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Abstract 

While computability theory on many countable sets is well established and for computability 
on the real numbers several (mutually non-equivalent) definitions are applied, for most other 
uncountable sets, in particular for measures, no generally accepted computability concepts at all 
have been available until now. In this contribution we introduce computability on the set M 

of probability measures on the Bore1 subsets of the unit interval [O; 11. Its main purpose is to 
demonstrate that this concept of computability is not merely an ad hoc definition but has very 
natural properties. Although the definitions and many results can of course be transferred to 
more general spaces of measures, we restrict our attention to M in order to keep the technical 
details simple and concentrate on the central ideas. In particular, we show that simple obvious 
requirements exclude a number of similar definitions, that the definition leads to the expected 
computability results, that there are other natural definitions inducing the same computability 
theory and that the theory is embedded smoothly into classical measure theory. As background 
we consider TTE, Type 2 Theory of Effectivity [lo, 11, 191, which provides a frame for very 

realistic computability definitions. In this approach, computability is defined on finite and infinite 
sequences of symbols explicitly by Turing machines and on other sets by means of notations 
and representations. Canonical representations are derived from computation spaces [18]. We 
introduce a standard representation 6, : C Cw + M via some natural computation space defined 

by a subbase 0 (the atomic properties) of some topology z on M and a standard notation of G. 
While several modifications of 6, suggesting themselves at first glance, violate simple and ob- 

vious requirements, 6, has several very natural properties and hence should induce an important 
computability theory. Many interesting functions on measures turn out to be computable, in par- 
ticular linear combination, integration of continuous functions and any transformation defined by 
a computable iterated function system with probabilities. Some other natural representations of 
M are introduced, among them a Cauchy representation associated with the Hutchinson metric, 
and proved to be equivalent to 6,. As a corollary, the final topology z of 6, is the well-known 
weak topology on M. @ 1999 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Measure and integration is a central branch of mathematics pervading almost all parts 

of abstract analysis. Several authors have already considered questions of effectivity, 

constructivity, computability or computational complexity in measure or integration 

theory. Kushner [12] studies computability and Ko [9] computational complexity of 

integration. Bishop and Bridges [3] present constructive measure theory extensively. 

Although they do not consider computability, certainly many of their concepts and 

results have computational counterparts. Edalat gives a domain theoretic approach to 

effective integration [4,5]. He also does not consider computability, but it should be 

possible to extend his topological approach by computability concepts. Traub et al. 

[ 141 investigate the computational complexity of numerical algorithms for integration 

in the real number model of computation. However, this model is unrealistic in many 

situations and therefore not generally accepted. A systematic study of computability 

in integration and measure theory does not yet exist. In this paper, we introduce a 

very natural and realistic computability theory on probability measures. We achieve 

this by extending TTE, Type 2 Theory of Effectivity, to measure theory. Based on a 

definition by Grzegorczyk [6] of computable real functions and further work by Hauck 

[7] and others, TTE has been introduced by Kreitz and Weihrauch [ 10, 1 l] as a gen- 

eral framework for studying effectivity, i.e. continuity, computability and computational 

complexity, in Analysis. For details the reader is referred to the introduction [ 171 and 

a recent short survey [ 181 containing most of the notations we shall use in this pa- 

per. More details can be found in [ 11, 15, 191. Since this paper is a first attempt, we 

consider only the space of probability measures on the Bore1 subsets of the real unit 

interval. 

By f: CA + B we denote a partial function, i.e. a function from a subset of A to 

B. Throughout this paper let C be a sufficiently large finite alphabet. Let C* be the 

set of finite and C” = {p 1 p : o + C} the set of “omega” - words over C. On C* 

we consider the discrete topology and on C” the Cantor topology defined by the ba- 

sis {WC’” 1 w E I”}. For Yo, Yr , . . . , Yk E {Z*, P}, a function f: C YI x . . x Yk + Yo 

is called computable, iff it is computed by a Turing machine with a one-way out- 

put tape. Every computable function is continuous. The basic idea of TTE is to use 

finite or infinite sequences as names of “abstract” objects. As naming systems we 

consider notations, i.e. surjections v: C .X* + S, and representations, i.e. surjections 

6: 2 C” --$ M. Continuity and computability concepts are transferred from C* and C”’ 

via notations and representations, respectively, to the named sets straightforwardly, see 

[ 11, 15, 17, 181. Mainly notations or representations which are compatible with some 

relevant structure on the set under consideration are of practical interest. We do not 

discuss this for notations (see [13, 151 and Appendix C in [17]), but we will intro- 

duce “effective” notations explicitly whenever necessary. In particular, for the rational 

numbers let VQ : C C* + UJ be the standard representation via fractions of integers in 

binary notation. We shall abbreviate vQ(w) by W. Standard notations of the natural 

numbers, pairs of rational numbers, etc. will be used without further definitions. For 



K. Weihruuchl Theoretical Computer Science 219 (1999) 421-437 423 

uncountable sets M we shall consider mainly representations derived from “compu- 

tation spaces” (M,o, v), where r~ is a countable subset of 2M of “atomic properties” 

which identifies points, and v is a notation of B [ 181. It is assumed that a computer 

(Turing machine) manipulates v-names of atomic properties. As a name of an object 

x E M we consider any infinite list of all properties A E rr which hold for x. Concretely, 

the standard representation 6,, : C C’” + M is defined by 

6,,(p)=x~~==wo#w,#... and {w~~i~o}=={w~x~v(w)}. 

Every finite prefix of a &-name p of x contains finitely many atomic properties of 

x which “approximate” n. Mathematically, this kind of approximation is described by 

the topology z, on M, which has 0 as a subbase. Computability on (T and via (5, on 

M are fixed by the notation v which expresses how atomic properties can be handled 

concretely, Thus, for any computation space (M,o, v), rr characterizes approximation 

and v computability on M. The topology r, and the standard representation 6,, are 

closely related: X E r, # 6;‘X is open in dom(6,) (for all X CM), i.e. r0 is the final 

topology of &. Let 6 : C C” -+ M and 6’ : C C” -+ M’ be representations and let 

f : C: M + M’ be a function. An element x EM is called &computable, iff 6(p) =x 

for some computable sequence p E C”‘. By definition, 6~~6’ (a<#), iff 6 = 6’y for 

some continuous (computable) function g : G C” --f C’“, and f is (6, #)-continuous 

(-computable), iff f 6 = 6' g f or some continuous (computable) function g : C: C’” t C”‘. 

(Accordingly for functions with two or more arguments.) By the “main theorem for 

admissible representations” [ 1 l] a function is continuous relative to standard repre- 

sentations, iff it is continuous w.r.t. the associated final topologies in the usual sense. 

For more details see [ 11, 15, 17, 181. For the real numbers, we need three representa- 

tions p,, p,, p : C C” + R, derived from computation spaces. They can be defined 

explicitly as follows [15, 181: 

p<(p)=x:@p=w~#wl#... with {w~]~Ew}=={w~W<X}, 

p,(p)==x:~p=ww~#wl#... with {w~(i~~}=={w~G>x}, 

p(p) =.x : Hp = o&v&, #w, . . . with {(u,,w;)/i~o)={(v,~,)j~<~<W}. 

The final topologies are r< ={(y;ca)~yER}U{R},t, ={(-m;y)IyER}U{R} 

and the set z~ of ordinary open subsets of R, respectively. Notice that p induces the 

standard computability theory on the real line. The translatability or reducibility prop- 

erties [15,18] pdp<, pdp,, P< dI P, P> gtp, P< drp,, P> gtp< can be proved 

easily. 

In Section 2 we introduce a standard representation S, of the set M of probability 

measures on the Bore1 sets of the interval [O; l] by a very natural computation space. 

We prove a stability theorem for this definition. We discuss some further modifications 

of the definition and show that they have undesirable properties. The results indicate that 

the computability theory on M induced by the representation 6, is indeed very natural. 

In Section 3 we prove computability of several interesting functions on measures, in 

particular linear combination and integration of continuous functions. Also the measure 
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transformation induced by a computable iterated function system with probabilities 

[ 1,8] is computable. Finally, in Section 4 we introduce representations based on other 

natural computation spaces and a Cauchy representation for the Hutchinson metric 

[ 1,8]. We prove that all these representations are equivalent and that their final topology 

is the well-known weak topology [2]. 

2. The standard representation of measures 

In this section we introduce the standard representation 6, of the probability mea- 

sures and show that it induces a very natural computability theory. Let Znt := {(a; b), 

[O; a), (b; 11, [O; l] 1 a, b E Q, 0 <a < b < 1) be the set of open subintervals of [O; l] with 

rational boundaries, and let I : & Z* ---f Irtt be some standard notation of Int with 

dam(Z) c (C\{4, #> >*. w e write Z, for Z(w). By B we denote the set of Bore1 subsets 

of [O; 11, i.e. the smallest a-algebra containing ht. By M we denote the set of prob- 

ability measures p : B + [w on the space ([O; 11, B). By a basic theorem of measure 

theory [2], every measure p E M is defined uniquely by its values on the generating 

set ht. We introduce a standard representation of M via a computation space. The 

portions of information available from some standard name of a measure p shall be 

all (r,J) with Y E Q and J E Znt such that r < p(J). 

Definition 2.1. Define a computation space (M,o, v) by 0 := range(v), where p E v 

(u~u) :@ U<p(ZL.) for all UE dom(vp), v ~dom(Z) and ALE M. Let r, be the topol- 

ogy on M with subbase G and let 6, be the standard representation of M derived 

form v. 

It remains to show that G identifies the points of M. Consider measures p, p’ E M 

such that Y < p(J) % Y <p’(J) for all r E Q and J E Znt. Then obviously, p(J) = p’(J) 

for all J EM, i.e. p = ~1’. The definition of the representation 6, looks somewhat 

arbitrary. By the next stability lemma, we obtain an equivalent representation, if we 

replace vQ and Z by adequate other notations. For any X 2 [w let cZs(X) be the closure 

OfX. 

Lemma 2.2 (stability of 6,). Let vs: C E* +S be a notation of a set S which is 

dense in R such that {(u,u) 1 v~(u)<VQ(u)} and {(u,u) 1 vQ(u)<vS(u)} are r.e. Let 

D be a countable dense subset of [0, l] and let I’ be a notation of Znt’ := {(a; b), 

[O;a)(a;1],[0;1]~u,b~D,O<a<b<l} such that {(u,u)~cZs(I~)C_ZL’} and {(u,u)\ 

cls(Zu) CZi} are r.e. Define ok and 6; by substituting vs for vQ and I’ for Z in 

Dejkition 2.1. 

Proof. We show that there is a machine which maps any p E Co into some q E 1” 

such that the following holds: If p is a list of all (u, u) such that vQ(u) =c ,uI” for some 
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p E M, then q is a list of all (x, y) such that vs(x) < fl:. We have vs(x) < fli, iff there 

are words u, v such that vs(x)< ve(u),vg(u)<$, and c&Z,) &I;,. Since the first and 

the third property are r.e. and the input p lists the second one by assumption, there 

is indeed a machine with the desired property. This shows 6, 6 6;. By symmetry we 

have also Sk d Sh, hence 6, E Sk. Since r, and 7; are the final topologies of 6, and 

Sk [ 181, respectively, and since equivalent representations have the same final topology, 

we obtain z,~ = r:,,. 0 

If we replace, for example, rational numbers by finite binary fractions or by finite 

decimal fractions in the definition of the set Znt and in Definition 2.1, we obtain an 

equivalent representation with the same final topology. 

If we replace the relation “ <” in Definition 2.1 by “ <“, “ > ” or “ 3 “, we obtain 

representations which violate Lemma 2.2. Remember that by definition, the topology r, 

has the subbase CJ = { I!J~,J ( Y E Q and J E Znt} where U,., J = {p E M 1 r <p(J)}. We pre- 

pare the proof of the theorem by two lemmas. First, we consider the cases “r <p(J)“, 

“r 3 p( J ),‘. 

Lemma 2.3. For Q C [w let Z(Q) be the topology on M generated by the subbase 

o(Q) := { ur,J 1 Y E Q, J E Znt}, where ur,J = {p E M 1 r < p(J)}. 

Then r(P) $C z(Q), if t E P/Q f or some t E (0; 1) Cfor ali P, Q C R). 
The statement holds accordingly, if “<” is replaced by “2”. 

Proof. The set U := {CL EM 1 t d p[O; l)} . IS in z(P). For x E (0; 1) define pX E M by 

~~{O}:=n,~~{l}:=l-x.Then~C1,~U.AssumeU~z(Q).Thenthereare V,,...,V~E 

C(Q) with ,&EVifl...nVkCU. For i=l,. . . , k there are ri E Q and Ji l Znt with 

Vi = {p I ri < p(Ji)}. If 1 $ Ji, from 111 E Vi we obtain ri < pt(Ji), hence ri < t (since 

t@Q). Let r:=max({ri~l~Ji}U{O}). Then r<t. IfO,l$Ji, then ri<pt(Ji)=O= 
~,(Ji),ifOEJ,andl@Jithenri<r<~~(J~),ifO$Jiand l~J,thenr~<p~(Ji)=l- 

t<l-r=~L,(Ji),andifJi=[O;1]thenrid~~(J~)=1=~~(J,).Weobtain~~EV~n..~ 

n Vk, but t >r = pr[O; l), hence pr $ U. This is a contradiction. 

The case “ 2” can be proved accordingly. 0 

The next lemma considers the case “r>v(J)“. 

Lemma 2.4. For DC_(O; 1) let Znt(D):={(a;b),[O;a),(a; l],[O; I] la,b~D,O<a< 
b < 1). Let z(D) be the topology on M generated by the subbase a(D) :== { Ur,~ I r E Q, 
J E int (D)} where U, J = {p E M ) r > p(J)}. Then 

DGE u z(D)Cz(E) (jar all D,Ec(O; 1)). 

Proof. ‘3”: (obvious) 
“+$r: Assume D g E. Then there is some d E D\E. The set U := {p E M 1 1 > 

,u[O; d)} is an element of z(D). For any x, 0 < x < 1, define a measure plr E A4 by 

Pan := (1 if x E A, 0 otherwise). In particular, we have 1 > 0 = pd[O; d), hence pd E U. 
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We assume U E r(E). Then there are VI,. . , Vk E t(E) with pd E VI n , . n Vk C U. 
For i=l,...,k there are r;>O and J;~iElnt(E) with k$={~l~~>~(J;)}. Define e’:= 

max({supJi 1 supJ, cd} U {inf Jj / d E Ji}). Then e’ < d, hence e’ cd since d c$ E. De- 

fine e:=(e’+d)/2. For i=l,...,k we have dEA++eEJi, hence pd(J1)=p,(J;) and 

pd E Vi H pL, f Vi, consequently, ~1~ E VI n . . . n Vk. But fte[O; d) = I since e < d, hence 

pL, @ U. This is a contradiction. 0 

Theorem 2.5. rf’ in Dejinition 2.1 the relation ‘5 < p(ZL’)” is repluced by ‘5 > p(l,,)“, 

“U 3 p(Zc)” or ‘5 < p(Z,.)“, the resulting representations 6, violate the stubility 

Lemma 2.2. 

Proof. By Lemma 2.3, in the cases “ 6 ” and “ 3 ” a change of the set Q of bounds 

changes the topology r,, by Lemma 2.4, in the case “ > ” a change of the set D 

of interval boundaries changes the topology z,. Since the equivalent representations 

have the same final topology, each of the modifications produces a non-equivalent 

representation. 0 

By Definition 2.1 and Lemmas 2.3 and 2.4, many different more or less natural 

representations and hence computability theories for the set M of probability measures 

on ([O; l],B) can be introduced. The “user” has to decide, which of them is adequate 

for his application. The stable representation 6, from Definition 2.1 is certainly the 

most important one, since its computability theory will occur most frequently. We shall 

study it in the following exclusively. 

As a simple consequence of Definition 2.1, all rational lower bounds of p(J) can 

be obtained from any &-name of p and any I-name of J. This property charac- 

terizes the representation 6, except for equivalence: The representation 6, is 6- 

complete in the set of all representations S of M, for which (p,J) H ,u(J) is (6,1, pc )- 

computable. 

Theorem 2.6. For any representation 6 of M : 6 d d,,, H (p, J) H ,u(J) is (&Z, pi )- 

computable. 

Proof. Consider 6 < 6,. By definition there is some computable function f : C C”’ 

---) 2” with 6(p) = 6&(p) for all p E dam(6). For p E dam(6), f(p) is a list of all 

(u, v) with U < S,f(p)(Ir). There is a Turing machine, which for any inputs p E dam(6) 

and ZI E dam(Z) determines internally the sequence f(p) and simultaneously writes 

all words u such that (u, 0) is listed by f’(p). Therefore, (p,J) ++ p(J) is (6, Z, p< )- 

computable. 

Consider, on the other hand, that (p,J) ++ y(J) is (6, I, p,)-computable. Then there 

is a machine Mt which for any p E dam(6) and v E Znt produces a list of all u E C* 

with U < 6( p)(Z,). From this machine another machine A& can be constructed, which for 

any p E dam(b) constructs a list of all (u, v) with U< S(p)(ZwS). This machine translates 

6 into 6,. q 
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Notice, that in particular (p,J) H /J(J) is (S,,Z, p< )-computable. Computing only lower 

rational bounds does not seem to be satisfactory. We would like to compute also 

arbitrarily close upper bounds of ,u(Z~,). We prove a negative and a positive answer. 

For any x E [O; l] define pX EM by ~~(4) :=( lif XEA,O otherwise). For any good 

and useful representation 6 of M it should be possible to determine a &name of the 

measure pX effectively from a name of x. Let M’ := {pX 1 x E [O; 1 I}. 

Theorem 2.7. For any representation 6 of M, for which XH px is (p,6)-continuous 

on (0; 1 ), ~1 H p[O; l/2) is not (6, p, )-continuous on M’. 6, is such a representation. 

Proof. Assume, ,U H ,u[O; l/2) is (6, p, )-continuous on M’. Then f :x~p~[O; l/2) 

is (p,p,)-continuous, hence (rn,r,)-continuous by the main theorem for admissi- 

ble representations. Since (-CQ, l/2) E r,, f -I(- cm; l/2) E Q, but f -‘(- x; l/2) 

= [l/2; 1) $ rn. We prove now that g:xt-+ pX is (p,&,)-continuous, i.e. (rmr,)-con 

-tinuous by the main theorem for admissible representations. Let U,J :== {,u f M 1 r < 

p(J)}, r E Q, J E Int, be some arbitrary subbase element of r,. We have g(x) E iJV,.,, 

iff r<px(J). For r 3 1, g-‘l_Jr,J=O, for r<O, g-‘U,J=(O;l) and for O<r<l, g-’ 

Ur.~ = J. Therefore, g-’ Ur,, is rn-open in dam(g) = (0; 1). This shows that g is 

(zn, r,)-continuous. 17 

Therefore, for reasonable representations 6 of M, in particular for our standard rep- 

resentation 6,, arbitrarily close rational upper bounds of measures of open intervals 

cannot be computed. Although this contradicts intuition at first glance, it has to be ac- 

cepted as a matter of fact. Notice, that for proving Lemmas 2.3, 2.4 and Theorem 2.7 

we have used measures ,D EM with ~{x} >O for some x E R. Since the arguments 

have been purely topological without reference to computability, we have also shown 

that the final topology r, of the representation 6,, which formalizes a concept of 

“approximation” on the set M of measures, is quite natural. If we exclude measures 

p with @L(x) >O for some x E [O; 11, (p, J) H p(J) becomes (S,,,,l, p)-computable. Let 

MO := {p E M 1 Vx E [O; l].j_{x} = O}. 

Theorem 2.8. The function (,LL, J)H p(J) is (&,Z,p)-computable for J E Int and 

@EM? 

Proof. By Theorem 2.6, (~,J)H p(J) is (6,,1,p,)-computable. It suffices to show, 

that this function is (6,,1,p,)-computable for p E MO. The algorithm branches into 

four cases depending on the type of the interval J E Int. We discuss only the branch 

for J=(a;b) with O<a<b<l. For REM’ we have 1 =p[O;a)+p(a;b)+p(b; 11. If 

we can approximate p[O;a) and p(b; l] from below, we can approximate p(J) from 

above. Consider 6,(p) = p E MO and 1, = (a; b) E kt, 0 <u < b < 1. Then for any r E Q 

we have: r > ~(a; b), iff there are rational numbers SI,S~ with SI < p[O; a) and s, < p(b; l] 

such that r > 1 -SI -s,. There is a machine, which for input p and w writes the rational 
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number r to the output , iff it has found numbers s/ and sr with the above properties 

by reading the input p. 0 

3. Computable functions on measures 

In this section we prove computability of some interesting functions on probability 

measures. By the next theorem, the linear combination of measures is computable in 

all variables. 

Theorem 3.1. The function (a, ,u, p’) ++ a,u + (1 - a),u’ is (p, 6,, 6,, &)-computable jbr 

O<a<l. 

Proof. Consider 6,(p) = p, 6,(p’) = p’ and p(pa) = a. Then p is a list of all (Y, J) 

with r <p(J), and p’ is a list of all (r, J) with Y <p’(J) (Y E Q,J E Znt). For FE Q and 

J E Znt we have f<ap(J)+( 1 -a)p’(J), iff there are Y, I-‘,s, s’ E Q with r<sr+( 1 -s’)Y’, 

Y <p(J) and Y’ <p’(J), and s <a <s’. Therefore, there is a Turing machine, which for 

any input (p, p’, p,), (p, p’ E dom(6,), 0 d p( pa) d 1) produces some list q E dom(6,) 

of all (Y, J) E CL! x Znt for which there are Y, Y’, s, s’ E Q such that the above properties 

hold or are listed by p, p’ or pa, respectively. 0 

By Theorem 2.6, (~,J)H p(J) is (&,I,p,)-computable on M x Int. We extend this 

result to rk = {U n [O; l] 1 U E ZW}, the set of all open subsets of [O; 11. First, we need a 

representation of this topology. For the set rn of open subsets of R, the following com- 

putation space (rn, 0, v) and its derived representation 6, and topology r0 are natural 

(see [IS]): For any U f rn and U, Y E C* let U E V(U$U) iff [ii; i?j C U. Consequently, 

6,(p) = U iff p is a list of all closed intervals with rational boundaries contained 

in U. We define our standard representation of r; accordingly: 6;(p) = U : ++ p is 

a list of all w E C” with cls(Z,) C U (p E P, U E z’,). Let pi E M be the Lebesgue 

measure on ([O; 11, B). 

Theorem 3.2. (1) (cl, U) H p(U) for ,u E M and U E $ is (6,, Sk, p< )-computable. 

(2) (,u, U) H ,u( U) for p = ,LLL and U E & is not (a,, SA, p, )-continuous. 

Proof. Consider &(p)=p and 6:(q)= U. Then p lists all (Y,J) E Q x Int with 

Y < p(J), and q lists all K E Znt such that c/s(K) C U. For s E Q we have s <,u( U), iff 

there are intervals Jt,. . . ,Jk E Int with cls(J;) n cls(Jj) = 8 for 1 <i <j ,<k and rational 

numbers ~1 ,..., rk such that: s<rl +...+rk, r;<p(Ji) and cZs(Ji)C U for i= l,..., k. 

Therefore, there is some machine, which from any p E dorn(6,) and q E dom(db) 

computes some q’ E P’ with pc (q’) = &(p)(dh(q)). This means that the function is 

(6,, s;, p< )-computable. Assume, F: U H p~( U) is (Si, p, )-continuous, hence (z’, T, )- 

continuous, where r’ is the final topology of SL defined by the subbase o={ V, 1 J E Int}, 

where UE VJ iff cls(J)CU. Since F[O;~)E(-w;~)ET,, by continuity of F there 
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are intervals Ji , . . . , Jk l Znt such that [O; l/2) E VJ, n . . . n VJk 2 F-‘(--~a; 3/4). We 

obtain [O;~]EVJ, for i=l,..., k, but F[O; l] = 1 4 (-00; 3/4), a contradiction. 0 

For uniform formulations in the next theorems we need a standard representation 

6, of the set CEO; l] of continuous functions f : [O; l] -+ R. We define 6, and the cor- 

responding final topology r+ by the following computation space (C[O; 11, cr, v) : f E v 

(u~&v) : M ii<f(clsZ,) <tt, for all f E C[O; l] and U, v, w E C*. Properties of 6, are 

discussed in [15, 17, 181. In particular, z, is the compact-open topology on C[O; 11, 

which is also generated by the metric d( f, g) := max{ 1 f (x)-g(x)1 10 <x < 1) on C[O; 11. 

For any measure ZL EM and any continuous function f : [O; l] --+ [O; l] define the mea- 

sure T&L) by T@)(A): =pf-‘(A) for every Bore1 set AC [O; l] (see [2, p. 421). 

Theorem 3.3. The function (f, p) H Tf(p) for continuous f : [O; l] --j [O; l] and p E M 

is (6,,6,,6,)-computable. 

Proof. An easy consideration shows that (J, f) H f-‘(J) is (Z, 6,, hi)-computable. 

By Theorem 3.2, (cl, U) -+ p(U) is (a,, Si, p,)-computable. Therefore, (p, f, J) + T/ 
(p)(J) is (6,, 6_,Z,p,)-computable, i.e. there is a computable function h such that 

S,( p)(d,(q))-’ Z, = p< h(p,q, v). There is a machine which for any input (p, q, v) 

produces a list of all u such that U <p< h(p, q, w). Therefore there is a machine, 

which for inputs p and q with 6,(p) = p and 6,(q) = f produces a list of all (u, v) 

such that Li<pf-‘(Zc))= T&)(Z”). This means that (f,p)++ Tf(p) is (6+,6,,6,)- 

computable. 0 

We apply this theorem to iterated function systems with probabilities [8, 11. An iter- 

ated function system (IFS) on [O; l] with probabilities is a tuple S = ([O; 11, f,, . . . , fk, 

pl,...,pk) where fl,...,fk:[~;~l-‘[~;~] are continuous functions and ~1,. . . , pk are 

positive real numbers with pi + . . . + pk = 1. With S one associates the function 

Ts : M + M defined by T&L) := Cf=, piTf,(p) 

corollary 3.4. Let s = ([o; 11, fi,. . . , fk, pl,. . . , pk) be an IFS with probabilities such 
that f,,. . . , fk are 6,-computable and ~1,. , . , pk are p-computable. Then Ts : 
M -+ M is (a,,,, 6, )-computable. 

Proof. Since computable functions transform computable elements to computable el- 

ements, by Theorem 3.3 Tyr : M + M is computable for i = 1,. . . , k. Since the com- 

position of computable functions is computable, by Theorem 3.1 the operator Ts is 

computable. 0 

Therefore, for any computable iterated function system S with probabilities, the 

associated measure transformation TS : M + M is a (a,, &)-computable function. We 

shall show in Theorem 4.8 that its unique fixed point ps EM is &,-computable, if the 

system S is hyperbolic [8]. 
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Next we show that integration of continuous functions is computable in both ar- 

guments. The integral of a continuous function can be defined via summations over 

finite partitions. Consider ,U E M and f E C[O; I]. Let Part be the set of all finite 

partitions Z of [O; l] into intervals with rational boundaries (remember: U Z = [O; l] 

and I ~IJ = 0 for I,J E Z). For Z E Part define s+(Z) := CJEz p(J). supXEJ f(x) and 

s_(Z) := CJEz p(J) infXEJf(x). Since f is continuous, we have supZEPart s_(Z) 

= infZEPurf s+(Z) =: s f d p. The following lemma is the key to the next proof. 

Lemma 3.5. For any 8, y > 0 there ure u finite set T C Int of (pairwise disjoint) open 

intervals and a jinite set L of closed intervuls such that T U L E Part, length(J) < y fbr 

every J E T and p(U L)</l. (L can be chosen, such that each J EL has 

length 0.) 

Proof. Define X, := {x ) p{x} > 2-“} (n E Q) and X := U&. Since p(X) is finite and 

p(X) = sup &Y,), there is some n such that p(X\X,,) < fi. Since X, is finite, there are a 

finite set T C Int of pairwise disjoint neighboured intervals with VJ E T. length(J) <y 

such that L := {[a; a] 1 a E [O; I]\ U T} is finite and X, C IJ T. For each y E U L we 

have ~YEX\X,, or p{y}=O, hence &JL)</l. 0 

Theorem 3.6. The function (f,p) H J f dp for f E C[O; l] and p E M is (b,, 6,,,, p)- 

computable. 

Proof. For any T C Znt let s_(T) := C{p(J) . inf f(J) /J E T}. Consider J‘ E C[O; 1] 

and E > 0. By uniform continuity of f there is some y > 0 such that Ix - y I< y + 1 f x - 

f yl <E/4. Let M := max{]f(x)l IO<x<l}, choose /?:=~/(4(1 +M)). By Lemma 3.5 

there is some set T C Int of pairwise disjoint intervals such that 1-/3<~ U T d I and 

VJ E T.length(J)< y. Furthermore, there are ZJ E Q such that zJ <p(J) for J E 7’ and 

l-p< C{.q I J E T} < 1. We describe a procedure for determining from (p,q,n) a 

number r E Q with Ir- E tf dp( ~2~” where 6,(p) = f and 6,(q)= ,a. 

l From p and n determine some k E w such that Ix-y1 t2-k + Ifx - fyi <2-“-* 

[17, 181. 

l From p determine some integer upper bound m of M. 

l Let p := 2~“-*/( 1 + m). 

l By systematic search find a finite set T C Int of pairwise disjoint intervals and ra- 

tional numbers ZJ (J E 7') with fength(J) ~2~~ and zJ <p(J) for J E T and 1 - 

B<C{ZJIJET). 
l Determine some r E Q such that 1 ~{ZJ . inf f(J) I J E T} - r ) <2Pe2. 

The existence of T and the numbers ZJ has already been shown. We prove 

(r- S fdp] ~2~“. Let L be the set from Lemma 3.5 and let T’ := T U L. We have: 

IJ’ f dp - s-(T’) < Is+(T’) - s_(T’)I 

G ICIP(J)(S~P f(J) - inff(J>)l I J f T’) 
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< c{j~(J). 2-n-2 1 J E T’} 

< 2-“-2. 

Is-(T’) - s-(T)1 d c{p(L). inf f(J)IJ EL} 

dpUL~f?l 

<fi.rn 

< 2-n-2 
3 

ILK- - C{Z.I. inff(J) 1 J E T}l d C{@(J) -a)inff(J)IJ ET} 

<jl.rn 

< 2-n-2 

By the triangle inequality we obtain / s f dp - rl<2?‘. 

There is a computable procedure for determing r, i.e. there is some computable func- 

tion y : C C’* x C” x C* -+ C* such that for f = 6,(p), p = S,(q) and n = U we have 

IU- J f dpl<2-” where u = g( p, q, u). Using a machine for g one can define easily a 

machine for a function h : C Z” x C” --f Cw such that J 6,(p) d&(q) = ph(p,q) for 

all p E dom(6,) and q E dom(6,). 0 

Notice that not only arbitrarily close lower bounds but also arbitrarily close upper 

bounds of the integral can be computed. As a corollary of Theorem 2.7, Theorem 3.6 

cannot be extended from C[O; l] to the measurable fkctions, not even to step functions. 

Corollary 3.7. Let f : [O; l] + R be the characteristic function of [O; l/2). Then 
p H ,j” ,f d,u is not (6,, p, )-continuous on M. 

Proof. .f f dp = p[O; l/2), apply Theorem 2.7. 0 

4. Further representations of measures 

In Definition 2.1 we have used atomic properties Y < p(J) with r E Q and J E Znt for 

identifying measures. By Theorem 3.6, (f, p) H s f dp is (6,, 6,, p)-computable for 

continuous functions. In the following, we identify measures p by atomic properties 

r < s t dp or r < s t dp <s, where r, s E Q and t is from a set of simple continuous 

“test functions”. 

Definition 4.1. For n E o and 0 dm <2” define the triangle fimction tnm E C[O; l] by 

x-(m- 1)2-” if (m - 1)2-“<x<m . 2~“, 
(m+1)2-“-x ifm~2-“<xd(m+1)~2-“, 

0 otherwise. 
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Let 62 and 8: be the standard representation of M induced by the computation spaces 

(M, G’, v’) and (M, o”, v”), respectively, defined as follows: ,U E v’(O”&Y&) : H U 

< s t,,*dp, ,uEv”(O”@Om$u4v): WC< j’t,,,dp<<forall PCEM, nEu, O<m<2” and 

U, v E dom(vg). 

We have not yet shown, that the systems U’ and CJ” from Definition 4.1 identify 

points, i.e. Sk and 8: may still be representations of partitions of M which are coarser 

than {HP EM). 

Theorem 4.2. 8; and 6: are representations of M such that 6, s 6; E 6;. 

Proof. For any interval J E Int let CJ : [O; l] + R be the characteristic function of J. 

Let T be the set of linear combinations with positive integer coefficients of functions 

tnm (n E o, 0 <m < 2”). An easy consideration shows, that there is a sequence UO, ui , . . . 

of functions from T such that vx, k . z&(x) <uk+l(x) and &r . CJ(X) = sup, uk(x). By a 

basic property of integrals [2], j” CJ dp = supk s uk dp, i.e. r <,u(J) # Y < s CJ dp % Elk. 

r < j” uk dp. Therefore, r < p(J), iff there is some function u E T with tlx . u(x) d CJ(X) 

and r < Judp. In particular, for each J E Int, ,u(J) is defined uniquely by the set of 

all j” t,,,,, dp, therefore (T’ and 0” from Definition 4.1 identify points and Sl, and 8: 

are representations of M. There is a machine which transforms any p E CW to some 

q E Cw with the following property. If p is a list of all (n,m,u) such that U< s tnm d,u 

for some p E M, then q is a list of all (u, u) such that V<p(ZU). This proves Sh 66,. 

On the other hand, we know from Theorem 3.6, that (f,p)~ s f dp is (6,, &,p)- 

computable. Furthermore, (n, m) H tnm is (VQ, vQ, 6,)-computable on o x co. Therefore 

there is a machine which transforms any p E P’ to some q E C” with the following 

property. If p is a list of all (u, v) with U<p(lc) for some P E M, then q is a list of 

all (n, m, u, v) with ii < J”tnm dp < V. This proves 6, < 8:. An easy consideration shows 

s;<sg. 0 

By definition, the weak topology r,, on the set M of probability measures on 

([O; l],B) is the coarsest, i.e. smallest, topology r, such that p H sf dp is (r, in)- 

continuous for every f E C[O; 1] [2]. As a corollary of Theorem 4.2 we obtain: 

Corollary 4.3. The weak topology z,,, is the final topology z, of the representation 

s rn. 

Proof. By Theorem 3.6, p H J’f d,~ is (a,,~)-continuous, i.e. (r,, rn)-continuous for 

all ,f E C[O; 11. We obtain r,&, C r, by definition of the weak topology. Consider the 

functions Fnm : ,u H Stnm dp. Let Y,,,. = {p 1 r < St,,, dp} be a subbase element of r6. 

Then I$,,,,, = F,-,‘(r; CQ), hence V,,,. E r,. This shows 2; C z~. From Theorem 4.2 we 

know rm = rk, hence r, G r,.. 0 

The weak topology r, on ([O; l],B) can be generated by a metric [2]. 
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Definition 4.4 (Hutchinson metric). Let Lip := {f E C[O; I] 1 f(0) = 0 and ‘dx, y.lf(x) 

- f(y)] <IX - ~1). Define dH : M x M ---f R by dH(w’):= swlJfdp - .j?-dd 
f E Lip}. 

The metric dH is called the Hutchinson metric [I, 81 

Lemma 4.5. dH is a metric on M. 

Proof. For any f E Lip, Vx.If(x)l < I, h ence Jf dp f J 1 dp = ,u[O; I] = 1. Therefore, 

dH(p, p’) E R is well defined. We have dH(p, p) = 0 by definition. Consider dH(p, p’) 

= 0. Then by t,,,,, E Lip, s fnm dp = s fnm d$ for all n and 0 <m < 2”, hence p = $ since 

the set G’ from Definition 4.1 identifies points. For any f E Lip we have Isf dp - 

Jf G’I d IJf dp - j’f W’I f IJf W’ - sf d/4. T a mg sups first on the right-hand k’ 
side and then on the left-hand side, we obtain the triangle inequality for dH. El 

Theorem 4.6. dH : M x M + R is (6,, 6,, p)-computable. 

Proof. We introduce a simple dense subset of Lip. Let S, be the set of all poly- 

gon functions f E C[O; I] with break points m2-“, Ohm <2”, such that f (0) = 0 and 

f(m2-“)-f((m-1)2-“)E{-2-“,0,2-“}. F or all g E Lip and all II E w there is some 

f E S,, with d( f, g) 62~“. Let v be some standard notation of S := U, S,,. Then v < 6_. 

It suffices, to describe a method for determining dH(,u, p’) with error <2-” from 

p E 6; ’ (p), p’ E Sk ‘( p’) and n E o. From p, p’ and n determine for all f E Sn+2 some 

rf E Q such that / rf-IJf dp-Jf d$l<2-“-2. Let Y:= max{rf I,f~&+2}. We show 

Ir - dH(p, p’)i ~2~“. Let f ES n+2 such that r = r,-. First of all, Y - 2PP2 < IS f dp - 

sf d,u’J <dH(p,p’). There is some g E Lip with dH(p, p’) - 2FP2 < IS gdp - J g dp’l. 

There is some h E Sn+2 with d(g, h) ~2~“~~. We obtain 

dH(P,P’) < ~/gd+dd +2-"-2 

d lJgdpShd~l+IjhdiLlhda’l 

+iJ’hdp’-/gdp’l+Z-“’ 

$2”-2+lJ’hd/+zdril+2-n-2+2-“-2 

< 3 . 2-“-2 + rh + 2-“-2 

< 2~” + r. 

Therefore, Ir-dH(p,p’)I<2-“. Since v<6, and (f,p)H Jf dp is (d-,&p)-com- 

putable, there is a machine which determines some r with the above properties form 

p, p’ and n. 0 
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By Lemma 2.1 from [ 161, the metric space (M, dH) has a countable dense sub- 

set. By Corollary 45.4 from [2], the discrete measures are dense. We shall use the 

discrete measures determined by rational numbers as a dense subset. Let M, be the 

set of all probability measures ~1 EM such that there are a finite set K and ratio- 

nal numbers ?&Sk E [O; l] for all k E K such that c{sk 1 k E K} = 1 and p = c Sk,&, 

where px(A) = (1 if x E A, 0 otherwise). Let vd be a standard notation of M,. A com- 

putable metric space is a quadruple (M,d,A, v) such that (M,d) is a metric space, 

A is a dense countable subset and v is a notation v: C C* + A of A such that the 

set {(u, v, w,x) 1 U <d(v(v), v(w)) <X} is r.e. [ 161. This definition is somewhat stronger 

than that in [ 151. For a computable metric space (M,d,A, v), the Cauchy representation 

6~ [18] is defined as follows (we assume w.1.o.g. dom(v)L(C\{#})*): &(p)=x: e 

p = u&, fl . . . such that Vi>kd(v(u;), v(uI,))<2-k and x= lim;,,, v(u;). 

Theorem 4.7. (1) vd d 6, (2) (M, dH, Md, vd) is u computuble metric space. (3) The 

Cauchy representation 6; for this space is equivalent to 6,. 

Proof. 1. This can be proved easily. 

2. From (1) and Theorem 4.6 we conclude, that G<dH(vd(v),Vd(W))<X is r.e. It 

remains to show, that M, is dense in M. Consider p EM and II E w. By Lemma 3.5, 

there are a finite set T and a finite set of closed intervals L such that T’ := T U L 

is a partition of [O; 11, length (J) < 2Fe3 for all J E T and ,u U L < 2F-3. Since 1 - 

2-“-3 <p U T < 1, there are rational numbers tJ <p(J) with 1 - 2Yne3 < c{t., 1 J E T} 

< c{,u(J) I./ E T} < 1. Define S := c{tJ /J E T}. Define p’ E Md by K := T, YJ := the 

center of J, sJ := tJ/s for all J E T. For any f E Lip we obtain: 

f dp -s_(T’) d Is+(T’) -s_(T’)l 

d C{lsu~.f(J) - inf f(J)IdJ> /J E T’l 
< 2-n-3, 

Is-CT’) - s-(T)1 = CWf(JMJ) IJ EL) 
GpUL 
< 2-n-3, 

d ~{linff’(J)P(J> - f(rJ)dJ)l + l.f’kJbL(J) 

~2-“-3+C{l~(J)~.~~IIJET} 

d 2-“-3 + C{ lp(J) - tJI IJ E T} + c{ /tJ - tJ/sl I J E T} 

<2~2~“-‘+~{lt~IJtT}~(l/S-l) 

< 4’2-“-3 (since 7/8<S< 1). 
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Combining the three inequalities, we obtain Isf dp - sf dp’) <2-“. Therefore, M, is 

dense in M. 

3. For each function tnm from Definition 4.1 and each p E M, with fi = C{Y~ . ,uri / 

k E K}, Stnm dp = c rk . t,,(sk) E Q. Obviously, (n, m, 11) H St,,,,, dp iS (VQ, VQ, vd, 

vQ)-computable for now, 06m62” and peEMa. Let sz(p)=~ with p=uo#ul# 

u*#... . We have Is& dp - J tnmdvd(uk)l 6dH(p, v(uk)) <Zpk for all k, therefore 

6< ,f t,, dp@ 3k.i7< S tilm dvd(uk) - 2-k. By the above observation, V< St,,* dVd(W) 

~2~~ is decidable in u, w, n, m, k. Therefore, from p a list of all (n, m, u) can be com- 

puted such that .6 < St,,,,, dp. This shows 62 d 6;. 

We prove 6, <Sz. It sufficies to show, that there is a machine, which for any 

p E do@&,) and n E w determines some v E C’ such that d”(&(p), v&u))<2-“. The 

method is already outlined in (2) above. By definition, p is a list of all (u,J) with 

U<p(J) (p := 6,(p)). Compute u as follows: 

l By exhaustive search determine a finite set T c Int of pairwise disjoint intervals and 

rational numbers tJ (J E T) such that length p(J) < 2PB3 and tJ <p(J) for all J E T 
and 1 - 2-“-3 < c{tJ 1 J E T}. 

l Determine u such that vd(u) is the measure determined by the numbers rJ,sJ(J E T) 

with sJ=tJ/c{tJ I&J}. 

The existence of T and the numbers tJ(J E T) has been shown in (2). Also the property 

#(,u, v&)) < 22” has been proved in (2). Therefore, 6, < 6;. 0 

Since 6, E 6; E Sz E 62, these four representations of the probability measures M 

on the space ([O; l],B) induce the same computability theory and in particular have the 

same final topology, which is the topology 7 generated by the Hutchinson-metric. As a 

consequence, for a hyperbolic [8] computable IFS with probabilities as in Corollary 3.4 

the unique invariant measure is computable w.r.t. any of these representations. For a 

domain-theoretic approach see [S]. 

Theorem 4.8. Let S = ([O; 11, f,, . . . , fk, ~1,. . . , pk) be a hyperbolic IFS with proba- 
bilities such that f,, . . . , fk are 6, -computable and ~1,. . . , pk are p-computable. Then 

the unique jixed point ps of the operator Ts : M -+ M defined by Ts(p)(A) := Et, pi 
,u( j-‘(A)) is &-computable. 

Proof. By Corollary 3.4 and Theorem 4.7 the operator Ts is continuous on the metric 

space (M,dH). Since the system S is hyperbolic, TS is contracting [8]. Its unique 

fixed point is the limit of the sequence (pn)nEto with ,u~ = T~(/Jo) where ~0 is the (SL- 

computable) equidistribution measure. Since (M, dH) is a computable metric space, the 

sequence (~_l,,)~~~ is (vQ,62)-computable by Corollary 3.4 and Theorem 4.7. Since rs 

is contracting, dH ( pL,, pn+ I) < r-” for some positive r < 1. Hence the limit I_~S of the 

sequence (P,,)~~~,, is 6:-computable and &-computable (by Theorem 4.7). 0 

In measure theory not only probability measures but arbitrary measures p : B -+ R! U 

{x} are studied. Let Mb be the set of all measures p : B + R, i.e. all bounded measures 
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on ([O; 11, B). Let 6’ be the representation of Mb obtained from Definition 2.1, where 

M is replaced by Mb. While &(p)[O; l] = 1, F(p)[O; l] may be any non-negative 

real number. An easy proof shows that ,U ++p[O; l] is only (6’,p,)-computable and 

not (6’, p)-continuous. This means, that portions of information about upper bounds of 

6’(p)[O; l] are not available from prefixes of p. As a consequence, Theorem 3.6 on in- 

tegration fails for 6’. Only the following weak version can be proved: ( f, p) H J f dp 

for non-negative f E C[O; l] and p E Mb is (a,, 6<, p < )-computable. We can, how- 

ever, include portions of information about upper bounds of p[O; l] in the names. Let 

db be the representation of Mb defined by the following notation v of atomic pieces 

of information: p E v(u&u@) H U<p(Z,) and p[O; l] <W. Then the theorems we have 

proved for 6, hold accordingly for db, in particular Theorem 3.6 on integration. The 

connection to 6, is given by the following lemma. 

Lemma 4.9. The function ,u ++ ,u[O; l] on Mb is (db, p)-computable, und the function 

p H p/p[O; l] is (db, &)-computable for p E Mb, p[O; l] # 0. 

5. Conclusion 

In this paper, we have introduced and discussed a very natural and canonical com- 

putability theory on the set M of probability measures on the Bore1 subsets of the unit 

interval [O; 11. In particular, we have shown that simple obvious requirements exclude 

a number of similar definitions, that the definition leads to the expected computability 

results, that there are other natural definitions inducing the same computability theory 

and that the theory is embedded smoothly into classical measure theory. Although we 

have only stated the existence of computable functions throughout the paper, all the 

proofs provide algorithms, which can be realized by programs from some common 

programming language like PASCAL or C. Of course the basic definitions and many 

results can be transferred from the space M to more general spaces of measures. 
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