Available online at www.sciencedirect.com

reer @ermeer CompuTeR
= ““; SYSTEM
ELSEVIER Journal of Computer and System Sciences 70 (2005) 201—220 CIENCES

www.elsevier.com/locate/jcss

Delay-insensitive computation in asynchronous cellular automata
Jia Leé, Susumu Adachi, Ferdinand Peper, Shinro Mashiko

National Institute of Information and Communications Technology, Nanotechnology Group, 588-2 Iwaoka, lwaoka-cho,
Nishi-ku, Kobe 651-2492, Japan

Received 6 June 2004; received in revised form 13 October 2004

Available online 9 December 2004

Abstract

Asynchronous cellular automata (ACA) are cellular automata that allow cells to update their states independently
at random times. Because of the unpredictability of the order of update, computing on ACA is usually done by
simulating a timing mechanism to force all cells into synchronicity after which well-established synchronous
methods of computation can be used. In this paper, we present a more effective method of computation based upon
a 4-state two-dimensional ACA with von Neumann neighborhood that is based on the construction in the cellular
space of delay-insensitive circuits, a special type of asynchronous circuits, whose operations are robust to arbitrary
delays in operators or interconnection lines. We show that this novel ACA model can be used to construct a universal
Turing machine, which suffices to prove its computational universality.
© 2004 Elsevier Inc. All rights reserved.

Keywords:Cellular automata; Asynchronous; Delay-insensitive circuits

1. Introduction

A cellular automaton(CA) is a discrete dynamical system consisting ofdadimensional array of
identical finite-state automata (cell@)>1). Each cell is connected uniformly to a neighborhood of a
finite number of cells, and has a state from a finite state set. It updates its state according to a transition
function, which determines a cell’'s state based on the states of the cells in its neighborhood. In most CA
models, there is a special state calipdescenstate, in which a cell will never change its state as long
as all the cells in its neighborhood are quiescent.

* Corresponding author.
E-mail addresslijia@crl.go.jp, lijia@nict.go.jp(J. Lee).

0022-0000/$ - see front matter © 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2004.10.009

http://www.elsevier.com/locate/jcss
mailto:lijia@crl.go.jp
mailto:lijia@nict.go.jp

202 J. Lee et al. / Journal of Computer and System Sciences 70 (2005) 201-220

Von Neumanr26] was the first to conceive a cellular automaton capable of universal computation
as well as universal construction. His CA model is composed of a two-dimensional array of an infinite
number of cells, in which each cell can update its state at the next time according to its own state and the
current states of the four non-diagonal cells adjacent to it (so-called Von Neumann neighborhood). von
Neumann used 29-states per cell to construct a universal Turing machine, in which all cells undergo state
transitions at the same tinj26]. After this, Codd 6], Banks[3] and Serizaw§23] reduced the number
of cell states to 8, 4 and 3, respectively, with the universality maintained, using the same framework as
von Neumann’s universal CA. Banks also designed a 2-state CA with von Neumann neighborhood to
realize any synchronous circuits, implying computational universgdity

All the above universal CA require the state transitions of each cell to be synchronized by a central
clock, so they are called synchronous cellular automata. As a generalized moddiaflC#synchronous
cellular automata (ACA) allow cells to evolve their state transitions independently at random times,
thereby erasing the need to provide a central clock for the entire cellular space. However, the absence of
a central clock in ACA may cause unexpected behaviors of cells during computation (946 2.4).

A conventional method of computing on ACA simulates a timing mechanism that forces all cells into
synchronicity]5,7,9,13,16-18,24,25hich allows the use of well-developed synchronous methods for
computation.

Although anyn-stated-dimensional synchronous CA with a symmetric neighborhood (e.g., von Neu-
mann neighborhood) can be simulated by:ah+ 2n)-stated-dimensional ACA with the same neighbor-
hood[13], computing can be done directly on ACA in an asynchronous way, rather than using synchronous
computational methods, by embedding so-catlelhy-insensitivéDI) circuits in asynchronous cellular
automatd2,12,20,21]see alsd8]). A Dl-circuit is a special type of asynchronous circuit whose correct-
ness of operation is not affected by arbitrary delays in operators or interconnectiofilinkg$,19] In
particular, a 5-state ACA with von Neumann neighborhood was preseni&2]jtoy which any arbitrary
Dl-circuit can be constructed. Although this result shows the computational universality of the 5-state
ACA [12], it remains unclear what the minimal number of cell states should be for an ACA with von
Neumann neighborhood to be capable of universal computation.

In this paper, we introduce a novel 4-state asynchronous cellular automaton with von Neumann
neighborhood, which uses rotation- and reflection-symmetric transition rules to describe the interac-
tions between cells. Instead of implementing the primitive operdiatson the ACA to realize any
arbitrary DI-circuit like in[2,12,20] we design a particular circujil5] in our asynchronous cellular
automaton to simulate a universal Turing machine, which implies the computational universality of our
4-state ACA.

This paper is organized as follows. Section 2 provides some basic notions and known results on DI-
circuits. Our novel 4-state ACA with von Neumann neighborhood is demonstrated in Section 3, followed
by the conclusion in Section 4.

2. Delay-insensitive circuits

A delay-insensitive (DI) circuit is an asynchronous circuit in which signals may be subject to arbi-
trary delays but without these being an obstacle to its correct operation. The circuit is composed of
interconnection lines and modules. Signals are transmitted along the lines and are processed by the
modules.

J. Lee et al. / Journal of Computer and System Sciences 70 (2005) 201-220 203

e

@) (b)

Fig. 1. (a) Transfer of a signal on a line; (b) a pending signal, in which the block denotes a module.

Definition 1. A sequential machinis defined asv = (Q, qo, 2, 4, f, g), whereQ is a finite set of
statesgg is the initial state} is the set of input symbolst is the set of output symbolg,: Q0 x> — QO
is the state-transition function, agdd Q x X — 4 is the output function.

Definition 2. A moduleis defined agZ, O, N), wherel is a finite set of input linex is a finite set of
outputlines, andv = (Q, qo, 2, 4, f, g)isasequential machine within one-to-one correspondence
with |, and4 in one-to-one correspondence witfl.2

Definition 3. A signalis the change of state or value of a line, and is transferred on a line from an output
of a module to an input of another module. Being one-valued, signals are denoted by a token on a line
as in Fig.1(a). A pending signals a signal that has arrived on an input line of a module, but will not
give rise to output of the module unless other signals arrive on different input lines. A pending signal is
denoted as in Fidl(b).

Definition 4. A circuit is delay-insensitivée its external input and output behavior remains unchanged,
regardless of arbitrary delays in any modules or interconnection lines.

Keller[11] formulated several operating conditions to characterize the class of DI-circuits, under which
any circuit can be realized by a fixed set of primitive modules. Keller's conditions are summarized as
follows.

Condition1: The input and output lines of a module are fixed and separated.

Condition2: A line is only allowed to connect at most two modules to its ends. Also, a line is the input
to exactly one module, and the output to exactly one module.

Condition3: Once a module outputs a signal, it cannot withdraw the signal from the output line.

Condition4: If two signals arrive at different input lines simultaneously, then the action may be chosen
arbitrarily by the module, as if one signal, then the other, appeared in an order specified by the module.
This is called thearbitration condition.

Condition5: A module may be subject to arbitrary (but finite) delays between the assimilation of input
signals and the production of the corresponding output signals.

Condition6: A signal on a line must eventually be assimilated by the module at its destination. The
signal may thereby undergo arbitrary (but finite) delays before its arrival.

Condition7: If there is a signal on an input line of a module, then it must be assimilated before the
next signal can be put on the same line.

Definition 5. A module isserial if every signal on one of its input lines, must be followed by exactly
one signal on an output line of the module, before the next signal can be assimilated by the same module.
Otherwise, it is goarallel module.

204 J. Lee et al. / Journal of Computer and System Sciences 70 (2005) 201-220

g -

T —»

b

T1 To

Fig. 2. An S module.

W <— l—e W <— + l— e

W —> —e W —=

@ (b)

Fig. 3. (&) An RE in state 0, and (b) an RE in state 1.

An example of a serial module is the so-cal@{Select moduld}l1]: This module has two states, 0
and 1, the latter being the initial state (see RjgA signal on input lineR) always sets the state to 1(0)
and is transferred t§'(R’). A signal on input lineT (test signal) does not change the internal state, but is
transferred td; when the module is in state 1, andTgif it is in state O.

Another important serial module in this paper is Moritfl$] Rotary Elemen{RE): There are two
states, 0 and 1, in an RE module (see BigA signal arriving on input lines(n) always sets the state
to 1, and a signal on input lingw) always resets the state to 0. When the module is in state 1, a signal
arriving ons(n) is transferred to output ling’(s’), and an arrival o(w) is transferred ta’(s’). When
the module in state 0, a signal arriving §(n) is transferred to output lin€(w’), and a signal og(w) is
transferred tav’(¢’). Simultaneous signals on any pair of input lines are not allowed.

The RE is capable of universal computation, in the sense that any (reversible) Turing machine is
realizable by a circuit of RE modules, in which there is at most one signal moving around at any time
[15]. Obviously, delays in any of the REs or lines do not affect the correct operation of the entire circuit, and
hence, it is delay-insensitive. Thus, such circuits consisting of REs can operate asynchronously without
the need of a central clock sigrab].

Definition 6. A set of primitive modules iserial universal if each serial module can be constructed by
the modules in the set.

Here, we employ three types of primitive modules defined as follows, which are serial universal
according td19] (see alsq11]).
(1) MERGE: A signal on input lind1(Z2) in Fig. 4(a) is assimilated and output 0. Simultaneous
signals on/1 and/> are not allowed.
(2) FORK: A signal on input liné in Fig. 4(b) is assimilated and duplicated on output liresand O>.

J. Lee et al. / Journal of Computer and System Sciences 70 (2005) 201-220 205

@) (b) (©)

Fig. 4. A serial universal set of DI modules.

(3) TRIA: Signals on both, (x € {1,2,3}) and/, (y € {1, 2, 3}/{x}) in Fig. 4(c) are assimilated and
result in a signal output t@s_,_,. Simultaneous signals ai, /> and/3 are not allowed. A signal
on only one of the input lines keeps pending until a signal on one of the other lines is received.

Theorem 1(Patra and Fussel[19]). { MERGE FORK TRIA} is serial universal

3. Computing asynchronously on a 4-state asynchronous cellular automaton with von Neumann
neighborhood

In this section, we assume a CA model consisting of a two-dimensional array of cells, in which each
cell has a neighborhood composed of its four non-diagonal adjacent cells along with itself (so-called von
Neumann neighborhood) (Fig). We present a novel 4-state ACA with von Neumann neighborhood for
universal computation. We achieve this result by embedding delay-insensitive circuits in the 4-state asyn-
chronous cellular space, which enables the construction of a Turing machine that can conduct universal
computing tasks.

Definition 7. A two-dimensional deterministic cellular automaton with von Neumann neighboikood
defined asA = (Z2, V, f, vo), whereZis a set of all integer/is a finite set of states per celf (= ¢).

The mappingf : V°® — V is called alocal function that determines the state transition of a cell,
depending on the present states of the five neighborhood cells (i.e. center, upward, rightward, downward
and leftward cells). Thustansition rule f (c, u, r, d, [) = ¢’ can be depicted as follows.

[1

—]

|Q.o Cl

The statevg(e V) is aquiescenstate satisfyingf (vo, vo, vo, vo, vo) = vo. A configurationoverV is
amapping : Z2 — V, which assigns to each cell &a certain state fror.

Definition 8. Let A = (Zz, V, f, vo) be a CA with von Neumann neighborhood.

206 J. Lee et al. / Journal of Computer and System Sciences 70 (2005) 201-220

(x, y+1)

----------- (o) | (1Y) (kL y) | e

(x,y-1)

Fig. 5. Two-dimensional cellular space with von Neumann neighborhood.

() Transition rules irA arerotation-symmetrigiff
Y(c,u,r,d,l) eV, f(c,u,r,d,l)= f(c,l,u,rd).
(ii) Transition rules inA arereflection-symmetrigff

Y(c,u,r,d,l) eV, f(c,u,r,d,l)= f(c,u,l,d,r)= f(c,d,r,u,l).

The rotation- and reflection-symmetric transition rules specify an isotropic cellular space. According
to the following definition[17] on the transitions of configurations in ACA, each cell in an ACA can

update its state at random times independent of other cells.

Definition 9. LetA = (ZZ, V., f, vo) be a CA with von Neumann neighborhood, aneh f (V) denote

the set of all configurations ov&t i.e. Conf (V) = {c|c: Z? — V}.
() If Ais asynchronous CA, then the functién: Conf (V) — Conf (V) defined as follows is called

aglobal functionof A.
Vx,y) € Z% F()(x,y) = flc(x,). c(x,y + 1), clx + 1, y),c(x, y — D), c(x — 1, y))
(i) If Ais an asynchronous CA, then for arfyc; € Conf (V) such that
V(x,y) € Z% cix,y) =cj(x,y) v
(cjx,y) = flei(x,y),ci(x,y+1),ci(x +1,y),cilx,y — 1), ci(x =1, y)),
there exists a transition from to ¢; written byc; — ¢;. For anycy, ¢; € Conf(V), we denote
Cs X ¢ iff ¢s — ¢ or3c, € Conf(V), ¢s — c| N .
Our 4-state ACA with von Neumann neighborhood is definedipy= (Zz, {0, 1, 2, 3}, fa,0), which

uses rotation- and reflection-symmetric transition rules to describe the interactions between cells. We
use the notation—, m, m or x in the figures to represent a cell in the state 0, 1, 2 or 3, respectively.
Transition rules inA4 are given in Fig6, with their rotation- and reflection-symmetric equivalents left

out. Combinations of states for which no transition rules are expressed it &g supposed to give rise
to trivial transitions, i.e., transitions that do not change the states of cells.

J. Lee et al. / Journal of Computer and System Sciences 70 (2005) 201-220 207
[l Cl [l [l
1LEO0—X 11. N — O 21. X0 — SLECIE — X
L] | [| [|
[]] [l X
2000 — O 2.EX1—N 2.X0 — 1l 32. XEX — [
X | L] X
[]] [] ||
3. 000—0Od 13. xg& — N 23. XOX — O 33.OXC0 — M
4000 —0O 14. |><|£|><| —H 24. |><|£|><| — KX 34. XXX — W
[] [] L]
5 0000 — O 15. XX — [25. I:|=I — X 35. E=I — X
[] Cl Ll |
6. 00 — O 16. IX=IZ —[26. [I@X — [36. Dgl — X
[] || [] ||
7000 —0O 17. D%D —[27. XK — 0O 37.I:I9I:I — N
X l | |
8.0 —0O 18. X1 —[O 28. XIXIXI — [38. M — O
[] | [| [|
Ll X | ||
o.M — O 19. X1 —[O 2.1/ — X 39. XM — [
[| [| [|
Ll 1 l
10.JHNE — O 20. X — 1 30.. 000 —m X
[l [| [|

Fig. 6. List of transition rules im 4.

Fig. 7. A signal. The arrow indicates the direction in which the signal propagates.

3.1. Configurations representing signals

Signals are realized in the same way afl). Fig. 7 gives the basic configuration of a signal.

A line between two modules in a DI-circuit is implemented as a path of quiescent cells. The signal in
Fig. 7 contains one cell in state 2 which is the core of the signal, and three cells in state 1. The signal
propagates into the direction in which a quiescent cell is adjacent to the core cell. The transition rules
1-12 in Fig.6 are used for signal transmission.

208 J. Lee et al. / Journal of Computer and System Sciences 70 (2005) 201-220

12 10 4,6
] —) l}x:—) L —) mm —) - —> -

@ (ii) (iii) (v) v) (vi)

Fig. 8. Transmitting a signal on a path. The integers above each arrow denote the transition rules (or their rotation- and reflec-
tion-symmetric equivalents) in Fi@.used to change the states of the cells in the configurations.

1 2,9 4,6
LAy —> el L Ay ——> [l —> mx
0] (it) (iii) (iv)
2 7.8 12
—> —> —> =

v (vi) (vii)

Fig. 9. Garbage left on the path blocks the transmission of a signal until it is cleaned up, but cannot interfere with the signal.

@5@

BE B %@%m@i@

R,
— —

(vi) (vii) (viii) (ix)
438 W 16 15
— — —

(x) (xi) (xii)
(b)

Fig. 10. (a) An Entrance. For convenience, we assume that the cellular space out of this local configuration is filled with quiescent
cells; (b) entrance operating on an input signal.

The process of transmitting a signal on a patiincan be summarized as follows (see dIE2)): (1)
A gquiescent cell adjacent to a cell in state 2 is updated to state 3 as i@(ijigaccording to transition
rule 1. (2) Quiescent cells are updated to state 1 as ingfig, according to rule 2. Since the CA is
asynchronous, the two cells to which this rule applies are not necessarily updated simultaneously. (3) A
state-3 cell is updated to state 2 as in Bi(@v), according to rule 13, thus extending the core of the signal

J. Lee et al. / Journal of Computer and System Sciences 70 (2005) 201-220 209

ST P 18 S A
€I O A RO R PO BT
ottt Jtutate 7 L e oiogels iatelul
b *¢: oFo' 8 0«, 0,: ‘:*?.w_ho.o‘::
, 120
Y
¢ Vv
A N ?9/ N (iv) 29
BT A S PEOTTIE ST b
PRl SE08013,20 (RRLIRIGE] 13,20 (ULt o e
hZoz0%s ot ' oTozer ’ e P 1.18 o S
) 2 &5 F } F ’
: £ & — £ >
(i) (ii) (iii) G raee (v)
Py g W
Rt 19 T g N
bt e
2
(iv)"”
V)
e e N e e
12 ool + Socclledan 11 SoodGhad + Q008 SHod
X o bt e X o X o
—> G —> R ol " R S
I I ! -
(vi) (vii) (viii) (ix)
A COTID
e ST
1,7 %t iy 2 15 s i
g SO RO
h —— £ &5
] (i)

(b)

Fig. 11. (a) An Exit. Cellg1 andcy may switch their states between 0 and 1 indefinitely and independently whenever transition
rule 18 or 20 is applied; (b) exit operating on a signal. The signal can only be output from the Exit when baoth astis,
revert to quiescent states like in (iii), otherwise it stays on the internal path of the Exit.

by one cell. (4) A state-2 cell is updated to state 1 as in&ig, according to rules 10-12, thus initiating
the withdrawal at the back of the signal. (5) State-1 cells are made quiescent as8(viyjgaccording
to rules 3-8, thus cleaning up garbage behind the signal.

Though due to the asynchronicity, a signal can have a wide variety of configurations during its
transmission on a patli2], it is reliable even when garbage is left on the path by other signals, for
example as in Fig9. Once a signal is produced on a path by a module, it will eventually reach its

destination.

210 J. Lee et al. / Journal of Computer and System Sciences 70 (2005) 201-220

O]
‘:’:::'4‘!‘:::’ S
(X K
e
SR

Wl

esotatetors
R
%, € R
1323 S
e g "R

R
.0

Fig. 12. (a) A Turn Core; (b) Turn Core operating on a signal arriving on its lower internal path, and (c) cleaning up the garbage
after a signal at its right internal path has left the Exit to be attached to the Turn Core (see €0).Fig.

3.2. Configurations representing modules

In A4, each primitive module in Figl.can be further divided into several simple components: {Entrance,
Exit, Turn Core, Multiplexer, Merge Core, Fork Core, Join}. We first describe the configurations of these
components and their operations on signals.

3.2.1. Entrance

The Entrance in FiglO(a) is used to receive signals coming from the outside. The transition rules
13-17 in Fig 6 are specified for an Entrancen. Some of these rules are also required for the operation
of other components.

A typical example of an Entrance operating on an input signal is given in1gp). Due to the
asynchronous nature of the CA, there are many different ways in which signals can be processed. To cope
with the wide variety of signal configurations, the Entrance waits for a signal having a regular core in
state 2 before accepting the signal, as in E@fb(iii)). The tail of a signal reduces to cells in state 1, asin
Fig. 10(b(vii)), just outside the Entrance, and the tail will eventually be cleaned up once the signal enters
the internal path of the Entrance.

211

J. Lee et al. / Journal of Computer and System Sciences 70 (2005) 201-220

ororee g eee!
siosoreletetetetatoce]

ptafotdiiosdlely:
L

SO
IR b,
A AR
NG T KRID
SIS PR

= & =
= S M 3
) x> W =
R
RS
+.H
¥,
SN 5
XL AN
RS
SHAHHAN mmmm
BTN
R
< Tz BT e
~N . et ﬁmvupbﬁ —
SN =
K |
S Hd B =
e
fytelatets’
— ~
2 N Z
o, N
e w6
SHAHHAN
n
N = =
= =
S =
T = m
CIES SR 5
fotatoletotere: R K
XA e,
(R CRRK, SHHHK A
%“uooo.rc ool luin]
=
S
2

d for the Exit.

are require

(iv)

The Exit in Fig.11(a) is used to transfer signals arriving on its internal path of quiescent cells to the
The Turn Core in Figl2(a) is used to transfer signals arriving on its internal zath internal pattb

Fig. 13. (a) A Multiplexer; (b) multiplexer operating on a signal arriving on its lower internal path, and (c) cleaning up the
as in Fig.12(b). The transition rules 21-28 in Fi§.are required for the Turn Core.

garbage; (d) multiplexer operating on a signal arriving on its right internal path, in whichscell(iii) may switch its state

outside path (see Fig1(b)). The transition rules 18-20 in Fi§

between 0 and 1 until cety changes its state as in (iv) or

3.2.3. Turn Core

3.2.2. Exit

212 J. Lee et al. / Journal of Computer and System Sciences 70 (2005) 201-220

e TS
GRS

Seioters GRS
Ol + & s
<K X0 g A0

e ——P (A BICSE

looZoTaloTol0tl

B

Fig. 14. (a) A Merge Core. (b) Merge Core operating on a signal on its right internal path.

s

()
oo, e oo, e oo, e oo,
SRS e pecriborete pecriborete GRS s
QOOEOK 0] (OOmOS 35 COUmONG X 900
NGl e N i v BN v BN i
- v%’ v-vﬂ'pv
8 007 L "‘0‘ Lo LeTel % eTeTel e
pilefoleTatold pateoloTelold ateoloTlold atedoloTolold

po%oletetetel SEBEER SEBEER SEBEER

[
T STTotape
SRR, 5K S 365
boetatoroe! foleteteTotl
SELEEEER plotsieteteiaid W

(©)

Fig. 15. (a) A Fork Core; (b) Fork Core operating on a signal, and (c) cleaning up the garbage after two signals have left the
Exits to be attached to the Fork Core (see ER).

3.2.4. Multiplexer

The Multiplexer in Fig13(a) is used to transfer signals arriving on its internal getthpathb, working
as a Turn Core (see Figj3(b)). Moreover, it transmits signals coming from internal gath pathc as in
Fig. 13(d). The transition rules 29—-34 in Fi§.are required for the Multiplexer.

3.2.5. Merge Core
The Merge Core in Figl4(a) is a slight modification of the Multiplexer in Fig3(a) which is used to
redirect signals arriving on internal padtor b to pathc (see Figl14(b)).

3.2.6. Fork Core
The Fork Core in Figl5(a) duplicates a signal arriving on its internal patimto two signals each on
pathsb andc (see Figl15(b)). The transition rule 35 in Fid is required for the Fork Core.

3.2.7. Join
Fig. 16(a) gives the JOIN, in which signals arriving on two internal pattis (c) andb(c){a) of the
JOIN give rise to a single signal on pattu)(b), for example as in Figl6(b). A single arrival on only

J. Lee et al. / Journal of Computer and System Sciences 70 (2005) 201-220 213

I

SRS
SO

QERIeR
a Cc
G S
"‘:‘: :‘:‘.’ [
> L
&5

b
@)

=
e

ST 2 ST
SERESS pEHCHIRCILE 36 SERESS
oted ot bSos beacey SEMSS T
profelamiotel S potelqplotel
—> [—>
coc s

pree e I
pLotel @b oto] S fetali Moo
ol ploT ¥ ol ilot

{Qy (i)’ (iii)’

L

Lo 0 0l0
S
LT,

iy

LI

52
28

Fig. 16. (a) A Join. Internal paths b, ¢ can be stretched freely; (b) join operating on a pair of signals arriving on its two internal
paths, and (c) cleaning up the garbage after the three signals in (vi) have left the Multiplexers to be attached to the Join (see
Fig. 19); (d) two pending signals.

(@) (b)

Fig. 17. (a) The configuration of the MERGE module, and (b) its alternative symbol.

one of the paths of the JOIN remains pending until another signal arrives from one of the other paths as
in Fig. 16(d). The transition rules 36—39 in Fi§.are required for the JOIN.

Using all the components described above, we can assemble the moduleglim g cellular space
of A4. Fig. 17 gives the construction of the MERGE module by combining (or possibly overlapping)
components {Entrance, Exit, Turn Core, Merge Core}. Hi§.gives the construction of the FORK
module from components {Entrance, Exit, Fork Core}. Also, Hifggives the construction of the TRIA
module from components {Entrance, Exit, Turn Core, Multiplexer, Join}, where the positions of the input

214 J. Lee et al. / Journal of Computer and System Sciences 70 (2005) 201-220

< < gt
GO RS
SoTeelele Lol R g o
Secs nee
PR KRR
; X 2 0, 0,

@ (b)

4
o,
Cozenh ety
I I I I IR I IS
S T KWK
0""" X ",4,‘
BEEL S S5

|
1 CHAHS C)1
L0
I =
1
I l 3
R IRIRIERERERS
’_< -
-+ (0]
-0 3 T 3
|,
2
C)Z
CDZ

@) (b)

-—

@ (b)

Fig. 20. (a) The configuration of the LR-Turn module, and (b) its symbol.

and output paths differ from those of the TRIA module in Hi@:). Furthermore, a special module called
LR-Turn module constructed from {Entrance, Exit, Turn Core} is given in Ri@.it can be used to
change the directions of signals being transferred on the paths to the left or right.

The operations of the MERGE, FORK, TRIA, and LR-Turn modules embedddd must obey the
operating conditions in Section 2. In particular, according to Condition 7, a signal is expected to be
received by a module on one of its input paths, after the module completes the processing of all previous
input signals except for those that are still pending on different paths. In this case, although the garbage

J. Lee et al. / Journal of Computer and System Sciences 70 (2005) 201-220 215

o oe,
OSSE
R
Sefoletli utire:
0, S
oLozutotnte,

o ﬁ%

! <
G Lo
Sers
RN LR
VAGC (0

Fig. 21. Garbage inside the LR-Turn module delays the assimilation of the input signal as long as it remains, but cannot interfere
with the signal.

EERRRERSRE
%

g
55

s

e

%

o
oFuSedabe

s

XK

7%

s
Sabutafoloboboluote®

(a) (b)
Fig. 22. (a) A delay-insensitive circuit scheme, and (b) its implementatieryimhe dashed circle indicates a cross point of

two paths. A signal put initially on pathwill run around in the circuit indefinitely. The TRIA module with a pending signal on
its left input path toggles the signal on patho pathb or cin turn.

left during the processing may still remain when the module starts to process a new input signal, it never
interferes with the module’s correct operation of the new signal (for example, sel)ig.

3.3. Laying out circuits to simulate Turing machines

Assume a DI-circuit composed by a network of the primitive modules irdrig.which each primitive
module is implemented in our asynchronous cellular automaidsy a local configuration of cells, with

216 J. Lee et al. / Journal of Computer and System Sciences 70 (2005) 201-220

@ R

S N\

TRy

T
R O O s

—H—
TR2
—© O = O ©—
@—]

Tr\%”

T, To

Fig. 23. The DlI-circuit schemp0] for constructing the S module. The two signals pending on the right input paths of TRIA
modulesl’ R1 andT R3, respectively, represent the S module being in state 1, whereas signals pending on the left input paths of
T R1 andT R3, respectively, represent this circuit being in state 0.

their inputs and outputs connected to each other by paths of quiescent cells, over which signals are
transferred from a source module to a destination module. Once a signal reaches a destination module,
the module operates on it, which usually results in one or more signals on its output paths. Once a DI-
circuit is formed, computing tasks can be carried out by inputting signals to appropriate paths of the
circuit, giving rise to output signals on appropriate paths.

An example of a DI-circuit is given in Fig22, along with its configuration im4. Each primitive
module in Fig22(b) is separated from the other modules by at least one quiescent cell, such that there is
no interference between the modules at the end of any path when they receive input signals and produce
output signals on the path.

J. Lee et al. / Journal of Computer and System Sciences 70 (2005) 201-220 217

Fig. 24. The configuration of an S module in state 1.

218 J. Lee et al. / Journal of Computer and System Sciences 70 (2005) 201-220

S3

S

o

—Jn L ¥s
1l ¥s

o1
To

€
srR THh

i

|

(0]

i

!

1
R S 1, ?7
SR T W[€
1
R S T,
SlS’RTTl
ot

s

7]

Fig. 25. The DI-circuit scheme for constructing the RE module, in which the four S moslylés, S3, andS, in states 1, 1, 1,
and 1, respectively, represents the RE being in state 1, wh&ye&s, S3, andSy in states 0, 0, 0, and O, respectively, represents
the RE being in state 0.

This circuit is designed such as to avoid the collisions of signals on crossing paths: Two signals cannot
arrive simultaneously at cross potnin Fig. 22. This is important, because two signal heads colliding at
a cross point of paths would cause the deadlock of both of the signals, lags no transition rules to
cope with such a situation, and lacks a third dimension via which crossings can be made (EEg)also

We proceed by implementing the S module in Rignd the RE in Fig3in our cellular space. The serial
operation enables the S module and the RE to be constructed by using {MERGE, FORK, TRIA} according
to Theorenll. Fig. 23 gives the construction of the S module, and Riggives its implementation id 4.
Moreover, following the construction in Fi@5 along with the construction in Fi®3, the RE module
can be easily embedded in the cellular spacg nofBecause of its huge size, however, we do not show
the configuration of the RE in this paper.

J. Lee et al. / Journal of Computer and System Sciences 70 (2005) 201-220 219

By implementing the RE module in Fig5, we can lay out a circuit of MERGE, FORK, TRIA, and LR-
Turn modules iM4 such as to construct an arbitrary Turing machine, §5h Since at most one signal
moves around between any REs in the circuit at any time, signals never collide on any path crossings in
the network of modules, and hence, this circuit embeddet;ioperates correctly as a simulated Turing
machine. Consequently, the following theorem holds.

Theorem 2. A4 is computationally universal

4. Conclusion

In this paper, we presented a 4-state ACA with von Neumann neighborhood that uses rotation- and
reflection-symmetric transition rules to describe the interactions between cells. ThisACA model is capable
of universal computation, in the sense that it allows a particular DI-circuit laid out in its cellular space
to simulate a universal Turing machine. Since universality in computation is irrelevant to the efficiency
of delay-insensitive computation, even DI-circuits operating in a strictly serial mode suffice to carry out
universal computatiof15]. We thus further reduced the number of cell states in the computation-universal
ACA with von Neumann neighborhood as compared to the 5-state ACA mofl]in

We verified the correctness of our ACA model via a Java-based ACA simulator, by applying various
asynchronous updating methods (see[@2)]) to iterate cells, for example, the stochastic schenjé]in
such that at every time step each cell assumes a certain probability to be updated. Moreover, since the
design of signals is indispensable for laying out logic circuits in ACA moflglswitness the process
of signal propagation in Figg, the 4 states seem the minimal number of cell states required for an ACA
with von Neumann neighborhood to be able to carry out universal computation. Further investigations,
however, are needed to confirm this conjecture.

Acknowledgments

We are grateful to the anonymous referee for his/her helpful comments.

References

[1] S.Adachi, J. Lee, F. Peper, On signals in asynchronous cellular spaces, IEICE Trans. Inform. Systems E87-D (3) (2004)
657-668.

[2] S.Adachi, F. Peper, J. Lee, Computation by asynchronously updating cellular automata, J. Statist. Phys. 114 (1-2) (2004)
261-289.

[3] E.R. Banks, Universality in cellular automata, in: IEEE 11th Annual Symposium on Switching and Automata Theory,
Santa Monica, CA, 1970, pp. 194-215.

[4] H.J.Blok, B. Bergersen, Synchronous versus asynchronous updating in the “game of life”, Phys. Rev. E 59 (1999) 3876—
3879.

[5] M. Capcarréere, Cellular automata and other cellular systems: design & evolution, Ph. D. Thesis, Swiss Federal Institute of
Technology, Lausanne, 2002.

[6] E.F. Codd, Cellular Automata, Academic Press, New York, 1968.

[7] U. Golze, (A-)synchronous (non-)deterministic cell spaces simulating each other, J. Comput. System Sci. 17 (1978) 176—
193.

220

(8]
9]
(10]
(11]
(12]

(13]
(14]

(15]

[16]
(17]

(18]

(19]

(20]

(21]
(22]

(23]
(24]
(25]

[26]
(27]

J. Lee et al. / Journal of Computer and System Sciences 70 (2005) 201-220

U. Golze, L. Priese, Petri net implementations by a universal cell space, Inform. Control 53 (1982) 121-138.

A. Hemmerling, On the computational equivalence of synchronous and asynchronous cellular spaces, J. Inform. Process.
Cybern. 18 (7-8) (1982) 423—-434.

T.E. Ingerson, R.L. Buvel, Structures in asynchronous cellular automata, Physica D 10 (1984) 59-68.

R.M. Keller, Towards a theory of universal speed-independent modules, IEEE Trans. Comput. C-23 (1) (1974) 21-33.

J. Lee, S. Adachi, F. Peper, K. Morita, Embedding universal delay-insensitive circuits in asynchronous cellular spaces,
Fund. Inform. 58 (3—4) (2003) 295-320.

J. Lee, S. Adachi, F. Peper, K. Morita, Asynchronous game of life, Physica D 194 (2004) 369—-384.

J. Lee, F. Peper, S. Adachi, K. Morita, Universal delay-insensitive circuits with bi-directional and buffering lines, IEEE
Trans. Comput. 53 (8) (2004) 1034—-1046.

K. Morita, A simple universal logic element and cellular automata for reversible computing, MCU 2001, Lecture Notes in
Computer Science, vol. 2055, 2001, pp. 102-113.

K. Nakamura, Synchronous to asynchronous transformation of polyautomata, J. Comput. System Sci. 23 (1981) 22—-37.
K. Nakamura, Asynchronous cellular automata and their computational ability, Systems Comput. Controls 5 (5) (1974) 58
—66.

C.L. Nehaniv, Evolution in asynchronous cellular automata, in: R.H. Standish, M.A. Bedau, H.A. Abbass (Eds.), Artificial
Life VIII, MIT Press, Cambridge, MA, 2003, p. 65.

P. Patra, D.S. Fussell, Efficient building blocks for delay insensitive circuits, in: Proceedings of the International Symposium
on Advanced Research in Asynchronous Circuits and Systems, IEEE Computer Society Press, Silver Spring, MD, 1994,
pp. 196—205.

F. Peper, J. Lee, S. Adachi, S. Mashiko, Laying out circuits on asynchronous cellular arrays: a step towards feasible
nanocomputers?, Nanotechnology 14 (4) (2003) 469-485.

L. Priese, A note on asynchronous cellular automata, J. Comput. System Sci. 17 (1978) 237-252.

B. Schonfisch, A. de Roos, Synchronous and asynchronous updating in cellular automata, BioSystems 51 (1999) 123—
143.

T. Serizawa, Three-state Neumann neighbor cellular automata capable of constructing self-reproducing machines, Systems
Comput. Japan 18 (4) (1987) 33-40.

T. Toffoli, Integration of the phase-difference relations in asynchronous sequential networks, in: G. Ausiello, C. B6hm
(Eds.), Automata, Languages, and Programming, Lecture Notes in Computer Science, vol. 62, 1978, pp. 457-463.

T. Toffoli, N. Margolus, Cellular Automata Machines, MIT Press, Cambridge, MA, 1987.

Von Neumann, Theory of self-reproducing automata, in: A.W. Burks (Ed.), University of lllinois Press, 1966.

S. Wolfram, Cellular Automata and Complexity, Addison-Wesley, MA, 1994.

	Delay-insensitive computation in asynchronous cellular automata
	Introduction
	Delay-insensitive circuits
	Computing asynchronously on a 4-state asynchronous cellular automaton with von Neumann neighborhood
	Configurations representing signals
	Configurations representing modules
	Entrance
	Exit
	Turn Core
	Multiplexer
	Merge Core
	Fork Core
	Join

	Laying out circuits to simulate Turing machines

	Conclusion
	References

