stouter, with duller red and more black. Very common. Apr.-Aug.
41. P. tenellum de Villers. of abd 22-25, hw 15-18, pt 0.5. Very slender species. Thorax dark bronze; abd. wholly red. 우 abd 25-28, hw 17-20, pt 0.fi; thorax darker; abd. 1-3 red, 4-10 bronze-blaek. Common; Southern. June-July.

Tribe Pseudagrionini (Characters, p. 280).
Gemus XX. Rnallagman Selys. Characters as in XVII (except for position of Ac, a tribad clarater).
42. E. cydethigerum Charpenticr. © abd 25-28, hw 18-21, pt 0.7 , black. Alol. blue, with black pattern of $1-3$ as in fig. 179,f, $6-7$ considerably blacker,

8-9 blue with black points, 10 black. \quad fabl $22-28, h w 18-22, p t 0 \cdot 8$, yellow; blue parts replaced by grey-green or reddish-brown; abd. with elongated bronze-black markings on all segments. Very common. Junc-Sept.

The following reputed British species are not cousidered to have established a satisfactory claim to be included in the above list, either the determination or authenticity of the few captures recorded being open to doubt: Gomphus flavipes Charpentier, Lindenia forcipata Linn., Sympetrum meridionale Selys, Leucorrhinia pectoralis Charpentier, Lestes viridis Vanderlinden, Lestes virens Charpentier, and Lestes barbarus Fabricius.

Larvae.

It is impossible to give a complete classification of the larvae of British species, partly because a number of them are still unknown, and partly because, in one or two genera, the similarity between the larval forms is so great that specific differences have not yet been definitely established. The following table should be used in conjunction with the characters given for the larvae in chap. XIv, and also with the figures of larval types and labial masks (figs. 29-42).

Anisoptera.

Subfamily Complhinue. Gomphus valgatissizuns. Larva of type shewn in fig. 30 b. Mask of type in fig. 32 d . Found in debris on the bed of rumning streams.

Subfamily Cordulegustrinae. Corduleguster annulatus. Larva of type int fig. 33, but with abdonen somewhat more elongated. Mask of type in fig. 32 L . ha debris on the bed of ruming streans. (The only Mricish larvat with divergent wing-sheaths.)

Subfamily Aeschninae. Larva of type in fig. 29 A . Mask flat (figs. $29 \mathrm{~d}, 32 \mathrm{~A}$)
Genus Brachytron. Eyes small, rounded, phaced well forward on heuel. Mask in position of rest not reaching beyond second coxae; fateral lobe with narrow rounded apex. Anal pyramid short (length of seg. 10), the appendix dorsalis truncated at tip (B. hafniense).

Genus Aeschna. Eyes larger, hemispherial, occupying about half the length of the head. Mask in position of rest as in Brachytron; lateral lobe with broad squarish apex. Anal pyramid long (length of segs. $9+10$), the appendix dorsalis notched at tip.

The five known larvae of this genus are best separated by the form of the supracoxalarmature, as shewn in fig. 180. The larva of Ae. coerulea is unknown.

Genus Anax. Eyes very large and flat above, occupying two-thirds the length of the head. Mask reaching baek to beginnings of third coxac; hateral
lolse with apex somewhat narrowed and carrying a sharp inner tooth. Anal pyramid very long (longer than segs. $9+10)\left(A\right.$. imperator) ${ }^{1}$.

Sulfamily Cordulinue. Larva of type in fig. 38. Mask spoon-shaped (fig. 320), the teeth of the distal border in the form of large erenations.

Gemus Oxygasira. Abdomen with no dorsal spines, but with fairly large lateral spines on segs. 8-9. Crenations of mask very large, one-third as high as wide, each carrying 14 or 15 short bristles (O. curtisi).

Gemus ('omplutiu. Abelomen with small dorsal spines on segs. 5-9, rather smiall lateral spines on segs. 8-9. Legs very long; hind femur reaching to seg. 8. Crenations of mask medium, one-fourth as high as wide, each earyiug 4 or 5 short bristles (C. uenea).

Fig. 1s0. Supracoxal armature of prothorax in larvae of Aeschna. a, Ae grmdis
 isosceies Müller. After Lucas and Cabot.
Gemus Somatochlora. Somalochlora metallica. Abdomen with very large doral spines on segs. $\sigma-9$, small latcral spines on seg. 8. Hind femur reaching to seg. 7. Crenations of mask medium, one-fourth as high as wide, each with 10 Iristles.
S. arlim. Abdonum wioh neither dorsal nor hateral spines. Hind femme reaching only to midale of seg. 6. Crenations as in S. metallica, but with only 5 bristles on ereh.

Nubfimily Lihellmbure. Tribe Lihellmini. Latrva of type in fig. 36 r . Mask spoon-shapred (cf. fig. 32 N), the teeth of the distal border forming small haternet ermahations.

Species	Length	Lateral abodeminal spincs	Dersal nhetomimal spines
Libellute qualimaculata	$23 \cdot 5$	8, moderate; 9, small	$\begin{aligned} & 5-7 \text {, small; 8, moderate; } \\ & 9, \text { nil } \end{aligned}$
fulw	$\because 1$	8-9, large, bent	6-0, large
drowesst	21	8, rudimentary ; 9, nil	$5-7$, small; 8 , moderate; 9, nil
Orthetrum rocrulescens	16	verysmall, bent, on \$-9	7, rudimentary ; 8, nil
, cancellatum	93	smatl, on 8-9	"

In addition, L. depressu eam be distinguished by having the crenulations of the lateral lobe of the mask about one-fifth as high as wide; in all the others they are excessively flattened down.

- Lacas deseribes and figures this larva as laving the appendix dorsalis antroned at dip, and nearly as long as the cerci. Ris, however, says that this organ is troncated ("geade abgeschnitten") wad harely half as long as the cerci!

Tribe Sympetrini. Larva of type in fig. 36 a . Mask much as in Libellulini, the crenulations excessively flattened, the lateral lobes very warty Abdominal dorsal spines small.

Sympetrum striolatum. Length 16.5. Largo lateral spines on segs. 8-9. Mask with 12-14 mental, 11 lateral setac. (The other species have not been definitely determined.)

Tribe Leucorrhiniini. Larva resembling that of Sympetrini, but with the oceiput narrower. Strong lateral spines on segs. 8-9 of abdomen, small dorsal spines on segs. 4-5 (Leucorrhinia dubia).

Zygoptera.

Family Calopterygidae. Larva of type in fig. 40. Mask with very deep median eleft (fig. 32 r). Caudal gills: lateral long, triquetral; median short, lamellar.

Calopteryx virgo. Pedicel of antenna 3.5 to 3.8 mm . long. Lateral gills 9 mm . (fig. 40).

Calopteryx splendens. Pedicel of antenna 4 to $4 \cdot 2 \mathrm{~min}$., stouter. Lateral gills 12 mm .

Family Lestidae. Larva of type in fig. 41 b . Mask with setac on the movable hook (fig. 32 H). Caudal gills long, lamellar, tips rounded (fig. S. 8) (Lestes).

The two British species have not yet been determined with certainty.
Family Agriqnidae. Larvae of type in fig. 42 d , e. Mask of type in fig. 32 F .

Species	Length + Gills	No. of set Mental	eon mask Lateral	Caudal cills	General Remark
Plalycnemis pen. nipes	$11 \cdot 5+7$	2	3	Long, opaque, very pointed	Stout, diok, long. Jenged. slumgish. muddy
Ischnura elegans	$13 \cdot 5+6 \cdot 5$	4	6	Subnodate, pointud, transpirent	Variegnted green or yellow, active, on weeds
Agrion pulchellum	$13 \cdot 5+5$	4	5	Nodate, tip rounded	Rather opaque, dark brown
mercuriale	$13 \cdot 5+3 \cdot 3$	3	5	Denodate, short, pointed	Oparque sluggish ochreous,
, paella	$14+5 \cdot 5$	4	5	Nodate, veryslight. ly pointel	Rather transparent, grey-green
Erythromma najas	$18+7 \cdot 5$	3	6	Nodate, transparent, rich branching of tracluac	Rather transparent, greenish
Pyrrhosoma nym. phula	$11 \cdot 5+4 \cdot 8$	3	6-7	Denodato, opaque, broad triangular tip	Broad, short, brownish), sluggish, mucldy
Enallagma cyathigerum	$14+6$	4	6	Subnodate, transparent, bluntly pointer	Pale green or yellow, slightly marked

(The other species lave not been satisfaetorily determinel.)

CHAPTER XIX

COLLECTING, REARING AND BiOLOGICAL methods

This chapter does not pretend to give a eomplete aceomint of all the methods in use for the collecting, preserving, rearing and biological study of the Odonata. 'This would take up too mueh space. 'Ten years' experience in the field has convincerl me that many of the more eumbersome methods are best discarded altogether. I shall therefore chiefly confine myself to the methods which I have finally eome to employ, as being the best that I am at present aware of; though I shall not omit to mention other methods also, which are used by others, and appear to yield equally good results.

The Collection.

The collection must be male the basis of all work on Odonata, be it systematic or biological. Hence it is of the utmost importance that it should be well macel for, and amongel so that the specimens are easily accessible for study.

Field-Work. The apparatus raquired for the eapture of Dragonflies is very simple. The only hecessary articles are a large net and a tin full of puper triangles. A kithing-hotte shombl not be used. For the net, 1 use The kite-shaped net, in four picees and a Y; dimensions 2 feet by 18 inehes. This is coo large for aost Lepidoptera, but is exeollent for Odonata. It is also it useful net for "sweeping" bushes and long grass-a method which yields many Odonata in the eaty morning, and on dull days. In tropical combtries, I find that the Y gets overheated, so that the joints melt. It is therefore advisable to latre several Y 's on hand, and have them well strengthemed lyy a bracier.

Tolave really good suremens of Dragomilies, it seems to me to be essential that they should not be killed artificially, but allowed to die slowly. By this means, the whole of the contents of the alimentary canal is exereted in the lorm of small diy preflets, whieh can be emptial out of the paper every day, until the Dragronfly is deat. The result is that the eolours keep far better than if the Dragontly is killen with these impurities inside it. For storing the live 1) tagatlies, a number of paper triangles should be fohled up in the mamer imbiated in the diagran (lig. 181), taking care that the straight edge of the thap cmas to the left (for convenience in writing date and locality). These
should be made of a moderately soft white paper (about the stiffness of newspaper) so as not to crush the cyes of the Dragonfly. For ordinary localities, threc sizes are sufficient: Agrionid-size, $3 \frac{1}{} \times 2$ inches; Libellulid-size, $4 \frac{1}{2} \times 3$ inches; and Aeschnid-size, 6×4 inches. These proportions give a reasonably broad flap for writing on. The dragonfly is placed in the paper with its wings folded back, and the flaps are carefully closed. It is convenient to have a flat tin inone pocket, full of empty papers, and a wider reetangular tin or small box in the other, for reception of the papered specimens. This prevents overerowding, and consequent flattening of the eyes.

Agility, except of the wrist, plays little part in the eapture of Dragonflies. They are not to be caught by chasing. A swift back-hand stroke over one's head is the most cffeetive way of capturing large specics. With all fast or wary species a safe rule is to strike from behind, or, if the stroke must be from in front, then lowmards upon the insect.
 of folding a paper triangle. In A. the dotted lines indicate ercases. The paper should first be folded about ef; then the edges are folded over along eh and fg, the final result being shewn in s. Original. A direct frontal stroke can be seen and dodged by most species. To get within striking distance, it is only necessary to watch the Dragonfly carcfully, and note the places where he turns, or the twigs which he seems to favonr. Most species will retnmofen to the same spots. Also, is all movements of approueh towards Dragonflies at rest, it is essential to move uniformly, without jerks of any kind. The collector who beeomes expert in this will be surpismel to find that he can usually rely upongetting within striking distance of even the largest speedes without alarming them. But if he must wink his cyelid, or make any sudden movement with his feet or hands, all his labour will be lost. Nor should he wear any striking colours, such as a white hat or bright tic.

In choosing localities for collceting, small ponds or streams are always to be preferred to large ones. Even though the fauna be less numerons, the chances of catching them are increased in a mueh greater proportion. A brook of such a width that, by standing on a jutting promontory, the collector can command the whole passage of the stream, is the ideal place for eatehing Dragonflies.

Preservation. As soon as the specimen is dead, it should either be set, or permanently papered. Set Dragonflies take up a lot of room, but they are, to my mind, far preferable to papered specimens, and more easily looked after, since all the parts are spread ont clearly to the view, and the pin is
convenient for handling the insect without touching it with the forceps. In setting, if flat board must be used, with a groove deep enough to allow the body of the insect to be placed at least half-way up the pin. Uniformity of phan in setting is best obtained by placing the costa of the hind-wings at right-ingles to the body, the fore-wings lying just free of it. The tips of the wings should be covered during setting, or they may turn up. Also, in the broad-winged Libellalidae, the anal field of the hind-wings should be raised from benrath by a small slip (fig. 182).

Fig. 18.. A Dragon!ly set on a flat board with double strips of transparent paper. Notice the pins supporting the head and abdomen, and the slips placed beneath the hroad inal fied of the hind-wings. Original.
The abdomen of a dried Dragontly is very liable to break in pieces. This is best obviated lyy the proress of "bristling" before setting (fig. 183). For Anisoptera, I use hug's buistles, smeh as can be obtained at all curriers and beathr-sellers. For Zygoptera, a fine stiff horse-hair is the best. The bristle shombl te sharpened by a dingmal ent with the seissors, it is then inserted into the thorax above and between the mesocosae, and ran earefnlly down

Fig. 183. Correct method of inserting a bristle. In A, the point of the arrow indicates the point of insertion. In B, the bristlo is run throngh the abdomen as far as b, aud is then cut of with sharp scissors at a. Original.
to the end of the abdomen, eare being taken not to danage or displace the appendages, and a small allowance being mate for shrinkage during the proecss of drying. The bristle is cut off elose to the thorax with sharp scissors. The head and prothorax do not require bristling; if the head is aceidentally knocked off, it can emsily be replaced.

For the process of papering, the paper may be prepared by treatment with a solution of mereuric chloride, or a little dust of naphthaline or thymol may be placed with the insect. A small piece of pith gummed into the headend of the triangle will serve to keep the two sides sufficiently apart to prevent damage to the head of the inseet by pressure. The appendages of the second segment of the male are more casily studied in papered specimens than in set ones. The specimens should be kept in large tobaceo-boxes in a dry place, and securely fastened down except when needed for examination.

Each specimen must of course be labelled with locality, date and name of collector. In set specimens, the label should be placed on the pin upwards, so that it can be read without moving the inseet. In papered specimens, the label is either printed on the flap, or on a small slip placed inside with the Dragonfly.

Naph thaline, thymol, and an occasional dosing with carbon bisulphide will keep the collection clear of the usual insect pests. Grease is very rare on Dragonflies. To my knowledge, it only attacks the larger Aeschninue, particularly Anax and Gymacantha. It can be cured by immersion in powdered magnesia, or, better still, by careful evisceration of the specimen before setting, and re-filling the abdominal cavity with cotton-wool and powdered magnesia. In damp climates, a small white fungus is apt to attack the specimens. This can be removed by treatment with an alcoholie solution of mercuric chloride, or with carbolic acid.

Preservation of Colours. Much has been written on this subject. The pallern, thongh not the brilliance, of all dragonflies can be preserved, if the insect is allowed to die in the manner already described. For prescrvation of the bright hypoderm pigments, rapid drying is essential. A colleetion which I receiverl from Central Australia, and which had travelled for three months per camel-mail, was found to be absolutely perfect in coloration, even down to bright reds and blues. Such was the effect of the hot dry climate! I find that a dry temperature of 105° Falin. is the best. At this temperature, a Dragonfly will set in from cight to twelve hours, with all its colours perfect (except only the sky-blucs of Agrionidae and the blues and greens of Aeschninae, which are unrcliable). For this purpose I have designed the oven shewn in fig. 184, in which the setting-boards are placed along two sides of the oven, face to face vertically, and are held in place by the two ridges on the lid.

Fig. 184. Drying oven for dragonflies, to talise 14 inch setting boards ($x e^{3}$). Original drawing ly \quad. Tillyand.

The hurner is an ordinary kerosene fount, such as is nsed in incubators. The hoards shombla be turned every few hours, to equalize the heating. I have a series of the glorions red Lathrecista festa, taken at Cooktown in 1907, which are as trilliant to diay as when I caught them. This species thens dull hrown if trated inaty other way. Overheating (above 110° Fahr.) must be avoided, sinee it causes an unnatural iridescence of the wings.

The only safe way to proserve the brilliant hues of Agriomidue is to keep a few specimens always in 70 per cent. aleohol, in the dark.

Larvae. The best method of collecting live larvac is by using a small dredge-net. I ase an ordinary 8 inch iron hoop, in one piece, with a strong ferrule and a bag of mosquito-netting, not too deep. With a stick four or five feet long, the water-weed, debris and bottom of any pond or river can be easily worked, and the larvae pieked out. For some localities, a straight sharp edge is useful on the net, e.g. for running along a hard rocky bottom,

Fig. 185. Dragonfly larva mounted on 0 bal glass in specimen jar containing braving by P Trillyard.

1Fig. 180. Exuvino of Austrogomphus manifestus Tillyard (New South cardhoard slip ($\times 1$). Original.
or up smooth vertical rocks. Other ingenious devices are given by Needham [97].

Larvae can be dried and carded (like Coleoptera); but they make better sprecimens if kept in alcohol. The larva should be placed alive in alcohol (70 per cent., or $50-60$ per eent. warm to hot). As soon as it is dead, a small incision shonld be made ventrally along segments $3-5$ (mid-gut region), to allow the aleohol to peretrate there. If this is not done, the contents of this part of the nbromen will decay, and cause these segments to become unnaturally distended, often rining the specimen. My series of larvac are mommen with silk on slips of opal glass, and placed in 4×1, or $4 \times 1 \frac{1}{2}$ ineh eylindrical specimen jats with strong hases, in 70 per cent. alcohol (fig. 185).

Exuviae. For external characters, at least in the Anisoptera, the cxuviae are perhaps preferable to the actual larvae. They are much more easily collected, and much less difficult to deal with for the collection. Care must be taken in removing the exuviae from the recdstems, to prevent damage to the legs. They should be prepared for the eabinct by leing beilecl in a weak solution of caustic potash for about half-a-minute. They can then be removed and thoroughly cleaned with a eamel's-hair brush. When dry, the exuviae may be arranged in small boxes or trays, or mounted on a transverse slip of cardboard passing under the middle of the abdomen, with a little gum. The pin and label may be placed at the left-hand side, if the slip be made long enough (I to $1 \frac{1}{2}$ inches). (Fig. 186.)

Rearing.

According to Needham [97], the best way to rear Dragonflics is to "let them rear themselves," by placing them in specially constructed eages which can be sunk in the water where they live. I cannot agree with this view, because (1) if the objeet of rearing be to get specimens, bred specimens are never so good as caught oncs, since they ean never be properly matured, (2) if the object is to study the life-history of the species, it can only be attained by having the specimens constantly under observation in the laboratory, Besides, very few of us live either on the edge of a lake or anywhere near a suitable loeality for even occasional observation of such cares.

Obtaining the eggs. The rounded eggs of exophytic species are easily obtained by eatching a female while ovipositing. If the tip of her abolomen be then placed in water in a small phial, she will usually continue to lay eggs in large numbers. It is necessary to have the water in the phial dirly, with mud, sand or small pieces of deloris for the eggs to fall upon; otherwise the eggs will simply all stick together, and quickly go monldy. The elongated eggs of endophytic specics must be sought for in the leaves or stems of waterweets. These may be dredged ashore in masees, and then patiently cxamined; or, if preferred, a female may be watched while ovipositing, and the reed-stems gathered when she has gone. The stems may be broken up into picces and left in water, without harming the eggs.

In the laboratory, the eggs are best kept in flat Petri dishes, covered over to prevent evaporation of the water. Decaying vegctable matter seems to be essentiul. I have never succeeded in rearing eggs kept in pure water. Rounded eggs are the more difficult to hateh. I find, however, that, even if a strong growth of fungus appears on these eggs, they will usually hateh if mixed with mud and débris. Rounded eggs hatch in from five days to three weeks; elongated eggs take about three weeks or a little less.

Rearing the Larvae. The young larvae should be pieked out with a camel's-hair brush and segregated (a few together) in slightly deeper Petri dishes, in water on which duck-weed has been floating for some time. They may be fed on Paramoecium and other Infusorians. They grow fairly rapidly,

At the fourth or fifth instar they shonld be transferred to larger "observation juss," and fed on water-fleas, or small mosquito-larvac. Only one species of larva shouk be kept in each jar. Later on they may be fed with larger mosquito-layvac, or small Agrionid larvae.

Glass cells, either rectangular or eylindrical, make exeellent observation jars (fig. 187). These should lave a elean sandy bottom, with water-weeds growing thesein. I find Vallisneria and Wloten the best forms for aërating the water, particulaty the former. The duck-weed (Lemna) and the pretty Azolla are also invaluable as surface weeds. A few sticks should be arranged so as to stand up some inches above water-level, for the larvac to climb up at metamorphosis.

For bottom-dwelling larvae I use a small circular tin pan (fig. 188), with

Fig. 187. Observation jar for renting dragonly-larvine (\times !). Orixinal drawing ly P. Oripinal.
Trillyard.

Fig. 188. Pan for rearing rock or bottomliwelling larvac $\left(\times \frac{3}{i}\right)$. Original llawing by "welling larv
P. Tillyard.
sloping sithes abont three or four inches deep (a puppy's drinking pan is a useful kind). A sandy bottom, a small piece of rock or two, and ia liberal supply of Lemna for the aerration of the water, are all that is required.

When the larvate are full-fed, a small cage, open below, and constructed of mosquito-netting on a wire framework, should be let down over the observation jar or pan. The larvae will crawl out up one of the sticks or on to the metting, and the imago will be found resting at the top of the cage. It may then be removed to a larger eage of similar design, to allow the wings and colours to mature. Bred specimens, however, are seldom at all satisfactory for the eabinet, as matmity depends not only on time and sunlight, but also on activity and frecling. Captive imagines, as far as my experience goes, eamot be persuaded to feed. Ifind it convenient to phace all bred specimens,
cither set or pinned with folded wings, in a special box with their exuviae alongside them.

Biological Melhods.

Chitin-Preparations. Cut off the selected organ or part, and place it in a strong solution of caustic potash for 24 hours or longer [or it may be boiled ${ }^{4}$ in the same solution for from a minute or two to half-an-hour, aceording to its nature]. Remove to physiological salt solution, and clean off all muscles, etc. left on. Wash in distilled water. Transfer to 70, per eent, alcohol, with at least one change. Run up through 90 per cent. to absolnte aleohol, thence to clove oil. The proparation may be conveniently examined in this medium, and useless parts cut away. Mount in the usual manner with Canala Balsam. For staining chitin-preparations I find a solution of Orange G in water (24 hours or longer) gives the best results. Most chitin-preparations from Odonata do not, however, require any staining.

Cleared Larvae. Beautiful preparations of whole larvac, as well as of the head, thorax, abdomen, branchial basket or caudal gills separately, may be made as follows:. Fix the larva (alive) in Carls' Fixative (sec below); wash out in 70 per cent. alcohol with several changes extending over 24 hours or more; pass to 90 per cent. alcohol (6 hours), absolute alcohol (6 hours), absolute alcohol + cedar oil, equal parts (24 hours), and finally into eedin oil. Leave in cedar oil for a week or more (the longer the better). The whole larva will gradually become of a glassy transparency, until all the internal organs can be umde out with great clearness. Keep the specimen always in cedar oil in a tube. The opened branchial basket, or the eaudal gills, may be mounted in Canada Balsam within a raised ring.

Stained Whole-Mounts. This method may be used for studying the embryo, whole specimens of young larvac, various appendages (lags, caudal gills) and portions of internal organs. Fix as above, and wash woll in 70 per cent. alcohol. Pass to 50 per eent. alcohol, thence to a solutian of Grenathep's Borax Carmine in 35 per cent. alcohol. . Leave in stain until thoronghly penetrated (24 hours to a week). Diflerentiate in 70 per eent. alcolol with 0.5 per cent. nitric acid added. Dehydrate, clear and moment in the usual manner.

Sections. Out of many methods which may be employed for this purpose, I shall on'y give in detail the two which I find to be most snitable for the Odonata in general. The processes are as follows:
A. Single Embedding:

1. Fix the animal, or part selected, in Carls' Fixative'; formula: absolute alcohol 15 parts, concentrated formol 6 parts, glacial aectic acid 2 parts, and distilled water 30 parts. For whole larvae, make a small slit for penctration of the mid-gut region (see above). Do not prolong fixation beyond 24 hours, as the fixative will then have a "swelling" action on the cell-layerst.
${ }^{1}$ Used by Carls and Kurt-Bedan for stulying the compound eyes of insects.
2. Wash thoronghly in 70° pur cent. ateohol, with several changes during 24 hums or longer.
:3. Pass into Somp Solntion (soft soap in 70 per cent. alcohol) for 24 hours, ar longer. This softens the chitin.
3. Wash again as in 2.

万. Piss into 90 per cent. aleohol; 6 hours.
(j. Pass into absohute alcohol; 6 hours.
7. Piss into absolute alcohol + ecdar oil (equal parts); 24 hours.
8. Pass into pure celar oil; 24 hours.
9. Introduce finc parings of soft paraffin-wax (38° m.p.) into the cerlar oil, until it has dissolved as much ats possible.
10. Remove specimen to meltel paraffin-wax (38° m.P.) at about 40°, for 2 hours, on top of bath.
11. Remove to melted paraffin-was (52° m.p.) for 2 or 3 hours, within bath.
12. Embed in paraffin-wax (52° m.r.) in the usual way.

From this, the block may be ent out, trimmed up and sectioned in the usual way. The times given must be varied acoording to the size and elaracter of the object. (are must be taken (a) to soften the chitin sufficiently, (b) not to leave the object too long in the higher grades of alcohol, as this causes hartening, (r) to exbract all the cedar oil at stage 10 [I usually have two dishes of soft paratlin, and give I hour or more in cach], (d) to keep the object in the higher pariffin only long enough to allow of complete penetration, and not "eomking."

The sections havint been prepared, any of the uswal methods of staining may leremployed. I fiad the combination of 'Ehrlich's Haematoxylin with Eosin to be uncgualled for general use. Another very good combination is Heidenhain's Jron Hamatoxylin with Orange G.
;13. Houble Finbedling: After earrying out processes $1-6$ as in A, above, procerel as follows:
7. Pass into absolute alcohol + ether (equal parts); 24 hours.
s. Pace in eovered crystal-dish in $\frac{1}{2}$ por cent. celloidin solution (dissolve the celloidin in equal parts of ether and alcohol); 24 hours.
9. Change to 21 per cent. celloidin solution; 24 hours.
10. Change to 5 per cent. celloidin solution; 24 hours.
11. Hurden in chloroform vapour under a bell-jar, until the celloidin block is of the consistency of cheese; 2-3 hours.
12. Shape and trim up block, with object correctly orientated; transfer to liquill choroform for further hardening (half-an-hour or more).
13. Place hardened block in liquid chloroform with parings of paraffinwix (58° m. P.) on top of bath (abont $40^{\circ} \mathrm{C}$.). Leave overnight. (The chloroform (lissolves the wax, and does not wholly evaporate.)
14. Repeat proeesses 11, 12 as in A, above, treating the celloidin block as the object to be embedded. Section in the usual way.

Method B must be ased for all the more delicate work, such as embryology,
studies of the heart in silu, cte. It should also be used in sectioning those parts (e.g. caudal gills) in which the cutiele is very thick compared with the rest of the organ; for, otherwise, the cuticle may tear away and carry most of the tissues with it. Method A yields excellent results with the nervons-system, sense-organs, alimentary canal, rectal gills, etc., and also offers a less resistant eutting-surface to the razor. It is, also, of course, in much shorter methot. Insects are, at the best, very difficult objects to section well, and the student must not expect to obtain first-rate results without long practiee and many disappointments. The suecess of both methods depends chiefly on the softness of the chitin. There are two safe rules to be followed:

1. Always use a specimen fresh from ecdysis or metamorphosis, if possible.
2. Avoid xylol, and substitute cedar oil, in all meltools used.

Tracheal Studies. The eamera-lucida and a good photo-micrographie apparatus are, of eourse, invaluable adjunets for which the methods of ase need not be gone into here in detail. The latter may, however, be specially applied to the study of the tracheal system of the gills and wings of Odonate larvae. As the air passes out of the fincr branches between one and two hours after death (or even sooner), it is clear that permanent preparations camot be obtained. The part to be studied should be eut off immediately the larva is dead (a drop or two of chloroform shaken up in water is the beest killingagent) and plaecel on a slide, in pure water. It may then be quickly cammined, a and, if necessary, a special portion selected and cut off (in the case of gills). This should be floated on to a clear slide, with water, and a cover-glass lowered gently upon it. It should then be photographed to the desired magnification without loss of time. The tracheae appear black on a pate ground.

Wing-Venation Studies. For this purpose I employ a "triple-extension" camera with a total bellows-length of 2 feet, and a special magnifier (or microsummar) to be used with the lens. A strong artifiecial light aud a combenser are also needed. The wings may cither be cat off and placed between two glass slides, or the set insect may be used (by sticking the pin into a smaill lump of putty placed on a piece of glass, or otherwise arranging it so that the wings are fixed in the desired plane). Slow plates must be used. The negative should be under-exposed and orer-developed, to give a transparent venation on a black ground. The magnifications obtained by this camera are as follows:
(a) Without the magnificr: from one-half to a little over natural size.
(b) With the magnifier: from twice to four times natural size, aecording to the amount of extension of the bellows and the position of the object. The figures of wing-venation in this book were nearly all made from photographs taken by this method.

APPENDIX A

BIBLIOGRAPHY

[1] Amans, P. "Recherches Anatomiques et Physiologiques sur la Larve de l'Aeschnu gremdis." Lah. Zool. Fac. Sei. Montpellier, 1881.
[2] ---. "Wessai sur le vol des Insectes." Rev. Sci. nat. Montpellier, 3 rll Sér., if et IIr, 1883-4.
[B] Assmann, A. "Beitraige zur Insecten-Pauna der Vorwelt." Breslan, 1870.
[4] Bacкнон", P. "Die Entwickhung des Copulationsapparates von Agrion, ete." Zait. wiss. Zool., 1910, xev, pp. 647-700, I plate.
|5] Bafour-Browna, F. "The Life-History of the Agrionid dragonily." Proc. Zool. Soc., London, 1909, pp. 253-285, 2 plates.
[f] Bantow, W. F. "Obscrvations ou the Respiratory Movements of Hesets." Phil. Trans. Roy. Soc., London, 1855, cxlv, pp. 139-148.
[7] Batiner, F. A. "The Florissant Exhibit." Proc. Geol. Ass., 1900, xxi, lart 3, pp. 1an-ltis.
[8] Bellusme, J. de. "Phénomènes qui accompagnent la métamorphose cho\% ha Libellule deprimé" C. R. Nead. Sei., Paris, 1877, laxxy, pp. $448-450$.
[9] Bracaer, E. "Untersuchungon neher den Ban des Gehirns and der Retina der Arthropoden." Arb. Zool. Inst. Univ. Wien, 1878, Hft n, pp. 1-48, 4 plates.
[10] Benistss, A. "Cli Insetti, etc." Vol. i (Embryology and Morphology). Soc. Editrice Libraria, Milan, 1909, pp. 1-1004, figs. 1-1292.
[11] Bolfon, II. "On the Oceurence of a Giant Dragonfly in the Radstock Coal Measures." Quart. Journ. Gcol., 1914, pp. 119-126, 2 plates.
[12] Bondas, L. "Les ghandess salivaires des P'seudoneuroptères et des Orthoptères." Arch. Zool. exp., 1897, v (3), pp. 345-384, 3 plates.
[13] Brandt, A. "Beitrage anr Entwieklungggesehichte der Libelthiden und Hemipteren." Mén. Acal. St Pétersbourg (Petrograd), 1869, Sér. 7, Tome xiri, pp. 1-33, 3 plates.
[14] Branot, E. "Ueber das Nervensystem der Wasserjungfer (Odenata)." Sit\%. Horae Soe. Bant. Ross., Petrogrud; 1879, xv, pp. xiii-xvi.
[15] Brande, J. F. "Bemerkungen ucber die Mundmagen- ofler Bingeweidenerven (Nervus sympathetiens sen Nervi reprodnetorii) der levertebraten."

Mém. Acad. St Pétersbourg (Petrograd), 1833, ir. (French Trans. in Ann. Sci. Nat., Zool. (2) v, pp. 102-103, 1 plate, 1836.)
[16] Brodie, P. B., Rev. "A History of the Fossil Inseets in the Secondary Rocks of England." London, 1845.
[17] Brongniart, C. "Recherches pour servir a lhistoire des Insectes Fossiles des Temps Primaires." St Etienne, 1893.
[18] Brullé, A. "Observations sur la bouehe des Libellulines." Ann. Soc. ent. France, 1833, II.
\checkmark [19] Butler, Hortense. "The Labium of the Odonala." Trans. Amer. Ent. Soc., 1904, xxx, pp. 111-134, 6 plates.
[20] Bürschli, O. "Nähere Mittheilungen über die Entwicklung und den Bau der Samenfäden der Insecten." Zeit. wiss. Zool, 1871, xxi, pp. $526-534,2$ plates.
[21] Cabot, L. "The Immature State of the Odonata." Mem. Mus. Comp. Zool., Cambridge, Mass. *Part I (Gomphinae), II, 5, pp. 1-17, 3 plates, 1872 ; Part II (Aeschninae), viII, 1, pp. 1-40, 5 plates, 188]; Part I11 (Corduliinue), xvir, 1, pp. 1-50, 6 plates, 1800.
[22] Calvert, P. P. "North American Odonata." (Part I, General Aceount of Odonata.) 'Trans. Amer. Ent. Soc., 1893, xx, pp. 153-268, 3 plates.
[23] "Preliminary Note on the Youngest Larval Stage of some Odonata." Ent. News, Philadelphia, 1895, pp. 181-182.
[24] - "The first filling of the larval tracheae with air." Ent. News, Philadelphia, 1898, p. 73.
[25] -. "Oclonata fron Tepie, Mexico." Proc. Californian Acad. Sci., 1899, 3rd Ser., I, No. 12.
$[20]$-. "The first moult." Entomologist, 1900, xxxnr, p. 350.
[27] —. "Biologia Centrali-Americana. Odomata." London, 1901-8, pp. 17-420, 9 plates.
[28] - "Ganglia of Odonata." Proe. Acad. Nat. Sci, Philadelphia, 1903, p. 760.
$[29]$--. "The Composition and Ecological Relations of the Odonate Fama of Mexico and Central America." l.c., 1908, pp. 460-491, with Map.
[30] - "Some Comparisons between the eyes of Insects and of Man." Annals of Ophtlalmology, 1909, pp. 1-10.
[31] --. "Studies on Costa-Rican Odonata," Ent. News, Philadelphia, 1911, Xxif.
I. "The larva of Cora," pp. 49-64, 2 plates.
2. "Habits of the plant-dwelling larva of Mecisloguster motestus," pp. 402-410.
3. "Structure and Transformation of Mecistogaster modes/us," pp. 449-460, 3 plates.
[32] -. "Progress in our knowledge of the Odonata from 1895 to 1912." Trans. Second Entom. Congress, Oxford, 1012.
[33] Cabvert, P. P. 'The Fossil Odonate Phenatolestes, with a discussion of the Venation of the legion Podagrion, Selys." Proc. Acad. Nat. Sci., Philadelphia, 1913, pp. 225-272, 1 plate.
[3:4 Cambion, F. W. and II. "Notes on Dragonlly Parasites (larval watermites)." Entomologist, London, 1909, xIII, pp. 242-246.
$\lceil 35]-$, H. "Some Dragontlies and their Prey." Ann. and Mag. Nat. Hist., London, 1914, xur, pp. 490-504.
[36] - H. "The antenodal reticulation of the wings of Agrionine dragonflies." Proc. Acad. Nat. Sci., Philadelphia, 1913, Lxv, pp. 220224.
[37] Carpenter, G. H. "The Geographical Distribution of Dragonflies." Sc. Proc. Roy. Dublin Soc., 1897, viII (N.S.), Part v, No. 55, pp. 439-468, 1 plate.
[38] Carradori, G. "Esperienze ed 'osservazioni sopra la respirazione delle larve delle Libellule." Giorn. Fis. Chem. e Stor. nat., Briegnatelli, Tom vi, 1813, pp. 450-460.
[39] Chatin, J. "Sur l'origine et la formation du revêtement chitineux chez Ies larves de Libellules." C. R. Acad. Sei, Paris, 1892, cxiv, pp. 11351138.
[40] Cumb, C. M, and Youne, A. N. "Regeneration of the Appendages in nymphs of the Agrionidae." Arch. Entwick. der Organismen, Leipzig, $1903, \mathrm{Bd} \mathrm{xv}, \mathrm{Hft} 4, \mathrm{pp} .543-602,3$ plates.
[41] Cuun, C. "Ueber den Batu, die Entwieklung, und physiologisehe Bedentung der Rectaldrüsen bei den Insekten." Abh. Senck. Naturf. Ges., 1875, BI x.
[42] Clacero, G. V. "Del modo di unione dei bastoneelli ottici con i eristallini the sono negli ocehi composti delle Sfinge delle Libellule e delle Squille." Ac. Sei. Ist., Rologna, 1885.
 Bull, Amer. Mus. Nat. IIist., New York, 1907, xxiu, pp.]33-] 39.
 pp. 50 199, 1 plate.
[-15] - "Some Results of the Mlorissant Expedition of 1908." Amer. Nat., Ioos. xalt, pll. 569-m8I.
[40] - "Deseriptions of Tertiary lnseets." Amer. Journ. Sei., 1908, xxvi, pp. 60-75.
 of the vemation of the Aeshmine dragonilies." Proe. U.S. Nat. Mus., Washington, 1913, xuvi, pp. 61-64.
[48] Comsweek, J. H. and Nebomam, J. G. "The wings of Insects." Amer. Nat., 1898, xxxi, Otlonata, pp. 903-911.
[49] Dwwriz, H. "Einige Beobachtungen, betreffend das geschlossene Tracheensystem bei luscktenharven." Zool. Anz, 1890, xiri, pp.500-504, 525-531.
[50] Durour, L. "Sur la respiration branchale des harves des grandes

Libellules comparée à celle des Poissons." C. R. Acad. Sei., Paris, 1848, xxvi.
[51] Dufour, L. "Etudes anatomiques et physiologiques, et observations sur les larves des Libellules." Ann. Sci. Nat. Zool., 3rd Series, 1852, xvir, pp. 65-1 10, 3 plates.
[52] Evans, W. F. "British Libellulinae or Dragonflies." London, 1845.
[53] Exner, S. "Die Physiologie der fazettierten Augen von Krebsen und Insekten." Vienna, 1891, pp. 1—206, 7 plates.
[54] Faussek, V. "Beiträge zur Histologie des Darmkanals der Insekten." Zeit. wiss. Zool., 1887, Bd xlv, Hft 4, pp. 694-712.
[55] Gerstaecker, A. "Zur Morphologie der Orthoptera amphibiotica." Festschrift 100 Jahr. best. Ges. Naturfor. Freunde, Berlin, 1873, pp. 39-59, 1 plate.
[56] Giard, A. "La ponte des Libellules du genre Lestes." Feuille Jeun. Nat., 1894, Ann. 33 (4), pp. 189-192.
[57] Giebel, C. G. "Fauna der Vorwelt." Leipzig, 1856, Bd 2, Insekten 1. Spinnen.
[58] Goddard, Martha F. "On the second abdominal segment in a few Libellulidae." Proc. Amer. Phil. Soc., 1896, xxxv, pp. 205-212, 2 plates.
[59] Griffiths, A. B. "On the Malpighian Tubules of Libellula depressa." Proc. Roy. Soc., Edinburgh, 1888, xv, pp. 401-403.
[60] Hagen, H. A. "Die Neuroptera des Lithographisehen Schiefers in Bayern." Cassel, 1866.
[61] -. "Beitrag zur Kenntniss des Tracheensystents der LibellenLarven." Zool. Anz., 1880, IIr, pp. 157-161.
[62] -.. "Essai d'un Synopsis des Larves de Caloptérygines." C. R. Soe. Ent. Belg., 1880, xxiti, pp. Ixv-lxvii.
[63] -. "Monograph of the earlicr stages of the Odonata (Gomphinae and Cordulegustrinae)." Trans. Amer. Ent, Soc, 1885, xar, pp. $299-291$,
[64]- "Ueber die früheren Zustande der Libellen nebst Andeutung äber die Bildung des Thomax." Fnt. Zat. Stettin, 1889, Jahr. 50, pp. 16e--I66.
[65] Mandlirscif, A. "Zur Morphologie des Minterleibes der Odonaten." Ann. Hofmus., Wien, 1903, xvir, pp. 117-122.
[66] -. "Bemerkungen zu der Arbeit des Hemin Prof. Dr Meymons über die Abdominalanhänge der Libellen." l.c., 1904, xıx, pp. п!--63.
[67] --. "Die Fossilen Insekten." Leipzig, 1906-7, pp. I-1120,51 plates.
[68] -. "New Palaeozoic Insects from the Vicinity of Mazon Creek, Illinois." Amer. Jour. Sci., 1911, xxxi, pp. 297-377.
[69] Haupt, H. "Ein Beitrag zur Metamorphose der Libcllen." Woch. Aquarienkunde, Brunswick, 1906, III, Pp. 382-384.
[70] Hesse, R. "Untersuehungen über die Organe der Lichtempfindung bei niederen Thieren. 7. Von den Arthropoden-Augen." Zeit. wiss. Zool., 1901, Lxx, pp. 347-473, 6 plates. (Odonata, pp. 380-384.)
[71] Heymons, R. "Grundzü̈ge der Entwieklung und des Körperbaues von Odonaten und Ephemeriden." Abh. Akad. Wiss., Berlin, 1896.

172] Hevmoxs, R. "Die Hinterleibesanhänge der Libellen und ihrer Larven." Amm. Hofmus., Wien, 1904, xix, pp. 21-58, 1 plate.
[73] Hickson, S. J. "The Eye and Optic Tract of Insects." Q. J. M. S., 1885, 2nd Hories, xxv.
[74] Higains, Helen T. "The Development and comparative structure of the gizzard in Zygoplera." Proc. Acad. Nat. Sci., Philadelphia, 1901, LIII, Pp. 120-141, 3 plates.
[75] Hübner, O. "Neue Versuche aus dem Gebiet der Regeneration und ihre Beriehungen zu Aupassungserseheinungen." Zool. Jahrb. Syst., xy, 1902, pp. 46I-498, 2 plates.
[76] Imiof, O. E. "Antennen der Odonata." Biol. Centrbl., 1901, xxi, рр. 25:-256.
[77] Jaxda, V. "Experimentelle Untersuchungen über die Regeneration der Odoutlen." Zool. Anz., 1910, xxxy, pp. 602-608.
[78] Kammerier, P. "Symbiose zwisehen Oedogonium undulatum und Wasserjungferlarva (Aeschna cyanea)." Wiener Fest. Schr., Vienna, 1908, pp. 2:38-252.
[79] Kellicott, D. S. "An Otonate nymph from a thermal spring." Journ. Cincinnati Soc., 1890, xix, pp. 63-65.
[80] Kolme, H. "Uober den Zweek der Appendices anales und der entsprechenden vicariierenden Organe am Hinderleibsende der Libelluliden." Jahrsb. Westfiil. Prov. Ver. f. Wiss. u. Kunst, 1881, ix, pp. 52-56.
[81] Korscheat, F. und Hewner, K. "Lehrbueh der vergleichenden Entwieklungsgesehichte der witbellosen Ticre." Jena, 1891-1902 (Otomal(a, ete., pp. 380 et $s q 9$.).
[82] Lambaw, F. F. "Olomhla. Part I." Fasc. Malayenses, Zool., pl. 165 --000.
|83| Lanmots, H. "Die Ton- und Stimmappurate der Insekten." Zeit. wiss. Zawl. 1867, xva.
|\$1| Lbabenmbir, R, von. "Der Flug der Libellen." Sitab. kais. Akad. Wiss. Vinma, Issi, txxsiti, Abt. 1. pp. 280-376, 7 phates.
$|85|$ Lexpes, 1: "Mémevire sur Pappateil anditif des lnsectes." Amm. sei. Nat. Zool., thi Series, 1858, IX.
[8(i) Lowne, B. T. "On the Compound Vision and the Morphology of the Eyv in Inseds." 'Imans. Limn. Soe, London, end Series, Zool, 1884, II.
[87] Lubsock, J. "On the senses, instinets and intelligence of animals, with specinl reference to Insects." London, 1888, pp. 1-292.
[88] Lucas, W. J. "British Dragonflies." London, 1900, pp. l-356, 27 plates.
[89] Martin, R. "Cordulines." Cat. Coll. Selys, Fase. xvir, 1906, pp. $1-98,3$ plates.
[90] -. "Aeschnines." Cat. Coll. Selys, Fase. xvin-xx, 1908-9, 1p. 1-211, ip plates.
191] MeGill, Caroline. "The behaviour of the nucleoli during oogenesis
of the dragonfly, with especial reference to synapsis." Zool. Jahrb., Jena, Abt. f. Anat., 1906, xxim, pp. 207-230, 5 plates.
[92] Meunier, F. "Les Agrionides Fossiles des Musées de Munich et de Haarlem." Ann. Soe. Ent. Franec, 1896, pp. 30-35, 3 plates.
[93] --. "Nouveaux Insectes des schistes houillers de Commentry," Ann. Soc. Scient., Brussels, 1908, xxxir, pp. 241-244.
[94] Miall, L. C. "The Natural History of Aquatic Insects." London, 1895. (Dragonflies, chap. Ix, pp. 328-345.)
[95] Müller, J. "Zar Vergleichenden Physiologic des Gesiehtssimnes des Menschen und der Thiere, etc." Leipzig, 1826.
[96] Néander, A. "Zur Morphologie der Stigmen bei Aeschniclen und Libelluliden-Larven." Vorl. Mitt. Arkiv Zool., Stockholm, l!ul:, vir, No. 14 (6).
[97] Needram, J. G. "On rearing dragonflies." Canad. Ent., 1897, xxix, pp. $94-96$.
198] - "The Digestive Epithelium of Dragonfly Nymphs." Zool. Bull., 1898, I, pp. 103-113.
[99] -. "The fruiting of the Bluc Mag (Iris versicolor L.)." Amer. Nat., 1900, Xxxiv, No. 401, pp. 361-386.
[100] -. "Aquatic Insects in the Adirondacks." N.Y. itate Mus., Albany Bull., Xlvif, 1901, pp. 383-612, 36 plittes.
[101] -. "Life-Histories of Odonata." Bull. N.Y. Mus., 190:3, l.xvifi, pp. 218-279, 11 plates.
[102] - "A gencalogic study of dragontly wing-venation," Pror. U.S. Nat. Mus., Washington, 1903, xxv1, pp. 703-761, 24 plates (No. 1:3:31).
[103] -. "New Dragonfly nymphs in the U.S. National Musenm." l.e., 1904, xxvis, pp. 685-720, 7 plates (No. 1:371).
[104] -". "Deseriptions of dragonfly nymples of the sulifanily Culopteryginae." Ent. News, Philidelphia, 1!11, xxir, pp. A6-15-1, 2 plates.
[105] —. "Notes on a few Nymphs of Agrioninae of the Hagen Collection." l.c., pp. 341-345, 1 , plate.
[100] - "Notes on some Nymphs of Gomphinae of the Hagen Collection." l.e., pp. 392-390, 1 plate.
[107] Needham, J. G. and Anthony, Maude H. "The Skewness of the thorax in Odonata." Jour. N.Y. Ent. Soc., 1903, xi, pp. $117-124,1$ plate.
[108] Needham, J. G. and Cockerell, T. C. "Some hitherto monown nymphs of Odonata from New Mexieo." Psyehe, 1903, x, pp. 1:34-139.
109] Oauma, K. "On the rectal tracheal gills of a Libellulid-nymph, and their fate during the course of metamorphosis." Berliner Ent. Zeit., 1913, LvmI, pp. 211-225, 2 plates.
[110] Osburn, R. C. "Observations and Experiments on dragonflies in brackish water." Amer. Nat., 1906, xl, pp. 395-309,
[111] Oustalet, M. E. "Note sur la Respiration che\% les Nymphes des Libellules." Ann. Sci. Nat. Zool., 5th Series, 1860, xi, [P. 364-386, 3 plates.
[112] Packard, A. S. "On the development of a dragonfly (Diplax)." Proc. Boston Soc. Nat. Hist., I 868, xi, pp. 365-372.
[113] -. "Emhryological Studies on Diplax, Perithemis, and the Thysanurous genus Isostoma." Mein. Peabody Acad., 1871, I, 2, pp. 1-21, 3 plates.
[114] Perkins, R. C. L. "Notes on some Hawaiian Insects." Proc. Cambridge Soc., 1897, w, pp. 373-380.
[115] -. "Mama Hawaiiensis, Neuroptera," 1899, II, pp. 31-89, 3 plates.
[116] -.. "Pauna Hawaiiensis, Introduction, being a review of the landfauna of Huwaii," 1913, r, Part vi, pp. xv-cexxviii, 16 plates.
[117] I'ICARD, F. "Sur les changements de coloration ehez les mâles de quclques Libellules." Bull. Soc. Ent., Paris, 1906, pp. 166-167.
[1]8] Prerre, Abbé́. "L'éclosion des œufs du Lestes viritis Van der Lind." Ann. Soe. Ent. Frumec, 1904, mxxim, pp. 477-484, 1 plate.
[119] Plateau, F. "Recherches Expérimentales sur les Mouvements Respiratoires des Insectes." Mém. Acad. Roy. Belg., 1884, xlv, pp. 11I-12:3, I phate.
[120] Pombradeff, N. "Die Plägelmuskeln der Lepidopteren und Libelluliden." Zool, Anz., 1880.
$1121 \mid$ - "Du developpement des museles d'ailes cheq les Odonates." Horac Soc. Ent. Ross., Petrograd, 1881, xvi, pp. 10-37, 5 plates.
$|122|$--.. "Speitheldrï̀sen bei den Odonaten." I.e., pp. 3-6; 1 plate.
[123]-. "Des glandes salivaires chez les Odonates." C. R. Aead. Sei, P'aris, 1888, xcr.
 larves des Odonates." Horac Soc. Ent. Ross., Petrograd, 1880, xv, pp. $436-150,2$ phates.
[125] Pouman, L. B. "Predaccous Insects and their Prey." Trans. Ent. Soe., Lonton, 1906, pp. 32:3-409. (Odonata, pp. 398-401.)
[126] Pursma, G. L. "l'reliminary Notes on some problems conneeted with respiration in Insects generally, and in aquatic forms in partieular." Canb. Phil. Trans., 1914, xvin, Part 2, pp. 63-70.
[127] Rambur, P'. "Histoire Naturelle des Insectes. Névroptères. Suites a Buffon." Paris, 1842.
[128] Rather, H. "De Libellarmi partibus genitalibus." Königsberg, 1832, pp. 1-38, 3 plates:
[129] Réaumur, R. A. "Mémoires pour servir à l'histoire naturelle et à l'anatomie des Inseetes." Piaris, 1734—1742, 6 vols., 267 plates (see Vol. 6 , inemoir XI).
[130] Rnhay, C. F. C. "Observations on the ecology of dragonfly nymphs; reactions to light and contact." Am. Ent. Soc. Amer., 1912, v, pp. 273292.
[1:31] Rıs, F. "Untersuchung über die Gestalt des Kamagens bei den Libellen unt ihren Larven." Zool. Jahrl., 1890, xix, pp. 590-624. T. D.-F.

132] Ris, F. "Oviposition in Cordulegaster." Ent. News, Philadelphia, 1905, pp. 113-114.
[133] ——. "Die Süsswasserfama Deutsehlands. Odonata." Jena, 1909, Hft 9, pp. l-(i7.
134] -. "Libellulinen." Cat. Coll. Selys, Fasc. ix-xvi, 1909-1913, pp. 1-1042, 8 plates.
[135] -. "Kopulationsmarken bei Libellen." D. ent. Nationalbibl., Berlin, 1910, i, pp. 70-71, 79-80.
[136] -. "Die Fauna Sídwest-Australiens (Miehaelsen u. Hartmeyer). Odonata." 1910, iI, pp. 415-450, Jena.
[137] -. "Ueber Odonaten von Java und Krakatau." Tijdschr. Ent., 1912, tv, pp. 157-183.
[138] —. "Die mitteleuropaisehen Corduliinen-larven." Mitt. Schwei\%. ent. Ges., Berne, 1911, Bd xir, Hft 2, pp. 25-41.
[139] -. "Die Atmungs-Organe der anisopteren Libellenlarven." l.e., 1913, Bd xir, Hft 4, pp. 92-99.
[140] Roster, D. A. "Contributo all' anatomia ed alla biologia degli Odonati." Bull. Soc. Fint. Ital., Forence, 1885, xvit, pp, $256-268$, 2 plates.
[141] -. "Contributo allo studio delle forme larvali degli Odonati." I.c., 1888, xx, pp. 159-170, 4 plates.
[142] Rothswand, S. J. "Ueber Phagocytose und die Pericardialzellen der Libellenlarven." Arb. Lab. Zool, Cabin. Univ. Warsehau, Warsaw, 1898, p. $120{ }^{*}$.
[143] Rousseav, E. "Contributions à la connaissance des métanorphoses des Odonates d'Europe." Ann. Soc. Ent. Belg., 1908, liI, pp. 272-291.
[144] -. "Etude monographique des larves des Odonates d'Europe." Ann. Biol. lacustre, Brussels, 1909, iII, pp. 300-366.
[145] Sadones, J. "L'appareil digestif et respiration larvairo des Odonates." La Cellule, Louvain, 1890, xi, pp. 273-394, 3 plates.
[146] Schindler, E. "Beiträge zur Kenntniss der Malpighi'sclen Gefässe der Insecten." Zeit. wiss. Zool., 1878, xxx, pp. 587-660, 3 plates.
[147] Scott, G. G. "The Distribution of Tracheac in the Nymph of Plalhemis lydia." Marine Biol. Lab. Bull., Woods' Holl, Mass., 1905, rx, pp. 341 354.
[148] Scudder, S. H. "The Tertiary Inseets of North America." Repr. U.S. Geol. Survey, Terr. xil, 1890.
[149] -. "Some Insects of special interest from Florissant, Colorado, and other points in the Tertiaries of Colorado and Utah." Bull. U.S. Geol. Survey, 1892, No. 93, 25 pp., 3 plates.
[150] Seldards, E. H. "Types of Permian Insects. Part I, Olonata." Amer. Jour. Sei., New Haven, 1906, Ser. 4, xx, pp. 249-258.
[151] Selys-Longchamps, E. de and Hagen, H. A. "Monographie des Gomphines." Brussels, 1858, pp. 1-460, 23 plates.
[152] Silafer, G. D. "Histology and Development of the divided cyes of
certain insects." Proc. Acad. Sci., Washington, 1907, viII, pp. 459-486, 4 plates.
[15:3] Sifarp, D. "Cambridge Natural History. Insects, Part i," 1901. (Dragonthes, chap. xvir, pp. 409-428.)
[154] Sinboln, C. T. von. "Ueber die Begattung der Libelien." Archiv für Naturg., 1838, Jahrg 4, Rd 1, pp. 375-376.
[155] -. "Ueber die Fortpflanzungsweise der Libellen." Germar's Zeit. für die Ent., Danzig, 1840, Ir, Hft 2, pp. 421-435.
[150] ——. "Sur la mode de reproluction des Libellulines." Revue Zool., 1842, pp. 28:3-288, 324—328.
[157] Snodgrass, R. E. "The Thorax of Insects and the Articulations of the Wings." Proc. U.S. Nat. Mus., Washington, 1909, xxxvi, pp. 511-595, 30 plates.
[158] Sondinim, Maria. "Wahrnehmungsvermögen einer Libellenlarve." Biol. Centrbl., 100I, xxi, pp. 317-319.
[150] Suckow, M. de. "Respiration der Insecten, insbesondere über die Darmrespiration des Aeschna grandis." Zeit. für die organische Physik, 1828, Bal 1.
[160] - "Sur l'unatomic et lat respiration des larves des Libellules." Heusinger Zeitschrift, 1840 , Bl mir.
|liti| Thombson, O. S. "Aprondages of the Second Abtominal Segment" of male dragonflies (Odonata)." Abmay, N.Y. St. Ed. Dep. Mus. Bull., 1908, cxxiv, pp. 249-263.
[1fie] 'Thavani, R. J. "On the supposed numerical preponderance of the males in Otlonatt." Proc. Lim. Soc. N.S.W., Sydney, 1905, xxx, pp. 344-349.
[16i3] _-. "Life-History of Lestes ledfe Selys." l.c., 1906, xxxi, pi. 400-423, 2 plates.
|164]-. "On Dimorphism in the Femades of Anstralian Agrionidae." L.e., 1907, xxxir, pp. 38\%-390.
[105] -. "Studies in the Life-Histories of Anstralian Odonata":

1. Petalura gigantea Leach. l.e., 1909, xxxiv, pp. 256-267, 1 plate.
[166] --. 2. Diphlelia lestozules Sclys. l.e., 1909, xxxiv, pp. 370-383, 1 plate.
[167] -. 3. Deseription and Life-History of Phyllopetalia patricia, n.sp. l.c., 1909 (1910), xxxiv, pp. 697-708, 1 plate.
[108] -_. 4. Further Notes on the Life-History of Petalura gigantea Leach. l.c., 1911, xxxvi, pp. 86-97, 1 plate.
[160] -. "Monograph of the Gemis Synthemis." l.c.,]910, xxxv, Pp. 312-377, 5 plates.
$\lceil 170\rceil$--. "On some experiments with Dragonfly Larvae." I.c., 1910, !, xxxv, pp, 6660-670.
[171] _-. "On the genus Cordulephya." l.c., 1911, xxxvi, pp. 388-422, 2 plates.
[172] Tlleyard, R. J. "On the genus Diphlebia, with deseriptions of new species, and life-histories." 1.e., 1911, xxxvi, pp. 584-604, 2 plates.
[173] -_. "On some new and rare Australian Agrionidae." I.c., 1912 (1913), xxxvir, pp. 404-479, 6 plates.
[174] -. "A Study of the Odonata of Tasmania in relation to the Bassian Isthmus." l.c., 1913 (1914), xxxviII, pp. 765-778.
[17̄̄] -. "On the Study of Zoogeographical Regions by means of Specilie Contours." 1.c., 1914, xxxix, Part 1, pp. 21-43, 1 plate, 3 transparencies.
[176] -. "On some Problems concerning the development of the WingVenation of Odonata." l.c., 1914, xxxix, Part l, pp. 163-216, 3 plates.
[177] -. "The Hatching of the Larva of Anax papuensis Burm." Rep. British Ass. Australian Meoting, Sydney, Aug. 1914, pp. 424-425.
[178] -. "Life-Histories and Descriptions of Australian Aeschninae." Journ. Linn. Soc., London, Zool. xxxiif, 1916, No. 229, pp. 1-83, 9 plates.
[179] -. "On the Reetal Breathing Apparatus of Anisopterid Larvae." l.c., 1916.
[180] -. "On the Development of the Wing-venation in Zygopterous. Dragonflies, with special reference to the Calopterygidae." Proc. Lim. Soc. N.S.W., Sydney, 1915, xi, Part 2, pp. 212-230, 3 plates.
[181] Tsoinuprofr, H. "Ueber die Entwicklung der Keimblatter bei den Libellen." Zool. Anz., 1903.
[182] Tümper, R. "Ueber das scheinbar seltene Vorkommen der Weibehen maneher Libollen-arten." Illustr. Zeit. Ent., 1899, iv, pp. 227-228.
[183] Uchida, S. "Preliminary Report on the Larvac of Japancse Aesechnidae." Nip. Konch. Kw., Tokio, 1907, I, Part 1, pp. 4-23, 1 plate.
[184] Uexküll, J. "Studien über den Tonus. V. Die Libellen," Z.it. Biol. München, Munich, 1907 (1908), L, pp. 168-202.
[185] Viallanes, H. "Anatomie et dissection de la larve de la Lihellule." Feuill. Nat., 1884, xiv, pp. 81-87, 1 phate.
[186] -. "Le ganglion optique de la Libellule (Aeschna maculutissimu)." Ann. Sci. Nat. Zool., 6th Series, 1885, xviII, pp. 1-34, 3 plates.
[187] Vornov, D. N. "Recherehes physiologiques sur l'apparcil digestif et le tissu adipeux des larves des Odonata." Bull. Soc. Bucharest, 1898, vir, pp. 49-52, 473-493, 2 plates.
[188] Walker, E. M. "The North Ameriean dragonflies of the genus Aeschna." Toronto Stud. Univ. Biol., 1912, xx, pp. 1-213, 28 plates.
[189] -. "New Nymphs of Canadian Odonata." Canadian Entonologist, 1913, xlv, No. 6, pp. 161-170, 2 plates.
[190] -. "Mutual adaptation of the sexes in Argia moest/" putritle." l.c., No. 9, pp. 277-279, 1 plate.
[191] Wallenaren, H. "Physiologische-biologische Studien ïber die Atmung bei den Arthropoden. 1. Die Atmung der gehiinlosen Aeschanaarven." Lund Univ. Arsskr., N. F., 1913, ix, Afd. 2, No. 16, 30 pp., 1 plate.
[192] Weele, H. W. van der. "Morphologie und Entwieklung der Gonapophysen der Odonaten." Tijdschr. Ent., 1906, xlix, pp. 99-198, 3 plites.
[193] Williamson, E. B. "The copulation of Odonata." Ent. News, Philadelphia, 1890, x, p. 42.
$[194]$-. "Preservation of colours in dragonflies." l.e., 1901, xir, pp. 131--133.
[195] --. "On the manner of oviposition, and on the nymph of Tachoptery, thoreyi." l.c., 1901, xir, pp. 1-3, 1 plate.
[196] - "Spiders as enemies of dragonflies." l.e., 1903, xiv, pp. 160$1(6)$.
[197] --.. "A Hybrid Dragonfly of the Genus Gomphus." l.c., 1903, $\mathrm{xiv}, \mathrm{pp} .253-258,1$ plate.
[198] -. "The Dragontlics (Otlonata) of Burma and Lower Siam. 1. Sub-fam. Calopteryginue." Proc. U.S. Nat. Mus., Washington, 1904, xxviil, No. 1389, pp. 165-187.
[190] --. "Oviposition of Tetragoneuria." Ent. News, Philadelphia, 1915, xvi, pp. 255-256.
[200] - . "The medio-anal link in Agrioninae." l.c., 1913, xxrv, ple $258-263$.
[201] Williamson, S. B. and Calvert, P. P. "Copulation of Otlonala." 1.c., 1906, xvis, pp. 143-148, 1 plate.
[202! Zawabsin, A. "Kur Frage über den Bau dew sensiblen Nervensystems bei den Insekten." Vorl. Mitt., St Petersburg (Petrograd), 1911, xim, 1, pp. 200-208, 222-223.
[203] -. "Histologiselne Studien über Insekten. 1. Das Herz der Aeschuc-larven." Zeit. wiss. Zool, 1911, xovir, Hft 3, pp. 481-510, 2 plates.
$[204]$-. "Histologische Stuclien ïber Insekten. 2. Das sensibel Nervensystem der Aeschna-larva." 1.c., 1912, c, pp. 245-286, 3 plates.

ADDITIONAL BHBLIOGRAPHY

[In the following list are ineluded a few publications of which the author was mable to obtain copies or abstracts, and which, therefore, have not been made use of in this book, together with all those recently-published papers which have been received between the date of completion of the text (March 1915) and the date of eompletion of the first proof-reading (July 1916).]
Bervoers, R. "Sur lo Système Trachéen des Larves d'Odonates." Ann. Biol. lacustre, 1913, vi, pp. 15-52.
Calvert, P. P. "Studies on Costa Riean Odenata, V-VII. The Waterfall Dwellers: Thaumatoneura." Ent. News, Philadelphia, 1914-5, xxv and xxvi. (V. Inagos and Possible Male Dimorphism, xxv, pp. 337348, I plate, Oct., 1914. VI. Transformation External Features and Attached Diatoms of Larvac, xxvi, pp. 295-305, 1 plate, July, 1915.
VII. Internal Organs of Larva, and the Respiration and Rectal Tracheation of Zygopterous Larvae in General, xxvi, pp. 385-395, 435-447, 3 plates, Nov.-Dec., 1915.)
Carts, C. G. "Entdeckung cines einfachen vom Herzen aus besclileunigten Blutkreislaufes in den Larven netzflüglicher Insecten." Leiprig, 1827, 4to, pp. 1-40, 3 plates.
Cifatin, J. "Sur le processus général de la cuticularisation tégunentaire chez les larves des Libellujes." Bull. Soc. Philom., Paris, 1892, viri, T. 4, Nr. 3, pp. 105-106.

Dufour, L. "Des divers modes de respiration aquatique dans les Insectes." C. R. Acad. Sci., Paris, 1849, xxix, pp. 763-770.

Hagen, H. A. "Léon Dufour über die Larven der Libellen mit Berïcksichtigung der früheren Arbeiten." Stett. Ent. Zeit., 1853, xiv, pp. 98106, 237-238, 260-270, 311-325, 334-346.
Kennedy, C. H. "Notes on the Life-History and Ecology of the Dragonffies (Odonata) of Washington and Oregon." Proc. U.S. Nat. Mus., 1915, xlux, pp. 259-345.
Lamborn, W. A. "Notes on the Habits of Clossina morsitans." Bull. Ent. Researeh, 1916, vi, Part 3. (Orthetrum chrysostigma recorded as attacking and devouring Tse-tse Flies.)
Marsiali, W. S. "On the Anatomy of the Dragonfly Libellula qualrimaculata Limé." Trans. Wiseonsin Acad. Sci. cte., 1914, xvir, Part 2, No. 1, pp. 755-790, 4 plates.
Martin, J. "Sur" la respiration des larves de Libellules." Bull. Soc. Philomath., Paris, 1892, viII, T. 4, pp. 122-124.
Mednier, F. "Un nouveau grand fragment de Libellulide géante du houiller de Commentry." Ann. Soc. Sei., Bruxelles, 1914, xxxvir, pp. 93-94.
Oguma, K. "A case of Prolapsus recti in a Dragonfly." Annot. Zool. Japonenses, Tokyo, 1915, ix, Part 1.
Portier, P. "Recherches Physiologiques sur Ies Insectes Aquatiques." Arch. Zool. Exp. Gén., 1911 (5), viI, pp. 89-379, 4 plates.
Ris, F. "The identity of two Odonata Fossils." Bull. Wisconsin Nat. His. Soc., Milwaukee, 1910, viil, pp. 102-105.
Roberts, E. W. "Nature of the intromittent organ of the Odonalu." Trans. Amer. Microsc. Soc., Decatur, Ill., 1912 (1913), xxxi, pp. 201-203.
Roseniof, Roesel von. "Der Wasser-Insecten zweyte Klasse. Der monatlich-herausgegebenen Insecten-Belustigung." Nürnberg, 1749, Part 2.
Roster, D. A. "Cenno Monographico degli Odonati dei Gruppo Ischnura." Bull. Soc. Ent. Ital., 1886, xviir, pp. 239-258, 5 plates.
Schmidt, E. "Vergleichende Morphologie des 2 und 3 Abdominalsegments bei männlichen Libellen." Zool. Jahrb., Jena, 1915, xxxix, Hft 1, pp. 87200, 3 plates.
Scimide-Schwedt, E. "Kerfe u. Kerflarven d. siissen Wassers, besonders
der stehenden Gewässer." Die Tier- u. Pflanzenwe't d. Süsswassers, von Dr O. Zaeharias, Leiprig, 1891, Bd II, pp. 51-122.
Selys-Longchamps, E. de. "Le Progrès dans la Connaissanee des Odonates." Third Internat. Congr. Zool, Leyden, 1895.
Tlleyard, R. J. "On the Physiology of the Reetal Gills in the Larvae of Anisopterid Dragonflies." Proc. Linn. Soc. N.S.W., Sydney, 1915, xt, Part 3, pp. 422 437, 1 plate.
-_. "Mesozoic and Tertiary Inseets of Queensland and New South Wales." Queensland Geol. Survey, Brisbanc, 1916, No. 253, pp. 1-47, 9 plates. (Description of Mesophlebia antinolalis and discussion of phylogeny of notus, pp. 25-29.)
-. "Further Olservations on the Emergence of Dragonfly Larvae from the Jgg, with Srecial Reference to the Problem of Respiration." Proc. Lim. Soc. N.S.W., Sydney, 1916, xuI.
Tumple, R. "Dic Geradfligier Mitteleuropas." Ist ed., Eisenach, 1898-9; 2nd ed., Gotha, 1908.
Wadker, E. M. "The known nymphs of the Canadian speeies of Lestes." Canadian Eint., 1914, xlvi, pp. 189-200.
——. "Now and little-known nymphs of Canadian Odonata." l.e., pp. 349-357, :369-377, 2 plates.
Wallengeren, H. "Physiologisele-biologischè Studien über die Atmung bei den Artlropoden." Land Univ. Ärsskr. N.E., x, Afd. 2, 1914.
2. Die Meelanik der Atembewcogungen bei Aesclina-larven. A. Das Chitinskelett. 13. Muskelatur des Abdomens. (No. 4, l plato.)
3. Nie Atmung der Aesehut-latven. Die Ventilations-grosse des respinatuisehen Darmes. Ist der Rhytmus der Atembewegungon von Wasserströmungen bedingt? Die Notatmung. (No. 8.)
Warben, A. "A Study of the Food Habits of the Hawaiian Dragonflies or Pinau." Coll. Hawaii, Bull. No. 3, 1915, pp. 3-45, plates 1-4.
Wesmarbra-Lund, C. "Odonaten Studien." Intern. Rev. Hydrobiol., Leiprig, 1913-4, vi, pp. 155-228, 373-422.

APPENDIX B

glossary

- Alveolus (Lat. =a small hollow), a small hollow space in the interior of an organ.
: Amoebocytes (Amoeba + Gr. кútos, cell), the larger corpuseles found in the blood of Inseets; so called because they undergo amocboid movements.
- Amphiliolic (Gr. a $\mu \phi i$, on both sides; β tetek is, fit to live), indicates, in the Insecta, that the imago is terrestrial or aërial, but the larva aquatic.
- Ampilla (Lat. =a flask), a small flask-shaped growth or onterowth

Anastomosis ($\mathrm{Gr} .=$ an outlet), a vessel forming an outlet or connection between two larger vessels. Often used for a netwo:k of small vessels connecting two larger ones.

Apoleme (Gr . airooí $\mu \omega$, to build out), a ridge or ingrowth of the cuticle, serving for the attachment of muscles

Asthenogenesis (Gr. úr $\theta \epsilon \nu \eta \eta^{\prime}$, weak; $\gamma^{\prime} \nu \epsilon \sigma \iota s$, begetting), the development of a suceessful line of descent by the adoption of weakness in structure (c.g. the Agrionidae amongst Dragonflies). Contrasted witl menogenesis (Gr. $\mu \mathrm{c} \nu \mathrm{\nu}$ s, strong).

Autotomy (Gr. aücós, self; r'́ $\mu \nu \omega$, to eut), self-mutilation; the power to cast off an appendage at will.

Bilateral symmetry, the possession of a single longitudinal axis or plane of symmetry, separating exactly similar right and left Jalves.

Bromeliad, any plant belonging to the Pino-apple family (Bromeliaceae).
Caecum (Lat. = blind), a blind tube, i.e. one closed at its free end.
Caenogenetic (Gr. кawós, new; $\gamma \in \nu \nu \dot{a} \omega$, to beget), a comparative term used in contrast with "archaic," and signifying, phylogenctically, a comparatively recent line of development, as contrasted with an older (archaic) line. It may be used either of races of animals, or of types of organs.

Callus (Lat. $=$ hard skin), a hard lump or swelling of the eutiele (e.g. at the wing-base).

Campodeiform (from Campotea, a wingless inseet of the Order Thysanura), the term applied to larvae which are aetive and provided with well-developed limbs, as opposed to eruciform or grub-like larvac.

- Capillary (Lat. capillus, a hair), a fine hair-like tube (tracheal system).

Carina (Lat. =a keel), an external ridge of the cutiele.
Caudal (Lat. caudalis, of the tail), used of organs situated at the posterior end of the abdomen.

Cell, a minute portion of protoplasm containing a nucleus.
Cerei ($\mathrm{Gr} .=$ tails), the appendages of the last abdominal segment.
Chiasmut (Gr. = a crossing, from the letter χ), a diagonal intererossing of two sets of nerve-fibres.

Chitin (Gr. $\chi^{i \tau \dot{\omega}}$, t tumic), the transparent horn-like substance which forms the cuticle of insects.

Ohromatin (Gr. $\chi \rho \hat{\omega} \mu a$, colour), the substance forming the intra-nuelear filmes of the cell-mueleus (so called owing to its affinity for basic stains, such as hatematoxylin).

Coelome (Gl. кoi $\lambda \omega \mu$, a lollow), in the Arthropoda, the body-cavity formel by fusion of the cavities of the mesodermal somites of the embryo ; in the Inseeta, it is much refluced. In some other Phyla, the coelome may have a diflerent derivation.

Commissure (Lat. commissura, a conncetion), a cord of nerve-fibres connecting two granglia.

Convergence, the term applied to indicate resemblance between two forms cilher of animats or structures) derived from two widely different ancestries. The convergenee may be due to the adoption of similar habits, or to the climination, by reduction, of the original differenees.

Combuliform (Gr. кор δ íd η, a club), shaped like an Indian club (e.g. abdonen of certain Dragontlies).

Comea (Lat. = horny), the outer covering of the eye (in Insects, continuous with the chitinous eutiele).
(tuicle (Lat. = the skin), the hard outer non-cellular covering of Insects; formed of chitin.
 of the cell, execpt the nuclens.

Deultilir (Cir. Bedpon, a tree), with complex branchings, like those of a tree.

Dianhragm ((ar. =a partition-wall), a membane dividing the body-cavity into two.
 the branching of a single ancestral line into two equal and diverging lines of descent.

Dioptit or dioptric (Gr. Sıotтıós, fit to look through, or doontpecois, pertaining to an optical instrument), used of the part of the cye concemed with the passage and focussing of the light-rays.

Ecdysis (Gr. éx $\delta i \omega$, to strip off), the periodical casting of the larval skin. Dcholerm, see Germinal Layers.
Lfferent (Lat. =carrying outwards), a vessel eonveying air or blood outwards from : gill.
 egg.
buloserm, sce: (ierminal Layers.

Epiphylic（Gr．$\dot{\epsilon} \pi \iota \not \subset \dot{\omega} \omega$ ，to grow upon），used of plants growing non－para－ sitically upon others，as ferns，Bromeliads，etc．，upon the branches of trees．

Epithelium（Gr． $\bar{\epsilon} \pi i$ ，upon；$\theta_{\eta} \lambda \dot{\epsilon} \omega$ ，to flowish），a cellular membrane covering any internal or external surface．

Evagination（Lat．ex，out of ；vagina，sheath），the ontgrowth or ontpushing of a hollow organ from within．

Exoskeleton（Gr．$\epsilon \xi \omega$ ，outside of），the extemal skeleton．
Exuriae（Lat．＝the slough or east skin），the cast skin of the larva at metamorphosis．The word does not exist in the singular．

Follicle（Lat．＝a little bag），a small pit or bag－like hollow；in particular， the hollow cellular investment of the developing ovum．

Foramen（Lat．＝a hole），a passage through any portion of the skeleton．
Fossa（Lat．＝a ditch），an external depression or hollow．
Ganglion（Gr．γ i $\gamma \gamma \lambda \iota o \nu$ ，a tumour），a definite swelling in the course of a nerve－eord，caused by an aggregation of nerve－cells．

Germinal Layers．In the carly development of the embryo the blastoderm becomes marked out into three layers of cells，of which the outermost is ealled the ectoderm，the middle one the messiderm，and the immermost the endoderm．The term lower layer is used for the last two together，when they are not elearly differentiated from one another．

Ginglymus（Gr．$\gamma \boldsymbol{i} \gamma \gamma \lambda \nu \mu i s)$ ，a ball－and－socket joint．
Gonads（Gr．$\gamma^{\prime} y^{\prime} y_{0}$, begetting），the organs which produce the reprotuctive cells（sperms or ova）．

Gonapophysea（Gr．yivos，and amidpogs，ontgrowth），appondages sur－ rounding the genital pore．

Haemocoele（Gr．aifa，blood；кồos，hollow），a body．cavity formed by secondary enlargement of the blood－spaces．

Hamule（Lat．hamulus，a little hook），a small hook－like process．
Histology（Gr．iorós，a weaver＇s web），the science of the mimute structure of organisms．

Homology（Gr．$\dot{\sigma}_{\mu} \boldsymbol{\lambda}^{\boldsymbol{\lambda}} \boldsymbol{\gamma}^{\prime} \omega$ ，to be in aceordance with），a correspondence in type of structure between parts or organs of different organisms，due to evolutionary differentiation from the same or a corresponding part or organ of some remote ancestor．In segmented animals，an organ of one segment is serially homologous with another of another segment if the two are derived from corresponding parts（e．g．thoracie legs and lateral abdominal gills）．

Hyaline（Gr．vii $\lambda_{\iota \nu} o s$, glassy），colourless and transparent，like glass．
Hypertrophy（Gr．v̈ $\pi \epsilon \rho$ ，over；$\tau \rho o \nmid \dot{\eta}$ ，nourishment），excessive development or overgrowth of a part．

Hypodermis（Gr．$\dot{v} \pi \dot{\prime}$, under；$\delta \dot{\epsilon} \rho \mu a$ ，skin），in Insecta，the layer of cells which hes just under the cuticle and gives rise to it．These cells are of ectodermal origin．（Not to be confused with hypoblast，an alternative tern for endolerm．）

Imago（Lat．＝a likeness），the perfect inseet．
Instar（Lat．＝an image），the stage between two suceessive cedyses．

Inima（Lat．＝immermost），an internal cuticle or internal epithelium．
Invagination（Lat．iu，and vagina，sheath），the ingrowth or inpushing of it hollow organ from withont．

Samella（Lat，＝a small blule），a samall that bate like organ．
Lamina（Lat．＝a plate or blade），a thin flat firm layer．
Larve（Lat．＝a ghost），the tem applied biologically to any stage in the life of an mimal which diffors from the final or mature form to such un extemt that a contplicated change，or metamorphosis，is necessary to pass from the one to the other．

Leucocyles（ Gr ．入evxis，white；кítos，eell），colourless or white blood corpuscles．Their function is to seize and carry off impurities；hence they are also ealled phagocyles（Gr．ф＂yeir，to devomr）．

Lower Layer，see Cierminul Layers．
Lumen（Lat．$=$ an opening），the internal canal of a hollow organ．
 formed from endoderm－the midegul．

Mesolerm，sce Germinal Layers．
Mrtomomphosis，see Larmo．
Mieron（Gr．μ кр口иs，small），one－thousindth part of a millimetre．Bonoted by μ ．

Miocytes（ Cir．$\mu \mathrm{fi}$ wv，smaller；xionos，cell），the smaller（oat－shaped）cor－ puscles found in the blood of Insects．

Moniliform（Lat．monile，a neeklace），like a string of beads．
Nucleus，sec Cell．
Nymph（Gr．vír申i，maiden，nymph，pupa of a moth），the term very unsuitably applied to the aquatic larvae of certain Insects，ineluding Dragon－ flies．

Ocellos（Lat．＝a small eye），a simple eys．
Oesopluturs，the gullet．
Ommmilititm（Gr．iunitm，a little eye），one of the elongated separate elements of a Compound Eye．

Ontogeny（Gr．ävros，a being），the study of the development and growth of the individual animal．

Palaeontology（Cr．mancous，ancient），the study of extinet animals．
Prapilla（Lat．＝a teat），a small clevation like a teat or the finger of a glove．

Phylogeny（Gr．$\phi \hat{\mathrm{j}} \mathrm{\lambda} \boldsymbol{\prime}$, ，the race，tribe），the study of the descent or pedigree of the varions tribes of animals．

Plasma（Gr．π גár μa ，anything moulded），what remains of the blood when the corpuseles are taken away－the serman，or liquid part，＋the filorin．

Pleura or pleuriles（Gr．$\pi \lambda \epsilon$ evi，ribs，side），lateral sclerites or parts of the exoskelcton．

Podites（Gr．moves，foot），the separate pieces af a jointed appendage of the Arthropota．Of these，the hasal picee is called the protopolite，the inner distal piece endopolite，and the onter distal piece exopodite．

Proctodaeum (Gr. $\pi \rho \omega \kappa \pi \dot{\prime} s$, anus; ióós, entrance), a posterior invagination of the ectoderm, giving rise to the anus and hind-gut.

Retina (Lat. retineo, to retain), that part of the cye wlich retains or reecives the image conveyed by the dioptie part. In the compound eye, the retina of each ommatidium is termed a relinula.

Saccus (Lat. =a sack or bag), a bag-like organ.
Sarcolemma (Gr. $\sigma \dot{d} \rho \xi$, flesh, musele; $\lambda \dot{\epsilon} \mu \mu a$, husk, peel), the elastic sheath enclosing a muscle-fibre.

Sclerite (Gr. $\sigma \kappa \lambda$ дpús, hard), a separate hardened piece of the exoskeleton. Sections, thin sliees through an animal or organ; usually either transverse (in a plane at right angles to the axis of symmetry), horizontal (parallel to the ventral or dorsal surface), or sagittal (in a vertical plane parallel to the axis of symmetry). Most of the sections figured in this book are 10μ in thiekness. r.s. $=$ transverse section, L.s. $=$ longitudinal section.

Sensilla (Lat., dim. of sensus, perception), a minute sense-organ.
Seta, a bristle or stiff hair.
Sphincter (Gr. $\sigma \phi<\gamma_{k} \tau_{i p}$, a tight band), a cireular band of muscle for elosing or constricting the lumen or orifice of a tube.

Spiracle (Lat. spiraculum, air-hole) or Stigna (Gr. =spot), a breathingaperture; one of the openings of the tracheal system.

Squame (Lat. =a scale), a flat piece attached to an organ.
Sterna or Sternites (Gr. ofépvov, breast), ventral sclerites or parts of the exoskeleton.
 of the ectoderm, giving rise to the mouth and fore-gnt.

Suture (Lat. sutura, a seam), the soft connecting portion between two sclerites.

Syncytium (Gr. áv, together; кúros, a cell), a layer of cells sa fused together that their boundaries are obliterated and their nuclei lie in a single continuous protoplasmic mass.

Symthorax, the closely fused meso- and metathorax of the Dragonfly. The same two segments not so closely fused, in other Insects, are often termed the pterothorax, since they bear the wings.

I'eneral (Lat. tener, tender), the term applied to the freshly-energed or immature imago.

Terga or Tergites (Lat. tergum, the back), dorsal selerites or parts of the exoskeleton.

Trachea (Gr. трахєia, windpipe), an air-tube.

APPENDIX C

SOME IMPORTANT SYNONYMS

${ }^{1}$ Regarded as a nomen conservandam

INDEX OF ILLUSTRATIONS

(Tlle numbers are those of figures, not pages)

Abdominal segment 10
Aeschna, anal apps. of British spp. 170 anal triangles of do. 171; ehordo ton's organ 65 ; mating position 13 midgut 49; sensilla 66; supracox armature 180 ; taste organs 68
Aeschna brevistyla, alimentary canal 44 anal apps. of larva 39; antenna 2 ; copulatory apparatus 90 ; ерipla rynx 67; gills 79, 80, 83; hypo pharynx 69; labium 5; labrum 67; 17; leg of larval wing-traeheation mask 32 ; maxilla 4; median eye lin 63 ; mushroom body 57; nodus 19 pterostirma 18; rectal pad 51 reproduetive organs of male 99 sperm-eapsule 96 ; tracheal system 75 ; thoracie spiracles 73 ; venation Plate II
Aeschnidium densum, wings 163
Agriocnemis hyacinthus, coloration
Plate III
Agriocnemis rubricaulta, of figured Plate I
Agrion, anal apps. of larva 39; colora-
tion of British spp. 179
Agrion puella, salivary slands 45
Agrion puichellum, wing 148
Agrionoptera insignis, wings 155
nal
Anal appendages of larvac 39
Anal appendages of male imago 12, 14
15, mating positions 13, 16
Auax imperator, wings 172
A nax papuensis, embryo 112 ; gills 79
80 ; gizzard 48 ; 94: oviposition 106
Anomalagrion hastaturn, pterostigma 18
Archithemis brodiei 157
Argia apicalis, wing 14
Argiocnemis rubescens, coloration Plate III; gill 84
Argiolestes, coloration Plate II
Argiolestes icteromelas, larva 42; larva wing-tracheation 22 ; wing 22 Auricle 11
gizoarschna multipunctata, gills 79 gizzard 48
mis splendida, coloration Plate

Austrocordulia refracta, gills 80, 82 larva 36; mask 32; wings 127 Austrogomphus manifestus, larva 186 14,15 . 15 melaleucte, unal apps 14, 15
Austrogomphus ochraceus, antenna 2 gills 79, 80
Austrolestes, coloration Plate III unstrolestes analis, captured by sun dew 167; gizzarll 48; mask 32 mating position 16; pterostignal I8 Austrolestes cingulatus, gill 84; larva 41; larval wing-tracheation 17 venation Plate II
Austrolestes leda, brain 55, 56; com pound eye 58, 62; egs 108; ocell Austronetalia putricia
Austropetatia patricia, \circ fignred Plate I 108; larva 37; mask 32; winys exg Austrophlebia costalis, dentigerous plat 100; exoskeleton 1
Azuma elegans, hask 3
Body-wall 88
Brachydiplax dentiouda, wings 132
Brachytron hafntense, wings 12.
Brain 55, 56
Bristling basket 78, 7!
Caconeura solituria of 18.
Caliagrion billingharding 14
111: gill 84: rizgat 18. 1an Plate larval wing ; gizathert 48; larva le 32; vonation Plate 11
Caloptery, embryology 10!
Calopteryx splendens. larval wing-trncheation 17; mask 32; pterostiyma 18; spermatozoon 94; venation Plate 1I; wing 177
Calopteryx virgo, Larva 40 ; salivary
reservoirs 45 Caudal sills 84
Caudal gills 84, 85; histology of 80 Chlorogomphus magmificus, wings 119 Chordotonal organs 70
Coioration, central type 114, 116 ; marginal type $113,115,116$
Coloration of Agrion 179); of Agriontidue Plate III; of Austrolestes Plate III; of Enallagma 179
Compound eye 58, 62-64
Copulatory apparatus of male 9n Cordulegaster annulatus, gizzard 48 ;
mask 32; ovipositor 101; wings 121

Cordulcphy/, montana, larva 38

Cordulephey pygmuetu 128; gills 83; | $412 z 2$ |
| :---: |
| 128 |

Cordulia aenen, wings 129
Deadroutesclua conspersa, laviva, anal
apps. 30 ; tracheal system 76
Dental folds of gizzard 48
Dentigerous plate 100
Dimorphism in females Plate III
Diphlebia lestodes, gill 86; nizzard 48;
18; young larva 28
Diphlebia nymphoütes, venation 139
Diplacoles bipunctath, egg 108; lanva 30
Diphacodes hatematodes, compound eye
6i3; gills 7!, 80: labium b; mask
32; yotng larvit 59; nervous system
of do. 50
Discointal cell 20
Dorsal vessel, seo lleart
Dragonily galls 25
Drosera binalla 167
Drying oven 184
Dythemis velox,
Regg-rope 107 119
Embryo 24, loo. 11
Embryology of Calopieryx 109
rinallayma cyuthigerum, coloration 179 Endoskeleton 8
tipiophlebur superstes, wings I
Epipharynx 67
Wipithece bimaculata, anal apps. of larva
39; midgut of embryo 111
Auphneppsses mallinervis l6e
(inskeloton, of harva -2 Ye, momy
Oever
(ill-haskel, see Bomeliaal masket
Gills, caudal $84-8 \mathrm{si}$; lateral abdominal 87; rectal 78-8:3
igzand lli-47: dental folds of 48
Comphas pulchellus, wings 118
Gomphus vulgutissinus, anal apps. 14, 15; larvat 36
Gegarinid paranites 169
iynachutha rosenbetyhi, wat apps. 14;
fork 100; mask 32; wings
Hahitats of Draronllies Plate IV
Hatehing of larva 24,06
Heart 5:3, 71
Hemicorlulier tau, egg 108; gill 81; larval wing-tracheation 17; mask 32; venation Plate 11
Hemigomphus heteroclitus, antenma 9 ; gills 80; yizzard 48; mask 32 ; ittrostigm: is
Hemiphlebia mirubilis, anal apps. 14 wings 92

Tetaerina americana, wing 151
Heterophlebia dislocala, wings 159
Hypopharynx 69
ctinus australis, larva 36; wings 117
Invagination of gizzard 46
schunta, eoloration Plate III
Ischnura aurora, Malpughan tubule 52 ;
testis 93 ; wing-muscles 90
Ischnura heterosticta, anal apps. 14;
gill 84; gizzard 48; larva 42; mid-
gat parnsitized 169; pterostigma 18
Isophtebict aspresia 10 apps. 14; gill
84; larva 42; neural canal 8
Joluston's organ 65
Labial mask 30-32
Labinum 5, 6
Labrum 6
Larvae $29,33,35-38,40-43,87,186$;
newly hatched $24,27,28$; preserva-Leg-muscles 34, 89
Legs, of imago 9 ; of larva 34
lestes, anal apps. 178; head 1; salivary glands 45
Lestes tryas, wing 14
Lestes unealus, neck and prothorax 7
Lestes viridis, hatching of larva 26
Lestoider conjuncta, wings 154
Leucorrhina dubia, wings 134 ; sym-
Libellula, pre-reetal ampulla 50 ; sym-
pithetie nervous syste 110
plate 110
Libellula auripennis, neek and pro-
thorax 7
Libellule depresse, salivary ghnods 45
Libellulu fulva, wings 131
Alacromia, larva 36
Macromia pecifica, wings 120
Muromia terpusiuhore, pterostigma 18
Matpishinan Lulbules 44, 62
Mandible 3
Mask 30-3:
Matronoüdes ryaneipennis, o figurcd Plate
Maxilla 4
Mecistogaster lucrelia, ptorostigma 18 wing 144
Median eye-line 63
Megaloprepus coerulatus, of figured Plate I
Megancura monyi, restoration 150
Mesophlebia antinoditis 160
Metamorphosis 43
Methol of vision of compound eye 64 Micromerus lineatus, wings 153
Microthorax 7
Mingut, epithelium 49; of embryo
111 ; parasitized 169
Muscles, of legs 34 , 80 ; of wings 89 , Muscles
90

Nannophya australis，ô figured Plate I Nannophya dalei，pterostigma 18
Neek 7
eosticta canescens，antenna 2；gill 84； larva 42
Nervous system，central 54，59； sympathetio 60

Neurobasis chinensis，of figured Plate I Nodus 19
Nososticta solida，coloration Plate III
Observation－jar 187
Ocelli 61
Optic ganglion 58
Optic ganglion 58
Orthetrum，metathorax 1
Orthetrum caledonicum，abdominal spira．
cles 74；larva 36
Orthetrum coerulescens，wings 175
Orthetrum villosovittatum，copulatory
apparatus 96
Oviposition 105， 106
Ovipositor 99，101， 102
Oxygastra curtisi，wings 152
Pan for larvee 188
Pan for larvae 188
Parasites 168 169
Pericardial cells 53
Petalura gigantea，abdominal segment
10；abdominal spiracle 74 ；anal 10；abps．15；egg 108；gizzard 48； mask 32；metamorphosis 43；ner－ vous system 54；reproductive organs
of female 97 ；wings 120
Petalurn inyentissima．anal apl．15；
pterostigna 18
Petnlura palcherrima，thoracic colour． pattern 115
henacolestes mirandus，wing 164
Phylogeny of Odonata 105
glands 45 ；wing， 145
III；wing 143
Polynema natans 168
Postocular spots Plate III， 116
Pre rectal ampulla 50
Pronymph 24，
Prothorax
Pseudagrionaureofrons，coloration Plate III；mating position 16；wing 149 Peudophaea，larva 87
seudophaea lricolor，wing 137
Rectal gills 78－82；histology of， 83 pads 51
Reproductive organs，of female 97,98 ；
of male 92
Resting positions of Dragonflies 166

Rhinocypha quadrimaculata，ô figured Plate 1
Rhinoeyplta tincta，of figured Plate I
Rhinocypha unamaculata，wing 138
salivary glands 45 ；reservoirs 45
Sensilla 66
Setting，method of 18
scven－marks 115
Somatochlora，anal apps． $17 \pm$
Somatochlort arctica，wings 173

Spermatozoon	94
Sperm－capsule	
15	

Sperm－capsule 95
Spiracles，abdominal 74；thoracio 73
Sumal 2 aps．
ymperam，seg． 2 apps．176；thoracio
muscles 89
ynplestes weytatatum，wings 133 wall 88；copulatory a pparatus body gills 84， 86 ；gizzard 47，48；heart 53；labium 6；larva 41；larval wing－tracheation 22；mask 32；ovi－ position 105；ovipositor 99；peri eardial cells 53；trachea 72； tracheal system of head of larva 77 wing 22
Synthemis claviculata，wings 125
Synthemis eustalucta，larva 3：3；mask 30 ；ovipositor 102
Synthemis macrostigme，sills 79， 40 ＇I＇－mark 116
Tarsophlebia westwoadi 158
T＇einobasis rufithorax，wing 150
Trectule thiu goncoffroyi，nowlus I？
Testis 93
Tetrathemis clalophilu，wings 130
Thore gigautea，wing－vemation 20
＇Trachea，structure of 71
Tracheal system，of abtomen 75，76；
Tramea laëwi
rameat lewii，farvi 29，36；valvar
scale 103；wings 1：3
female 104
Urosternite 10
Urotergite 10
Venation Plate II
Ventral plate 110
Vestalis amoena，wing 140
Vulvar scale 103
Wing－museles 89 ，90；mechanism of
Wing－tracheation of larva 17
Wing venation Plate 11
anthagrion erythroneurum，coloration
Zoogeographical Distribution，Map，to face p． 300

INDEX OF TEXT

Referencers given in heavy type are principal references．\dagger indieates fossins onl）－meders of Odonata are printed in heavy capitals，families in capitals，sub families in Italie capitals，and tribes in heavy type．All names of renera amd species are princed in ltalics．

$$
\begin{aligned}
& \text { Abelomen, of imago } 28 \text {; of larva } 87 \\
& \text { ecessory saces, of femate } \\
& \text { cetalmhinm } 27 \\
& \text { ciaurion } 325 \text {; A. fragilis } 325 \\
& \text { Acini } 102 \\
& \text { Acisomut } 298 \\
& \text { Alipose cells } 1 \text { L8 } \\
& \text { Aerophanes 3:3i } \\
& \text { Heschnh 35, 48, 63, 65, 73, 85, 87, } 116 \text {, } \\
& 125,135,151,153,155,156,167,177, \\
& 183,180.214,218,256,265,293,244 . \\
& \text { 3:32, 33s, } 3.10,350 \text {; Ale bocealis (syu.) } \\
& 3+1 \text {; Ae brectistyle }-18,10,21+(\text { notw) } \\
& \text { 11. 250: } 10, .32, \text { : } 311 \text {, } \\
& \text { 310. Ac isosvelis } 3311 \text { : de jnneert } 310 . \\
& \text { 1e. } 1 \text { istu } 341 \text {, Ae rufesceus (sym.) } 341 \\
& \text { ExCllNIDAG defined eng; genem } \\
& \text { of table 日pr. } 2 \times 3 \\
& \text { AENCHNIDMNAE } 311 \\
& \dagger \text { - teschuidian 5., 5o; †-Le. demswm } \\
& \text { 312: 1.le. mindersiense } 313
\end{aligned}
$$

> of table opre ≥ 8.
> eschnini tefned 2 (gis; genera of table opp. 282
> - Lellrmm+n! 2990,324
> Agrior:nemis 257, 297, 355; A. argentea
> 207; A. hyacinh hus 257 and note 325; A. pygmuen 257 (note); A. rubricuudu 325
> Agrion 71, 102, 153, 191, 195, 213, 288, -993, 294, 297, $338,339,348$; A. armatum 348; A. hastulatum 348; A. mercuriule $106,349,352$; A. puelle 349, 352; A. putchellum 71, 348, 352; \dagger A. telluris 310 ＇1．ロ．

LGRIONINAR defined 279：renera of －84－5
Agrionini defined 280 ；senera of 284－5 Agrionoptera 299
Agrionoptert
Aix（Hiance）fossils 314
Alx（rance fossils
Alar trank 45， 46
Nimentary eanal 100 ；system 100
Alveoli lise， 190
Amans，on ateroplanos 336；on dia－ phragn 211 ；on mechanisin of mask 79
Ammion 232，233， 238
miniotic ravity 232 ；covering 69； fluid 233
Amphibiotien 163
Amphicuemis $\quad \leq 1$
Amphipterygini defined 275 ；genera of 284－5．
Ampulla，pro－reetal 113
Anecriseselhat 297，299；A．juspiden 295
Anagrus incatnalus 330
Anal appendages 32，36，92；of larva 90， 9
Anal bridge 64；crossing 62；field 02； luop 63；plate 237；pyramid 91 ； trachea 46
Analis vein 40,
Analis voin 40，41，62；branches of 62
Anastomosis，superior 176 ；terminal 128；thoracio 175
Anax 3ㄹ，67，69，71，73，74，75，147，153， $183,184,185,186,950,251,253,256$ ， 25！，265，293，322，333，335，341，350， 356 ；A．formosus（syn．） 341 ；A．guttaius 297 ；A．imperator 297，341，351； A．papuensis 67，147，333，334

Anusoplenra 200， 255

ANISOPIERA defined 259；table of Anisoptery 49， 51
Annular zone，of mid－gut 109． 241

Annulate worms 10	Istl
nodonta 316	Bayadera 200
Anomelagrion 53, - 557,296	Berlese, on stridulating organs 156;
Anteelypeus 13	on wing-muscles 207
Antennae 15, 70, 76, 151, 153	Biological methods 360
Antennary lobes 127; nerves 127	Bionomies 321
Anus 39, 117	Blastodern 230
Aorta, dorsal 157, 162	Blastokinesis 239
Aphantochrome ${ }^{\text {a }} 50,953$	Blastopore 232
Aphylla 296	Blood 163: eireulation 164;
Apodeme 24, 31, 20.2	puscles 163, \mathbf{y}^{4}
Appendages, abdominal 31; anal 32,	Blue Flag 228
$36,90,92$; inferior 32 ; of female	Bode, on etymology of Libellutu 337
32 ; of head 15; of thorax 26 ;	(note)
superior 32	Body-coloration 246
Appendix dorsalis 71, 75, 91, 92	Body-wall 202
Arachnida 316	Bolton, on Meganeura 305
Archaeophtebia 290	Bordas, on salivary glands 102
\dagger Archaeopteryx 310	Borneo, fauna of 291
Archi-lamellate gills 185	Boyeria 204, 288; B. irene 35 (note)
\dagger ARCHITHEMINAE 307	Brachydiplacini defined 270; genera
Areulus 42, 56	of table opp. 282
Argit 191, 196, 287, 297, 316; A. harilis	Brachydiplax 270, 299
297	Brachymesia 290
Argiini defined 280; genera of 284-5	Brachytron 264, 340, 350; B. hafuiense
Argiocnentis 196	340, 350; R. pratense (syn.) 340
Argiolestes 194, 246, 251, 278, 298, 315, 323 ; A. amabilis 320; A. ariseas	Brachytronini defined 264; merora of tathe bpe
cllescens 246	Brackish water, eifect of 332
\dagger Aucella 313	Brain 9, 120, 122
Auditory organs 153,155	Branchial basket 70, 11:5. 178
Auricles 31	Brandt, A., on embryology 330
Australian Region, fauna of, cetogenie 298; entogenie 292; palaeogenie $282-3$	Brandt, J. J., on sympathetie nervous system 133
Austromgrion 10,	Breaking-joint 87, 3:7
Austrocnemis 257	Brechnorrheyu 290
Austrocordulia 73, 85, 185, 267, 334: A. refructa 185	Bridge, anal 64 Bridges 50, 65
Austroyonphus 180, 180, 961	British spreies 338; harvale of 350
A ustrolestes 123, 138, 140, 141, 1533, 2033, 294, 333; A. leta 123, 138, 141, 333	Brongniart, on Carboniforms fasmils 302, 304
Austropetalia 283, 293, 299; A.patricin	Buceai cavity 101
283	Bursa 2.1
Austrophlebia 13, 19, 250, 25:3, 322;	Butler, on labium 80
A. costalis 253	Bütsehli, on spermatozoa 213
Austrothemis 293	
Autotomy 87	Cacomeara 325
Axillary 24, 210	Cacus 260
Azolla 359	\dagger Calamites 306
Azuma 85, 289, 297	$\begin{aligned} & \text { Caliagrion 64, } 108 \text { (note), } 195,280 \\ & \text { Callus } 24 \end{aligned}$
Backhoff, on external genitalia of male, 215, 219	Calophlebia 290 CALOPTERYGIDAE defined
Bactericidal cells 118	genera of 284-5
Balfour-Browne, on hatching of larva 71 ; on pronymphal sheath 69	CALOPILRYGINAE defined 275; genera of 284-5
Balls of seeretion 111	Calopteryx 15, 36, 60, 64, 116, 194, 195,
Baltic amber, fossils in 314	213, 288, 330, 331, 346; ombryology
Barlow, on respiratory novements 136;	230, 232; O. maculatm $325 ;$
Basal pads 184, 188, 190	splentens 347, 352; C. wiy\% 347,35-3

Calvert, on classifioation 205; on Coloration 243; larval 255; of body
componal rye 145 ; on Phena olestes componal cye 145; on Phenarolestre 16. an twacheal system 177: ion wing-museles 207
Gomacinia 290
Campion, on food of Dragonflies 327
Camal, nenmal 20
Cannaphila 996
Capillaries 166. 178, 181, 184
Capillary loons 178, 189
Carhoniferous fossils 30
Cardo 17
Carina, domal or
Carinae, absominat
Carls' Fixative, formula 360
Caurlat sills 167,190
Cadienlus 125
Cavity, dypmal 14; frontal 14
Celobes 290
Celebothemis 29
Celithenis 2
collutes 38
Census of Odonatia 300
Central body $1: 3$
Cophatie heart i99; lobes 233
Ceralura 957
Cerei 71, 91, 92
Cerooids 91, 02
Cerebrum 12:3
Ceriayrion 13, 997
Check 13: manilibular 16
Cheltanham fossils 3017
Chemical sense, of larva 150
Chasma, external 129; internai 129
hiro onnts 315
Chlarown? ; petpmations 360
CHLOROGOMPIIINAR defined tbl
thenera of 283
Chlorogomphu: $\because 83,312$
Chlorolestes 283
Chordotonal organs 155
Corion 220, 229
hnrionin 2.9
hylific stomael 100
Crenlation of blood 104
lireulatory system 157
leared !arvac 360
leavage of egg 230
Clypens 13
Cockerell. on Tertiary fossils 315, 310
Cockroaches 80, 301, 302, 317
Coclome 203, 235, 24
toelomie sacs $3: 35$
Culeoptera 234 (note), 30:, 327
Collesting imaurines 353: larvac 357
Collectim, the 35

246; of wings 253
Colour-pattern 98
Colour-types, entral 249, 251, $\because 5 \%$. marginal 248, $251,25 \%$,
Colours, metallie 244, 249, 250 ; nature of 243 ; optical or interference $\mathbf{2 4 4}$; preservation of 356
Commentry fossils 302
Commissure, circunoesophageal 15,
127; frontal 134; oblique 134
Comstock and Needham, notation 40 -
43; on venation 39
Condyle 87
Cone, crystalline 143
Conncetive tissucs
Convex and concave veins 48
Copera 297
Copulatory apparatus, of male 215
Cora 6, 76, 199, 200, 275, 311
Corduleguster $19,227,988,311,339$; C. annulatus 339,350

CORDULEGASTRLNAL defined 262; genera of table opp. 282
Corduleplya $85,104,227,259,293,322$, 324
Cordulephyini wefined 267 ; genern of table opp.
Cordutin 282
$295,288,342,351 ; ~ C . ~ a e n e a ~$ 343. 351

Corduliforn ablennen 29
ORDULIINAK detined 205 ; genera
of table opp. 282
comenuren colls 141
Conturen colls 141
Comeal lens, of compound oye 141 ;
Corbeal lens, of
of ocellus 138
of ocollus 138
Corpom fungrif
Costal trachata fis
Courtship $3 \geqslant 5$
Covent (Irance) fossils 314
Coxa 27
Cretaceors fossils 313
Crop 101, 103, 172
Crustacea $80,199,316,329$
Crystalline cone 143
Cubital supplement 63; trachea 46
Cubito-anal loop (33
Culicidae 329
Cusps, of mandible 10
Catiele 47, 202, 240
Cutienlarization, of wing 48; of wing
sheath 40
Cyclophylla 996
†Cymatophlebia
Ditvitius 260, 297
Denorlate gills 195

Dental folds or fields 104
Dentigerous process 223; tubercle 223 entition, of gizzard 105; of mandible

Deutocerebrum 120, 123, 127
Dewitz, on spiracles 20
Diapliragm 79, 211
\dagger Diastatomma (syn.) 307 (note)
\dagger Diastatommidae (syn.) 307 (note)
Diastatops 265
Diatoms 332
Diffusion 18
Digestion, physiology of 109
Dinorphism colour of rectum 117
Dimorphism, colour. 257; venational
Dioptric vision, theory of 149
Diphlebia 87, 192, 199, 255, 275 (note),
292, 293, 323; D. lestoïdes 255, 330
Diplacina 299
Diplacodes 184, 942, 250, 294, 298; D.
bipunctata 333; D. hatmalorles 24.
D. nebulosa 298; D. trivialis 297

Diplax (syn.) 345
Diptera 327
$\begin{array}{ll}\text { Disparoneura } & 290\end{array}$
Distalia 15, 74
Dobbertin fossils 307
Dorsume spiracular 24, 30
Dragonfly gallss 72
Drosera binala 329
Drought, elfect of $3: 34$
Ducts, salivary 19, 102
Dufour, on rectum of Zygopterid
larvae 116
Dumbleton fos
Duplex gill-system 75,181
$\dagger 1$ yusagrion 316 75, 181
\dagger Iysagrioninae (syn.) 316
Dythemis $275,286,290$
Dyliscus 330 ,
Eedysis 73
Economics 334
Fetogenic fauna 295
Ectotrachea 166
Efferents, tracheal 167, 178
Egg 225, 228, 229
Egg-strings 219
Eggs, how to obtain 358; of ${ }^{\text {Pnax }} 67$ Elodea 359
Embryo 67, 232
Embryology 229
Enallagma 195, $988,293,349$; E
cyathigerum 296, 349, 352
End-filament 219
End-hook 19,
Endoderm 235

Endoskeleton 902 . of liead 14. of thorax -4
Endosternites 14
Endotrachea 166, 241
Entogenic fauna 283 ; tatile of opp.
282, and 284-5
Eocene fossils 314
Epallage 289
EPALLAGINALE defined 274; genera
of 284-5
Epallagini tefined 274; genera of $\stackrel{284-5}{ }$
Ephemeridae I.
\dagger Lhphemerites ruckerti 30:
Epicraminm 12; of larva 76

EPIOPHLEBIINAE defined 275 ;
genera of 283
Epiopticon 129
Epipharynx 13, 101, 154
Episternum 23
Cpothectithalmia, 230,958 , 280 , 207
Kpophinalmer $85,289,297$
Érichson, on classilication
Erpelogonphus 296
Erpelogomphus
Erythemis 290
Erylhrodiplar 290
Rrythromina 195, 289, 349: R. naits 349, 352
Ethiopian fanna, cetugnic 297; chto-

Eucordulini defined 267 : gencra of table opp. 282
lixeretion, plysiology of 118
Exeretory system 117
bxaer, on emomponnt cye 1.4
Hxnviae 95
Hye-line, median 11, 146
Hyes, eomponimd 11, 141, 1.17; of larva 73, 160
Fabricius, on chassification 1
Fitivre, on sensation 135
Falkenau (Bavaria) fossils 314
Fat-body $118,{ }^{2}$,
Femaic reproductive organs 219
Femur 27, 28, 87
Fenestrate membrane 144
Fibrillae, in eye 145; in gizzard 104 Filmit 331
Flight 321
Flinders River fossils 313
Florissant fossils 314-6
Froliae $18: 3$
Foliate gills 183, 180
Folk-lore $3: 46$

Food of Dragonflics 327
Foramen, posterior 14, 202 ; tentorial 14
Foregut 100, 101
Foreign names for Dragonflies 337
rons 13,2052 ; of larva 76
rrontalfureow 13 ; ridge or shelf 13,76
urea ㄹ., 26
(xalea 17, 80
Ganglia, ablominal $75,120,131$;
thomeic $75,120,131$
Ganglion, corner 129; frontal 134; optie 1:27; splanchinic 134; subossophageal 9, 120, 130; supra oesophayea, see Brain
angonic enw 129 ; mass, anterior
129 ; plate 129
Gaskell's theory 237
Genital duct 172; fossa 217; lobes 218; pore 215, 225
Genitala, aceessory, of maie 32 ; oxternal, of female 921 ; external, of mate 915
Geological recoral 301
Cierm-band, immersed 233
Cerm-vesicle 299
Germinal hyers 230, 233
Gerontie wroup of Drawonlles 292
labial mask colassification 1; on ills bluod mask so
dif, 190 110; caulal 73,75 , 01
107, 190: histology of eameal 197 ;
hiteral i, 167, 200; rectal 75, 167 ,
180: histology of rectal 187;
tracheal 167
(izzaud 101. 104, 172: immeture or demdidion of 73, 105: lunetion of los
$0 A / P I / T N A$ delined 260 ; gemera of
table oppl. ©8:
table upu
Gomphoüles $260,286,291,296 ;+G$. brodivi 307

Gonphtt: こ8s, 907, 339; G. flavipes 350; G. vulyutissimus 339, 350
Gonarls 212, 242
Gonapoplysess $2: 21$
Grassi, on embryology of mid-gut 236 Green River fossi
Gritiths, on physiology of excretion 1
Gumet Bay fossils 314
Gyutcimtha $82,293,297,250.263,265$. $283,291,293,296,297,299,326,356$

Habits. of imagines 321; of larvae 306 Hacmocode 11s, 162, 190, $20: 3$

Hagen, on coloration 243; on labial mask 80; on reetum of Zygopterid larvae 116
Hagenins 286
Hannles 218
Handlirseh,
classification ap ip on fossil 90 ; on 302, 304; on origin of insects 302
Hawaii, fauna of 294
Head, of imago 9 ; of larva 76
Head tracheation 176
Heart 69, 118, 157, 241; cephalic 69
Heliaeschna
Heliaeschna 297, 299
Heliochrome 98, 248
Hemianax 32, 290, 296, 297
Hemianax 32, 290, 296, 297
Hemibraneh 181
Hemibraneh 181
Cemicorlulia 32, 57, 62, 147, 153, 171,
${ }_{H}, \operatorname{tau} 147,333,297,298,337$.
Hemigomphus heteroclitus 99
Hemiphlebia 37, 62, 293, 308, 325 .
II. mirabilis 37, 325, 326

Hemintera 304
Incmistigma 53
Hetnerina 108 (note), 255, 287
Heterochronte 254,057
Heteromorphic females 257
flevitroflllembIIN AE 308
cymons, on abdomen 80; on appen-
dages 90; on embryology $230,234,230$
libernation $: 33$
Hiekson, on retina 149
Higgins, on gizgard 104, 107
Hind-gnt 100, 101, 113
Hirsehler, on embryology 934 (note)
Histolngy of the wings 4
Holactie gencra 888
Holobranch 180, 181
Hook, end. I0, 78 ; movablo 19, 78
79,81
Huxley, on compound eye 148
Tyaline 38, $2 \pi 3$
Mifltachnidae 331
IItilrobensileas 299
Hylochromes 248
Hymenoptera 125, 327
Hypobranchial tissue 189
Hypodermis 199,203, 240 ; of wing 47 Iyponeuta 296
Hypopharynx 19, 103, 154
ypopharynx 19, 103, 154
Ictinini defined $\mathbf{2} 00$; genera of table opp. 282
Ctinus 260, 991, 297, 298, 299; I. artstralis: 29.4
Idiony: 267
of table opp. 282
Immersed germ-band 233
Implicate gills 183, 186, 190
Incisors of mandible 16
Instars 69, 71,73
Internal lamina 198
Internal light 150
Intestine, short 113; small 113
Inswich (Qu.) fossils 309
Irideseen
Iris 144
Iris versicolor 298
Ischnura 53, 153, 195. 196, 222,949 ,
348; I. aurora 949, 957; 1, elegans
348, 352; 1. heterosticta 257, 331 ;
I. perparva 257; I. pruinescens 257;
I. pumilio 348; var. aurantiaca 348;
I. ramburii 257; I.senegalensis 297
Isomma 290
\dagger Isophledia aspusia 310
ISOPIILEBIINAE 310
lsosticta 195
Japan 336; fauna of 989
olinston's oryan 151
urassic fossils 57, 310
Kammerer, on symbiosis 332
Karsch, on classification 258
Keel, tihial 28
Kirby's Catalogue 209
Korsehelt and Heider, on embryology
of mid-gut 237
Kowalevski, on embryology of mid-gut
236
$\begin{array}{ll}\text { Labium } & \text { 14, } 17 \\ \text { Labrum } \\ 13,101,154\end{array}$
Lacinia 17, 81
Lamere, on origin of insects 302
Lamellar gill (caudal) 75, 192; histo-
logy of 199
Lamellate gill (reetal) 184, 180
Lamina, anterior, of male 218; interna!
198; supra-analis 32,89
Laminae, anales 117; mesostigmatie
24, 37,85 ; stridulatoriae 156 ;
subanales 32, 89
Landois, on spiracles 168 ; growth
Larva 73 ; hatching of 07
of 73 ; newly-hatched 71
Larvae, habits of 396
Lateral Lobes, of labium 19, 81
Lathrecista 209; L. festa 357
Latreille, on classification 1
Lemna 359
Lendenfold, on wing-muscles 2.17 (note),
$\because 10$

Lens, of noellus 138; of ommatidium 141
cpidoptera 233,327
Lespes, on tympanulace $1 ; 5$
L. barbarn, 243 (note), 28:3, 347, 352; L. barbarus 297, 350; L. Iryms 347 347; L. virens 350 ; L. aridis $7 \boldsymbol{}$ sponsa 350
LESTIDAE defined 076 ; genera of
283, 284-5 284-5
Leacorrhinis $, 293,988,293,3.16 ;$ dubia 346, 352; L. pertoralis 350
Leucorrhiniini defined 27 : gencma of table opp. 382
Libellagini defined 274; genera of 284-5
Libellayo 275 (notc), 290,298
Libellula $1,230,232,250,253,264,288$,
206,343 ; orimin of name 237, 290, 343; origin of name $337 ; 1$ depressat 344,35$] ;$ L. \int "llw 344,351
LIBELLULIDAE defincel Q 65 ; gener
of table opp. 282
CIBELLULINAK defined 96: ; yenera
of table opp. 282
Libellulini defmet 260; gencra of table opp. $2 x^{2}$
Libelluloidea ${ }^{2}$
Ligament, dorsal 21
Ligament, dorsal 219
Ligaments of heart 159, 160
Ligula 18 -
Cinueschna 25
Linderia forcipatu 350
Lingua 19
Linnaeus, on classification 1
Littré, on etymology of Libellul/ 337
Lobe, dorsal, of liman 127; median, of Jabium 18,78
Lobes, antennary 127; eeplialic 233 ; genital 218; lateral, of labium 19 , 78; oesophageal 107; postocula la, 10 , Pos for Dragontios
Local natio 314
Lomar layer
Lower layer cells, in embryo 234
Lowne, on vision 149; on respiration
Lubbock, on vision 147
Lucas, on J3ritish species 338
Lumina of eompound eye 145
Lymphoill organs 160
Lyriothemis 297, 990
Macciallum, on ctymolory of Libellula 337

Mucrotiplux 999
Macromiini definell 206; senera of table opp. 98.
Mathyasear, fanm of 290
Matpighian conduit 113, 172; tubules $\overline{5}, 6,76,101,113,117,172$
Mandibles 14, 15, 238 ; hiramons 76
Nartin, on Odonata 2,3 ; on classi-
fieation 258, 299
Mask, labial 76: homologies of 80 ;
mechanism of 79 ; variations of 80
Matroutüles 255
Maxillae, first $14,16,238$; second 239 , 240
Mayllies 1, 177 ; affinities with Odonata
5, t; lurvae of 167
Mecistoyuster 53, 106, 279; M. lucretia 325
Media 42
Median lobe of labimen 18, 81 ; trachea 45
Mchullary mass, external 129; internal $1+9$ \qquad
Meynumitm 29.
Meqfaloprepts coerulaths 305
\dagger Meqaneита 11, 50, 51; \dagger M. mony
-MEG, 324; †M. radslockensis 30.1
\dagger Meganeurula 50: \dagger M. selysi 304, 305
MEgapodatanionINA: detined 278; yrnera of $984-5$
Mentranite 4:3, 64
Mentum 18, 81
Mesenteron, see Mich-gut
Mesepimerum 23
Mesepistormm 2,$2 ;$
Mesiulmepistern
Mesoderm 234
Mesolermal somites 235
Mesonotimn $3: 3$
\dagger Mesophliebia rit; \dagger M. antinodalis 30!
\dagger MESOPILLEBIINAE 309
Mesopleurum 23
Mesosternum
Mesostigma
24, 85,168
Mesostigma 24, 85, 168
Mesotergum 23
Mesotergum 23
\dagger Mesuropetala koelderi 311
Metamorphosis 95; of wing 47
Metanotum 23
Melaphya 909
Metipteurum 23
Metastermm 04
Metantigma
Metateryman
2.
86,168
Metatergum :3
Metepimerum 29,24
Metepisternum $2: 3$
Metinfratpisternum
Memier, on Carbmilicrous fossils 302

Miall, on spiracles 201
Micralhyrit 296
Micromerus 290, 291
Micropyle 299
Mierotharax 19
Mid-gut 69, 100, 101, 109, 112, 172;
embryology of 235,236 , 24:
Mid-rib, of anal loop 63 ; of vill 199
Mid-rib, of anal loop 63; of git
Migration of Dragonflies
Miocene fossils $57,314-7$
Mnaïs 289
Molar, of mandible 16
Molasse 316
Monte Bolca fossils 314
Mosaie vision, theory of 147
Mouth 13
Miiller, on vision 147
Musele-strueture, leg 203; wing 203 Muscles 203; alary 159; of abdomen $200 ;$ of head 206; of legs
thorax $208 ;$ of wings 907
Muscular tunic, of crop 104; of gizzard Museular tunie, of crop 105; of hind-gut 113; of oesophagus 103 ,
Mushroom Dodies 125
Myptarillae 330
Myriapoda 215
\dagger Nunиякюонинин 311
Nannophlebia 269,299
$\begin{array}{ll}\text { Nannophyt } & 298,325 \\ \text { Nunnothenis } & 270\end{array}$
Namoluem
Nasus 13
Nearetic Region, fammof, cotorenic 996
entocenic 287; patacogenic 98 -
Neck 19
Neolham, of elnssifiention gess: in eollecting 357; on damage duc to oviposition 228; on rearing 3 з̄s on venation 39
Needham and Anthony, on thorax …
Negomphoildes 996
Neodythemis 290
Neolamellate
Neophlelvia 290
Neosticta 192, 195, 199
Neotropieal Region, fauna of, ectogenic 295; entogenic 286; palaearenic 282
Nerve-cord, ventral 120, 130
Nerves, alar 131; alary of heart 161 ; antenmary 127; crural 131; genital 133; labial 130; mandibular 130 maxillary 130; ocellar 126, 1ッT: optie 126, 130
Nervous system 120, 240; central me, plysiology of eentral IBT
perpheral 134: sympathetie 133
$\begin{array}{ll}\text { Nervires } & 38 \\ \text { Nesobersis } & 292\end{array}$

Nesacordulia 990
Nesogonia 294
Nes－lestes 278,290
$\begin{array}{ll}\text { Nes：lestes } & 278, \\ \text { Nesoxenia } & 299\end{array}$
Neurobasis 255， 297
Neurocordulia 269
Neurotestes 277
Nenroptera
Neuronhemis 254，270，299；N oliyo－
Neurolhemis
neura $254, ~ 270, ~ 299 ; ~ N . ~ o l i y o-~$
Nodate gill 195
Nodate gill 195
Node 191， 195
Nodus 53
Nososticla 102， 195
Notation，for gizzard 108；for wing－ venation 30，40－43
Nussbaum，on embryology of mid－gat 236
Nymph 67
Oblique vein 66
Obliquity of thorax 92
Oeellar nerves 126． 127
Oeelli 12，70，74， 137
Occiput 12， 33
Odonata，census of 300 ；defined 3
Oedoyonium 332
Oeningen fossils 316－7
Oenoeytes 164
Oesophageal lobes 127；ring 127；valve
，
Oesophagus 14，15，101， 103
Oligoeene fossils 314
Ontogeny of reetal tills 180
Onychogom phes 297
Oogonia 219
Opliogomphus 288
Ophiogomphus 288
Oplonaeschna 315
Optic hundle 130；sanglion 197. nerva 126,130
Optical phenomena 150
Opticon 129
Orbits 12
Oriental Region，fauna of，cetogenic 298；entogenie 290；palacogenic 283
Orientation 150
Orogomphuts 28， 283
Orilhemis 296
Orthetrum 131，171，185，250，282，299，
344；O．caledonicum 250；O．cancel
latum，345，351；O．coerulescens 344，
351；O．pruinosum 298；O．sabina
250；O．villosoviltatum 250， 335
Orthoptera 1，118，233， 304
asbarn，on larvae in brackish water 332
Stie nembrane 190
Osteoles or ostia－organs 160

Ostia 159
Otaria 155
Oustalet，on tracheal system 177
Onstalet，on
Ovaries 219
Oviduet 221
Oviposition 225
Oxyyastra 267，288，342，351；O．curtisi
342,351
Pads，basal 184，188，190；of small
Pads，basal 184，188， 100 ；of 188
Palacarctic Region，famm of，cotogenic
290；entogenie 288；pabacogenie
282
\dagger Palacodictyoptera 30t
Palacogenic fanna 982
Palacozoic record $30:$
Palpopleurini defined 270；genera
of table opp． 28.
Palps．labial 81 ；maxillary 17
Pallothemis 290
Pantalat 253， 209,282 ；P．flavesrens 253， $33: 3$
Paper triangles 354
Papilla，supra－vortioal 185
Papillate gills 181， 186
Papillo－foliate gills 183
Papuan sub－region 290－3
\dagger Paralogidan 305
\dagger Paralogus aesclnoïdes 305
Paramoectuon 308，
Paranites 330
Prarietal liyer，of mesonlerm o3s
Patterns，colour－ 246
Pediecl，of antemat $1 \pi, 74,151$ ；of
$\begin{array}{lll}\text { Ogr } & \text { 69，} 230 \\ \text { Penis } 217 ; & \text { sheatil } & 217\end{array}$
Penththemis 293
Pericatedial eedls 11！
Periopticon 129
$\begin{array}{ll}\text { Periplasm } 229 \\ \text { Perithemis } & 254\end{array}$
Peritrophio membrane 111， 112
Perkins，on Hawaiian fauna 294
Perlaria，alfinitios with Glonata b． 0
Perlidae 1
Permian fossils 50， 306
Petalia
Petalia 283
Petaliini defined 263；genera of 283
Petalura 35，49，61，96， $57,98,131$ ， $132,147,169,251,282,299,305,311$, 324，325，335：I＇giguntea 96， 147 ； P ingentissima 325；P．puichervima
PETALURINAE
of 2×2 Petiole
Petiole，of wing 64
Phagocyte organs 159， 160
l＇harocytes 161， 163
\dagger Phentcolestes $60,315,316 ; \dagger P . m i-$
randus 315 ；$\dagger P$ parallelus． 315
Phenes 2s：
Phenematura
Phyllopetalia 28：
Phylogenctie sturies，of wing 40
lolydogeny，of Oflonatil 319；of rectal gills 186
Pierre，on pronymphal sheath 69；on hatching of Lestes 72
Pigment，iris 144；ocellar 139；retinal
144 ；supracutieular 246
Pigment－bands，of wing 46
ligmentation 244 ；cutienlar 244 ；
exuder 245 ；fugitive 253 ；hypo－
dermal 245
l＇henueschna 289
Pline，notil ey
Plamipennia 7
PLATYCNLMINAE definel 279
PLATYCNEMANA
menema of $284-5$
－
p pennipes 348,35
Pectoptera 5，8，304，327；affinitie

$$
\text { with Glormata, } 6,7
$$

Pleura $20,23,29,88$
Pleural ridges $45,74,80$
Pleurites 20
Potopteryx 315 ；P．roseonotata 336
Poletaicif，on salivary glands 102 ； on wing－muscles 207
Polyucmu mutans 330；P．ovulorvem 330
Polynecia，fanma of 294
Pons 1 23
Postelypeas 1 ：
Postepimeral strip ：1
Prostnetum 2：3
Postovenlar spots ente
Poshretimal libres，layer of 128
Postscutelhum 29
Postsentum 23
Dost－sternum 23
Polamurcha 299
Poulton，on foon of Draronflies 327
Peservation of colours 356 ；of speci ，mens sum
Primitive aroove 930
Process costal ul stornal 31
Process，costal 24 ，sternal 31
330 200
Proctodacal invarination 236，237
Proctodaeum 73；lining of 99,203 ；
scee also Hinil－gut
Proinfrae pistermmo 21
Pronotum el
P＇ronymph 69， 73

Pronymphal shenth 69，240
Propleurum 21
Prosternum 21
Prostomium，of Annulata 10
\dagger Prolaqfion， 306 ；$\dagger I^{\prime}$ audouimi 306
†PRO＇TAGRIONIDAE 306
Protascalaphinae 7
Proteaceac 314
1．Protephomeroidea 7，307
Prothorax 20；of larva 85
Protocerebrum 120， 123
\dagger Protodonata $6,49,50,52,57,304$ ， 307
P＇rotolindenia 31］
\dagger Protomyrmeleon 309
Protoneura 325
PROTONEURINAR defined ごー！；
gencra of 284－5
Protoplasm，formative 229
Protorthemis 298
Pruinescenee 945
Pseudagrion 195， 297
Pseudagrionini defined 280；senera

Pseudagrioni $284-5$

Pseudocone 143
\dagger Pseudoeuphaea 311
Pseudloleon 254，296；P．superbuts 254
Pseudoneuroptera 1
Pseudonotum 33
Pseudophtaen 6，51，60，76， 108 （note）， $192,195,200,255,297$
PSECDOSTIGMATINAE detined
278；genera of 284－5
Psocidue 1
［＇terostigma 51；false 53
Pulsating organ，of rectum 70
Purbeek fossils 310
Purkinje，eells of 120
P＇yrrhosema 190，280，349；P．minitm

P．tenellum 349
Quadrilateral 43，57，60，66
Radial trachea 46
Radins 40
R doboj fossils 314
Rambur，on Odonata 2；on labial mask 80
Raphismia 299
Rearing of harvae 358
Réatmar，on metamorphosis 96
lieetal gills 167 ：ghands 115 ；pacls 115 Rectum 101， 114
Regional percentages 286， 300
Reproduetive system，of female -10 ；
of male $22!$
Respiration，movements of 200 ；phy． siology of 189

Respiratory epithelium 188; systen 166
Retina 139, 149
Revised notation for wing-venation 40-43
Rhabdome 140, 14
Rlinarium 13
Rhinocypha 13, 60, 255, 290; R. fenestrella 255,$325 ; R$. quadrimaculatu 255
Rhtnoneure $28,207,299$; R. graphi-
Rhyothemis $2024,207,293$
Rhyothemis $2024,297,299 ; ~ R . ~ g r a p ~$
ptera $254 ; ~ R, ~ r e s p l e n d e n s ~$
954 $\begin{array}{cc}\text { ptert } 254 ; ~ R . ~ r e s p l e n d e n s ~ & 254 \\ \text { Ridge, antealar } 22 \text {; dorsal } 22\end{array}$
Ricige, antealar 22; dorsal 22
Ris, on elassification 258,293 ; on $B r i t i s h$ species 338 ; on gizzard 104 ; on lateral gills 200; on Odonata 2 ; on oviposition 223; on respiration 189; on saccoid gills 199
Roan Mountain fossils 314
Saccoid gill or saccus 75, 192, 195; histology of 198
satones, on rectum 115
Salivary dnets 102; glands 102;
reservoirs 103
$\begin{array}{ll}3 & \\ \text { NAE } & 310\end{array}$
SAMARURINAE 310

Scape 15, 74
Schater, on zoogeographioal recgions 28
$\begin{array}{ll}\text { Schater, on zoogeographioal regions } & 281 \\ \text { Sclerites, abdominal } 29 \text {; cervical } 19 \text {; }\end{array}$ of head 12
Scudder, on Tertiary fossils 315,316 Scutellune 23
Seatum 23
Seutum 23
Sectore, of wing 65
Segmentation, of egg 230
Segments, of abdomen 28; of head 9 ; of thorax 20
Selys-Longchamps, on elassification 258; on Odonata 2. 3; on Filar a
331 ; on external gentalia of male 214
Selysian nomenclature, of wing-veins
-anper'
Semper's nuclei 143; rod 47 (note)

Scnse organs
Sensiliae 15

Setac, of mask 74, 79
Seven-marks 251
Sexes, eomparative abundance of 326 Sheatl, of penis 217
Shipley, on nomenelature 1
Sieblos fossils 314
Siebolditus 260, 280
Simplex pill-system
Simplex eill-system 75, 180

Size, of Dragonflies 32
Solenhofen fossils 310
Somatio layer, of mesoderm 234

S. metallica 343,351

Sonoran, Lower 296
Sperm-capsules 914
Sperm-sac 212
Spermatheea 921
Spermatidia 212
Spermatogenesis
Spermatozoa 213
Sphincters 104,11
Spiders $215,32913,114,115$
Spines, dorsal 88; lateral 88
Spiracles 166 , 168; abdominal 31,
169, 201; thoracic 94,168
Spiral thread 166, 241
Splanehnic layer, of mesolerm 934
Sporozoa 331
Squame 18
Statoliths 153
Stantrophlefrit 312
†Stenopompluas carletomi 31

Stereoral chamber 115
Sternellum 31
Sternites 29, 31
Sternorinblite 202
Sternum 14, 20, 22, 24
Stillonpteryx 7,8
Stipes 17
Stipes 17
Stomodacal invavination 236,937
Stomodacum 73; lining of 69, 203:
sce also Fore-gut
Stoncflics 1,5
Stonesfield Slate, fussils 310
Stridulating organs 156
Strip, postepimeral 21
Style, of otariun liss; of ovipositor

222

Submentum 18, 81
Subnodate gills 195
Sub-quadrangle $43,60,64$
Sub-triangle 43,62
Sub-triangle 43,
Subulicornia I
Sundew, eapturing Dragonflies 329 Superficial segmentation 230
Supplement, cubital 41, 63; median Supplements, of wing 41, 65 Supracuticular pigment 246
Supratriangle 59
Suture, frontal 13; liumeral 23; first
lateral 23, 131; seeond hateral 23 sutures of heart lifl
Symmetry, of gizzard 107, 108
Sympathetic nervous system 120, 133

Sympetrini defined 270; gencra of
table opp. 28:
Sympetrum 153, 227, 250, 253, 288, $296,358,333,345$; S. danae 346 ; N . Hateolum $253,331,346$; S. fonscoS. sunguinetm 346; S. striolatum 345,
St 352; var. nigrescens 345; S. vulga ttan 345
Sympycne Jasce 333
Syncytium, of rectal gills 115, 188, 190
Symetes 15, 37, 46, 105, 151, 153, 177 , centa 77.
S VNLASI'SNA defined 277; genera of $28: 3$
Synomyus, list of 381
Synthemini defined 260; genera of table opp. 282
Synthemis $110,292,334$; S. Cluticulift -24; S. mucrostigma $-9.4,399 ; S$
primigentif 923
ynthorax 22,85
'T- matk 25:
Thehopteryx $2 x=$

Thepetnom, ser Iris
Trarsop, hedua 27, 311
†TARSOIMLKBMNAK (01, 308
Tasus 27, 87
Tasmania, fathat of 294
liste orgmes 154, 150
Teinobasini telined $\because 80$; youma of 2xt-5
T'elayrion ?99
T'elcphletria $5.1,50,250,312,334 ; T$. godeffremi $: 327$

Tomblons 205
Teneml forms 98
Tentorimm 14, $\geq 0 \geq, 240$
Terebra 222, 220 t
Tergites 29, 87
Thernme 29, 23
Tertiary reeord 288, 314
Testes 212
T'etracambutgyna 394; T. plagiata 305;
1'. viltath 325
'etrayoneuria 227
T'e'ragrammidae 330
Tetrathemini delined 269 ; genem of
table opp. 28:
Tetruthemis 5!) (note) 297, 299
Thaumbtoneura 116, 277, 278,316
Tholymis e55
Thompson, on extermal genitalia of male .19

Thomax 20; of larvu 74, 85
Thore 6I THORIN delined 275; genera of -84
Tibiat 27, 28
Torules 15
Trachea 166 ; axial 181; cerebral 125;
genital 2 le; pedal 171
Tricheal gills 1617 ; studies and pre
parations 362
Tracheal system, of imago 168; of Jirva 173
Trecheal tranks, alar 171, 175; dorsa
109; ventral 179; visceral 172
Tramea 59, 62, 253, 333
Trameini defined 273; genera of
Trunsverse veins
Triangle 43,59; internal 62 ; occipital 12
Trias fossils 307
I'rias Jura fossils 309
\dagger Trichocnemis aliena 316
Trichopteri
Trident-spines
87
Trulobation 88
Irriobites 141
'Iriquetral gills 75, 191, 192; listology of 197
Trithemini definet 272 ; genera of table opp, e8z
Trithemis 272,296
Pritocerobrum 120, 127
Prochanter 27
Trochantine en embryology 230,235 ,
236
Trubercles, lamellar 18
\dagger T'upus 50; 't', permianus 300
Tympanula 153, 155
\dagger †'ypus, seo 't'upus
Undulate gills 75, 180, 180
Uracis $925,1265,270,28$
Urie aeid 118; cells 118
Urolhemis 298
Ust Balei fossils 310
Yullisucriu 359
Vilves, of heart 159 ; of ovipositor
292; rectal 70
Valvula vulvas 225, 260, 265
Valvides of male 215
Vas neferens 214
Veins, of wing 38,40
Ventral plate 232 ; vessol or sinus 162
Ventriciliss 100
Vesicle, of penis 217; vertical 13

Vestibule, of rectum 115
Viallanes, on optic ganglio
Vialanes, on optic ganglion 127
Visceral erossing 172; layer, of moso derm 934 ; remnant 175
Vitelline membrane 229
Vitellophag: 71, 231, 234, 235
Voinov, on blood 163; on digestion 112; on excretion 118
ortex, tracheal 18
Vorticelle 332
Vulvar scalc 225, 265
Wallace, on zoogeographical regions 281
Wallace's Line 298
Weele, van der, on ovipositor 221
Weissmann, on structure of muscle 203 Whecler, on embryology of mid-gut 230 Williamson, on classification 258
Williamson and Calvert, on copulation 37
wing
Ving 38; expansion of 47, 98 ; histology of 47; studies and pre-Wing-bases $\stackrel{\text { phe }}{2}$
Wing-buds 45, 74

Wing-coloration 253
Wing-rudiments 46, 74
Wing-sheaths 45, 74, 80
Wing-spaces 38,42 ,
Wing-venation 38 ; table of 40-43
Xenthagriom 249; X. erylhroneurum 249
Xanthocnemis 294
Yolk 229
Yolk-plug 239
Yolk-sac 239
\dagger Zamites 306
Zawarsin, on antennae 151; on blood 163; on chordotonal organs 155; on heart 157, 161; on hypopitarynx 154; on ostia-organs 160; on peri-
pheral nerves 134
Zealand, New, fauna of 204 Zoocentre 281
Zoogeographical distribution 281
$Z y \mu n y c \quad 29$
ZYGOPTERA defined 273 .
ZYGOPTERA defined 273; table of Zyxomma 299; Z. peliolattum 298

The House-Fly (Musca Domestica Linn.). Its structure, habits, development. relation to disease, and control. By C. Gordon Hewitr, developnient. relation to disease, and control. By C. Gordon Hewirt, tions and a map. Demy 8 vo. I5s net.

The Vertebrate Skeleton. By S. H. Reynolds, M.A., Professor of Geology in the University of Bristol. Second edition. Demy 8vo. $15 s$ net.

Zoology. An Elementary Text-Book. By A. E. Shipley, Sc, D., I.k.S., and E. W. MacBride, D.Sc., F.R.S. Third edition, enlarged and re-written. With 360 illustrations. Denty 8 vo, 125 Gd net.

SELECOION FROM THE GENERAL CATALOGUE OF BOOKS PUBLISHED BY
 THE CAMBRIDGE UNIVERSITY PRESS

The Natural History of some Common Animals. By Oswald H. Latmer, M.A. With 54 ilhnstrations. Crown 8vo. 5 s net. Cambridge Biological Series.
Mimicry in Butterflies. By R. C. Punnerr, l'.R.S., Arthur Balfour l'rolessor of Geneties in the University of Cambridge. With i6 plates. Royal 8vo. i5s net.
Ticks. A Monograph of the Ixodoidea. By George H. I. Nurtall, M.D., Ph.D., Sc.D., I.R.S.، Cecil Warburton, M.A., F.Z.S., W. B. Coorer, B.A., F.Z.S.: F.L.S., and L. E. Robinson, A.R.C.Sc. (Lond.). Royal svo Part I. Argasidae 5 net. Part II. Ixodidae, physalis. 12 s net. Bibliography of the Ixodoidea; I Gs net. Bibliography of the lxodoidea, il. is $6 d$ net.

Fungoid and Insect Pests of the Farm. By l. R. Petherbridge, M.A., Biological Atviser, School of Agriculture, Cambridge. With 54 illustations. Large crown 8 vo . is net. Cambridge farm lnstitute Scries.

Flies in Relation to Disease: Non-Bloodsucking Flies. By G. S. Crallam-Smith, M.D. Second edition, revised and enlarged. With 27 plates, 32 text-figures, and 20 charts. Demy 8vo. i2s Gd net. Cambridge Public Health Series.
Flies in Relation to Disease: Bloodsucking Flies. By Enward Hindle, B.A., Ph, D. With 88 illustrations. Demy 8 vo. I2s $6 d$ net.
Cambridge Public Flealth Series.

Typical Flies. A Photographic Atlas of Diptera, including Aphaniptera. By E. K. Pearce. With 155 photographs. Royal 8vo. Piper boards. 5 s net

Growth in Length: Embryological Essays. By Richard Assheron, M.A., Sc.D., F.R.S. With 42 illustrations. Demy 8vo. Assineton,
2s $6 d$ net.

SELECTION FROM THE GENERAL CATALOGUE (cont.)

Experimental Zoology. By Hans Przibram, Ph.D. Part I. Embryogeny, an account of the laws governing the development of the animal egg as ascertained by experiment. With 16 plates. Royal 8vo. 75 6d net.
Palæontology-Invertebrate. By HENRy Woods, M.A., I.G.S. Fourth edition. With 151 illustrations. Crown 8vo. 6s net. Cambridge Biological Series,
Outlines of Vertebrate Palæontology for Students of Zoology. By Arthur Smith Woodward, M.A., F.R.S. With 228 illustrations. Demy 8vo. I4s net. Cambridge Biological Series.
Morphology and Anthropology. A Handbook for Students. By W.L. H. Duckworth, M.A., M.D., Sc.D. Second edition. Volume I. With 208 illustrations. Demy 8vo. Ios 6 d net.
Cambridge Manuals of Science and Literature. General Editors: P. Giles, Litt.D., and A. C. Seward, M.A., li.R.S. Royal igmo. Cloth, is 3d net each. Leather, 2s $6 d$ net each.
Spiders. By Cecil. Warburton, M.A: With i3 figures.
House-Flies and How they Spread Disease. By C. G. Hewrrt, D.Sc. With 20 illustrations.
Bees and Wasps. By O. H. Latter, M.A., F.E.S. With 21 itlustrations.
The Flea. By H. Russell. With 9 illustrations.
The Life-Story of Insects. By Prof. G. H. Carplentrer. With 24 illusirations.
Earthworms and their Allies. By Frank E. Beddard, M.A. (Oxon.), li.R.S., F.R.S.E. With 13 figures.

Primitive Animals. By G. Smith, M.A. With 26 figures.
Plant Animals. By F. W. Keeble, Sc.D. With 23 figures.
The Individual in the Animal Kingdom. By Julian S. Huxley, B.A. With frontispiece and 16 figures
Life in the Sea. By James Johnstone, B.Sc. With frontispiece, + figures, and 5 tailpieces.
The Migration of Birds. By T. A. Coward. With 4 maps.
The Wanderings of Animals. By Hans Gadow, F.R.S. With 17 maps.
Cambridge Nature Study Series. General Editor: Hugh Ricilardson, M.A. Large crown 8vo.
Bird Studies in Twenty-Four Lessons. By W. Percival. Westell, F.L.S., M.B.O.U. With frontispiece, 49 illustrations and a map. 25 bul net.

Pond Problems. By E. E. Unwin, M.Sc. With frontispiece and +8 illustrations. 2 s net.
The Birds of Britain: their Distribution and Habits: By A. H. EVans, M.A., F.Z.S., M.B.O.U. With 94 illustrations. © Crown 8vo 4 s net.

Cambridge University Press
Fetter Lane, London: C. F. Clay, Manager

[^0]: ©okgo: The maruzen-kabushikithiemary, lad.
 đokgo: The Maruzen-Kabushiki-kaisha

[^1]: T. D.- - .

[^2]: т. b .- F .

[^3]: 1 The name does not imply an actual belief that Tetrathemis as we know it stoppel short int this stace. As tho genus is highly specialized in many points, the condition of its discoidal cell may be due to reduetion from a more advanced type.

[^4]: ${ }^{1}$ Quite recently, I have shewn that this gas is CO_{2}, and that it passes into the tracheae by diffusion from the region of the mid-gut. When rectal respiration is fully established. the CO_{2} gradually passes out of the tracheae, and is replated by air derived from the water in the rectum. Rectal respiration is also practised by Zygopterid larvae at this stage, and for the same purpose, their candal gills being practic ally useless at first.

[^5]: ${ }^{1}$ There are a number of exceptions to the gencral type in this suborder. Thus, Hetaerina has only 8 folds; Caliagrion has 8 folds with a number of strong tecth only; while a number of cases shew reduction from 16 to 14 folds or less. J'seudo.

[^6]: ${ }^{1}$ I have kept larvae of Synthemis alive for three months without food

[^7]: I. D. F.

[^8]: ${ }^{1}$ See foot-mote on p. 286.

[^9]: ${ }^{1}$ See foot-note on p. 286.

[^10]: 1 See foot-note on p. ests.

[^11]: ${ }^{1}$ Die Urwelt der Schweiz, O. Heer; Zürich, 1879.

