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Abstract

Asynchronous cellular automata (ACA) are cellular automata that allow cells to update their states independently
at random times. Because of the unpredictability of the order of update, computing on ACA is usually done by
simulating a timing mechanism to force all cells into synchronicity after which well-established synchronous
methods of computation can be used. In this paper, we present a more effective method of computation based upon
a 4-state two-dimensional ACA with von Neumann neighborhood that is based on the construction in the cellular
space of delay-insensitive circuits, a special type of asynchronous circuits, whose operations are robust to arbitrary
delays in operators or interconnection lines. We show that this novelACA model can be used to construct a universal
Turing machine, which suffices to prove its computational universality.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

A cellular automaton(CA) is a discrete dynamical system consisting of and-dimensional array of
identical finite-state automata (cells)(d�1). Each cell is connected uniformly to a neighborhood of a
finite number of cells, and has a state from a finite state set. It updates its state according to a transition
function, which determines a cell’s state based on the states of the cells in its neighborhood. In most CA
models, there is a special state calledquiescentstate, in which a cell will never change its state as long
as all the cells in its neighborhood are quiescent.
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Von Neumann[26] was the first to conceive a cellular automaton capable of universal computation
as well as universal construction. His CA model is composed of a two-dimensional array of an infinite
number of cells, in which each cell can update its state at the next time according to its own state and the
current states of the four non-diagonal cells adjacent to it (so-called Von Neumann neighborhood). von
Neumann used 29-states per cell to construct a universal Turing machine, in which all cells undergo state
transitions at the same time[26]. After this, Codd[6], Banks[3] and Serizawa[23] reduced the number
of cell states to 8, 4 and 3, respectively, with the universality maintained, using the same framework as
von Neumann’s universal CA. Banks also designed a 2-state CA with von Neumann neighborhood to
realize any synchronous circuits, implying computational universality[3].

All the above universal CA require the state transitions of each cell to be synchronized by a central
clock, so they are called synchronous cellular automata.As a generalized model of CA[17], asynchronous
cellular automata (ACA) allow cells to evolve their state transitions independently at random times,
thereby erasing the need to provide a central clock for the entire cellular space. However, the absence of
a central clock in ACA may cause unexpected behaviors of cells during computation (see e.g.[10,27]).
A conventional method of computing on ACA simulates a timing mechanism that forces all cells into
synchronicity[5,7,9,13,16–18,24,25], which allows the use of well-developed synchronous methods for
computation.

Although anyn-stated-dimensional synchronous CA with a symmetric neighborhood (e.g., von Neu-
mann neighborhood) can be simulated by an(n2+2n)-stated-dimensional ACA with the same neighbor-
hood[13], computing can be done directly onACA in an asynchronous way, rather than using synchronous
computational methods, by embedding so-calleddelay-insensitive(DI) circuits in asynchronous cellular
automata[2,12,20,21](see also[8]). A DI-circuit is a special type of asynchronous circuit whose correct-
ness of operation is not affected by arbitrary delays in operators or interconnection lines[11,14,19]. In
particular, a 5-state ACA with von Neumann neighborhood was presented in[12], by which any arbitrary
DI-circuit can be constructed. Although this result shows the computational universality of the 5-state
ACA [12], it remains unclear what the minimal number of cell states should be for an ACA with von
Neumann neighborhood to be capable of universal computation.

In this paper, we introduce a novel 4-state asynchronous cellular automaton with von Neumann
neighborhood, which uses rotation- and reflection-symmetric transition rules to describe the interac-
tions between cells. Instead of implementing the primitive operators[14] on the ACA to realize any
arbitrary DI-circuit like in [2,12,20], we design a particular circuit[15] in our asynchronous cellular
automaton to simulate a universal Turing machine, which implies the computational universality of our
4-state ACA.

This paper is organized as follows. Section 2 provides some basic notions and known results on DI-
circuits. Our novel 4-state ACA with von Neumann neighborhood is demonstrated in Section 3, followed
by the conclusion in Section 4.

2. Delay-insensitive circuits

A delay-insensitive (DI) circuit is an asynchronous circuit in which signals may be subject to arbi-
trary delays but without these being an obstacle to its correct operation. The circuit is composed of
interconnection lines and modules. Signals are transmitted along the lines and are processed by the
modules.
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(a) (b)

Fig. 1. (a) Transfer of a signal on a line; (b) a pending signal, in which the block denotes a module.

Definition 1. A sequential machineis defined asN = (Q, q0, �, �, f, g), whereQ is a finite set of
states,q0 is the initial state,� is the set of input symbols,� is the set of output symbols,f : Q×� → Q

is the state-transition function, andg : Q × � → � is the output function.

Definition 2. A moduleis defined as(I, O, N), whereI is a finite set of input lines,O is a finite set of
output lines, andN = (Q, q0, �, �, f, g) is a sequential machine with� in one-to-one correspondence
with I, and� in one-to-one correspondence with 2O .

Definition 3. A signalis the change of state or value of a line, and is transferred on a line from an output
of a module to an input of another module. Being one-valued, signals are denoted by a token on a line
as in Fig.1(a). A pending signalis a signal that has arrived on an input line of a module, but will not
give rise to output of the module unless other signals arrive on different input lines. A pending signal is
denoted as in Fig.1(b).

Definition 4. A circuit is delay-insensitiveif its external input and output behavior remains unchanged,
regardless of arbitrary delays in any modules or interconnection lines.

Keller [11] formulated several operating conditions to characterize the class of DI-circuits, under which
any circuit can be realized by a fixed set of primitive modules. Keller’s conditions are summarized as
follows.
Condition1: The input and output lines of a module are fixed and separated.
Condition2: A line is only allowed to connect at most two modules to its ends. Also, a line is the input

to exactly one module, and the output to exactly one module.
Condition3: Once a module outputs a signal, it cannot withdraw the signal from the output line.
Condition4: If two signals arrive at different input lines simultaneously, then the action may be chosen

arbitrarily by the module, as if one signal, then the other, appeared in an order specified by the module.
This is called thearbitration condition.
Condition5: A module may be subject to arbitrary (but finite) delays between the assimilation of input

signals and the production of the corresponding output signals.
Condition6: A signal on a line must eventually be assimilated by the module at its destination. The

signal may thereby undergo arbitrary (but finite) delays before its arrival.
Condition7: If there is a signal on an input line of a module, then it must be assimilated before the

next signal can be put on the same line.

Definition 5. A module isserial if every signal on one of its input lines, must be followed by exactly
one signal on an output line of the module, before the next signal can be assimilated by the same module.
Otherwise, it is aparallelmodule.



204 J. Lee et al. / Journal of Computer and System Sciences 70 (2005) 201–220

S

S′

R

R′

T

T T1 0

Fig. 2. An S module.

 (a) (b)

e′
e

ss′

w′
w

n n′

e′
e

ss′

w′
w

n n′

Fig. 3. (a) An RE in state 0, and (b) an RE in state 1.

An example of a serial module is the so-calledS (Select module)[11]: This module has two states, 0
and 1, the latter being the initial state (see Fig.2). A signal on input lineS(R) always sets the state to 1(0)
and is transferred toS′(R′). A signal on input lineT (test signal) does not change the internal state, but is
transferred toT1 when the module is in state 1, and toT0 if it is in state 0.

Another important serial module in this paper is Morita’s[15] Rotary Element(RE): There are two
states, 0 and 1, in an RE module (see Fig.3). A signal arriving on input lines(n) always sets the state
to 1, and a signal on input linee(w) always resets the state to 0. When the module is in state 1, a signal
arriving ons(n) is transferred to output linen′(s′), and an arrival one(w) is transferred ton′(s′). When
the module in state 0, a signal arriving ons(n) is transferred to output linee′(w′), and a signal one(w) is
transferred tow′(e′). Simultaneous signals on any pair of input lines are not allowed.

The RE is capable of universal computation, in the sense that any (reversible) Turing machine is
realizable by a circuit of RE modules, in which there is at most one signal moving around at any time
[15]. Obviously, delays in any of the REs or lines do not affect the correct operation of the entire circuit, and
hence, it is delay-insensitive. Thus, such circuits consisting of REs can operate asynchronously without
the need of a central clock signal[15].

Definition 6. A set of primitive modules isserial universal, if each serial module can be constructed by
the modules in the set.

Here, we employ three types of primitive modules defined as follows, which are serial universal
according to[19] (see also[11]).
(1) MERGE: A signal on input lineI1(I2) in Fig. 4(a) is assimilated and output toO. Simultaneous

signals onI1 andI2 are not allowed.
(2) FORK: A signal on input lineI in Fig. 4(b) is assimilated and duplicated on output linesO1 andO2.
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Fig. 4. A serial universal set of DI modules.

(3) TRIA: Signals on bothIx (x ∈ {1,2,3}) andIy (y ∈ {1,2,3}/{x}) in Fig. 4(c) are assimilated and
result in a signal output toO6−x−y . Simultaneous signals onI1, I2 andI3 are not allowed. A signal
on only one of the input lines keeps pending until a signal on one of the other lines is received.

Theorem 1(Patra and Fussell[19] ). {MERGE, FORK, TRIA} is serial universal.

3. Computing asynchronously on a 4-state asynchronous cellular automaton with von Neumann
neighborhood

In this section, we assume a CA model consisting of a two-dimensional array of cells, in which each
cell has a neighborhood composed of its four non-diagonal adjacent cells along with itself (so-called von
Neumann neighborhood) (Fig.5). We present a novel 4-state ACA with von Neumann neighborhood for
universal computation. We achieve this result by embedding delay-insensitive circuits in the 4-state asyn-
chronous cellular space, which enables the construction of a Turing machine that can conduct universal
computing tasks.

Definition 7. A two-dimensional deterministic cellular automaton with von Neumann neighborhoodis
defined asA = (Z2, V , f, v0), whereZ is a set of all integers,V is a finite set of states per cell (V �= ∅).
The mappingf : V 5 → V is called alocal function, that determines the state transition of a cell,
depending on the present states of the five neighborhood cells (i.e. center, upward, rightward, downward
and leftward cells). Thus atransition rulef (c, u, r, d, l) = c′ can be depicted as follows.

c

u

rl c′
d

The statev0(∈ V ) is aquiescentstate satisfyingf (v0, v0, v0, v0, v0) = v0. A configurationoverV is
a mappingc : Z2 → V , which assigns to each cell inA a certain state fromV.

Definition 8. LetA = (Z2, V , f, v0) be a CA with von Neumann neighborhood.
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Fig. 5. Two-dimensional cellular space with von Neumann neighborhood.

(i) Transition rules inA arerotation-symmetric, iff

∀(c, u, r, d, l) ∈ V, f (c, u, r, d, l) = f (c, l, u, r, d).

(ii) Transition rules inA arereflection-symmetric, iff

∀(c, u, r, d, l) ∈ V, f (c, u, r, d, l) = f (c, u, l, d, r) = f (c, d, r, u, l).

The rotation- and reflection-symmetric transition rules specify an isotropic cellular space. According
to the following definition[17] on the transitions of configurations in ACA, each cell in an ACA can
update its state at random times independent of other cells.

Definition 9. LetA = (Z2, V , f, v0) be a CA with von Neumann neighborhood, andConf (V ) denote
the set of all configurations overV, i.e.Conf (V ) = {c | c : Z2 → V }.
(i) If A is a synchronous CA, then the functionF : Conf (V ) → Conf (V ) defined as follows is called

aglobal functionof A.

∀(x, y) ∈ Z2, F (c)(x, y) = f (c(x, y), c(x, y + 1), c(x + 1, y), c(x, y − 1), c(x − 1, y))

(ii) If A is an asynchronous CA, then for anyci, cj ∈ Conf (V ) such that

∀ (x, y) ∈ Z2, ci(x, y) = cj (x, y) ∨
(cj (x, y) = f (ci(x, y), ci(x, y + 1), ci(x + 1, y), ci(x, y − 1), ci(x − 1, y)),

there exists a transition fromci to cj written by ci → cj . For anycs, ct ∈ Conf (V ), we denote

cs
+→ ct iff cs → ct or ∃c′

s ∈ Conf (V ), cs → c′
s

+→ ct .

Our 4-state ACA with von Neumann neighborhood is defined byA4 = (Z2, {0,1,2,3}, f4,0), which
uses rotation- and reflection-symmetric transition rules to describe the interactions between cells. We
use the notations , , or in the figures to represent a cell in the state 0, 1, 2 or 3, respectively.
Transition rules inA4 are given in Fig.6, with their rotation- and reflection-symmetric equivalents left
out. Combinations of states for which no transition rules are expressed in Fig.6 are supposed to give rise
to trivial transitions, i.e., transitions that do not change the states of cells.
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Fig. 6. List of transition rules inA4.

Fig. 7. A signal. The arrow indicates the direction in which the signal propagates.

3.1. Configurations representing signals

Signals are realized in the same way as in[12]. Fig. 7 gives the basic configuration of a signal.
A line between two modules in a DI-circuit is implemented as a path of quiescent cells. The signal in

Fig. 7 contains one cell in state 2 which is the core of the signal, and three cells in state 1. The signal
propagates into the direction in which a quiescent cell is adjacent to the core cell. The transition rules
1–12 in Fig.6 are used for signal transmission.
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(i) (ii) (iii) (iv) (v) (vi)

1 2 12 10 4,6

Fig. 8. Transmitting a signal on a path. The integers above each arrow denote the transition rules (or their rotation- and reflec-
tion-symmetric equivalents) in Fig.6 used to change the states of the cells in the configurations.
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Fig. 9. Garbage left on the path blocks the transmission of a signal until it is cleaned up, but cannot interfere with the signal.
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16 15
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Fig. 10. (a)An Entrance. For convenience, we assume that the cellular space out of this local configuration is filled with quiescent
cells; (b) entrance operating on an input signal.

The process of transmitting a signal on a path inA4 can be summarized as follows (see also[12]): (1)
A quiescent cell adjacent to a cell in state 2 is updated to state 3 as in Fig.8(ii), according to transition
rule 1. (2) Quiescent cells are updated to state 1 as in Fig.8(iii), according to rule 2. Since the CA is
asynchronous, the two cells to which this rule applies are not necessarily updated simultaneously. (3) A
state-3 cell is updated to state 2 as in Fig.8(iv), according to rule 13, thus extending the core of the signal
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Fig. 11. (a) An Exit. Cellsc1 andc2 may switch their states between 0 and 1 indefinitely and independently whenever transition
rule 18 or 20 is applied; (b) exit operating on a signal. The signal can only be output from the Exit when both cellsc1 andc2
revert to quiescent states like in (iii), otherwise it stays on the internal path of the Exit.

by one cell. (4) A state-2 cell is updated to state 1 as in Fig.8(v), according to rules 10–12, thus initiating
the withdrawal at the back of the signal. (5) State-1 cells are made quiescent as in Fig.8(vi), according
to rules 3–8, thus cleaning up garbage behind the signal.

Though due to the asynchronicity, a signal can have a wide variety of configurations during its
transmission on a path[12], it is reliable even when garbage is left on the path by other signals, for
example as in Fig.9. Once a signal is produced on a path by a module, it will eventually reach its
destination.
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(c)

Fig. 12. (a) A Turn Core; (b) Turn Core operating on a signal arriving on its lower internal path, and (c) cleaning up the garbage
after a signal at its right internal path has left the Exit to be attached to the Turn Core (see e.g. Fig.20).

3.2. Configurations representing modules

InA4, each primitive module in Fig.4can be further divided into several simple components: {Entrance,
Exit, Turn Core, Multiplexer, Merge Core, Fork Core, Join}. We first describe the configurations of these
components and their operations on signals.

3.2.1. Entrance
The Entrance in Fig.10(a) is used to receive signals coming from the outside. The transition rules

13–17 in Fig.6 are specified for an Entrance inA4. Some of these rules are also required for the operation
of other components.

A typical example of an Entrance operating on an input signal is given in Fig.10(b). Due to the
asynchronous nature of the CA, there are many different ways in which signals can be processed. To cope
with the wide variety of signal configurations, the Entrance waits for a signal having a regular core in
state 2 before accepting the signal, as in Fig.10(b(iii)). The tail of a signal reduces to cells in state 1, as in
Fig. 10(b(vii)), just outside the Entrance, and the tail will eventually be cleaned up once the signal enters
the internal path of the Entrance.



J. Lee et al. / Journal of Computer and System Sciences 70 (2005) 201–220 211

(i) (ii) (iii)

(iv)

(v)

(vi) (vii) (viii) (ix)

(iv)′

(x) (xi) (xii) (xiii)

(a)

(b)

+ 25 24 +

+ 23,27

+

18

34

20,34

30

29

31 32 33 1

+ 11,16 5,24 +

c3

c4

20

(c)

a

b

c

(d)

Fig. 13. (a) A Multiplexer; (b) multiplexer operating on a signal arriving on its lower internal path, and (c) cleaning up the
garbage; (d) multiplexer operating on a signal arriving on its right internal path, in which cellc3 in (iii) may switch its state
between 0 and 1 until cellc4 changes its state as in (iv) or (iv)′.

3.2.2. Exit
The Exit in Fig.11(a) is used to transfer signals arriving on its internal path of quiescent cells to the

outside path (see Fig.11(b)). The transition rules 18–20 in Fig.6 are required for the Exit.

3.2.3. Turn Core
The Turn Core in Fig.12(a) is used to transfer signals arriving on its internal patha to internal pathb

as in Fig.12(b). The transition rules 21–28 in Fig.6 are required for the Turn Core.
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Fig. 14. (a) A Merge Core. (b) Merge Core operating on a signal on its right internal path.
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+ 21 35 +

+ 26 23,27

(c)

Fig. 15. (a) A Fork Core; (b) Fork Core operating on a signal, and (c) cleaning up the garbage after two signals have left the
Exits to be attached to the Fork Core (see Fig.18).

3.2.4. Multiplexer
The Multiplexer in Fig.13(a) is used to transfer signals arriving on its internal patha to pathb, working

as a Turn Core (see Fig.13(b)). Moreover, it transmits signals coming from internal pathb to pathc as in
Fig. 13(d). The transition rules 29–34 in Fig.6 are required for the Multiplexer.

3.2.5. Merge Core
The Merge Core in Fig.14(a) is a slight modification of the Multiplexer in Fig.13(a) which is used to

redirect signals arriving on internal patha or b to pathc (see Fig.14(b)).

3.2.6. Fork Core
The Fork Core in Fig.15(a) duplicates a signal arriving on its internal patha into two signals each on

pathsb andc (see Fig.15(b)). The transition rule 35 in Fig.6 is required for the Fork Core.

3.2.7. Join
Fig. 16(a) gives the JOIN, in which signals arriving on two internal pathsa(b)〈c〉 andb(c)〈a〉 of the

JOIN give rise to a single signal on pathc(a)〈b〉, for example as in Fig.16(b). A single arrival on only
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Fig. 16. (a) A Join. Internal pathsa, b, c can be stretched freely; (b) join operating on a pair of signals arriving on its two internal
paths, and (c) cleaning up the garbage after the three signals in (vi) have left the Multiplexers to be attached to the Join (see
Fig. 19); (d) two pending signals.
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I

O

1 2II1 2I

O

Fig. 17. (a) The configuration of the MERGE module, and (b) its alternative symbol.

one of the paths of the JOIN remains pending until another signal arrives from one of the other paths as
in Fig. 16(d). The transition rules 36–39 in Fig.6 are required for the JOIN.

Using all the components described above, we can assemble the modules in Fig.4 in the cellular space
of A4. Fig. 17 gives the construction of the MERGE module by combining (or possibly overlapping)
components {Entrance, Exit, Turn Core, Merge Core}. Fig.18 gives the construction of the FORK
module from components {Entrance, Exit, Fork Core}. Also, Fig.19gives the construction of the TRIA
module from components {Entrance, Exit, Turn Core, Multiplexer, Join}, where the positions of the input
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Fig. 18. (a) The configuration of the FORK module, and (b) its symbol.
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Fig. 19. (a) The configuration of the TRIA module, and (b) its alternative symbol.

(a) (b)

Fig. 20. (a) The configuration of the LR-Turn module, and (b) its symbol.

and output paths differ from those of the TRIA module in Fig.4(c). Furthermore, a special module called
LR-Turn module constructed from {Entrance, Exit, Turn Core} is given in Fig.20, it can be used to
change the directions of signals being transferred on the paths to the left or right.

The operations of the MERGE, FORK, TRIA, and LR-Turn modules embedded inA4 must obey the
operating conditions in Section 2. In particular, according to Condition 7, a signal is expected to be
received by a module on one of its input paths, after the module completes the processing of all previous
input signals except for those that are still pending on different paths. In this case, although the garbage
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+ + + +

Fig. 21. Garbage inside the LR-Turn module delays the assimilation of the input signal as long as it remains, but cannot interfere
with the signal.

M

a

bc

(a) (b)

α

α

Fig. 22. (a) A delay-insensitive circuit scheme, and (b) its implementation inA4. The dashed circle� indicates a cross point of
two paths. A signal put initially on pathawill run around in the circuit indefinitely. The TRIA module with a pending signal on
its left input path toggles the signal on patha to pathb or c in turn.

left during the processing may still remain when the module starts to process a new input signal, it never
interferes with the module’s correct operation of the new signal (for example, see Fig.21).

3.3. Laying out circuits to simulate Turing machines

Assume a DI-circuit composed by a network of the primitive modules in Fig.4, in which each primitive
module is implemented in our asynchronous cellular automatonA4 by a local configuration of cells, with
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TT1 0
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TR1

TR2

TR3

Fig. 23. The DI-circuit scheme[20] for constructing the S module. The two signals pending on the right input paths of TRIA
modulesT R1 andT R3, respectively, represent the S module being in state 1, whereas signals pending on the left input paths of
T R1 andT R3, respectively, represent this circuit being in state 0.

their inputs and outputs connected to each other by paths of quiescent cells, over which signals are
transferred from a source module to a destination module. Once a signal reaches a destination module,
the module operates on it, which usually results in one or more signals on its output paths. Once a DI-
circuit is formed, computing tasks can be carried out by inputting signals to appropriate paths of the
circuit, giving rise to output signals on appropriate paths.

An example of a DI-circuit is given in Fig.22, along with its configuration inA4. Each primitive
module in Fig.22(b) is separated from the other modules by at least one quiescent cell, such that there is
no interference between the modules at the end of any path when they receive input signals and produce
output signals on the path.
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Fig. 24. The configuration of an S module in state 1.
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Fig. 25. The DI-circuit scheme for constructing the RE module, in which the four S modulesS1, S2, S3, andS4 in states 1, 1, 1,
and 1, respectively, represents the RE being in state 1, whereasS1, S2, S3, andS4 in states 0, 0, 0, and 0, respectively, represents
the RE being in state 0.

This circuit is designed such as to avoid the collisions of signals on crossing paths: Two signals cannot
arrive simultaneously at cross point� in Fig. 22. This is important, because two signal heads colliding at
a cross point of paths would cause the deadlock of both of the signals, asA4 has no transition rules to
cope with such a situation, and lacks a third dimension via which crossings can be made (see also[12]).

We proceed by implementing the S module in Fig.2and the RE in Fig.3 in our cellular space. The serial
operation enables the S module and the RE to be constructed by using {MERGE, FORK, TRIA} according
to Theorem1. Fig.23gives the construction of the S module, and Fig.24gives its implementation inA4.
Moreover, following the construction in Fig.25 along with the construction in Fig.23, the RE module
can be easily embedded in the cellular space ofA4. Because of its huge size, however, we do not show
the configuration of the RE in this paper.
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By implementing the RE module in Fig.25, we can lay out a circuit of MERGE, FORK, TRIA, and LR-
Turn modules inA4 such as to construct an arbitrary Turing machine, as in[15]. Since at most one signal
moves around between any REs in the circuit at any time, signals never collide on any path crossings in
the network of modules, and hence, this circuit embedded inA4 operates correctly as a simulated Turing
machine. Consequently, the following theorem holds.

Theorem 2. A4 is computationally universal.

4. Conclusion

In this paper, we presented a 4-state ACA with von Neumann neighborhood that uses rotation- and
reflection-symmetric transition rules to describe the interactions between cells.ThisACA model is capable
of universal computation, in the sense that it allows a particular DI-circuit laid out in its cellular space
to simulate a universal Turing machine. Since universality in computation is irrelevant to the efficiency
of delay-insensitive computation, even DI-circuits operating in a strictly serial mode suffice to carry out
universal computation[15].We thus further reduced the number of cell states in the computation-universal
ACA with von Neumann neighborhood as compared to the 5-state ACA model in[12].

We verified the correctness of our ACA model via a Java-based ACA simulator, by applying various
asynchronous updating methods (see e.g.[22]) to iterate cells, for example, the stochastic scheme in[4]
such that at every time step each cell assumes a certain probability to be updated. Moreover, since the
design of signals is indispensable for laying out logic circuits in ACA models[1], witness the process
of signal propagation in Fig.8, the 4 states seem the minimal number of cell states required for an ACA
with von Neumann neighborhood to be able to carry out universal computation. Further investigations,
however, are needed to confirm this conjecture.
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