
Annals of Pure and Applied Logic 118 (2002) 61–85
www.elsevier.com/locate/apal

Orbits of computably enumerable sets: low sets
can avoid an upper cone

Russell Miller1

Department of Mathematics, Cornell University, Ithaca, NY 14853, USA

Received 20 November 2000; received in revised form 12 July 2001
Communicated by I. Moerdijk

Abstract

We investigate the orbit of a low computably enumerable (c.e.) set under automorphisms
of the partial order E of c.e. sets under inclusion. Given an arbitrary low c.e. set A and an
arbitrary noncomputable c.e. set C, we use the New Extension Theorem of Soare to construct an
automorphism of E mapping A to a set B such that C �T B. Thus, the orbit in E of the low
set A cannot be contained in the upper cone above C. This complements a result of Harrington,
who showed that the orbit of a noncomputable c.e. set cannot be contained in the lower cone
below any incomplete c.e. set. c© 2002 Elsevier Science B.V. All rights reserved.

MSC: 03D25

Keywords: Computably enumerable degrees; Lattice automorphisms; Orbits; Upper cone of degrees

1. Introduction

The computably enumerable (c.e.) sets form an upper semi-lattice under Turing
reducibility. Under set inclusion, they form a lattice E, as =rst noted by Myhill in [14],
and the properties of a c.e. set as an element of E often help determine its properties
under Turing reducibility and vice versa. The E-de=nable property of maximality, for
instance, enabled Martin to characterize the high c.e. degrees as those which contained a
maximal set [12], and other E-de=nable properties discovered by Harrington and Soare
imply Turing completeness, Turing incompleteness, and nonlowness (see [8,10]).

E-mail address: russell@math.cornell.edu (R. Miller).
1 This article is the fourth chapter of a Ph.D. Thesis at the University of Chicago under the supervision

of Robert I. Soare, to whom many thanks are due.

0168-0072/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0168 -0072(01)00119 -1

62 R. Miller / Annals of Pure and Applied Logic 118 (2002) 61–85

The study of E often focusses on automorphisms of the lattice and the orbits of c.e.
sets under those automorphisms. We say that two c.e. sets are automorphic if they
lie in the same orbit. Again, the Turing-degree properties of a set often yield insight
into the orbit of the set. Harrington and Soare have shown (in [9]) that the orbit of a
noncomputable c.e. set must contain a set of high degree, and the same paper proves
Harrington’s theorem that the orbit of a noncomputable c.e. set cannot be contained in
the lower cone {B∈E :B6T A} below any c.e. set A (unless A is Turing-complete, of
course). On the other hand, Wald showed in [20] that the orbit of a low c.e. set must
intersect the lower cone below any given promptly simple set C. (This result fails to
hold for certain nonprompt sets C, however, by a result of Downey and Harrington.)

In this paper we use the Turing-de=nable property of lowness to avoid an upper
cone. Speci=cally, our main theorem is:

Theorem 1. For every low c.e. set A and every noncomputable c.e. set C, there exists
an automorphism of E mapping A to a set B such that C�T B.

Thus, the orbit of A cannot be contained in the upper cone above C. The assumption
of lowness of A will be essential for our construction to succeed, as discussed in Section
2.4. (Also, the theorem clearly would fail for a computable set C.)

The main tool for proving this result is the New Extension Theorem of Soare, as
stated in [19]. The lowness of A allows us to predict with fair certainty (i.e. with only
=nitely many incorrect guesses) which elements of any given c.e. set will eventually
enter A and which will stay in its complement GA.

Much of the machinery in this paper is identical to that used in [9,19,20]. We
have deliberately tried to keep our notation and intuitions the same as in those papers
whenever possible, in order that readers familiar with the constructions in those papers
will =nd it easier to follow this one. Often we will refer to [20] instead of repeating
de=nitions and machinery explained there. One noticeable distinction is the use of K�,
which was de=ned in [9] (Eq. (14), p. 625) to mean precisely the opposite of its
meaning in [19,20], and the present paper. Caveat lector!

All sets mentioned in this paper will be c.e. unless speci=cally stated otherwise.
(Complements, of course, need not be c.e.)

2. Construction

2.1. De7ning e-states on a tree

To prove Theorem 1, we must construct an automorphism of E. By a result of Soare
(in [18, XV.2.6]), it suJces to construct an automorphism of E∗, the quotient of E
by the ideal of =nite sets. Thus, we must map every c.e. set Ue to some other c.e.
set Ûe in such a way that unions and intersections are preserved up to =nitely many
elements. Ordinarily, we would employ an e-state construction for this purpose, where
by the e-state of an element x at stage s we simply mean

{i ¡ e : x ∈ Ui;s}

R. Miller / Annals of Pure and Applied Logic 118 (2002) 61–85 63

and the general e-state of x is

{i ¡ e : x ∈ Ui}:

(Thus, for instance, the 4-state 0101 indicates that an element lies in U1 and U3, but not
in U0 or U2.) The corresponding e-state for sets Ûe in the range of the automorphism
would be de=ned in exactly the same way. We have a copy of !, denoted by !̂,
containing the elements of sets in the range, and we write x̂ to stand for such an
element.

To ensure that the map be onto, we would use a second enumeration V0; V1; : : : of all
c.e. sets and make sure that for each e there is a c.e. set V̂e which maps to Ve. This gives
rise to an additional e-state, that with respect to the sets V̂e, and the full e-state of x
would be 〈�; �〉 where � is the e-state relative to the sets Ue and � is the e-state relative
to the sets V̂e. We would then need to create our automorphism in such a way that
for every full e-state (relative to sets in the domain) which contained in=nitely many
elements x, the corresponding full e-state (relative to the sets Ûe and Ve in the range)
contained in=nitely many elements x̂, and conversely. (For details, see [18, XV 4.3].)

In the present theorem, however, we have additional negative requirements Qe to
ensure that the image of A under the automorphism does not lie in the upper cone
above C. These requirements follow the Sacks preservation strategy for B, the image
of A, and are stated below, after we de=ne the necessary machinery. (A description of
the Sacks preservation strategy in a simpler situation is given in [18, VII.3.1].)

In order to construct the automorphism while respecting the negative requirements,
we must make guesses about which e-states really do contain in=nitely many elements.
Since elements can move from one e-state to another between stages, the number
of elements in a given e-state Muctuates. Some e-states accumulate more and more
elements, and wind up in the end with in=nitely many; we say that such e-states are
well-resided. For other e-states, there are in=nitely many elements which enter that
state at some stage but only =nitely many which remain there for good. These e-states
are well-visited, but not well-resided. (The well-resided states are also considered to
be well-visited.) Finally, an e-state which is not well-visited has only =nitely many
elements that ever enter that state. We write K to represent the set of well-resided
e-states, M to represent the set of well-visited e-states, and N to represent the set of
e-states which are well-visited but not well-resided. Thus K=M−N.

Our guesses about these possibilities for each e-state lead us to employ a tree con-
struction. Each node � of the tree T at level e will represent a guess about which
e-states are well-visited and which of those are well-resided. Indeed, the c.e. sets we
build will depend on our guesses: for each �∈T with |�| ≡ 1 (mod 5), we will have a
set U�. Therefore, we will not speak of e-states, but rather of �-states, which are just
e-states relative to the sets U��1; U��6; U��11; : : : ; U�. The true path f through T will
correspond to the correct guesses, and the collection {U� : �⊂f & |�| ≡ 1 (mod 5)}
will include every c.e. set We (up to =nite diPerence).

We will use M� to denote the set of �-states which � believes to be well-visited.
The set containing those states which � believes to be well-visited but not well-resided
will be partitioned into two subsets B�
R�, according to the method which � believes

64 R. Miller / Annals of Pure and Applied Logic 118 (2002) 61–85

is used to remove elements from those states. Also, for each � we write

e� = max{k ∈ ! : 5k ¡ |�|}:
Therefore, if �= �− is the immediate predecessor of � in T , then the set U� is de=ned
if and only if e�¿e�. We also have the sets V� on the !̂-side which ensure that the
automorphism is onto. Then ê� is de=ned by

ê� = max{k ∈ ! : 5k + 1 ¡ |�|}
and the set V� is de=ned if and only if ê�¿ê�. (For the purposes of this paper, we could
use a modulus smaller than 5, but we will adhere to the usage in previous papers.)
T will contain a unique node � of length 1, and we will ensure that U� =A. The set

Û� which we build will be the image of A under the automorphism, so this is the set B
for which we must worry about the negative restraints. We will often speak of GA-states
and GB-states. These terms refer to full �-states which exclude U� and Û�, respectively.
If x is in an GA-state at stage s, then x �∈As, and if x̂ is in a GB-state at stage s, then
x̂ �∈Bs.

We think of the sets U� as being “red” sets, containing elements x∈!, by which
we mean that the elements x are enumerated in these sets by a player called “RED”.
The other player in the game, “BLUE”, tries to match the moves of RED by moving
his own elements x̂ (from the other copy !̂ of !) among the sets Û�, so that the map
taking U� to Û� will be an automorphism. Again, to ensure surjectivity of this map,
RED will also play sets V� containing the elements x̂∈ !̂, so that every computably
enumerable set is represented (up to =nite diPerence) by at least one V� along the true
path, and it will be up to BLUE to build corresponding sets V̂� of the elements x∈!.
Ultimately, BLUE’s goal is that each full �-state on the !-side should contain in=nitely
many elements x if and only if the corresponding full �-state on the !̂-side contains
in=nitely many elements x̂.

In light of this RED=BLUE dichotomy, the class N� of �-states which are well-visited
but not well-resided will be partitioned into disjoint subclasses R� and B�. The latter
contains every state which is emptied out by BLUE, i.e. such that co=nitely many of the
elements which enter that state eventually leave the state because they are enumerated
into some other blue set. (Here we include B as a blue set.) R� contains every state
which is emptied out by RED. Of course, an �-state � can be emptied out by both
players, since there could be in=nitely many elements enumerated into a red set and
in=nitely many others enumerated into a blue set. Such states are assigned to either R�

or B� (but not both!) according to which player empties out the corresponding �-state,
where �⊆ � is the least predecessor of � such that the �-state corresponding to � is
not well-resided.

2.2. De7nitions

To the extent possible, we take our de=nitions straight from [9,20]. One change is
the use of the superscript 0, so that (for instance) M0

� and M̂0
� will replace M

GA
� and

M̂
GB

� .

R. Miller / Annals of Pure and Applied Logic 118 (2002) 61–85 65

To de=ne the tree T , we need the formal de=nition of an �-state.

De�nition 2. An �-state is a triple 〈�; �; �〉 where �⊆{0; : : : ; e�} and �⊆{0; : : : ; ê�}.
The only �-state is �−1=〈�; ∅; ∅〉. If 0 �∈ �, then we call the state an GA-state or a GB-state.

As in [20], we de=ne our tree T with a speci=c node � at level 1, since the corre-
sponding c.e. sets U0 and Û0 are A and B. Also, here we specify the sets Ui and Vi.
Pick some i such that Wi =A, and de=ne

U0; s = Wi;s;

Ue;s = We;s for all e ¿ 0;

Ve; s = We;s for all e:

De�nition 3. We de=ne the tree T as follows:
Let the empty node � be the root of T and � the unique node at level 1, de=ned as

follows:

M0
� =M̂

0
� = ∅; M0

� =M̂
0
� = {〈�; ∅; ∅〉; 〈�; {0}; ∅〉};

R0
� = B0

� = ∅; R0
� = B0

� = ∅;
k� = −1; k� = −1;

e� = −1; e� = 0;

ê� = −1; ê� = −1:

For every �∈T with � �= �, we de=ne the immediate successors of � exactly as in
De=nition 2:11 of [9], only using M0

� , R0
� , and B0

� in place of M�, R�, and B�, and
similarly on the !̂-side. (The consistency required by part (i) above is de=ned exactly
as in De=nitions 2:3 and 2:4 of [20]. Notice that we can compute uniformly for any �
whether it is consistent or not, since there are only =nitely many �-states.)

We identify the =nite object 〈M 0
� ;R

0
� ;B

0
� ; k�〉 with an integer under some ePective

coding, so that we may regard T as a subtree of !¡!. Therefore the partial order on
T will be denoted by ⊆. We write �¡L � to denote that � is to the left of � on the
tree, i.e. that there exists �∈T and m¡n in ! with � m̂⊆ � and � n̂⊆ �.

The superscript “0” in M0
� , etc., is intended to make clear that we are only concerned

with GA-states (and GB-states, in the dual). After all, U0 =A, so any GA-state �=〈�; �; �〉
will have �(0) = 0 (as de=ned below). Similarly, �̂(0) = 0 for GB-states �̂. (These super-
scripts did not appear in [9], since that construction was also concerned with A-states
and B-states. Theorem 4, proven later, made it unnecessary to consider such states.)

In Section 2.5 we will approximate the true path f through T by a uniformly
computable sequence of nodes {fs}s∈!. A node � will lie on f if and only if � is
the leftmost node at level |�| in T such that �⊆fs for in=nitely many s. The nodes
of the true path are the only nodes for which we ultimately need the construction to

66 R. Miller / Annals of Pure and Applied Logic 118 (2002) 61–85

work, but since all we have is an approximation to the true path, we must follow the
dictates of that approximation at each stage. Each element x (x̂) will be assigned to a
given node �(x; s) (�(x̂; s)) at each stage. The node �(x; s) may be rede=ned at stage
s + 1 to equal an immediate successor of �(x; s). Moreover, if the true path moves
to the left of �(x; s), then �(x; s) may be rede=ned so that �(x; s + 1)¡L �(x; s) or so
that �(x; s + 1) is a predecessor of �(x; s). However, �(x; s + 1) will never move back
to the right of �(x; s). The construction will ensure that �(x) = lims �(x; s) exists and
that co=nitely many x wind up being assigned to nodes on f, with the =nitely many
remaining ones all being assigned to nodes to the left of f.

We use the elements assigned to node � and its successors at stage s to help build
U�, de=ning S�, R�, and Y� exactly as in Section 2.3 of [9]. Also, our formal de=nition
of the �-state of an element x∈! or x̂∈ !̂ is exactly De=nition 2:2 of [20].

For each �∈T we de=ne the following classes of GA–�-states:

E0
� =

{
� : (∃∞x)(∃s)

[
x ∈ GAs ∩

(
S�;s −

⋃
t¡s

S�;t

)
& �(�; x; s) = �

]}
;

F0
� = {� : (∃∞x)(∃s)[x ∈ R�;s & �(�; x; s) = � & x �∈ As]}:

Thus E0
� consists of states well visited by elements x when they =rst enter S� and

F0
� of those states well-visited by elements at some stage while they remain in R�, so

E0
� ⊆F0

� . For each �∈T , M0
� represents �’s “guess” at the true F0

� such that if �⊂f
then M 0

� =F0
� . For �⊂f we shall achieve M0

� =F0
� by ensuring that Properties

(6)–(12) of [9] all hold for M0
� and M̂0

� .
Having said that every �∈T should have an associated set M0

� such that M0
� =F0

�
if �⊂f, we note that although this is the property we want M0

� to have, we cannot
simply de7ne M0

� to be �’s guess at F0
� because that de=nition would be circular.

(The de=nition of F0
� depends on U�, and the construction of U� in Section 2.5 will

depend on M0
� .) Rather we must de=ne here a certain set F0+

� which depends only on
�, and then let M0

� be �’s guess at F0+
� so that M 0

� =F0+
� (=F0

�) for �⊂f. We
de=ne the set Ze� exactly as in [9], to satisfy Eqs. (38)–(41) of that paper (with GA- and
GB-states, as usual). We also use their subsequent de=nition of provable incorrectness
of a node �.

To construct an automorphism we must show for �⊂f that

K̂
0
� = {�̂ : � ∈ K0

�}: (1)

To achieve (1) note that unlike E0
� and F0

� , K0
� is %0

3 not %0
2 so � cannot guess

at K0
� directly but only at a certain &0

2 approximation N0
� to M0

� −K0
� . We divide

N0
� into the disjoint union of sets R0

� and B0
� which correspond to those �∈N0

�
which � believes are being emptied by RED and BLUE, respectively. To discuss the
phenomenon of a player emptying out a state, we de=ne the relations 6R and 6B as
in De=nition 2:6 of [9], and the sets R0

� and B0
� as in its Eqs. (16)–(24). The intuition

is that if x is in �-state �0 = �(�; x; s) and �0¡R�1 (�0¡B�1) then RED (BLUE) can
enumerate x in the necessary U sets (V̂ sets) causing �1 = �(�; x; s+ 1). For �̂0 and �̂1

R. Miller / Annals of Pure and Applied Logic 118 (2002) 61–85 67

the role of � and � is reversed because on the !̂-side BLUE (RED) plays the Û sets
(V sets), and hence

[�0 ¡R �1 ⇔ �̂0 ¡B �̂1] & [�0 ¡B �1 ⇔ �̂0 ¡R �̂1]: (2)

If �⊂f then �∈R0
� implies F(�−; �) and hence

(∀� ∈ R0
�)(∀x ∈ Y�)(∀s)[�(�; x; s) = � ⇒ (∃t ¿ s)[�(�; x; t) �= �]]: (3)

It will be BLUE’s responsibility to change the �-state of x if �(�; x; s)∈B0
� and x∈R�.

However, B0
� ∩R0

� = ∅ so if �(�; x; s) = �∈R0
� then BLUE can wait for RED to change

the �-state of each x to meet (3), by restraining x from entering any blue set until we
reach a stage t¿s such that �(�; x; s)¡R �(�; x; t).

Finally, we de=ne the restriction of an �-state � to a node �⊂ � exactly as in
De=nition 2:7 of [9].

2.3. The New Extension Theorem

Soare developed his New Extension Theorem (NET) to simplify the process of
constructing automorphisms. Using the NET, one can divide the construction into three
distinct parts and concentrate on each separately, rather than having to satisfy all three
simultaneously. The idea is that in building an automorphism which maps A to B, at
each stage s + 1 we can consider three classes of elements of !: those elements x
which are still in GAs+1; those x which enter A at stage s + 1; and those x which were
already in As. (On the !̂ side, we have the same three classes: x̂∈ GBs+1; x̂∈Bs+1 −Bs,
and x̂∈Bs.) Indeed, the NET constructs the automorphism on the third class itself,
leaving only two types of elements for us to worry about.

In the construction of the tree T in the preceding section, we de=ned the sets M0
� ,

M̂0
� , etc., for each �∈T . In [9], a similar construction required the inclusion of A-states

as well as GA-states in M�. With the New Extension Theorem, however, we need only
consider GA- and GB-states. The NET requires that for each � on the true path, M0

� = M̂0
�

and N0
� =N̂0

� . Together, these will guarantee that

K0
� = M0

� −N0
� =M̂

0
� −N̂

0
� =K̂

0
�

so that the well-resided GA–�-states correspond precisely to the well-resided GB–�-states.
The second class of elements contains those x which enter A at stage s + 1, and

those x̂ entering Bs+1. The New Extension Theorem requires us to record the �-state
of each such x at stage s, as a sort of snapshot of its status at the moment it enters
A, and similarly for each x̂ that enters B. We de=ne for each �:

GA
� = {� ∈ M0

� : (∃∞x)(∃s)[x ∈ As+1 − As & �(�; x; s) = �]};
Ĝ

B
� = {�̂ ∈M̂

0
� : (∃∞x̂)(∃s)[x̂ ∈ Bs+1 − Bs & �̂(�; x̂; s) = �̂]}:

Thus GA
� contains those GA–�-states such that in=nitely many elements x are in that

state at the moment of entering A, and similarly for ĜB
� . The NET then requires that

68 R. Miller / Annals of Pure and Applied Logic 118 (2002) 61–85

for each � on the true path, the �-states in GA
� must correspond precisely to those in

ĜB
� .
If we can accomplish these two conditions, then the New Extension Theorem guar-

antees that the third part of the automorphism construction can be carried out as well,
and therefore that there exists an automorphism mapping each U� (�⊂f) to the cor-
responding Û�.

Theorem 4 (New Extension Theorem, Soare [19]). Assume that T is a computable
priority tree as de7ned above; with in7nite true path f; and suppose that each of
the collections {U�}�⊂f and {V�}�⊂f contains every computably enumerable set; up
to 7nite di:erence. If for each �⊂f we have:
(T1) K0

� = K̂0
� ; and

(T2) GA
� = ĜB

� ;
then there exists an automorphism of E mapping U� to Û� for each �⊂f.

It is left to us to satisfy our own requirements for U� and Û�, namely that U� =A
(which we have already ensured, simply by arranging our enumeration of the c.e. sets
to begin with A) and that Û� does not lie in the upper cone above C (which is the
hard part).

De�nition 5. The true path f∈ [T] is de=ned by induction on n. Let �=f�n be
consistent. Then f�(n+ 1) is the ¡L-least �∈T; �⊃ �, of length m= n+ 1 such that:
(i) m≡ 1 mod 5⇒M0

� =F0+
� & k� = k+

� ,

(ii) m≡ 2 mod 5⇒ M̂0
� = F̂0+

� & k� = k+
� ,

(iii)

m ≡ 3 mod 5 ⇒
[R�

� = {� : � ∈ M0
� − (R¡�

� ∩B¡�
�) & F(�; �)}

& B̂
�
� = {�̂ : � ∈ R�

�}];

(iv)

m ≡ 4 mod 5 ⇒
[R̂

�
� = {�̂ : �̂ ∈ M̂

0
� − (R̂

¡�
� ∪ B̂

¡�
�) & F̂(�; �)}

& B�
� = {� : �̂ ∈ R̂

�
�}];

(v) unless otherwise speci=ed in (i)–(iv), M0
� ; R0

� ; B0
� ; k�, and their duals take the

values M0
� ; R0

� ; B0
� ; k�, and their duals, respectively.

(If � were inconsistent, it would be a terminal node and the true path would end at
�. We will show in Lemmas 9 and 11, however, that this cannot be the case.)

For a consistent �=f�n, F0+
� is just a =nite set of states and k+

� is an integer, so
clearly � exists. Note that each of the conditions in De=nition 5 is %0

2 . Hence, there
is a computable collection of c.e. sets {D�}�∈T such that �⊂f iP |D�|=∞. Fix a
simultaneous computable enumeration {D�; s}�∈T; s∈!.

R. Miller / Annals of Pure and Applied Logic 118 (2002) 61–85 69

We impose the following positive requirements, for all �∈T , all �-states �, and all
i∈!, to ensure that GA = ĜB:

P〈�;�;i〉 : � ∈ GA
� ⇒ |{x̂ : (∃s)[x̂ ∈ Bat s+1 ∩ Ŷ �;s & �̂(�; x̂; s) = �]}|¿ i:

Clearly each P〈�; �; i〉 will only put =nitely many elements into B. Indeed, since P〈�; �; i−1〉
has higher priority than P〈�; �; i〉, each P〈�; �; i〉 will only require that a single element
enter B.

The negative requirements Qe are the standard ones for the Sacks strategy for avoid-
ing an upper cone:

Qe : C �= {e}B:
To satisfy these, we de=ne the length functions l(e; s) and restraint functions r(e; s)
(as in [18, VII.3.1]):

l(e; s) = max{x : (∀y ¡ x)[{e}Bs
s (y) ↓= Cs(y)]};

r(e; s) = max{u(Bs; e; x; s) : x 6 l(e; s)}:
In the construction, we will restrain (with priority e) all elements ¡r(e; s) from
entering B at stage s. Thus, we will preserve the computation {e}B(y) for every
y6l(e; s), including y= l(e; s) itself. If lims l(e; s) =∞, then C would be computable,
contrary to hypothesis. Moreover, for each e, l(e; s) will be nondecreasing as a func-
tion of s, except at the =nitely many stages s at which Ne is injured, i.e. at which
Bs+1�(r(e; s) + 1) �=Bs�(r(e; s) + 1). Therefore, there exists a =nite limit l(e) =
lims l(e; s). Then the computation {e}B(l(e)) must either diverge or converge to a
value distinct from C(l(e)). Hence Qe will be satis=ed.

2.4. Intuition for the lowness of A

If A were an arbitrary set, then it would be extremely diJcult, perhaps impossible,
to satisfy the requirements Qe. It remains an open question whether Theorem 1 holds
without the assumption that A is low. Without lowness, the diJculty is that if all
the elements x in some GA–�-state � enter A, then we have to put all but =nitely
many of the elements x̂ from the corresponding GB–�-state �̂ into B, probably violating
some requirement Qe in the process. Whenever an element x enters state �, we put
a corresponding element in the corresponding GB-state, in order to make MA = M̂B. If
x later enters A, then we need to have the corresponding element enter B, to ensure
that GA = ĜB and NA =N̂B. If this happens in=nitely often, then Qe would be injured
in=nitely often, and would not be satis=ed. To avoid injuring Qe, we must allow all
but =nitely many elements x̂ to remain in �̂ rather than entering B, and then �̂ will be
a well-resided state and � will not be.

The assumption that A is low allows us to avoid this diJculty, by guaranteeing
that we will only have to make the choice between Qe and emptying out �̂ =nitely
many times. (At those times we obey Qe, since it is acceptable for =nitely many el-
ements to remain permanently in �̂.) We use a variation of Robinson’s Trick (see

70 R. Miller / Annals of Pure and Applied Logic 118 (2002) 61–85

[15]), as expressed in Soare’s Lowness Lemma in [19], to predict which elements
x in the GA–�-state � will eventually enter A. Each element x in state � is assigned
a marker -�

�; i: the =rst element gets marker -�
�;0; the next gets -�

�;1, and so on. At
the same time, when x enters state �, we check the Robinson Trick prediction for
its marker number and also check subsequent stages of the enumeration of A. At
some such stage, these must agree: either x is not yet in A and is predicted to
stay in GA (in which case the marker stays assigned to it), or x enters A (in which
case we immediately put it into our own enumeration of A and make its marker
unassigned).

If only =nitely many elements remain permanently in the �-state �, then there must
be some marker -�

�; n such that every element to which it is assigned eventually enters
A. Pick the least such n; then there is a stage s such that at all subsequent stages the
prediction function for -�

�; n always predicts (correctly!) that any element x to which
we try to assign it will enter A. When we check ahead, we con=rm this prediction,
so we enumerate x into our enumeration of A immediately and leave -�

�; n unassigned.
Thus, after stage s, every x which enters � immediately gets enumerated into A, so
we can match up � with the corresponding GB-state without doing any further injury to
the Qe-requirements. Only =nitely many elements will remain in the GB-state, and only
=nitely many in state �.

Recall from De=nitions 2:3 and 2:4 of [20] that a node �∈T is R-consistent if it
satis=es both of the following:

(∀�0 ∈ R0
�)(∃�1)[�0 ¡R �1 & �1 ∈ M0

�]; (4)

(∀�̂0 ∈ R̂
0
�)(∃�̂1)[�̂0 ¡R �̂1 & �̂1 ∈ M̂

0
�]: (5)

Lowness of A allows us to ensure that every � on the true path is R-consistent. Without
lowness, the equation for R0 would be impossible, since states could be emptied out
into A with no advance warning to us. BLUE will make every �⊂f R-consistent by
waiting to enumerate x in any blue sets until RED has enumerated x in some red set,
exactly as described on pp. 626–627 of [9].

2.5. Construction

To parallel the construction in [9], the steps presented in this section will be denoted
as Steps 0–5 and 0̂–5̂ for the construction, with =nal Steps 10, 1̂0, and 11 at which
we de=ne fs+1 and other necessary items. (In the construction in [9], Steps 10 and
1̂0 were substeps of Step 11. We have separated the two because the actions in our
Step 11 must be performed at every stage, whereas the action in our Steps 10 and 1̂0
must not be performed unless the preceding steps do not apply.) Steps 1̂–5̂ and 1̂0 are
the obvious duals to Steps 1–5 and 10, and will not be stated. There is no dual of
Step 11.

Our construction is as follows:
Stage s= 0: For all �∈T de=ne U�;0 =V�;0 = Û�;0 = V̂�;0 = ∅, and de=ne m(�; 0) = 0.

De=ne Y�;0 = Ŷ�;0 = ∅, and f0 = �. De=ne every Q�
�; i;0 = ∅ and every marker -�

�; i;0 to be
unassigned. De=ne A0 =B0 = ∅. Let l(e; 0) = r(e; 0) = 0 for every e.

R. Miller / Annals of Pure and Applied Logic 118 (2002) 61–85 71

Stage s + 1: Find the least n¡11 such that Step n applies to some x∈Y�; s and
perform the intended action. If there is no such n, then =nd the least n¡11 such that
Step n̂ applies to some x̂∈ Ŷ�; s, and perform the indicated action. Having completed
that, apply Step 11, and go to stage s + 2.

(In Steps 0–5 and 0̂–5̂ we let �∈T; � �= �, be arbitrary, let �= �−, and let x∈Y�; s
(x̂∈ Ŷ�; s) be arbitrary.)

The sets {Ãs}s∈! represent a given computable enumeration of A, from which we
will derive our own enumeration {As}s∈! to satisfy the New Extension Theorem. Being
low, the set A has semi-low complement, and we let h be a computable function (as
in XI.3.5 of [18]) such that lim t h(j; t) is the characteristic function of the set

{j : Wj ∩ GA �= ∅}:

(Semi-lowness of GA implies that this set is computable in ∅′. Indeed, the following
construction requires only semi-lowness of GA, not actual lowness of A.)

Step 0: Moving elements into A.
Substep 0.1: Enumerated elements. If x∈ (Y�; s ∩ Ãs+1) − (Y�; s−1 ∩ Ãs),

(0.1.1) where �(�(x; s); x; s) = �, add to LG a new pair 〈�; �̂��〉 for every �⊆ �(x; s),
(0.1.2) enumerate x into As+1, and
(0.1.3) designate every --marker attached to x as unassigned.

Substep 0.2: Assigning a --marker to an x believed not to go into A: In the
following, to challenge x with regard to marker type j (= 1; 2; 3) and �-node � means
to do the following:

(i) Where i is the least number such that the marker -j; �
�; i is currently unassigned,

enumerate x into Q j;�
�; i .

(ii) Find the least t such that either
(a) h(qj; �

�; i ; t)↓= 1 or
(b) x∈ Ãt .
In case (a), assign marker -j; �

�; i to x and ignore (iii)–(v). In case (b),
(iii) if j = 1 or 2, add to LG a pair 〈�; �̂��〉 for every �⊆ �(x; s); if j = 3, add a pair

〈�; �̂��〉 for every � (�(x; s);
(iv) enumerate x into As+1 immediately; and
(v) designate every --marker attached to x as unassigned.

Then Substep (0:2) consists of repeating the following three instructions:
(0.2.1) If some element x is to be moved into some Y� in GA-state � by Step 1 or 2,

then challenge x with regard to marker type 1 and �-state �.
(0.2.2) If some element x is to be put into GA-state � by one of Steps 1–5 or 11C, then

challenge x with regard to marker type 2 and �-state �.
(0.2.3) If there is some element x such that, as a result of x being enumerated into Ue�

and=or the action of Steps 1–5 or 11C, �+(x; �) will become equal to GA-state
�, then challenge x with regard to marker type 3 and �-state �.

We repeat these instructions until none of these three challenges described enters case
(b) (that is, none of them causes an element to enter As+1).

Step 0̂: Moving elements into B.

72 R. Miller / Annals of Pure and Applied Logic 118 (2002) 61–85

Find the =rst unmarked pair 〈�; �̂0〉 in LG satisfying all of the following:
(0̂:1) for some k; P〈�; �0 ; k〉 is not satis=ed;
(0̂:2) � is consistent;
(0̂:3) there exist elements ŷ0¡ŷ1¡ŷ2¡ · · ·¡ŷ2k such that for each i62k, both of

the following hold:

(∃t 6 s)[ŷi ∈ R�;t & �̂(�; ŷi; t) = �̂0]

and

ŷi =∈ Bs or (∃t ¡ s)[ŷi ∈ Bat t+1 & �̂(�; ŷi; t) �= �̂0];

(0̂:4) ŷ2k¿2 · 〈�; �0; k〉;
(0̂:5) ŷ2k¿r(e; s) for every e6〈�; �0; k〉;
(0̂:6) �̂(�; ŷ2k ; s) = �̂0.

Action: Enumerate ŷ2k into Bs+1. (Notice that by (0̂:6); ŷ2k =∈Bs.) Also, mark the
=rst unmarked copy of 〈�; �̂0〉 on LG.

Step 1: Prompt pulling of x from R� to S� to ensure M0
� ⊆E0

� . Suppose 〈�; �1〉
is the =rst unmarked entry on the list Ls such that the following conditions hold for
some x, where �1 = 〈�; �1; �1〉,
(1.1) x∈R�; s − Y�; s, and � is R-consistent;
(1.2) x¿k� and x¿|�|;
(1.3) x is �-eligible (i.e., ¬(∃t)[x6t6s & ft¡�]);
(1.4) ¬[�(x; s)¡L �];
(1.5) x¿m(�; s);
(1.6) �(�; x; s) = �1��;
(1.7) e�¿e� ⇒ �+(�; x; s) = �1.
Action: Choose the least x corresponding to 〈�; �1〉, and do the following.

(1.8) Mark the �-entry 〈�; �1〉 on Ls.
(1.9) Move x to S�.

(1.10) If e�¿e� and e� ∈ �1 then enumerate x in U�; s+1.
(1.11) If ê�¿ê� and ê� ∈ �1 then enumerate x in V̂�; s+1. (Hence, �(�; x; s+1) = �1. Also

�1 ∈M0
� because 〈�; �1〉 ∈L implies �1 ∈M0

� .)
Step 2: Move x from S� to S� so Y� =∗ !. Suppose there is an x such that

(2.1) x∈ S�; s,
(2.2) x¿|�| and x¿k�.
(2.3) x is �-eligible,
(2.4) x¡m(�; s),
(2.5) � is the ¡L-least �∈T with �− = � satisfying (2:1)–(2:4).

Action: Choose the least pair 〈�; x〉 and
(2.6) move x from S� to S�.

(In Step 2 we need (2:4) so Y� will not grow while � is waiting for another prompt
pulling under Step 1.)

Step 3: For � M-inconsistent to ensure � �⊂f. Suppose for �∈T there exists x¿k�
such that,
(3.1) e�¿e�,

R. Miller / Annals of Pure and Applied Logic 118 (2002) 61–85 73

(3.2) x∈ S�; s,
(3.3) �(�; x; s) = �0 ∈M0

� ,
(3.4) (∃�1)[�0¡B�1 & �1��∈M0

� & �1 =∈M0
�].

Action: Choose the least such pair 〈�; x〉 and,
(3.5) enumerate x in V̂�; s+1 for all �⊂ � such that e� ∈ �1. (This action causes

�(�; x; s+1) = �1. Hence, � is provably incorrect at all stages t¿s+ 1 so � �⊂f.)
Step 4: Delayed RED enumeration into U�. Suppose x∈R�; s and

(4.1) e�¿e�,
(4.2) x =∈U�; s,
(4.3) x∈Ze�; s =dfn Ue�; s ∩Y�; s−1.

Action: Choose the least such pair 〈�; x〉 and,
(4.4) enumerate x in U�; s+1.

Step 5: BLUE emptying of state �0 ∈B0
� . Suppose for �∈T there exists x such that

either Case 1 or Case 2 holds.
Case 1: Suppose

(5.1) �(�; x; s) = �0 ∈B0
� , say �0 = 〈�; �0; �0〉,

(5.2) x∈ S�; s,
(5.3) � is a consistent node.

Action: Choose the least such pair 〈�; x〉. Let �1 = h�(�0)¿B�0, where h� is a target
function satisfying Eq. (32) of [9]. Write �1 = 〈�; �1; �1〉.
(5.4) Enumerate x into V̂� for all �⊆ � such that ê�¿ê�− and also e� ∈ �1 − �0.

(Hence, �(�; x; s + 1) = �1.)
Case 2: Suppose that (5:1) holds and

(5.5) x∈ S�; s where �− = �, and
(5.6) � is not a consistent node.

Action: Perform the same action as in Case 1 to achieve �(�; x; s + 1) = �1.
(In (5:6) note that �∈T implies (5:3) for �= �− since inconsistent nodes are ter-

minal, so h� exists in Case 2. Note in Step 5 Case 2 that the enumeration may not
be �-legal, since possibly �(�; x; s + 1) =∈M0

� , but this will not matter because we shall
prove that � �⊂f if � is inconsistent. Hence, it only matters that the enumeration is
�-legal, i.e. �(�; x; s)∈M0

� .)
Step 10: Filling Y�. Choose the least x¡s such that x =∈Y�; s. Put x in S�.
Step 11: De7ning fs+1, m(�; s + 1), Ls+1, Y�; s+1, and Bs+1.
Substep 11A: De7ning fs+1. First, we de=ne �t by induction on t for t6s + 1. Let

�0 = � (as given in De=nition 3, the de=nition of T). Given �t , let v6s be maximal
such that �t ⊆fv if such a v exists, or let v= 0 otherwise. (Let {D�; v}�∈T; v∈! be the
simultaneous recursive enumeration speci=ed on p. 10.) Choose the 6L-least �∈T
such that �− = �t and D�; s+1 �=D�; v if � exists, and de=ne �t+1 = �. If � does not exist,
de=ne �t+1 = �t . Finally, de=ne fs+1 = �s+1.

Substep 11B: De7ning m(�; s+1), Ls+1, and their duals. For each �⊆fs+1, if every
�-entry 〈�; �〉 on Ls and every �-entry 〈�; �̂〉 on L̂s is marked we say that the lists are
�-marked and we
(11.1) de=ne m(�; s + 1) =m(�; s) + 1, and
(11.2) add to the bottom of list Ls (L̂s) a new (unmarked) �-entry 〈�; �〉 (〈�; �̂〉) for

every such � and every �∈M0
� . Let Ls+1(L̂s+1) be the resulting list.

74 R. Miller / Annals of Pure and Applied Logic 118 (2002) 61–85

If the lists are not both �-marked then let m(�; s + 1) =m(�; s), Ls+1 =Ls, and L̂s+1

= L̂s.
Substep 11C: Emptying R� to the right of fs+1. For every � such that fs+1¡L�,

initialize �, by removing every x∈ S�; s (x̂∈ Ŝ�; s), and putting x in S� (x̂ in Ŝ�) for
�= �∩fs+1 (where �∩fs+1 denotes the longest � such that �⊆ � and �⊆fs+1).

For each x∈Y�; s+1 such that x =∈As+1, let �(x; s + 1) denote the unique � such that
x∈ S�; s+1, and similarly for x̂∈ Ŷ�; s+1 − Bs+1. If x∈As+1, then �(x; s + 1) diverges;
likewise for x̂∈Bs+1.

De=ne the length function l(e; s + 1) and the restraint function r(e; s + 1) for stage
s + 1 as follows:

l(e; s + 1) = max{x : (∀y ¡ x)[{e}Bs+1
s+1 (y) ↓= Cs+1(y)]};

r(e; s + 1) = max{u(Bs+1; e; x; s + 1) : x 6 l(e; s + 1)}:

(Here u represents the standard use function for relative Turing machines.)
This completes stage s + 1 and the construction.

Remark 6. Notice that the only step which can put elements into B= Û� is Step 0̂.
All of Steps 1–5 and their duals are dedicated toward the GA= GB part of the game. Steps
1̂, 3̂, and 5̂ may put elements x̂ into certain sets Û� in order to change �̂(�; x̂; s + 1).
In Steps 1̂ and 5̂, however, this can only happen when the desired �̂(�; x̂; s + 1) is a
GB-state, so we are not required to put x̂ into B. Also, Step 3̂ never applies with �= �
because �, the unique node at level 1 of T , is M-consistent (see De=nition 2:3 of
[20]). Thus these steps never require any x̂ to enter B.

3. Proof of the theorem

We now prove that the preceding construction satis=es Theorem 1. In Section 3.1,
we verify the restrictions of certain tree properties to GA and GB. In Section 3.2, we
use these tree properties to verify the correctness of M0, M̂0, N0, and N̂0, thus
guaranteeing that K GA = K̂

GB. Finally, in Section 3.3, we use this veri=cation to check
that GA = ĜB.

3.1. Tree properties

The construction of [9] is designed to ensure that certain properties of the tree T
(the tree properties) hold automatically for every �= �+ on the true path:

(1) M� =F+
� ,

(2) M̂� = F̂+
� and

(3) k� is a correct guess.

Since our construction employs the New Extension Theorem, we need only verify the
correctness of the restrictions of these properties to GA- and GB-states. The New Extension

R. Miller / Annals of Pure and Applied Logic 118 (2002) 61–85 75

Theorem takes care of the A=B aspect of the game, and we handle the GA=ĜB aspect
in Steps 0 and 0̂, which we have added to the original construction of [9].

To help handle the GA=ĜB game, however, our construction de=ned the =rst level of
the tree arti=cially, so that it contains only the node �. Therefore we must give special
proofs of the tree properties (restricted to GA and GB) for �.

(We will assume that A is in=nite and coin=nite, for otherwise A would be com-
putable and would itself be the set B the theorem requires.)

Sublemma 7. M� =F+
� .

Proof. By Step 10, every element x of ! eventually enters Y�. (Lemma 6 below implies
that Step 10 acts in=nitely often. The proofs of the lemmas of Section 3.2 do not rely on
the sublemmas of this subsection at all.) Every element of the in=nite set A eventually
enters some As by Step 0, and no element of the in=nite set GA ever does. Thus, there
are in=nitely many x such that for some s, x∈Y�; s and x∈As, and there are in=nitely
many x such that for some s, x∈Y�; s and x =∈As, so F+

� = {〈�; ∅; ∅〉; 〈�; {0}; ∅〉}=M�.
(In particular, then, M0

� =F0+
� .)

Sublemma 8. M̂0
� = F̂0+

� .

Proof. M̂0
� contains 〈�; ∅; ∅〉, which is the only possible GB–�-state. By Step 10, every

element x̂ of !̂ eventually enters Y�. As noted in Remark 6, only Step 0̂ ever puts any
elements into Û0, and it waits to do so until such elements are already in Y�. Thus,
〈�; ∅; ∅〉∈ F̂0+

� , so F̂0+
� = M̂0

� .

Sublemma 9. No element of GA or GB remains permanently in a nonwell-resided �-state.
(Thus, the guess k� =−1 is correct.)

Proof. If x∈ GA (x̂∈ GB), then x (x̂) will remain permanently in the �-state �= 〈�; ∅; ∅〉,
which we have just seen is well-visited. To see that this state is well-resided, we must
note that GA and GB are in=nite. We assumed this for GA. For GB, we note that by Remark 6,
Step 0̂ is the only step to put any elements into B, and for each 〈�; �; i〉, it puts at
most one element ŷ into B, with ŷ¿2 · 〈�; �; i〉. Hence GB must be in=nite.

This completes the veri=cation of the restricted versions of the tree properties for
�. It remains to see that Lemmas 8 and 9 hold for all states, not just GB-states. This
will be the very last line in the veri=cation of Theorem 1, once we have proven that
B is in=nite. Since all D�, |�|¿1, are de=ned as in De=nition 5, these properties hold
automatically for all �⊇ � with � on the true path f:

(1) M0
� =F0+

� (where �= �−),

(2) M̂0
� = F̂0+

� , and
(3) k� is the upper bound for the set of all x∈ GA and x̂∈ GB that remain permanently

in nonwell-visited �-states.

76 R. Miller / Annals of Pure and Applied Logic 118 (2002) 61–85

3.2. Veri7cation that M0 = M̂0; and N0 =N̂0

For purposes of parallelism, we number our Lemmas 1–12 to match Lemmas 5:1–
5:12 of [9,20]. All twelve of these lemmas have duals, which we will not state or
prove except when the proof of the dual requires a distinct technique, principally in
Lemma 11, which yields a nice insight into the construction and the reasons why
Theorem 1 actually holds.

Of course, our lemmas hold for the GA= GB game, whereas in [9] they held for the
entire universe of elements. Also, our =rst Lemma matches Lemma 5:0 of [20].

Lemma 0. Let �⊂f, where f is the true path through T .
(i) If the GA-state � lies in E0

� , then there exists an in7nite set {xi}i∈! ⊆ GA such that

(∀i)
[
lim
s
-1;�
�;i;s = xi & (∃s)[xi ∈ S�;s − Y�;s−1 & �(�; xi; s) = �]

]
:

(ii) If the GA-state � lies in F0
� , then there exists an in7nite set {xi}i∈! ⊆ GA such that

(∀i)
[
lim
s
-2;�
�;i;s = xi & (∃s)[xi ∈ R�;s & �(�; xi; s) = �]

]
:

(iii) If the GA-state � lies in F0+
� , then there exists an in7nite set {xi}i∈! ⊆ GA such

that

(∀i)
[
lim
s
-3;�
�;i;s = xi & (∃s)[x ∈ R�;s & �+(�; xi; s) = �]

]
:

Proof. All of these proofs are similar; the proof of (i) is given in [20] (Section 3.2,
Lemma 5:0).

The construction makes the following lemma clear. (When, e.g., Step 1 of the con-
struction applies to a node � and an element x, we will sometimes say, “Step 1� applies
to x”.)

Lemma 1. At stage s + 1,
(i) if x enters R�, � �= �, then Step 1 or Step 2 applies to � and x;

(ii) if x moves from S� to S� then one of the following steps must apply to x: Step 1�
with �¡L� or �− = �; Step 2� with �− = �; or Substep 11C�, so fs+1¡L�;

(iii) if x∈ S�; s is enumerated in a set U� at stage s + 1 then Step 1 or Step 4 must
apply to x;

(iv) if x∈ S�; s is enumerated in a set V̂� then Step 1, Step 3, or Step 5 must apply
to x.

Lemma 2 (True Path Lemma). The true path f= lim infs fs.

Proof. This is clear from the de=nition of fs in Step 11A and from the choice of the
sets D�.

Hereafter f will always represent the true path.

R. Miller / Annals of Pure and Applied Logic 118 (2002) 61–85 77

Lemma 3. For all �∈T ,
(i) f¡L�⇒R� = ∅,
(ii) �¡Lf⇒Y� =∗ ∅,

(iii) �⊂f⇒Y¡� =dfn
⋃{Y� : �¡L�}=∗ ∅.

Proof. Part (i) must hold, because Substep 11C sets S�; s+1 = ∅ whenever fs+1¡L�.
For part (ii), if �¡Lf, pick an s such that �¡Lft for all t¿s. Then Y� =Y�; s =∗ ∅.
Finally, for part (iii), if �⊂f, then Y¡� ⊆{0; 1; : : : ; s}, where s is a stage such that
ft �¡L � for all t¿s.

In Lemma 4, since it is now possible for an element x to disappear from the game
by being enumerated into A (or B, in the dual lemma), we must slightly modify the
statement of (iv) from [9] by restricting x to elements of GA (and x̂ to GB, in the dual),
as shown:

Lemma 4. For every �∈T such that � �= �, if �= �−, then
(i) Y�\Y� = ∅ and Y� ⊆Y�,

(ii) For each x there is at most one s such that x∈R�; s+1 − R�; s,
(iii) U�\Y� = V̂�\Y� = ∅, and
(iv) If �⊂f, then

(∃v�)(∀x ∈ GA)(∀s¿ v�)[x ∈ R�;s ⇒ (∀t¿s)[x ∈ R�;t]]

(and correspondingly with GB in the dual).

Proof. Part (i) follows from Lemma 1(i).
For (ii), we note from Lemma 1(ii) that if x∈R�; t −R�; t+1, then x∈ S�; t+1 for some

�, and either �¡L�, or � was initialized at stage t + 1. In the former case, x can
never re-enter R� (by Lemma 1(ii), again). If � was initialized, then �=ft+1 ⊂ �, and
x could only return to R� by applications of Step 1 or Step 2. However, we know that
x¡t by Step 10 (since x∈R�; t), so restrictions (1.3) and (2.3) in Steps 1 and 2 rule
out the return of x to R�.

For (iii), any of Steps 1 and 3–5 can put an x into some U�; s+1 or V̂�; s+1, but each
of them either requires x∈Y�; s or puts x∈Y�; s+1.

Finally, (iv) assumes �⊂f, so by Lemma 3(iii), Y¡� is =nite. Let v� be a stage so
large that fs¡L� only if s¡v�, and also that every y∈Y¡� never again either enters
or leaves R�. (By part (ii) of this lemma, each of the =nitely many y∈Y¡� enters R�

at most once.) Lemma 1(ii) makes it clear that the only way for any x∈ GA to leave
R� at any stage is for it to enter Y¡� or for fs+1¡L�. Neither of these can occur at
any stage s¿v�, by our choice of v�.

Lemma 5. For all x∈ GA:
(i) �(x) = lims �(x; s) exists, and

(ii) x is enumerated in at most 7nitely many r.e. sets U�; V̂�, and hence for �= �(x),

�(�; x) =
dfn

lim
s
�(�; x; s) exists:

(Similarly with GB in the dual.)

78 R. Miller / Annals of Pure and Applied Logic 118 (2002) 61–85

Proof. Lemma 1(ii) gives the conditions under which �(x; s + 1) �= �(x; s) can oc-
cur. Let �=f�x be the initial segment of the true path with length x, and choose
s¿v� with fs�x= �. Substep 11C forces either �(x; s)¡L� or �(x; s)⊆ �. (It is impos-
sible for �(�(x; s) since |�|= x.) Moreover, Substep 11C will never apply to x after
stage s.

Now Steps 1 and 2 can only move x into S� if x¿|�|. Also, each � has only =nitely
many predecessors in T , and x cannot be moved back and forth among these pre-
decessors in=nitely often because of Lemma 4(ii). Therefore, if �(x; s + 1) �= �(x; s)
occurs in=nitely often, then there must be in=nitely many stages at which either
�(x; s + 1)¡L�(x; s). However, there is no in=nite sequence {�1¡L�2¡L�3¡L · · ·}
in T with every |�i|¡x. This proves part (i).

Part (ii) follows from (i) because �(x; s) eventually converges to some �(x), and
there are only =nitely many possible �(x)-states. Once x leaves some �(x)-state, it can
never return to that state, because the sets U� and V̂� which we enumerate are c.e.
Moreover, x will never be enumerated in any U� or V̂� unless �⊆ �(x).

Lemma 6. If the hypotheses of some Step 0–5 or 0̂– 5̂ remain satis7ed, then that
step eventually applies. Also, each of Steps 10 and 1̂0 applies in7nitely often.

Proof. If Steps 10 and 1̂0 never applied after some stage s0, then there would only
be =nitely many elements x and x̂ in Y� and Ŷ�, to which the steps preceding Step 10
would apply at every stage after s0. Each of these steps performs some action when
applied, either moving an x or an x̂ into a new S� or enumerating it into some U�, V�,
Û�, or V̂�. However, such actions can only occur =nitely often for any given x or x̂,
by Lemma 5, so eventually Step 10 or 1̂0 must apply, providing a new element x or
x̂. In order for Step 10 or 1̂0 to apply, the hypotheses of all the other steps must be
unsatis=ed. This proves the lemma.

Lemma 7. If �⊂f, �(�, and �= �− then
(i) (∀�¡Lf) [m(�) =dfn lims m(�; s)¡∞],

(ii) m(�) =dfn lims m(�; s) =∞,
(iii) E0

� ⊇M0
� =F0+

� , and

(iv) Ê0
� ⊇ M̂0

� = F̂0+
� .

Proof. For part (i), we note that for each �¡Lf, Substep 11B can only apply =nitely
often. Hence lims m(�; s) must be =nite.

Turning to (ii), we let � and � be as given in the lemma. The de=nition of the
true path (De=nition 5) yields M0

� =F0+
� and M̂0

� = F̂0+
� . By Substep 11B, m(�; s) is

nondecreasing as a function of s; we claim that it increases in=nitely often. Otherwise
there would exist a stage s0 with m(�; s) =m(�; s0) for all s¿s0.

Claim. Every �-entry 〈�; �1〉 on L (〈�; �̂1〉 on L̂) is eventually marked.

As in [20], we modify the proof of this claim in the nondual case, since it is
now possible for elements to leave the game before they can enter S�. We will use

R. Miller / Annals of Pure and Applied Logic 118 (2002) 61–85 79

Lemma 0(iii) to guarantee a supply of elements {xi}i∈! that remain in GA because their
-3-tags are never removed.

If some entry 〈�; �1〉 on L were never marked, then no more �-entries would ever be
added to L after 〈�; �1〉. Choose a stage s1 large enough that neither any �-entries on
L nor any entry on L preceding 〈�; �1〉 is ever marked after stage s1, that Y¡�; s1 =Y¡�

(using Lemma 3), and that Y�; s1�m(�; s0) =Y��m(�; s0). Now requirement (2.4) pre-
vents Step 2 from enumerating any x¿m(�; s0) into R� after stage s1, and Step 1
will never again put any x into R� because by (1.8), that would involve marking an
unmarked �-entry on L.

We have �1 ∈M0
� because 〈�; �1〉 ∈L. Also M0

� =F0+
� , since �⊂f. Hence Lemma

0(iii) applied to � provides an in=nite collection of elements {xi}i∈! ⊂ GA. By the choice
of s1 all but =nitely many xi satisfy (1.1)–(1.7). (Satisfying (1.5) uses the assumption
that lims m(�; s) is =nite.) Thus, some such xi is moved to S� under Step 1 at some
stage s + 1¿s1, and the entry 〈�; �1〉 is then marked, contrary to hypothesis. This
establishes the claim for L.

With the claim, we see that Substep 11B will apply to � at some stage s¿s1, forcing
m(�; s)¿m(�; s− 1).

(The proof of (ii) in the dual case is simpler, because we never enumerate any
element of Ŝ�; s into B.)

Condition (iii) now follows (and (iv) similarly) because for any �1∈M0
� , (ii) forces

in=nitely many entries 〈�; �1〉 to be added to L, and for each to enter, all
previous such entries must have been marked. The only way for an entry to be
marked is for an x in �-state �1 to enter S�, and if this happens in=nitely often, then
�1 ∈E0

� .

Lemma 8. �⊂f⇒
(i) R� =∗Y� ∩ GA=∗Y� ∩ GA= GA; and
(ii) Y� is in7nite. (And similarly for the dual lemma; with B for A:)

Proof. By Lemma 6(i) Step 10 must eventually put every element x∈! into Y�. By
induction we may assume that R� =∗Y� ∩ GA=∗ GA and Y� is in=nite, for �= �−. By
Lemma 7 m(�) =∞, and m(�)¡∞ for all �¡L� with �− = �.

Now by Lemma 3, Y¡� =∗∅. Also, co=nitely many of the elements x∈ (Y�−Y�)∩ GA
will eventually enter S�. Therefore, co=nitely many such x will satisfy (2.1)–(2.5) at
some stage, and will be moved to S� by Step 2. Once there, co=nitely many of them
will remain in R� forever, by Lemma 4(iv).

Part (ii) follows immediately from part (i), since GA is in=nite (as is GB, in the dual
case).

The proof of the dual case is nearly the same, except that to see that Ŷ� is in=nite,
we must observe that since Ŷ� is in=nite, in=nitely many elements will enter Ŝ� via
Step 1̂ or 2̂. By the above reasoning, co=nitely many of these must eventually enter
Ŝ�.

Lemma 9. �⊂f⇒ � is M-consistent.

80 R. Miller / Annals of Pure and Applied Logic 118 (2002) 61–85

Proof. The proof of the lemma itself is the same as that of Lemma 5:9 of [20]. In
the dual, there is no need to appeal to an analogue of Lemma 0(i), since we do
not need x̂∈ GB. We simply note that since �⊂f, we have �̂0 ∈ M̂0

� = Ê0
� , so there

will be in=nitely many x̂¿k� and s¿v̂� available to us with x̂∈ Ŝ�; s+1 − Ŝ�; S and
�̂(�; x̂; s + 1) = �̂0. As with x above, Step 3̂ must eventually move each such x̂ into
some �-state �̂1 with �̂0¡B�̂1. Since � is inconsistent, x̂ cannot enter B at any stage
t¿v̂� so �̂1 =∈ M̂0

� . Again, this forces � �⊂f.

Lemma 10. If �⊂f then
(i) M̂0

� = {�̂ : �∈M0
� },

(ii) M0
� =F0

� =E0
� , and

(iii) M̂0
� = F̂0

� = Ê0
� .

Proof. The proof is identical to that of Lemma 5:10 in [9], except that we restrict
to GA- and GB-states as usual. This restriction does change Claim 5 of the proof in [9],
so we give our own version here. (Note also that [9] occasionally refers to E1

� and
Y 1
� . The superscript 1 may be ignored for our purposes, as it refers to a partition of

elements of Y� which is unnecessary for our result.)

Claim 5. If x̂∈ Ŷ�; s; �̂1 = �̂(�; x̂; s)∈ M̂0
� , s¿v� of Lemma 4(iv), and BLUE causes

enumeration of x̂ so that �̂2 = �̂(�; x̂; s + 1) then either �̂2 ∈ M̂0
� or �̂2 is a B-state.

Proof. Suppose x̂∈ Ŷ�; s and BLUE causes this enumeration at stage s+ 1, so �̂1¡B�̂2.
Since s¿v�; x̂∈ R̂�; s ∩ R̂�; s+1. Hence, either Step 1̂; 3̂; 5̂, or 0̂ applies to x̂ at stage s+1
for some �⊇ �. Assume that �̂2 is not a B-state. (Thus Step 0̂ cannot have applied.)
If Step 1̂� or 5̂� applies then �̂3 = �̂(�; x̂; s+ 1)∈ M̂0

� so �̂2 = �̂3��∈ M̂0
� . (Here Step 5̂�

means Step 5̂ Case 1 for x̂∈ Ŷ�; s or Step 5̂ Case 2 for x̂∈ Ŷ�; s where �= �−.) If Step 3̂�
applies, then �) � (since � is M-consistent and � is not) and �̂3 = �̂(�−; x̂; s+1)∈ M̂0

�−

by (3:4) so �̂2 = �̂3��∈ M̂0
� . This completes the proof of Claim 5.

Lemma 11. �⊂f⇒ � is R-consistent.

Proof. To prove R0-consistency of �, assume for a contradiction that �⊂f and � is
not R0-consistent. Choose �1 ∈R0

� such that for all �2 ∈M0
� ; �1 �¡R �2. Being inconsis-

tent, � is a terminal node on T , so S�; s =R�; s for all s. Thus, by Lemma 4(iv), there
exists a stage v� such that S�; s ∩ GA⊆ S�; t for every s and t with t¿s¿v�.

Now �̂1 ∈ R̂0
� ⊆ M̂0

� = Ê0
� by Lemma 10. Therefore Lemma 0(i) yields an in=nite set

{xi}i∈! ⊆ GA such that

(∀i)(∃s)[xi ∈ S�;s+1 − Y�;s & �(�; xi; s + 1) = �1]:

Let x be any such xi with the corresponding s¿v�. Now Step 0 will not apply to x
at any stage t¿s + 1 because x∈ GA. Steps 1 and 2 would both remove x from S�,
which is impossible at any stage t¿v�. By Lemma 9, � must be M-consistent, so
Step 3 will never apply. Also, Step 5 does not apply to R0-inconsistent nodes such

R. Miller / Annals of Pure and Applied Logic 118 (2002) 61–85 81

as �. Therefore, if x is to be removed from state �1 as required by F(�; �1), then
Step 4 must act, enumerating x into some red set U� with �⊆ �. Since this happens
for in=nitely many elements x, and there are only =nitely many �-states � with �1¡R�,
one of those states � must lie in F0

� , hence in M0
� , by Lemma 10(iii). This contradicts

R0-inconsistency.
To prove R̂0-consistency of �, assume for a contradiction that �⊂f and � is not

R̂0-consistent. Choose �̂1 ∈ R̂0
� such that for all �̂2 ∈M0

� , �̂1 �¡R �̂2. Being inconsistent,
� is a terminal node on T , so Ŝ�; s = R̂�; s for all s. Thus, by the dual of Lemma 4(iv),
there exists a stage v� such that Ŝ�; s ∩ GB⊆ Ŝ�; t for every s and t with t¿s¿v�.

Now �̂1 ∈ R̂0
� ⊆ M̂0

� = Ê0
� by the dual of Lemma 10. Therefore there exist in=nitely

many elements x̂ such that

(∃s)[x̂ ∈ Ŝ�;s+1 − (Bs ∪ Ŷ �;s) & �̂(�; x̂; s + 1) = �̂1]:

Take any such x̂¿k� for which the corresponding s¿v�. Step 0 does not apply to the
!̂-side, and Steps 1̂ and 2̂ would both remove x̂ from Ŝ�, which is impossible at any
stage t¿v�. By the dual of Lemma 9, � must be M-consistent, so Step 3̂ will never
apply. Steps 5̂ and 0̂ do not apply to R̂0-inconsistent nodes such as �. Therefore, if x̂ is
to be removed from state �̂1 as required by F̂(�; �̂1), then Step 4̂ must act, enumerating
x̂ into some red set V� with �⊆ �. Since this happens for in=nitely many elements x̂,
and there are only =nitely many �-states �̂ with �̂1¡R�̂, one of those states �̂ must lie
in F̂0

� , hence in M̂0
� , by the dual of Lemma 10(iii). This contradicts R̂0-inconsistency.

We remark that while the two halves of the preceding proof appear quite similar, the
similarity is deceptive. In fact, the proof of R0-consistency, depends on the lowness
of A, which guided the proof of Lemma 0. On the other hand, in the proof of the
dual R̂0-consistency, we used instead the fact that inconsistent nodes do not require
any elements to be enumerated into any blue sets, including B itself. This works in the
present situation because the only external requirements for the construction of B are
negative requirements, namely the Qe of the Sacks preservation strategy. (The positive
requirements stem from the automorphism construction itself, not from any properties
which we demand of B.) Herein lies the connection between lowness of A and the
ability of A to avoid an upper cone.

Lemma 12. If �⊂f and �1 ∈B0
� , then

{x : x ∈ Y� & �(�; x) = �1} =∗ ∅:

Proof. The lemma itself is proved exactly as is Lemma 5:12 of [9]. In the dual case,
we note that the state �̂′2 of that proof might possibly be a B-state. If so, then �̂2 would
not lie in M̂0

� . However, in that case �̂2 would also be a B-state, so �̂2 �= �̂1.

Lemma 13. For every �⊂f; M0
� = M̂0

� and N0
� =N̂0

� .

82 R. Miller / Annals of Pure and Applied Logic 118 (2002) 61–85

Proof. Lemma 10(i) gives the result for M. Moreover, since �⊂f, we know that
R0

� = B̂0
� and B0

� = R̂0
� (see De=nition 5). To prove N0

� =N̂0
� , therefore, we need

only show that for each GA–�-state � in M0
� ,

� ∈ B0
� ∪R0

� ⇔ {x ∈ ! : �(�; x) = �} is =nite

and similarly for �̂∈ B̂0
� ∪ R̂0

� .
Suppose � ∈ R0

�. Then F(�; �) must hold, where �= �−. Therefore, by Eq. (19) of
[9], only =nitely many x∈Y� remain permanently in the �-state �. Since �⊂ �⊂f, we
know that Y� =∗!, so �∈N0

� . The proof for �̂∈ R̂0
� is analogous.

Now let �∈B0
� and suppose �(�; x) = �. We know there exists a node � and a stage

s0 such that x∈ S�; s for all s¿s0. Since �⊂f; R� is co=nite, so we may assume that
�⊇ �. Let �1 = �(�; x) be the permanent �-state of x, and suppose that s1¿s0 is such
that �(�; x; s) = �1 for all s¿s1. Then �1��= �, and �1 is an GA-state. By part (vi) of
De=nition 3, �1 ∈B0

� . If � is a consistent node, then by Lemma 6, there will eventually
be a stage s¿s1 at which Case 1 of Step 5 applies, so x will be moved into some
other �-state �2¿B�1 at stage s1. If � is inconsistent, then again x will change �-states
at some stage s¿s1 at which Case 2 of Step 5 applies. In either case, this contradicts
our assumption that �(�; x) = �1. Thus there are only =nitely many x which reside
permanently in the �-state �, forcing �∈N0

� .
For �̂∈ B̂0

� , the dual proof holds for all x̂∈ GB. If x̂∈B, then clearly �̂ is not the =nal
�-state of x̂, since every state in B̂0

� is a GB-state. Therefore again �̂∈N̂0
� .

Now suppose �∈N0
� , i.e. � is a well-visited but nonwell-resided �-state. In the

construction, the only steps at which an element x may be moved out of � are Steps 0,
1, 4, and 5. (Step 3 never applies to �, by Lemmas 9 and 11.) If Step 5� applies (for
some �⊇ �), then �∈B0

� , by part (vi) of De=nition 3. Since �⊂f, Step 1 can only
move elements in R� to regions S�, where �⊂ � (except for =nitely many elements), and
when it does so, it enumerates them only into U� or V̂�, leaving the �-state unchanged.
Step 0 could move in=nitely many elements into A, but by Lemma 0, there must also
be in=nitely many elements from GA in the state �, since �∈M0

� =E0
� .

Therefore, suppose Step 4 changes the �-state of co=nitely many of the elements
in state �. By de=nition of k� = k+

� , the =nitely many elements not moved can never
enter Y�. Hence F(�; �) holds. Since �∈M0

� and �⊂f, part (iii) of De=nition 3 forces
�∈R0

� ∪B0
� .

Finally, for the dual case �̂∈N̂0
� , the same argument holds, except that Step 0̂ could

move an element out of �̂. If co=nitely many of the elements which enter state �̂ are
so moved, then according to Step 0, co=nitely many elements in the corresponding
state � on the !-side must have entered A. This contradicts Lemma 0, so there must
be in=nitely many elements in �̂ which are not moved into B by Step 0̂.

Lemma 14. {U� : �⊂f} and {V� : �⊂f} each forms a skeleton for the collection of
all c.e. sets. (That is, for every e there exist �⊂f and �⊂f such that We =∗U� =∗V�:)

Proof. Steps 4 and 4̂ accomplish this, since R� =∗! and R̂� =∗!̂ for all �⊂f. The
only exception is the set A=U0, which is covered by Substep (0:1).

R. Miller / Annals of Pure and Applied Logic 118 (2002) 61–85 83

3.3. Verifying that GA = ĜB

Our proof that GA = ĜB follows the same ideas as in Section 1:3:3 of [20]. First,
however, we need to show that all requirements are satis=ed.

Lemma 15. Every requirement Qe is satis7ed. (Hence C�TB:)

Proof. Each positive requirement P〈�′ ; �′ ; j〉 puts at most one element into B, so (by
induction) there exists a stage s0 so large that no P〈�′ ; �′ ; j〉 with 〈�′; �′; j〉6e puts
any elements into B at any stage ¿s0. Notice also, by the remark at the end of the
construction, that only Step 0̂ ever puts any elements into B, and that it respects all
higher-priority negative requirements Qi when doing so.

Now suppose that Qe fails, i.e. C = {e}B. Then lims l(e; s) =∞, and we can use this
fact to compute C. Given x, =nd a stage s¿s0 such that l(e; s)¿x. As in [18, Theorem
VII.3.1], we must then have

{e}Bs
s (x) = {e}B(x) = C(x);

since by our choice of s0, the initial segment of Bs used in this computation will never
again be changed.

This contradicts the noncomputability of C. Hence Qe must be satis=ed.

Lemma 16. For every e; lims r(e; s) exists and is 7nite.

Proof. The proof follows the proof of Lemma 2 in [18, VII.3.1], exactly, with Lemma
15 yielding an x such that C(x) �= {e}B(x).

To show that GA = ĜB, we will prove the following two lemmas:

Lemma 17. For any node � and �-state �1; LG contains in7nitely many pairs 〈�; �̂1〉
if and only if �1 ∈GA

� .

Proof. Such a pair is added to LG exactly when Step 0 enumerates some x∈ �1 into
A. Moreover, no step except Step 0 ever puts any elements into A. Thus, LG contains
in=nitely many such pairs if and only if in=nitely many x∈ �1 are enumerated into A;
that is, if and only if �1 ∈GA

� .

Lemma 18. For any node �⊂f and �-state �1; LG contains in7nitely many pairs
〈�; �̂1〉 if and only if �̂1 ∈ ĜB.

Proof. To show the “if ” part of this statement, we assume that in=nitely many elements
x̂ enter B while in �-state �̂1, and observe that
(1) we do not move any element x̂ in �-state �̂1 into B except when required to do so

in Step 0̂ by some pair 〈�; �̂′1〉 in LG with �⊆ � and �̂1 = �̂′1��; and that

84 R. Miller / Annals of Pure and Applied Logic 118 (2002) 61–85

(2) when Step 0̂ does require such an x̂ to enter B, we mark the corresponding pair
〈�; �̂′1〉, so for in=nitely many x̂ in �-state �̂1 to enter B, there must be in=nitely
many such pairs in LG; and that

(3) therefore there must be in=nitely many pairs 〈�; �̂1〉 in LG, since whenever we
add a 〈�; �̂′1〉, we also add a 〈�; �̂1〉 for each �⊆ �.

To show the “only if ” part, suppose that for a given � and �; LG contains in=nitely
many pairs 〈�; �̂〉. We claim that for every k, the requirement P〈�; �; k〉 is satis=ed.

To see this, assume by induction that P〈�; �; k−1〉 is satis=ed, and notice that we can
=nd a stage s0 so large that LG contains at least k pairs 〈�; �̂〉 at stage s0 and that for
all s¿s0 and all e6〈�; �; k〉, r(e; s) = r(e; s0). By Lemma 17, �∈GA

� . Therefore �∈M0
� ,

and by Lemmas 13 and 10(iii), �̂∈ M̂0
� = F̂0

� . If P〈�; �; k〉 remained unsatis=ed forever,
then the de=nition of F̂0

� would guarantee that there must exist distinct elements
ŷ0; ŷ1; ŷ2; : : : ; ŷ2k and a stage s¿s0 at which these elements satisfy conditions (0̂:4)
–(0̂:6). Now � is consistent, by Lemmas 9 and 11, and P〈�; �; k〉 would not be satis=ed
at stage s, so by Step 0̂ of the construction, the element ŷ2k would have to enter B
from state �̂ at stage s + 1.

Since �∈GA
� , we know that the hypothesis of P〈�; �; k〉 is satis=ed for every k. Since

the requirements themselves are all satis=ed, we conclude that �̂∈ ĜB
� .

With this result we can =nally extend Sublemmas 8 and 9 of Section 3.1 to B-states.
Since A is in=nite, GA

� is nonempty for each �⊂f, so ĜB
� is also nonempty, forcing

B to be in=nite. Therefore, the �-state 〈�; {0}; ∅〉 is well-resided, so F̂+
� = M̂�. Also,

since the only well-visited �-state is well-resided, the guess k� =−1 is correct.
Lemmas 17 and 18 together show that GA = ĜB. Lemma 15 shows that C�TB.

Along with Lemmas 13 and 14 and Theorem 4, this completes the proof of Theorem 1.

References

[1] P. Cholak, Automorphisms of the lattice of recursively enumerable sets, Mem. Amer. Math. Soc.
113 (541) (1995).

[2] P. Cholak, R. Downey, E. Herrmann, Some orbits for E, Ann. Pure Appl. Logic 107 (2001) 193–226.
[3] P. Cholak, R. Downey, M. Stob, Automorphisms of the lattice of recursively enumerable sets: promptly

simple sets, Trans. Amer. Math. Soc. 332 (1993) 555–569.
[4] R. Downey, M. Stob, Jumps of hemimaximal sets, Z. Math. Logik Grundlagen 37 (1991) 113–120.
[5] R. Downey, M. Stob, Automorphisms of the lattice of recursively enumerable sets: orbits, Adv. Math.

92 (1992) 237–265.
[6] R. Downey, M. Stob, Friedberg splittings of recursively enumerable sets, Ann. Pure Appl. Logic

59 (1993) 175–199.
[7] R.M. Friedberg, Two recursively enumerable sets of incomparable degrees of unsolvability, Proc. Natl.

Acad. Sci. (USA) 43 (1957) 236–238.
[8] L. Harrington, R.I. Soare, Post’s program and incomplete recursively enumerable sets, Proc. Natl. Acad.

Sci. (USA) 88 (1991) 10 242–10 246.
[9] L. Harrington, R.I. Soare, The 30

3-automorphism method and noninvariant classes of degrees, J. Amer.
Math. Soc. 9 (1996) 617–666.

[10] L. Harrington, R.I. Soare, De=nable properties of the computably enumerable sets, Ann. Pure Appl.
Logic 94 (1998) 97–125.

R. Miller / Annals of Pure and Applied Logic 118 (2002) 61–85 85

[11] W. Maass, M. Stob, The intervals of the lattice of recursively enumerable sets determined by major
subsets, Ann. Pure Appl. Logic 24 (1983) 189–212.

[12] D.A. Martin, Classes of recursively enumerable sets and degrees of unsolvability, Z. Math. Logik
Grundlag. Math. 12 (1966) 295–310.

[13] A.A. Muchnik, On the unsolvability of the problem of reducibility in the theory of algorithms, Dokl.
Akad. Nauk SSSR N.S. 109 (1956) 194–197 (in Russian).

[14] J. Myhill, The lattice of recursively enumerable sets, J. Symbolic Logic 21 (1956) 215, 220.
[15] R.W. Robinson, The inclusion lattice and degrees of unsolvability of the recursively enumerable sets,

Ph.D. Thesis, Cornell University, Ithaca, NY, 1966.
[16] H. Rogers Jr., Theory of Recursive Functions and EPective Computability, The MIT Press, Cambridge,

MA, 1987.
[17] R.I. Soare, Automorphisms of the recursively enumerable sets, Part I: maximal sets, Ann. Math. 100

(2) (1974) 80–120.
[18] R.I. Soare, Recursively Enumerable Sets and Degrees, Springer, New York, 1987.
[19] R.I. Soare, Extensions, Automorphisms, and de=nability, to appear.
[20] K. Wald, On orbits of prompt and low computably enumerable sets, J. Symbolic Logic, to appear.

	Orbits of computably enumerable sets: low sets can avoid an upper cone
	Introduction
	Construction
	Defining e-states on a tree
	Definitions
	The New Extension Theorem
	Intuition for the lowness of A
	Construction

	Proof of the theorem
	Tree properties
	Verification that M0 = M0, and N0 = N0
	Verifying that GA=GB

	References

