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Abstract

Escardó, Hofmann and Streicher showed that real-number computations in the interval-domain environment
are inherently parallel, in the sense that they imply the presence of weak parallel-or. Part of the argument
involves showing that the addition operation is not Vuillemin sequential. We generalize this to all continuous
domain environments for the real line. The key property of the real line that leads to this phenomenon is
its connectedness. We show that any continuous domain environment for any connected topological space
exhibits a similar parallel effect.
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1 Introduction

Escardó, Hofmann and Streicher [4] investigated the possibility of sequential com-

putation on the real line via its well known interval-domain environment, considered

by e.g. Edalat [2] and Escardó [3]. The main result of [4] is that sequential com-

putation on the reals via the interval domain is extremely restrictive, to the extent

that not even a basic operation such as addition is sequential. The argument in [4]

has two main steps: (1) no extension of the addition operation on the real num-

bers to the interval domain is Vuillemin sequential (see Definition 2.1 below), and

(2) under natural assumptions for a sequential programming language, the weak

parallel-or operator is definable from any function that fails to be Vuillemin se-

quential. Escardó, Hofmann and Streicher asked whether this would hold for any

domain environment of the real line, among a class of domains of interest, or this

would be a limitation of the interval domain. A main result of the present paper

is that the first step generalizes to any continuous domain environment for the real
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line (Theorem 3.4 and its corollary). Thus, we can say that this is not a limitation

of the interval domain, but rather an intrinsic property of the real line. A second

contribution of the present paper is to identify this property. We show that any

continuous domain environment for any connected topological space exhibits the

parallel effect. More precisely, we prove that only very restricted binary operations

on such a space can be extended to Vuillemin sequential operations on a continuous

domain environment (Theorem 3.3).

2 Preliminaries

We assume some familiarity with topology and domain theory [1], including the

notions of dcpo (directed complete poset), continuous domain, Scott topology and

(Scott) continuous function. The upper set of an element x of a poset is denoted

by ↑ x. Given a function f : D × E → F and elements d0 ∈ D, e0 ∈ E, we denote

by f(−, e0) the function D → F that maps any d to f(d, e0), and by f(d0,−) the

function E → F that maps any e to f(d0, e). By the real line we mean the set of

real numbers endowed with its usual topology, generated by the open intervals.

The following definition is taken from [4]. The intuition is that if a binary

function is sequential, then it must look at one of its arguments first, and if there

is no progress at this argument, then the value of the function itself cannot make

any progress either.

Definition 2.1 A continuous function f : D×E → F of domains is called Vuillemin

sequential if, for any d in D and e in E,

(i) f(d, e′) = f(d, e) for all e′ � e, or

(ii) f(d′, e) = f(d, e) for all d′ � d.

Equivalently, the function f(−, e) is constant at ↑ d or the function f(d,−) is

constant at ↑ e.

Definition 2.2 A domain environment for a topological space X is a continuous

domain E containing X as a subspace in the relative Scott topology.

Notice that we don’t require a domain environment to be the subspace of max-

imal elements, thus being less restrictive than in [5].

Definition 2.3 If E is a domain environment for a topological space X, we say that

an operation X × X → X is Vuillemin sequential if it has at least one Vuillemin

sequential extension E × E → E.

3 Vuillemin sequentiality on connected spaces

We show that for any continuous domain environment of a connected topological

space, only very restricted binary operations on the space can be Vuillemin sequen-

tial. We split the argument in two steps. Lemma 3.1 doesn’t assume connectedness,
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but item (i) of its conclusion is closely related to connectedness, as it becomes ap-

parent in Lemma 3.2.

Lemma 3.1 If f : D × E → F is a Vuillemin sequential function on continuous

domains and R is a subspace of E, then for every d in D,

(i) f(d,−) is constant at each open set of some open cover of R, or

(ii) f(−, r) is constant at ↑ d for some r in R.

Proof. Assume that (ii) doesn’t hold. To prove (i), let r be in R and Y the set of

elements way below r. Because f(−, r) is not constant at ↑ d, there are d0 and d1

in ↑ d such that

f(d0, r) �= f(d1, r). (1)

Since f is Scott continuous and r is the supremum of the directed set Y , we have

both

f(d0, r) =
⊔

y∈Y

f(d0, y) and f(d1, r) =
⊔

y∈Y

f(d1, y). (2)

From assertions (1) and (2), one concludes that, for some y0 in Y ,

f(d0, y0) �= f(d1, y0)

as, otherwise, one would have
⊔

y∈Y f(d0, y) =
⊔

y∈Y f(d1, y) by continuity of f , and

hence f(d0, r) = f(d1, r), contradicting (1). In other words, the function f(−, y0)

is not constant at ↑ d. So, because f is Vuillemin sequential, the function f(d,−) is

constant at ↑ y0. And because ↑ y0 is a neighbourhood of r, there is an open subset

Ur of ↑ y0 such that Ur has r as a member. Then the collection {Ur}r∈R is an open

cover of R such that f(d,−) is constant at each Ur, as required. �

Recall that a topological space R is called connected if whenever two open sets

V and W are such that V ∩ W = ∅ and V ∪ W = R, one of the sets V and W is

empty. Equivalently, R is connected if R and ∅ are the only clopens (both closed

and open). Typical examples of connected spaces are the real intervals, including

R itself. We will use the characterization given by Lemma 3.2(iii) below, which is a

reformulation of the well known characterization (ii).

Lemma 3.2 The following are equivalent for any non-empty space R:

(i) R is connected.

(ii) Any continuous function from R to a discrete space is constant.

(iii) Any set-theoretical function defined on R which is constant at each open set of

some open cover of R is constant.

Although this result is standard, we include a proof for the sake of completeness.

Proof. (i) =⇒ (ii). Suppose X is a discrete space and f : R → X is continuous.

Let r ∈ R. The set f−1({f(r)}) is not empty (because it contains r) and is a clopen

(because {f(r)} is a clopen and f is continuous), hence it is the whole space R

(because R is connected), which means that f is constant.
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(ii) =⇒ (iii). Let f : R → X be a set-theoretical function defined on R and

constant at each open set of some open cover {Ui} of R. Endow X with the discrete

topology. Then f is continuous, because the singletons form a base of X, and, for

any element {x} of that base, the set f−1({x}) is open as it is a union of open sets,

namely those Ui whose direct image is {x}. So, by (ii), f is constant.

(iii) =⇒ (i). If U is a clopen in R, then U and its complement form an open

cover of R and, by (iii), the characteristic function of U has to be constant, so U

has to be ∅ or R.

�

The following is an immediate consequence of Lemmas 3.1 and 3.2.

Lemma 3.3 If f : D × E → F is a Vuillemin sequential function on continuous

domains and R is a connected subspace of E, then for every d ∈ D,

(i) the function f(d,−) is constant at R , or

(ii) the function f(−, r) is constant at ↑ d for some r ∈ R.

We say that a function is locally constant at a point if it is constant at some

neighbourhood of the point. Given property p and a point y, we say that p(y′) holds

for some y′ as close to y as one wishes if for every neighbourhood V of y there is

y′ such that p(y′) holds. Recall that a space is locally connected if every point has

a neighbourhood base of connected sets.

Theorem 3.4 If X is a locally connected space and a function g : X × X → X is

Vuillemin sequential with respect to some continuous domain environment, then for

any x and y in X,

(i) the function g(x,−) is locally constant at y, or

(ii) the function g(−, y′) is locally constant at x, for some y′ as close to y as one

wishes.

Proof. Let E be a domain environment for X and f : E × E → E a Vuillemin

sequential extension of g. Let x and y be in X and assume (ii) doesn’t hold. This

means that for some neighbourhood V of y and all y′ ∈ V , the function g(−, y′) fails

to be locally constant at x, and so, for every d way below x, its extension f(−, y′)

is not constant at ↑ d. By local connectedness, we may assume that V is connected,

and, by Lemma 3.3 with R = V , we conclude that for every d way below x, the

function f(d,−) is constant at V . Hence, by continuity of f , the function f(x,−),

and hence g(x,−) is constant at V , i.e. (i) holds. �

As discussed in the introduction, it was shown in [4] that when E is the interval

domain and X is the Euclidean real line embedded into E by the singleton map

x �→ {x}, there is no Vuillemin sequential map E × E → E extending the addition

operation. Our main result is that this holds for all domain environments and a

vast class of operations.

Corollary 3.5 Addition, multiplication, maximum and minimum fail to be

Vuillemin sequential, for any continuous domain environment for the real line.
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Note that condition (ii) in Theorem 3.4 doesn’t imply that g(−, y) is locally con-

stant at x. For example, let X be the real line and define g as g(x, y) = max(|x|, y).

For all y except 0, the function g(−, y) is locally constant at 0. So, for x = 0 and

y = 0, the function g satisfies condition (ii). But the function g(−, 0) is not locally

constant at 0. However, this example fails to be Vuillemin sequential (consider

x = y = 1 in the theorem).

4 Possible generalizations

By just skipping the definition of Y in the proof of Lemma 3.1, one obtains a proof

of the following, slightly more general lemma.

Lemma 4.1 Let f : D × E → F be a Vuillemin sequential function on dcpos and

R a subset of E. Suppose that, for every r in R, there exists a directed subset Y of

E such that r is the supremum of Y and, for each y in Y , the upper set ↑ y is a

neighbourhood of r. Then, for every d in D,

(i) f(d,−) is constant at each open set of some open cover of R, or

(ii) f(−, r) is constant at ↑ d for some r in R.

One example where this generalization is of interest is a particular quotient of the

domain 3∞, where 3∞ is the set of finite and infinite sequences of digits −1, 0 or 1,

with the prefix ordering. The maximal elements in 3∞, that is the infinite sequences,

are identified with real numbers in the interval [−1, 1] via the map s �→
∑

i≥0
si

2i+1 .

For any s in 3∞, the set of real numbers above s is an interval. We define an

equivalence relation ∼ on 3∞ by stipulating that s ∼ s′ if and only if s and s′ define

the same interval. The quotient 3∞/ ∼ is a non-continuous dcpo. In fact, it is easy

to verify that, although every maximal element is the directed join of elements way

below it, a non-maximal element doesn’t have any element way below it other than

bottom. Nevertheless, Lemma 4.1 allows us to immediately extend Theorem 3.3

and Theorem 3.4, with the same proofs, to the case where R is embedded into

3∞/ ∼. It is not too hard to check that this dcpo is quasicontinuous [5, p. 226], and

it is natural to ask whether our results generalize to such dcpos. Another class of

domains one may want to consider is the category of topological domains [6]. This

is left for future work.
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[3] M. Escardó. PCF extended with real numbers: a domain-theoretic approach to higher-order exact real
number computation. PhD thesis, Department of Computing, Imperial College, University of London,
1996.

[4] M. Escardó, M. Hofmann, and T. Streicher. On the non-sequential nature of the interval-domain model
of real-number computation. Mathematical Structures in Computer Science, 14(6):803–814, 2004.

[5] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott. Continuous Lattices and
Domains, volume 93 of Encyclopedia of Mathematics and its Applications. Cambridge University Press,
2003.

[6] A.K. Simpson. Towards a convenient category of topological domains. In Proceedings of the Thirteenth
ALGI Workshop, Kyoto University, 2003.

T. Anberrée / Electronic Notes in Theoretical Computer Science 173 (2007) 41–4646


	Introduction
	Preliminaries
	Vuillemin sequentiality on connected spaces
	Possible generalizations
	References

