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Abstract—N*"-Dimensional Truncated Polynomial Ring
(NTRU) is a lattice-based public-key cryptosystem that offers
encryption and digital signature solutions. It was designed
by Silverman, Hoffstein and Pipher. The NTRU cryptosystem
was patented by NTRU Cryptosystems Inc. (which was later
acquired by Security Innovations) and available as IEEE 1363.1
and X9.98 standards. NTRU is resistant to attacks based on
Quantum computing, to which the standard RSA and ECC
public-key cryptosystems are vulnerable to. In addition, NTRU
has higher performance advantages over these cryptosystems.

Considering this importance of NTRU, it is highly recom-
mended to adopt NTRU as part of a cipher suite along with
widely used cryptosystems for internet security protocols and
applications. In this paper, we present our analytical study on
the implementation of NTRU encryption scheme which serves as
a guideline for security practitioners who are novice to lattice-
based cryptographic implementations. In particular, we show
some non-trivial issues that should be addressed towards a secure
and efficient NTRU implementation.

I. INTRODUCTION

Since the invention of public-key cryptography by Diffie-
Hellman [17] and Merkle [28], significant scientific work
has taken place in the field of cryptography that led to
the invention of several public-key cryptosystems for various
information security applications. The most notable ones are
the invention of RSA cryptosystem [37] by Rivest, Shamir and
Adelmann and Diffie-Hellman key-exchange protocol by Diffie
and Hellman [17]. Since then many public-key cryptosystems
such as RSA and digital signature algorithm (DSA) [31]
have been standardized and deployed for various applications.
Often (as is the case with RSA, ElGamal [18], Diffie-Hellman
protocol), the security of these cryptosystems is based on
solving some hard mathematical problem. Integer factorization
and discrete log problem (DLP) are the two common hard
mathematical problems to which the security of several public-
key cryptosystems has been reduced to. For example, breaking
RSA encryption scheme requires factoring a large integer into
its prime factors and breaking ElGamal encryption scheme or
DSA requires solving DLP.

While these hard problems (depending on the selected
security parameters) are far too impractical to solve with
modern-day computers, they were shown to be solvable
in polynomial time with quantum computers as shown by
Shor [38]. However, quantum computers that are efficient
enough to solve these problems (to break the security levels
of cryptosystems) are not ready yet. As pointed out in a recent
article [15], commercial quantum computers that can solve
complex problems are expected to be available in two decades.

Therefore it is essential for the industry and academic
institutions to be proactive with well-studied designs that
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are resistant against quantum computing attacks and their
implementations to minimize or completely eliminate the
impact of any future quantum computing attacks on standard
cryptosystems. In this direction, the science of cryptography
has progressed towards designing cryptosystems based on
lattice-based problems that are analysed to be immune against
quantum computing attacks [42]. Several lattice-based cryp-
tographic designs have been designed and analysed. One of
the most important designs in this area is NTRU cryptosystem
(both encryption and digital signing mechanism). NTRU was
designed by Silverman, Hoffstein and Pipher and later patented
by NTRU Cryptosystems Inc. (which was later acquired by
Security Innovations). NTRU has also been standardized by
IEEE in IEEE 1363.1 [42] and by ANSI in X9.98 [11].

Unlike RSA and DSA that are relatively easier to follow for
security application developers, NTRU might be more complex
to understand and implement for developers who are not expe-
rienced in lattice based cryptography. It is also interesting to
note that while there are many open source implementations of
RSA and DSA [36] cryptosystems(for example, OpenSSL [5],
PuTTY [6], OpenPGP [4]), we came across only very few
open source implementations of NTRU [3]. In addition, there
have been several interesting implementation results for NTRU
targeted towards specific platforms [21] and applications [30].
In contrast, our paper is targeted towards software security
practitioners who are beginners to lattice-based cryptography
implementations. Hence, our implementation has not been
targeted towards any specific platform or application, such
implementations would still benefit from our study.

Given this importance of NTRU, we have considered the
study of design and analysis of NTRU cryptosystem. In this
direction, we have implemented NTRU encryption scheme on
a standard computer with 2 GHz Intel Core 2 Duo Processor
running a linux operating system utilizing 2 GB Random
Access Memory (RAM). In this paper, we show some non-
trivial technical issues that a developer need to consider
carefully during NTRU implementation. These issues include
using a secure random generator to generate the private-key,
using efficient algorithms for fast key generation, choosing
appropriate and secure padding schemes and choosing se-
curity parameters that are crucial for implementing secure
and efficient NTRU cryptosystem. Although the IEEE 1363.1
document [42] describes the security considerations of NTRU,
we have pointed out a few additional technical issues that
complement the description of the IEEE document.

We expect that this analytical study would be a useful
guideline for the security practitioners (especially who are
novice to cryptographic implementations and NTRU) in the
industries that wish to make NTRU as part of a cipher suite



TABLE I: Notation used in the paper

Notation Symbol Description
R set of all real numbers
Z set of all integers
R™ set of all n-tuples of real numbers
[Jul] Euclidean Norm/Length of vector u
B set of Basis vectors
L(B) Lattice generated by basis B
= Congruence
® Convolution product
MHz megahertz
GB gigabyte
c ciphertext
m plaintext/message

in their protocols and applications.

The rest of the paper is organised as follows: In section II,
we describe the notation used in this paper. In section III,
we introduce lattice-based cryptography. In section IV, we
outline NTRU encryption scheme. In sectionV, we illustrate
the methodology and various prototypes we have used while
implementing NTRU. In section VI, we describe technical
issues that a developer needs to consider while developing
NTRU to yield a easy to understand as well as efficient
implementation.

II. NOTATION AND DEFINITIONS

This section describes the notation used in this paper and
the definitions required for understanding the basics of lattice
based cryptography. Table I describes the general notation used
in the paper.

Lattices are mathematical objects that have many interest-
ing properties for constructing cryptosystems or for cryptanal-
ysis. Before going into the issues related to lattices, we recall
some important definitions.

A. Basis

A basis is a set of linearly independent vectors that in a
linear combination represents every vector in a given vector
space. Given a basis of a vector space, every element of
the vector space can be expressed uniquely as a finite linear
combination of basis vectors.

Example: Let R? be the vector space of all coordinates
(a,b) where a and b are real numbers. Then the basis vectors
are e; = (1,0) and e = (0,1). Suppose v = (a,b) be a vector
in R2, then v = a(1,0)+b(0, 1). Any two linearly independent
vectors like (1,1) and (—1,2) will also form a basis for R.

B. Lattice

A lattice L is a set of points in n-dimensional space with
periodicity property and L is defined as follows:

L ={a1v1 + ... + apvy, | a; integers}.

Also denoted by L(B) where B is an n X n matrix with
columns as basis vectors vy, ..., v,. Equivalently, a lattice is a
discrete additive subgroup of R™. Any point in a lattice can
be represented by a linear combination of its basis vectors.

el(1,0)

€2(0,1)

Fig. 1: 2-D Lattice with Basis vectors el and e2

Figure 1 shows a 2-Dimensional lattice with two basis
vectors el and e2. The basis vectors el and e2 can be used to
generate any point in this lattice. A lattice can have different
sets of basis vectors. These sets of basis are equivalent to each
other. Lattice can be of any dimension and as the dimension
increases there are some interesting properties that can be used
in cryptographic constructions.

III. LATTICE BASED CRYPTOGRAPHY

The cryptosystems built on lattices are based on hardness
of lattice problems[See section III-A] which are average-case
hard problems. These cryptosystems are provably secure based
on these hard problems. Furthermore, easier computational
complexity adds to the efficiency of lattice-based cryptosys-
tems [22].

A. Lattice Problems

Lattice problems are a class of optimization problems on
lattices. In an optimization problem, we find the best solution
from all possible solutions. In this section, we define two lattice
problems called Shortest Vector Problem (SVP) [9] and Closest
Vector Problem (CVP) [29]. SVP and CVP are worst-case
hard problems. Approximating lattice problems to run within
polynomial time is very hard. Time complexity of best known
algorithm for solving lattice problems is 2" [10]. The core hard
problems used in building lattice-based encryption schemes
and signature schemes [17] are SVP [22] and CVP [23]
respectively.

SVP: Given a basis B for a lattice, find a non-zero vector
u € L(B), such that ||[u]| = -~ * min||v|| where v € L(B)
and + is the approximation factor.

Lenstra-Lenstra-Lovasz (LLL) lattice basis reduction algo-
rithm [12] produces a relatively shortest vector in polynomial
time but does not solve SVP.

Figure 2 shows a 2-D lattice generated by basis vectors V'1
and V2 and short vector u of that lattice.



Fig. 2: Shortest Vector Problem

L [ ] [ ] [ ] @ [ ]
Ve

o V1

Fig. 3: Closest Vector Problem

CVP: Given a basis B and a point V, find a lattice point
that is atmost «y times farther than the closest lattice point.

In Figure 3, given a lattice generated by basis vectors V1,
V2 and a point V' outside the lattice, the problem is to find a
lattice point that is close to the point V.

B. Use of Lattice Problems in Cryptography

For most cryptographic algorithms, worst-case hardness
forms the basis for security proofs [27]. However, many hard
problems are only worst-case hard and lack this average-case
hardness property. Lattice problems are proven to be average-
case hard which has turned the interest towards building
cryptographic algorithms whose security can be reduced to
solving these problems. The worst-case hardness of average-
case lattice problems can be used to create secure crypto-
graphic schemes that are resistant to quantum computers. If
one succeeds in solving lattice problems with small probability,
any instance of these problems can be solved [34].

IV. NTRU CRYPTOSYSTEM

NTRU was designed by Hoffstein, Pipher and Silver-
man [22]. NTRU is a lattice-based cryptosystem which is
resistance to quantum computing and lower computational
complexity compared to RSA. To encrypt a point in NTRU,
we select a random point p in /N-dimensional space and add
a message vector to it. In decryption, the ciphertext point is
mapped back to the lattice point and the message is recovered
as the difference between the cipher point and the point p .
As this lattice point is used to mask the message, it is called
masking point .

1) Parameters: Table II describes the parameters used in
NTRU algorithm.

TABLE II: NTRU Parameters

Parameter Description Knowledge
N No. of coefficients in a polynomial Public
q Large Modulus to which coefficients are reduced Public
p Small Modulus to which coefficients are reduced Public
f Private key polynomial Private
g Used for generation of public key Private
h Public key polynomial Public
r Random blinding polynomial Private
dy No. of coefficients with value 1 in polynomial f Public

2) NTRU Key Pair Generation: Suppose that the decryptor
wants to create a key pair. The decryptor follows the steps
below to create an NTRU key pair:

()  Generate polynomial f such that the no. of coeffi-
cients with value 1 is equal to parameter dy and f is
invertible modulo p and modulo q.

(#7)  Generate a random polynomial g.

(i7i)  For the polynomial f, find inverse of f modulo ¢
and inverse of f modulo p that have properties f ®
fq =1(mod q) and f ® f, = 1(mod p) [39].

(iv) Compute h =p ® f, ® g (mod ¢).

(v)  The decryptor’s key pair is: Public Key: h Private
key: f

The NTRU key pair generation is illustrated in Figure 6

3) NTRU Encryption: Suppose the encryptor wants to send
message to the decryptor.

The encryptor follows the steps below to encrypt a mes-
sage:

(7)  Represent the message as a polynomial with its co-

efficients in the interval [—p/2,p/2).

(47)  Generate a random blinding polynomial 7.

(¢7¢)  The encryptor uses m, random chosen polynomial r
and public key h to compute cipher polynomial using
the formula: e = r ® h +m (mod q).
The cipher polynomial e is transmitted to the decryp-
tor.

4) NTRU Decryption: Suppose that the decryptor received
a message e from the encryptor and wants to decrypt it using
his private key f. To do this The decryptor should have
precomputed f,. The modular reduction in decryption uses
center lifting.



The decryptor follows below steps to decrypt the cipher
polynomial:

(i) Compute the polynomial a as follows: a = f & e
(mod q)
(i7)  Calculate polynomial b as follows: b = a (mod p)
(it7)  Now, the decryptor recovers the plain text as follows:
m = f, ® b (mod p)

5) Why decryption works: Given: ciphertext e and private
key f, fp. To derive: message m from ciphertext e.

e=r®h+m@modq = 7@®p® fr®g+m
(mod g) By multiplying with f we get: =—= (T ®p® f, ®
g+ m (mod q)) ® f Since, the coefficients of f and m are
small, the modulo operation produces f ® m. = r ® p
® g + f ® m By multiplying with f,, and modulo p we get:
0+m = m

V. IMPLEMENTATION DESCRIPTION

In this section, we present modules we have used during the
implementation of NTRU cryptosystem based on IEEE stan-
dard 1363.1 [42]. These modules form the core components of
the design and their in-depth understanding is essential for the
developers to be able to implement NTRU. Moreover, some of
these modules employ algorithms that are more efficient than
others for similar computations, thus, influencing the overall
efficiency of the cryptosystem.

(i) Polynomial polyMul(Polynomial f,Polynomial g)

The polyMul() function calculates the convolution product
of two polynomials and returns the resulting polynomial. The
formula used for multiplication is as follows:

k N-1
Ch =D i Qibk—i + D ;111 GibNk—

where a and b are the polynomials to be multiplied and ¢
is the resultant polynomial.

(i) Polynomial generateF(int N, int df)

The generateF() function generates a random polynomial
f of degree N with df number of coefficients with value 1.
The polynomial f should be invertible modulo p and q. Here,
it is very important to use cryptographically secure random
generator to avoid specific attacks related to random numbers.
The parameter df is introduced to increase the probability of
inverse existence and decrease the probability of decryption
failures. The generation of polynomial f is illustrated in
figure 4.

(iii) Polynomial generatePolynomial(int N)

The generatePolynomial() function generates a random
polynomial of degree N. This function is used in generation of
polynomials  and g which are used in public key generation.
The random generator should be cryptographically secure. The
polynomial generation is illustrated in figure 5.

(iv) int fginverse(Polynomial f, Polynomial fq, int q)

The fginverse() function finds the inverse modulo ¢ of
polynomial f if exists and stores it in the polynomial fq
and returns 1 as success. Otherwise, it returns 0 as failure
indication. The algorithm used in this function is Almost
inverse algorithm [39] described in algorithm 1.

(N, df)

Create an array f with
size N

I

i 0

)

Generate random number
r using RAN D_bytes()

no no

yes yes

j 4 rmod N s < r mod 2

!

Fill position j with 1

fli] «+ -1
Increment count by 1

I Increment 7 and count
by 1

no

yes (I

Fig. 4: Generation of f polynomial

(v) int fpinverse(Polynomial f, Polynomial fp, int p)

The fpinverse() function finds the inverse modulo p of poly-
nomial f if exists and stores it in the polynomial fp and returns
1 as success. Otherwise, it returns O as failure. The algorithm
used in this function is Almost inverse algorithm [39] described
in algorithm 2.

(vi) Polynomial publicKey(Polynomial g, Polynomial fgq, int
p, int q)

The publicKey() function takes inverse fq, polynomial g,
moduli. It calculates the public key and returns the public key
polynomial.

(vii) Polynomial encrypt(Polynomial m, Polynomial v, Poly-
nomial h, int q)

The encrypt() function takes message, random polynomial
r, public key h and large modulus. It calculates the ciphertext
and returns the ciphertext polynomial. The random polynomial
is introduced in-order to make the encryption probabilistic in
nature.



Algorithm 1 Algorithm for finding inverse of f modulo ¢

Input: Polynomial f and modulus ¢
Output: Inverse b(x)
k=0
b(z) = 1,¢(x) =0, f(z) = a(z), g(x) = 2™ — 1
loop:
while fo == 0 do
f(@) = f(2)/x
c(x) :==c(z) xx
k=k+1
if f(z) == 0 then
Cyclically shift b(z) by k places
12: return b(x)
13: if deg(f) < deg(g) then
14: exchange f and g and exchange b and ¢
15: if fo == g0 then
16 f(x) = f(x) = g(x)(mod 3)
17: b(x) := b(z) — c(x)(mod 3)
18: else
19: f(x) == f(z) + g(z)(mod 3)
20: b(x) := b(z) 4+ c(x)(mod 3)
21: goto loop

PN RN T

2

_ =
= e

22: q=0p
23: while ¢ < p” do
24 q=q>

25: b(x) :=b(x)(2 — a(x)b(z))(mod q)

Algorithm 2 Algorithm for finding inverse of f modulo p

Create array polynomial
with size IV

I

Generate random number
r using RAN D_bytes()

rand = r mod p

no
rand < (p/2)

rand < rand — p rand < rand + p

I

polynomial[i] < rand

|

Increment i by 1

yes /\ vector
i < N —_—

1: Input: Polynomial f and modulus p

2: Qutput: Inverse b(x)

3 k=0

4 0(x) = 1,c(z) =0, f(2) = a(z),g(z) = 2™ — 1
5: loop:

6: while fo == 0 do

7 f) = f@)/x

8: c(x) ==c(z) xx

9: kE=k+1

10: if f(z) == 0 then

—
—_

Cyclically shift b(x) by k places

12: return b(z)

13: if deg(f) < deg(g) then

14: exchange f and g and exchange b and ¢
15: if f() == g0 then

16: f(x) := f(x) — g(x)(mod 3)

17: b(x) := b(z) — c(x)(mod 3)

18: else

19: f(z) = f(z) + g(x)(mod 3)

20: b(x) := b(z) + c(x)(mod 3)

21: goto loop

Fig. 5: Generation of polynomial

(viii) Polynomial decrypt(Polynomial cipher, Polynomial f,
Polynomial fp, int p, int q)

The decrypt() function takes cipher polynomial, private
key f, fp and moduli. It decrypts the cipher and returns the
message polynomial.

VI. TECHNICAL ISSUES

In this section, we discuss technical issues that we came
across during the implementation of NTRU. Considering these
issues while implementing NTRU will make the encryption
less vulnerable to attacks and more efficient. Each issue
addresses specific problem related to the overall security or
efficiency of the system.

(i) Secure Random Generator:

The security of NTRU depends on the secret key vector
f that is known only to authorized systems or personnel. The
design of random function that generates f should be cryp-
tographically secure to withstand specific attacks like direct
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> Generate f

Generate Polynomial

h < Public key Generator

(PrivateKey)

Fig. 6: Key Pair Generation for NTRU.

cryptanalytic attack, input-based attack and state compromise
extension attack [26]. We have used RAN D_bytes() function
from OpenSSL 1.0.1e. The random generator of OpenSSL [5]
is implemented according to National Institute of Standards
and Technology(NIST) standard SP 800-90A [13]. Although
OpenSSL has been updated since the release of 1.0.1e (the
current version being OpenSSL 1.0.1h) we remark that these
latest versions have not changed RAND_bytes() function
from the one we have used. Developers should be careful
in choosing the version of OpenSSL for RAN D_bytes()
functionality and it is recommended to use the latest version.
In particular, RAN D_bytes() function from OpenSSL 0.9.8c-
1 up to versions before 0.9.8g-9 on Debian-based operating
systems [8] and OpenSSL FIPS Object Module 1.1.1 [7]
should be avoided as a security flaw was exposed in its
implementation. It is recommended to use RAND_bytes()
with secure hash algorithm-256 (SHA-256) [16] to generate
random values.

(i) Fast Key Generation:

The most computationally expensive part of NTRU cryp-
tosystem is key generation. When we use matrix based ap-
proach for inverses, the key generation is extremely slow
as we have to compute determinant and inverse of N x N
matrix. We could find inverse for a polynomial of maximum
degree N=11 using this method. Following this method, we
used GNU Scientific library [1] for obtaining inverse and
determinant for polynomials upto degree N=40 which is not
sufficient to guarentee minimum security level. According
to IEEE P1363.1 [42], minimum degree to guarentee the
security of NTRU is N=401. When we used the Almost inverse
algorithm [39], we could find the inverse of polynomial with
any degree.

(iii) Nature of q:

If the value of ¢ is taken as power of 2 and greater than
N2/9 we can certainly avoid decryption failures. Selecting
lower values of ¢ will have some risk of decryption failures.

(iv) Relation between p and q:

The selection of p and ¢ should be in such a way that they
are co-primes. If p divides g, retrieving m will be obvious as
p®r®h+m (mod q) will result in m. If p and ¢ are not
co-primes, then the reduction modulo of common factor will
produce m.

(v) Choose appropriate and secure padding scheme:

The strength of NTRU lies in padding scheme. Failing to
select an appropriate padding scheme may result in various
attacks. Though careful selection of parameters help protecting
the NTRU system against brute force and man-in-the-middle
attacks, there are some other attacks which can compromise
a system. Jaulmes and Joux [25] had demonstrated a chosen
ciphertext attack (CCA) on NTRU which can retrieve the
secret key of the system. The attack uses polynomials built
specially from the public key which are then sent as input to
the decryption algorithm which helps in retrieving the private
key. The attack is based on the fact that NTRU system is
not plaintext aware, that is, the attacker can build the cipher-
texts without knowing the corresponding plaintexts. A way to
avoid such attacks is to induce randomness to the message
by using schemes such as Optimal Asymmetric Encryption
Padding (OAEP) [14] as was done for RSA cryptosystem.
However, OAEP does not fit the requirement as it can produce
invalid messages. There are some other padding schemes pro-
posed like Rapid Enhanced-security Asymmetric Cryptosystem
Transform (REACT) [32], REACT2, PAD3 [33], and these
padding schemes were shown to be insecure [33]. A padding
scheme called NAEP [24] makes NTRU more resilient to such
attacks and NTRU-NAERP is also provably secure.

(vi) Choose appropriate and secure degree N :

It is very important to choose degree N according to IEEE
standard 1363.1 as lattice based attacks are possible on smaller
degrees. The LLL lattice reduction algorithm can be used to
retrieve the private key vector. It is necessary to choose N as
prime as the cryptosystem with N as composite number was
broken [19].

(vii) Choosing appropriate security parameters:

The parameters N, p, g and df define the security pa-
rameters of NTRU. Choosing them appropriately is crucial
to avoid decryption failures and lattice based attacks. The
IEEE P1363.1 [42] document defines different parameter sets
for different levels of security. It is advisable to follow these
parameter sets while developing NTRU.

VII. WHY NTRU IS FASTER THAN RSA?

In this section, we discuss the some significant reasons that
makes NTRU cryptosystem faster than RSA.

(?)  The convolution product of polynomials in NTRU
involves computations with smaller coefficients i.e.
the product of two coefficients are added to get
the resultant coefficient using the formula described
in section V whereas RSA requires exponentiation
operation that involves series of multiplications.

(41)  All coefficients in NTRU polynomial are atmost 11-
bit integers as they are reduced to mod g (q is taken



as 2048). Therefore, there is no need of any multi-
precision libraries for the computations. Thus, the
computational cost is reduced.

The random blinding polynomial r used in NTRU
has coefficients —1 , 0 and +1. As the coefficients
are small, the convolution product becomes simple
unlike RSA which has larger numbers that are to be
exponentiated inorder to get the result.

The modulus reduction involves division operation
that is computationally expensive. As the parameter
q is a power of 2, the modulus can be calculated
with logical AND operation i.e. a mod 2i=a & (2°
—1) [2]. This avoids the use of division for modular
reduction and makes the computations less expensive.
For example, to calculate 46 mod 8 two addition
operations and two multiplication operations are re-
quired using the long division method but this can
also be caculated using single logical AND operation
which reduces the number of operations used during
modulus calculation.

(i12)

(iv)

VIII. CONCLUSION

In this paper we have addressed key implementation issues
and challenges that we came across during the implementation
of NTRU encryption scheme. As part of this we have pointed
out some efficient algorithms from the literature such as
Almost Inverse Algorithm [39] to find inverses during the
NTRU key generation and a simple algorithm for calculating
convolution product of polynomials. We believe that these re-
sources provided in the paper can be utilized by the developers
who are novice to NTRU design and implementation aspects.

It has been shown that fully homomorphic encryption
(FHE) [20] schemes can be designed from NTRU [35], [40],
[41]. The design, analysis and implementation of FHE is an
active research area at the moment. Especially, considering its
importance for cloud computing security, R&D companies like
IBM and Microsoft are also investing for research in this area.
In this context, our paper provides several fundamental aspects
regarding the implementation of NTRU for the developers who
targets implementing FHE schemes based on NTRU. As part
of our future work, we focus on developing an optimal NTRU
cryptosystem and use it as a core technology for future work
on FHE.
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