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Abstract

We propose a new syndrome variety, which can be used to decode cyclic codes. We present also
a generalization to erasure and error decoding. We can exhibit a polynomial whose roots give the
error locations, once it has been specialized to a given syndrome. This polynomial has degreet in the
variable corresponding to the error locations and its coefficients are polynomials in the syndromes.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Coding theory is one of the main research areas where algebraic tools can be applied
to industrial problems. Cyclic codes are a class of error correcting codes which have been
widely studied in the last fifty years[2,16,19]. While it is relatively simple to study their
internal properties (distance, weight distribution, etc.) to some useful extent, no efficient
decoding algorithm is known.

BCH codes form an interesting sub-class of cyclic codes: their internal properties are
well known and very efficient decoding procedures exist[9].
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This is why BCH codes have been one of the “de facto” standards in industrial appli-
cations. Unfortunately, long BCH codes are known to have unsatisfactory properties (see
[14]). Cyclic codes are not known to suffer from this limitation. What we need for cyclic
codes is a good decoding procedure.

In some papers[3,6,7,15], the authors have proposed a decoding procedure for cyclic
codes which relies on the computation of the lexicographical Gröbner basis of a suitable
ideal. The corresponding variety is known as the CRHT syndrome variety. We are going to
show in this paper some related results:

(1) the CRHT syndrome variety has certain drawbacks and so we propose a modified
syndrome variety which contains exactly the solutions we are seeking,

(2) we show how our syndrome variety gives rise to an improved decoding algorithm,
(3) we extend our ideas to the simultaneous correction of erasures and errors (although

some special cases have been studied by others),
(4) we show that each cyclic code possesses a general error locator polynomial, i.e. a

polynomial which contains the error location once it has been specialized to a given
syndrome; moreover, we show the existence of similar polynomials for the case of
simultaneous correction of errors and erasures.

Probably, the existence of general error locator polynomials for each cyclic code is our
main result and we plan future work where these polynomials will be deeply studied. An
investigation on the complexity of their computation and on practical decoding via their
properties can be found in[4]. It is interesting to note that the existence of general error
locator polynomials is not guaranteed for a generic linear code, as shown in[22]. The
determination of classes of codes admitting general error locator polynomials is an open
and stimulating problem.

In [1], a variant of the CRHT variety has been used to get a heuristic decoding of some
binary cyclic codes, also with medium length (up ton=512), which turns out to be relatively
fast. It may be possible that similar methods can be adapted to our case, with possibly even
more effect.

There has been some research on exploiting a variant of the CRHT variety to get internal
properties of cyclic codes and their shortened codes (see[21,20]). Some of the techniques
employed there (e.g., the use of the polynomialp, Definition 6.1) have been adapted to our
case.

This paper is organized as follows:
In Section 2 notation and preliminaries are given. In Section 3 we illustrate the concept

of general error locator polynomials. In Section 4 we recall the CRHT syndrome variety
and we recall how knowledge of its structure can be used to decode cyclic codes. We study
the general structure of some ideals we are going to use in Section 5. We are particularly
interested in investigating how the structure of the underlying variety restricts the shape of
the Gröbner basis of the ideal. In Section 6, we propose a new syndrome variety and describe
the structure of the reduced Gröbner basis of the associated ideal; from this basis it is trivial
to obtain the general error locator polynomial of the cyclic code, showing its existence. We
extend our syndrome variety to the case when there are also erasures in Section 7. We can
prove a similar structure for the reduced Gröbner basis of the corresponding ideal and so we
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can exhibit for any cyclic code the general error locator polynomials of any type. In Section
8 we show how to use the general error locator polynomial in order to decode a cyclic
code, providing also a comparison to Caboara and Mora’s algorithm; we show also how to
use general locator polynomials of any type in order to decode simultaneously errors and
erasures; we provide some examples. We pose some remarks on complexity issues related
both to the computation of the general error locator polynomial and to its actual use in
Section 9. In Section 10, some possible further work is discussed. In appendix, we prove
a technical result which is needed to show the structure of the Gröbner basis of our ideals
(and this will open the path to the determination of the general error locator polynomials).

2. Notation and preliminaries

In this section we recall some basic facts about cyclic codes and Gröbner bases that will
be used in the remainder of the paper.

2.1. Cyclic codes

Let C be an[n, k, d] cyclic code on a fieldFq with (q, n) = 1. Let g be thegenerator
polynomialof the codeC, that is,g is a polynomial of degreer = n− k such that

C = {c(x) ∈ Fq [x] | c(x)= a(x)g(x) for somea(x) with deg(a(x))< k}.

We denote byF= Fqm the splitting field ofxn − 1 overFq and by� aprimitiventh root of
unity, i.e.� ∈ F is such that its powers generate all roots ofxn − 1:

xn − 1=
n−1∏
i=0

(x − �i ).

As g dividesxn − 1, its roots are all distinct and form a subset of the roots ofxn − 1.
Traditionally we defineSC to be the set

SC = {i | g(�i )= 0},

which is called thecomplete defining setof C. AsSC is partitioned into cyclotomic classes,
there are some subsetsS of SC , any of them sufficient to specify the code unambiguously
and any suchS is called adefining set.

It is known that we can viewC as theFq -kernel of the parity-check matrixH (with entries
in F):

H =




1 �i1 �2i1 · · · �(n−1)i1

1 �i2 �2i2 · · · �(n−1)i2
...

...
...

. . .
...

1 �ir �2ir · · · �(n−1)ir



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We can consider the error vectoreas a polynomial:

e(x)=
�∑
l=1

alx
kl ∈ Fq [x],

where the weight� satisfies�� t=[(d−1)/2]and the magnitudes and locations of this error
pattern are, respectively,{a1, . . . , a�} and{k1, . . . , k�}, with ai ∈ Fq and 0�k1<k2< · · ·
<k��n− 1.

The locations of the error pattern are coded within theerror locator polynomial:

L(z)=
�∏
l=1

(z− �kl ).

Remark 2.1. Traditionally, the reciprocal ofL(z), with roots the inverses(�kl )−1, is used
as the error locator polynomial. This change of notation is convenient to us.

Let c= (c0, . . . , cn−1), v = (v0, . . . , vn−1) ande= (e0, . . . , en−1) be, respectively, the
transmitted codeword, the received vector and the error vector. If we apply the parity-check
matrixH to v, we get

HvT =H(cT + eT)=HcT +HeT = 0+HeT = sT

where ther-vectors= (s1, . . . , sr ) is called thesyndrome vectorassociated tov (and its
entriessj are calledsyndromes).

The syndromes depend only on the error pattern and two syndromes corresponding to
two different errors with weight�� t are necessarily distinct. If no errors occurred in the
transmission thens=0; otherwise ife= (0, . . . ,0︸ ︷︷ ︸

k1−1

, a1↑
k1

,0, . . . ,0, al↑
kl

,0, . . . ,0, a�
↑
k�

,0, . . . ,0︸ ︷︷ ︸
n−1−k�

),

we have

sj =HjvT =
n−1∑
l̃=0

v
l̃
(�ij )l̃ =HjeT =

�∑
l=1

al(�ij )kl , j = 1, . . . , r.

While an error occurs when a symbol in a transmitted word is changed, anerasure
occurs when the decoder cannot understand a symbol at a certain position (but the position
is known). For example, if the binary block(1,1,1,1) suffers from an error in the last
component, it becomes the block(1,1,1,0). If the same block,(1,1,1,1), suffers from
an erasure in the last component, it becomes(1,1,1, x), where ‘x’ means that the value is
unknown.

Let d be the distance ofC. We know that the correction capability of the code ist =
[1/2(d − 1)]; in case there are also some erasures, denoting by� the numbers of erasures
and by� the numbers of errors that the code can simultaneously correct, we have

2�+ �<d.

We denote the erasure locations by{h1, . . . , h�}, 0�h1� · · · �h��n− 1, and retain our
notation for errors. Note that{h1, . . . , h�} ∩ {k1, . . . , k�} = ∅.
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We define:

1. the vectorv = (v0, . . . , vn−1) s.t.∀i we have

vi =
{
vi if i �= hj , ∀1�j��,
0 otherwise,

2. the vectore= (e0, . . . , en−1) s.t.

ei =
{
ei if i �= hj ,∀ 1�j��,
0 otherwise,

3. the vectorc= (c0, . . . , cn−1) s.t.

ci =
{
ci if i = hj , ∀1�j��,
0 otherwise.

Remark 2.2. While v andemay have non-zero components only in the coordinates dif-
ferent from erasure positions,c may have non-zero components only in the coordinates
corresponding to erasure positions.

4. thetruncated syndromes=Hv:

sj =
n−1∑
l̃=0

v
l̃
(�ij )l̃ =

∑
l̃∈{0,...,n−1}\{h1,...,h�}

v
l̃
(�ij )l̃ , j = 1, . . . , r.

Remark 2.3. Note thatc= v − e+ c, becausev − e is the transmitted word restricted to
the components{0, . . . , n− 1}\{h1, . . . , h�} andc is the transmitted word restricted to the
other components{h1, . . . , h�}.

We haveH(v − e+ c)=Hc= 0 and, in case of successful decoding, we can write

sj −
�∑
l=1

al(�ij )kl +
�∑
l=1

chl (�
ij )hl = 0, 1�j�r,

i.e.

sj −
�∑
l=1

al(�ij )kl +
�∑
l=1

chl (�
ij )hl = 0, 1�j�r. (1)

2.2. Polynomials

LetK[T ] =K[T1, . . . , Tn] be a polynomial ring with coefficients in the fieldK.
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Definition 2.4. For any term-ordering> onK[T ] and any polynomialf in K[T ], f =∑
� a�T

�, with deg(f )=max>{� ∈ N | a� �= 0}, we define:

Lt(f )= T deg(f ), the leading term off.

If we consider the lexicographical ordering such thatT1> · · ·>Tn, each elementf ∈
K[T1, . . . , Tn] can be viewed uniquely as a univariate polynomial in the variableT1 with
coefficients in the polynomial ringK[T2, . . . , Tn]:

f = bh(T2, . . . , Tn)T
h
1 + bh−1(T2, . . . , Tn)T

h−1
1 + · · · + b0(T2, . . . , Tn),

where we will denote byLp(f ) = bh(T2, . . . , Tn) the (T1) leading polynomialand by
Tp(f )= b0(T2, . . . , Tn) the(T1) trailing polynomialof f .

Let I be an ideal inK[T1, . . . , Tn]. We denote byK the algebraic closure ofK. Let
S ⊂ Kn. We denote by

V(I )= {(�1, . . . , �n) ∈ Kn | f (�1, . . . , �n)= 0, ∀f ∈ I },
the set of all the roots ofI and byI(S) the ideal formed by the polynomials inK[T1, . . . , Tn]
vanishing onS.

Definition 2.5. Let I be an ideal inK[T1, . . . , Tn]. The lth elimination idealIl is the ideal
of K[Tl+1, . . . , Tn] defined byIl = I ∩K[Tl+1, . . . , Tn].

Let �, � andr be positive natural numbers.
Let I ⊂ Fq [X,W,Z,U, Y ] be an ideal, withX = (x1, . . . , xr ), W = (w1, . . . , w�),

Z = (z�, . . . , z1), U = (u�, . . . , u1), Y = (y1, . . . , y�). LetG be a subset ofI . We will use
the following notation:

PX = Fq [X], IX = I ∩PX, GX =G ∩PX,

PXW = Fq [X,W ]\Fq [X], IXW = I ∩PXW ,GXW =G ∩PXW ,

PXWZ = Fq [X,W,Z]\Fq [X,W ], IXWZ = I ∩PXWZ,GXWZ =G ∩PXWZ,

PXWZU = Fq [X,W,Z,U ]\Fq [X,W,Z], IXWZU = I ∩PXWZU ,

GXWZU =G ∩PXWZU ,

PXWZUY = Fq [X,W,Z,U, Y ]\Fq [X,W,Z,U ], IXWZUY = I ∩PXWZUY ,

GXWZUY =G ∩PXWZUY .

Observe thatI = IX � IXW � IXWZ � IXWZU � IXWZUY and thatG = GX � GXW �
GXWZ �GXWZU �GXWZUY (� denotes disjoint union).

Remark 2.6. We extend our notation to the case� = 0, meaning that the variable setsW
andU are void, e.g.PXWZ =PXZ = Fq [X,Z]\Fq [X].

When convenient, we enclose the ideal name within brackets, e.g.(I )X = IX.

AssumeG is a Gröbner basis for an idealI ⊂ K[S,Z, T ], S = (s1, . . . , sH ), Z =
(z1, . . . , zL), T = (t1, . . . , tM)w.r.t. a block order withS <Z<T and with theZ-variables



E. Orsini, M. Sala / Journal of Pure and Applied Algebra 200 (2005) 191–226 197

lexicographically ordered byz1>z2> · · ·>zL. Then the elements ofG∩(K[S,Z]\K[S])
can be collected in blocks{Gi}1� i�L:

G1 = {g1,1(S, zL, . . . , z1), . . . , g1,l1(S, zL, . . . , z1)},
G2 = {g2,1(S, zL, . . . , z2), . . . , g2,l2(S, zL, . . . , z2)},

...

GL = {gL,1(S, zL), . . . , gL,lL(S, zL)},
in such a way that:

• for eachi,Gi ⊂ K[S, zL, . . . , zi+1][zi]\K[S, zL, . . . , zi+1],
• the ideal generated by

⊔
j>iGj is theith elimination idealIi .

Clearly eachGi , 1� i�L, can be decomposed into blocks of polynomials according to
their degree with respect to the variablezi :

Gi =
�i⋃

�=1

Gi�.

In this way, ifg ∈ Gi�, we have

• g ∈ K[S, zL, . . . , zi+1][zi]\K[S, zL, . . . , zi+1],
• degzi (g)= �, i.e.g = az�i + · · · anda = Lp(g) ∈ K[S, zL, . . . , zi+1].
Let Ni� be the number of elements ofGi�. We name the elements of the setGi� =
{gi�j ,1�j�Ni�} after their order:

h< j ⇔ Lt(gi�h)<Lt(gi�j ).

Remark 2.7. We can summarize our description.
Given any two polynomialsglDh ∈ GlD andgi�j ∈ Gi�, then

glDh <gi�j ⇔ Lt(glDh)<Lt(gi�j )⇔
{
l > i or
l = i, D < � or
l = i, D = �, h< j.

(2)

3. General error locator polynomial

LetC be an[n, k, d] linear code overFq andt=[(d−1)/2] its correction capability. Let
� and� be two natural numbers such that 2�+ �<d, so thatC can correct simultaneously�
erasures and� errors. We assume the condition(n, q)= 1, which is helpful in defining the
notion oferror location(for a discussion see Section 10).

LetH be one of its parity check matrices. We restrictH to lie in F, the splitting field of
xn − 1 overFq (for a discussion see Section 10). So the syndromes will lie in(F)r (with
r�n − k) and they will form a vector space of dimension(n − k) over Fq . Let � be a
primitive nth root of unity inF.
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Definition 3.1. LetLC a polynomial inFq [X, z], whereX = (x1, . . . , xr ). ThenLC is a
general error locator polynomialof C if

(1) LC(X, z)= zt + at−1z
t−1+ · · · + a0, with aj ∈ Fq [X], 0�j� t − 1, that is,LC is a

polynomial with degreet with respect to the variablez and its coefficients are inFq [X];
(2) given a syndromes= (s1, . . . , sr ) ∈ (F)n−k, corresponding to an error of weight�� t

and error locations{k1, . . . , k�}, if we evaluate theX variables ins, then the roots of
LC(s, z) are exactly{�k1, . . . , �k� ,0, . . . ,0︸ ︷︷ ︸

t−�

}.

Given a generic linear codeC, the existence of a polynomialLC is not guaranteed and
there are examples of linear codes not admittingLC (see[22]).

Actually, general error locator polynomials are known only for very simple codes and
we recall the case of the binary narrow-sense primitive BCH witht = 1 in the following
example.

Example 3.2. Letm�2 be an integer. We can consider the binary cyclic codeB, such that
n=2m−1 andSB ={1,2}. The BCH bound ensures that 3= ��d. It is a well-known fact
that in this cased = �= 3 (as 3= 22 − 1). SoB can correct 1 error.

For this code the following equation holds (Section 4)

z1 = x1

wherez1 represents the location of the error (or 0, if no error occurred) andx1 is the first
syndrome. So we have a polynomial in thez variable

P(z)= z− x1

with coefficients in the syndromes, leading coefficient 1 and such that its root is:

• either the location of the error, if one error occurred,
• or 0, if no error occurred,

which is exactly what we want from a general error locator polynomial forB, and so
LB = P(z).

One of our main results is Theorem 6.9, which states
Every cyclic code admits a general error locator polynomial
We can extend Definition 3.1 to the case when there are also erasures.

Definition 3.3. LetL a polynomial inFq [X,W, z], X= (x1, . . . , xr ) andW = (w�, . . . ,

w1), where� is the number of erasures that occurred. ThenL is ageneral error locator
polynomial of type� of C if and only if

(1) L(X,W, z)= z� + a�−1z
�−1+ · · · + a0, with aj ∈ Fq [X,W ], 0�j��− 1, that isL

is a polynomial with degree� in the variablez and coefficients inFq [X,W ];
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(2) for any syndromes=(s1, . . . , sr ) and any erasuresw=(w�, . . . , w1), corresponding to
an error of weight�� t and error locations{k1, . . . , k�}, if we evaluate theX variables
in sand theW variables inw, then the roots ofL(s,w, z) are{�k1, . . . , �k� ,0, . . . ,0︸ ︷︷ ︸

�−�

}.

If suchL exists for a given codeC, then we name the polynomialL�
C .

To be consistent with our notation, we refer toLC also as to ageneral locator polynomial
of type0, where clearlyLC =L0

C .
For a codeC, the possession of a general locator polynomialL�

C of type� for all 0��<d
is clearly a stronger condition then the possession of a general error locator polynomialLC ,
but in Section 7 we prove one of our main results, Theorem 7.7, which states

Every cyclic code admits a general locator polynomial of
type �, for 0��<d.

4. CRHT syndrome variety

In [6] Chen et al. proposed an algorithm for error decoding of cyclic codes starting from
the Gröbner basis of a suitable ideal. In this section we describe the structure of the ideal and
of the underlying variety, using the improvements due to Caboara and Mora[3]. Although
no original results are presented here, we give some insights in Remark 4.2 and Remark
4.3, which will be the starting point of our subsequent construction.

Let C be an[n, k, d] cyclic code with parameters following our previous notation (e.g.
d is the code distance).

Definition 4.1. We callcorrectable syndromesthe syndrome vectorss∈ Fr corresponding
to errors with weight�� t . And we denote by�C ⊂ Fr the set of all correctable syndromes
associated to the codeC.

Suppose there are exactly� errors. We want to express the solutions of the equations:

�∑
l=1

al(�ij )kl − sj = 0, 1�j�r, (3)

where{al} and{kl} are unknown, as points in a variety defined by multivariate polynomials.
The solutions of (3) are of the form

(k1, . . . , k�, a1, . . . , a�)

and are in{0, . . . , n−1}�×F
�
q . Observe that this solution set is not naturally endowed with

any algebraic structure. Unfortunately we do not know�, we know only that�� t . For this
reason we consider an equation:

t∑
l=1

al(�ij )kl − sj = 0, 1�j�r, (4)
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such that it is satisfied by the solutions of all equations of kind (3), for all 0��� t . To ensure
this, we choose a symbolk and from now on we set by definition that�k=0,∀� ∈ F.Using
this notation, we can view the solutions of (4) as lying in the space{0, . . . , n− 1, k}t ×Ftq .
Again, this solutions set is not naturally endowed with any algebraic structure, it is just
a set.

If we take a solution of (3), say(k1, . . . , k�, a1, . . . , a�), we can extend it to a solution
of (4) as follows:

(k1, . . . , k�, a1, . . . , a�) �−→ (k1, . . . , k�, k, . . . , k︸ ︷︷ ︸
t−�

, a1, . . . , a�, ∗, . . . , ∗︸ ︷︷ ︸
t−�

)

where∗ stands for any non-zero element ofFq . This way, to any solutions of (3), we can
associate(q−1)t solutions of (4). These extended solutions will be calleddirect extensions.

Remark 4.2. There are some solutions of (4), which come from solutions of (3), but
which are not their direct extensions. For example, if there aret − 2 errors (� = t −
2) and (k1, . . . , k�, a1, . . . , a�) is a solution of (3), then, for anya ∈ Fq and b ∈ F,
(k1, . . . , k�, b, b, a1, . . . , a�, a, −a) is a solution of (4), asa(�ij )b − a(�ij )b = 0.

We introduce the variablesX= (x1, . . . , xr ),Z= (zt , . . . , z1) andY = (y1, . . . , yt ), with
the following meaning:

xj stands for the syndromesj , 1�j�r,

zl stands for

{
the error location�kl if 1� l��,
0 if �< l� t,

yl stands for

{
the error magnitudeal if 1� l��,
any non-zero element ofF if �< l� t.

Using this notation, we can now rewrite the equations (3) and (4) in terms of the variables
X, Z andY :

f̃j :
�∑
l=1

ylz
ij
l − xj = 0, 1�j�r, (5)

fj :
t∑
l=1

ylz
ij
l − xj = 0, 1�j�r. (6)

We can add other equations to specify the range of values that can be assigned to our
variables:

	j : xq
m

j − xj = 0, 1�j�r, sincesj ∈ F;

i : zn+1

i − zi = 0, 1� i� t, since(�ij )kl are eithernth roots of unity or zero;
�i : yq−1

i − 1= 0, 1� i� t, sinceal ∈ Fq\{0};
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Then we obtain the following polynomial equation system:

FC = {fj ,	j , 
i , �i : 1�j�r,1� i� t} ⊂ Fq [X,Z, Y ].
The idealIC generated byFC is theCRHT-syndrome idealassociated to the codeC and it
is easy to see that it is a zero-dimensional ideal. The varietyV (FC) defined byFC is the
CRHT-syndrome varietyand clearly we haveV (FC)= V (IC).

Remark 4.3. For every given correctable syndromes ∈ �C , there are some points in
V (FC) that determine the error locations and the error values, but inV (FC) there are also
other points that do not correspond directly to error vectors. In fact, there are points of type

(z1, . . . , z�,0, . . . ,0︸ ︷︷ ︸
t−�

, y1, . . . , y�, y1, . . . , yt−�),

with yj an arbitrary element inFq for any j , that clearly correspond to direct extensions
of (z1, . . . , z�, y1, . . . , y�) and these points are the points considered in[3,6,15]. But, if
�� t − 2, there are also some points inV (FC) not corresponding to direct extensions:

(z1, . . . , z�, z, z,0, . . . ,0︸ ︷︷ ︸
t−(�+2)

, y1, . . . , y�, y1, . . . , yt−�),

with z anynth root of unity and the other components as above.

Remark 4.4. The role of the polynomials	j , 
i , �i is noteworthy. They remove all the
roots that are in algebraic extensions outsideF and moreover they make the other roots
simple. That is,IC is a radical ideal and

V (FC) ⊂ Fr × Ft × (Fq)t .

If we calculate the Gröbner basisGC of the idealIC , w.r.t. the lexicographical order
induced by

x1<x2< · · ·<xr < zt < · · ·<z1<y1< · · ·<yt ,
the Gianni–Kalkbrenner Gröbner Shape Theorem (cf.[12,13]) gives us information on the
structure ofGC , as proved in[3]:

Theorem 4.5(Caboara and Mora[3] ). LetG be the reduced Gröbner basis of the CRHT-
syndrome idealIC w.r.t. the lexicographical order induced by

x1<x2< · · ·<xr < zt < · · ·<z1<y1< · · ·<yt .
ThenG has the following structure:

1. G=GX�GXZ�GXZY withGXZ=⋃t
i=1Gi ,Gi ⊂ PX[zt , . . . , zi+1][zi]\PX[zt , . . . , zi+1]

and

Gi =
�i⋃

�=1

Gi�.
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2. for eachi, if we evaluate the polynomials ofGi in (s1, . . . , sr ,0, . . . ,0︸ ︷︷ ︸
t−i

), let gi ∈ Gi�
be the first polynomial s.t.

Lp(gi)(s1, . . . , sr ,0, . . . ,0) �= 0

i.e.

• Lp(g)(s1, . . . , sr ,0, . . . ,0)= 0, ∀g ∈ GiD, D< �;
• for eachg ∈ Gi� such thatLt(g)<Lt(gi) (cf. Remark(2.7)) we have

Lp(g)(s1, . . . , sr ,0, . . . ,0)= 0.

2. Then:

(2.1) g(s1, . . . , sr , zi,0, . . . ,0) ≡ 0, ∀g ∈ GiD, Lt(g)<Lt(gi);
(2.2) gi(s1, . . . , sr , zi,0, . . . ,0) /≡ 0;
(2.3) for eachg̃ ∈ GiD s.t.Lt(gi)<Lt(g̃)

gi(s1, . . . , sr , zi,0, . . . ,0) | g̃(s1, . . . , sr , zi,0, . . . ,0);
3. if we suppose that there are at most�� t errors, we could have the following cases:

(3.1) either

Lp(g)(s1, . . . , sr ,0, . . . ,0)= 0 ∀g ∈ G��,

then:

(a) g(s1, . . . , sr , z�,0, . . . ,0) ≡ 0, ∀g ∈ G��;
(b) there are at most�− 1 errors;

(3.2) or

∃g ∈ G�� s.t. Lp(g)(s1, . . . , sr ,0, . . . ,0) �= 0,

then if:

Tp(g)(s1, . . . , sr ,0, . . . ,0) �= 0 :
(c) there are� errors;
(d) L(z)= g(s1, . . . , sr ,0, . . . ,0, z);

else

(e) there are at most�− 1 errors.

Proof. For a proof we refer to[3,12,13,15]. �

From this theorem it is clear how to proceed to get the error locations from a given
correctable syndromes. It is enough to evaluate the polynomials ofG�� in s for each�,
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until we find one which does not vanish. This will be the error locator polynomial. The
exact algorithm by Caboara and Mora is reported in Section 6, as Algorithm 8.1.

5. On the structure of some ideals

In this section we state and prove some results which will be useful in later sections. The
proof of one of our lemmas is very technical and can be found in the appendix. Our aim is to
describe the structure of the reduced Gröbner basis for a special class of zero-dimensional
ideals. Independently, the authors of[11] were investigating similar settings.

Lemma 5.1. LetI be a radical0-dimensional ideal inK[S′, Z′, T ], withS′={s1, . . . , sN },
T ={t1, . . . , tM},Z′ = {zt , . . . , z1} and letG be a reduced Gröbner basis ofI w.r.t. a block
order s.t.S′<Z′<T and a lexicographical order on theZ′: zt < · · ·<z1.

If V(I ) ⊂ KN+t+M andV(IS′)=⊔t
j=1�j ⊂ KN , with

�j = {(s̄1, . . . , s̄N ) ∈V(IS′) | there are exactlyj values{z̄(1)t , . . . , z̄(j)t },
s.t. (s̄1, . . . , s̄N , z̄

(i)
t ) ∈V(IS′∪{zt }),1� i�j},

�j �= ∅,1�j� t,

then we have:

• Gt =⊔�
�=1Gt,�, with �� t ,

• Gt,� �= ∅, for 1��� t .

Proof. Recall thatGt =G ∩K[S′, zt ]\K[S′].
If s= (s̄1, . . . , s̄N ) ∈ �1, our hypotheses say that exactly one valuez(1)t exists, with

(s̄1, . . . , s̄N , z
(1)
t ) ∈V(IS′∪{zt }), that is the partial solutions∈V(IS′) can be extended to a

root inV(IS′∪{zt })only by appendingz(1)t .Then at least one polynomialg1(s1, . . . , sN , zt ) ∈
Gt exists s.t.degzt (g1) = 1 andg1(s̄1, . . . , s̄N , z

(1)
t ) = 0 and this polynomial will be the

generator of the image�1(IS′∪{zt }), where�1 is the specializationf �→ f (s, zt ) (see[12]).
Now letj be any number 1�j� t . If s= (s̄1, . . . , s̄N ) ∈ �j , our hypotheses say that ex-

actlyj valuesz(1)t , . . . , z
(j)
t exist, such that thej points(s̄1, . . . , s̄N , z

(1)
t ), . . . , (s̄1, . . . , s̄N ,

z
(j)
t ) ∈ V(IS′∪{zt }), that is the partial solutions ∈ �j can be extended only by appending

z
(1)
t , . . . , z

(j)
t . Then at least one polynomialg4(s1, . . . , sN , zt ) ∈ Gt exists s.t.degzt (g4)=j ,

g4(s̄1, . . . , s̄N , z
(1)
t )=0, . . . , g4(s̄1, . . . , s̄N , z

(j)
t )=0. Again, the polynomialg4 will be the

generator of the image�j (IS′∪{zt }), where�j is the specializationf �→ f (s, zt ) (see[12]).
�

Lemma 5.1 guarantees that the setsGj are non-empty for 1�j� t , but this lemma says
nothing about theGj with j > t .

In the appendix, we prove the following lemma:
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Lemma 5.2. LetJ be a0-dimensional radical ideal in a polynomial ringK[V1, . . . , VN],
whereK is any field and2�N. Lett be a natural number1�t. LetG be the lexicographic
Gröbner basis ofJ (with orderV1< · · ·<VN) and letD denote the maximal degree in
VN possessed by the polynomials inG. Let S be any set ofj points inKN of the type
S={(s1, . . . , sN−1, z1), . . . , (s1, . . . , sN−1, zj)}, where(s1, . . . , sN−1) does not belong
to the varietyV(J ∩ K[V1, . . . , VN−1]) and j�t. Denote byJ ′ the ideal formed by all
polynomials inJ vanishing onS. LetG′ be the lexicographic Gröbner basis ofJ ′ and let
D′ denote the maximal degree inVN possessed by the polynomials inG′. Then

• J ′ is again radical,
• if D�t, thenD′�t.

Using previous lemma, we now specialize Lemma 5.1 to a case which is more interesting
to us.

Lemma 5.3. Let us consider the same notation and the same hypotheses adopted in Lemma
5.1. Let �̄j be the subset ofV(IS′∪{zt }) formed by points of type{(s̄, z̄(i)t )}, with s̄ ∈ �j
and1� i�j . Let Ī be the ideal formed by all polynomials inK[S′, zt ] vanishing on�̄1.
Let Ḡ be the Gröbner basis of̄I andD̄ denote the maximal degree inzt possessed by the
polynomials inḠ. SupposeD̄� t . Then

�= t

Proof. If t = 1 we have by definition̄I = I , so thatD̄ = � and hencet��= D̄� t .
We have to show the caset�2.
Let s̄ be a point in�2 and let(s̄, z1), (s̄, z2) be its two extensions toV(IS′∪{zt }). We now

apply Lemma 5.2 using:

• K[V1, . . . , VN] =K[S′, zt ], J = Ī ,
• S={(s̄, z1), (s̄, z2)} (and henceJ ′ will be formed by the polynomials in̄I which vanish

on the two points{(s̄, z1), (s̄, z2)}),
• t= t , j = 2.

The radicality ofI implies the radicality of all its elimination ideals and soIS′∪{zt } =
I(

⊔t
j=1�̄j ), showingI(�̄1)= Ī ⊃ I . The hypotheses of Lemma 5.2 are clearly satisfied

as the ideal̄I is obviously radical andD= D̄� t . But then Lemma 5.2 says thatJ ′ is again
radical and that in its Gröbner basis the degree inzt is again bounded byt .

We can repeat this argument adding another pair of points of type(s̄1, . . . , s̄N , z
(1)
t ),

(s̄1, . . . , s̄N , z
(2)
t ), where(s̄1, . . . , s̄N ) ∈ �2 and hence we can show that the ideal we obtain

will be again radical and with our bound on the degree. We can proceed until we have added
all points of that type. As a result we have that the same properties are shared by the ideal
I[2], that is formed by the polynomials ofIS′∪{zt } vanishing on the set̄�1 � �̄2.

If t = 2 we have finished. Otherwise let us callI[h] the ideal formed by the polynomials
of IS′∪{zt } vanishing on the set

⊔h
j=1�̄j , where 3�h� t . We want to prove by induction on
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h thatI[h] possesses the following properties:

• I[h] is radical,
• in its Gröbner basis the degree inzt is bounded byt ,

for all h s.t. 1�h� t . These properties are satisfied byI[1] = Ī andI[2]. We assume then
thatI[h−1] satisfies our properties and we have to prove that alsoI[h] does (with 3�h� t).
We again apply Lemma 5.2, choosingh points (s̄, z(1)t ), . . . , (s̄, z

(h)
t ) in V(IS′∪{zt }) s.t.

s̄ ∈ �h, and considering

• K[V1, . . . , VN] =K[S′, zt ], J = I[h−1],
• S={(s̄, z(1)t ), . . . , (s̄, z(h)t )} (and henceJ ′ will be formed by the polynomials inI[h−1]

which vanish on theh points inS),
• t= t , j= h.

Once again, the hypotheses of Lemma 5.2 are clearly satisfied and soJ ′ is radical and in
its Gröbner basis the degree inzt is bounded byt . As before we can repeat the argument
adding suitableh-tuples of points, oneh-tuple at a time, and as soon as we have considered
all points in�h we will have that our properties are shared by the ideal formed by the
polynomial ofI[h−1] vanishing on the set̄�h, i.e. exactly by the idealI[h] = IS′∪{zt }. �

Theorem 5.4. Let I be a radical0-dimensional ideal inK[S,A, T ], S = {s1, . . . , sN },
T ={t1, . . . , tM},A={al, . . . , a1} andG a reduced Gröbner basis ofI w.r.t. a block order
s.t.S <A<T and a lexicographical order on theA: al < · · ·<a1. SupposeI is such that

(1) V(IS)=⊔l
j=1�

(l)
j , with

�(l)j = {(s1, . . . , sN ) ∈V(IS) | there are exactlyj values{ā(1)l , . . . , ā(j)l },
s.t.(s1, . . . , sN , ā

(i)
l ) ∈V(IS∪{al}),1� i�j};

(2) V(IS∪{al})=
⊔l−1
j=1�

(l−1)
j , with

�(l−1)
j = {(s1, . . . , sN , al) ∈V(IS∪{al}) | there are exactlyj values

{ā(1)l−1, . . . , ā
(j)
l−1}, s.t.(s1, . . . , sN , al, ā(i)l−1) ∈V(IS∪{al ,al−1}),

1� i�j};
(3) V(IS∪{al ,...,ah})=

⊔h−1
j=1�

(h−1)
j , 2�h� l − 1 with

�(h−1)
j = {(s1, . . . , sN , al, . . . , ah) ∈V(IS∪{al ,...,ah}) | ∃ exactlyj values

{ā(1)h−1, . . . , ā
(j)
h−1}, s.t.(s1, . . . , sN , al, . . . , ah, ā(i)h−1)

∈V(IS∪{al ,...,ah−1}),1� i�j};
(4) the Gröbner basis of the idealI(�(h−1)

1 ) ⊂ K[S, {al, . . . , ah}] does not contain poly-
nomials with degree higher thanh w.r.t. the variableah.
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Then we have, for 1� i� l,

Gi =
i⊔

�=1

Gi�,

withGi� �= ∅, 1��� i and1� i� l.

Proof.

• In the casei= t= l, our statement is just a rephrasing of Lemma 5.3, withS′ =S,Z′ =A
and obviously�j = �(t)j .

• In the other cases, we can apply Lemma 5.3, choosing the suitable variable sets. To be
more precise, for any 1� i� l − 1, we apply Lemma 5.3 settingS′ = S ∪ {at , . . . , ai},
Z′ = {ai+1, . . . , a1} and�j = �(i)j . We clearly have by definition̄I = I(�(h−1)

1 ) ⊂
K[S, {al, . . . , ah}]. �

Theorem 5.5. Under the hypotheses of Theorem5.4and with its notation, we have:

(1) ∀1� i� l,Gii = {gii1}, i.e. only one polynomial exists inGi with degreei w.r.t. ai ;
(2) ∀1� i� l, Lp(gii1)= 1,Lt(gii1)= aii .

Proof. SinceI is a 0-dimensional ideal andG is a Gröbner basis ofI , then for all 1� i� l,
there ismi ∈ N such thatamii = LT (gi) for somegi ∈ G. We claim that, for each
1� i� l, gi ∈ Gi . In fact, if i = l and if we suppose thatgl ∈ Gi , with i < l, thengl ∈
K[S, al, . . . , ai+1][ai]\K[S, al, . . . , ai+1] and there would be ingl variablesal−1, . . . , ai
greater thanal becauseal < al−1< · · ·<ai . But thenLt(gl) �= a

ml
l and this contradicts

our hypothesis. So we deduce thatgl ∈ Gl . The same argument can be used to prove
thatgi ∈ Gi, ∀1� i < l. Then at least one polynomialgi exists inGi , 1� i� l, such that
Lt(gi)= amii .

Due to Theorem 5.4, eachGi does not contain polynomials with degree higher thani, but
it does contain polynomials with degree inai exactlyi. Somi� i, ∀i� l. We want to show
thatgi is the polynomial with the greatest leading term inGi and that it is the only one with
degreei in ai . Suppose on the contrary that for somei there is a polynomialg′i ∈ Gi s.t.
degai (g

′
i )=mi + 
, with 
�0. Let the leading term ofg′i beLami+


i , withL a monomial in
K[S, al, . . . , ai−1]. But then it is obvious that the leading termamii of gi divides the leading
term ofg′i , sinceamii |ami+


i . So we have two polynomials in a reduced Gröbner basis with
the leading term of one dividing the leading term of the other one, which is impossible.�

6. A new syndrome variety

LetC be an[n, k, d] cyclic code.
The CRHT-variety described in Section 4 defines a larger variety than that corresponding

to all possible correctable syndromes and, as we have already pointed out in Remark 4.3,
there are points inV(FC) that do not determine error vectors. If we denote byVC
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the variety in(F)r × (F)t × (Fq)t corresponding to all error vectors with weight�� t ,
thenVC ⊂ V (FC). In order to restrict the varietyV (FC) to VC , we have to add new
polynomials to the polynomial systemF.

Definition 6.1. Let n ∈ N be an integer andFq [x, y] a polynomial ring with(q, n) = 1.
We denote byp(n, x, y) ∈ Fq [x, y] the following polynomial:

p(n, x, y)= x
n − yn
x − y =

n∑
i=0

xiyn−1−i .

Lemma 6.2. Letn ∈ N be an integer with(q, n)= 1. Let I the ideal inFq [x, y]
I = 〈{xn − 1, yn − 1, p(n, x, y)}〉

LetS be the set of points inF2 s.t.

(x, y) ∈ S ⇔ {xn = 1, yn = 1, x �= y}.
ThenV(I )= S.

Proof. Let x, y be two points inS, then, asxn=1 andyn=1,xn− yn=0. Butxn− yn=
(x + y) p(n, x, y) andx �= y, sop(n, x, y)= 0. That is,S ⊂V(I ).

Let x, y be two points outsideS. If xn − 1 �= 0, thenx does not satisfy one polynomial
in I . The same argument works foryn−1. So if(x, y) is not inS and yet it is inI , we must
havex = y. But then:

p(n, x, y)= p(n, x, x)=
n−1∑
i=0

xixn−1−i = nxn−1

and, as(q, n)= 1, p(n, x, y) �= 0. �

The previous lemma guarantees that the conditionp(n, x, y) removes the points(x, y)
such thatx = y and bothx andy are non-zero.

The following lemma is then obvious.

Lemma 6.3. With the same notation and hypotheses of Lemma6.2, let x̄, ȳ ∈ F. If x̄ · ȳ ·
p(n, x̄, ȳ)= 0 then:

x̄ �= ȳ or (x̄ = 0 or ȳ = 0).

By adding the polynomials:

�
l̃,l
: z
l̃
· zl · p(n, zl̃, zl)= 0, 1� l̃ < l� t (7)

toFC , we have that for all̃l andl eitherz
l̃
andzl are distinct or at least one of them is zero,

and we obtain a new syndrome varietyF′
C :

F′
C = {fj ,	j , 
i , �i , �l̃,l | 1�j�r,1� i� t,1� l̃ < l� t} ⊂ Fq [X,Z, Y ].
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We denote byI ′C the new syndrome ideal generated byF′
C and we follow this notation in

the remainder of the paper. We must now make sure that the solutions ofF ′C are exactly
the direct extensions, i.e. that we have not removed too much and that we have removed
enough. This is shown by the next lemma.

Lemma 6.4. For any cyclic codeC, the solutions ofI ′C are the direct extensions of all
errors of weight0��� t .

Proof. The direct extensions of errors of weight�� t are solutions ofI ′C , because they
were present inV(IC) and the adding of conditions of typez

l̃
· zl · p(n, zl̃, zl) = 0 does

not remove these roots, since the locations of errors are obviously distinct.
Now we want to prove the converse. Let

B = (x1, . . . , xr , zt , . . . , z1, y1, . . . , yt )

be a solution ofI ′C . We have that(zt , . . . , z1) is of the form

(0, . . . ,0, z̃1,0, . . . ,0, z̃�,0, . . . ,0),

that is, there are� non-zero elements inF with z̃i �= z̃j , 1� i < j��, and the others
elements are all zeros. We can write(y1, . . . , yt ) in the form

(∗, . . . , ∗, ỹ1, ∗, . . . , ∗, ỹ�, ∗, . . . , ∗),
that is, there are� non-zero elements inFq in the same coordinates asz̃1, . . . , z̃�, and
t − � other non-zero elements ofFq . As {zj }1� j�� arenth roots of unity, we can find
kj , 0�kj�n − 1, such that̃zj = �kj and asz̃i �= z̃j , ∀ 1� i < j��, we haveki �= kj .
Now we construct the vectore = (0, . . . ,0, ỹ1,0, . . . ,0, ỹ�,0, . . . ,0) such that its non-
zero elements are in the coordinatesk1, . . . , k�. It is now immediate to see thatB is a direct
extension of the solution of (3) corresponding toe. �

Definition 6.5. We denote by�C,i ⊂ Fr the set of all syndromes corresponding to error
vectors with weight exactlyi.

Lemma 6.6. LetJ be the ideal(I ′C)X = I ′C ∩ F[X]. Then

V(J )= �C =
⊔

1��� t
�C,i .

Proof. First we prove that�C = ⊔
1��� t�C,i . Let (x1, . . . , xr ) be an element in�C .

As it is a correctable syndrome, it has to correspond to an error with weight�� t . Thus
(x1, . . . , xr ) ∈ �C,�. Conversely, let(x1, . . . , xr ) ∈ �C,i . This is a syndrome correspond-
ing to an error with weight�� t , that is,(x1, . . . , xr ) is a correctable syndrome.

We are left to show thatV(J )=⊔
1��� t�C,i .

We prove�C,� ⊂V(J ). Let (x1, . . . , xr ) ∈ �C,�, then it is a syndrome corresponding
to an error with weight�� t , such that the error locations are(z1, . . . , z�) and the error
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values are(y1, . . . , y�). The point

B = (x1, . . . , xr , z1, . . . , z�,0, . . . ,0︸ ︷︷ ︸
t−�

, y1, . . . , y�,1, . . . ,1︸ ︷︷ ︸
t−�

)

is a direct extension of an error of weight�� t and so from the previous lemmāB ∈V(I ′C),
but thenB̄ ∩Kr = (x1, . . . , xr ) ∈ V (J ).

We prove nowV (J ) ⊂ �C . Let (x1, . . . , xr ) ∈ V (J ), then there are{zi}1� j� t and
{yi}1� j� t such that(x1, . . . , xr , z1, . . . , zt , y1, . . . , yt ) ∈ V (I ′C). By the previous lemma,
we can write this point as

(x1, . . . , xr ,0, . . . ,0, z̃1,0, . . . ,0, z̃�,0, . . . ,0, ỹ1,0, . . . ,0, ỹ�,0, . . . ,0),

where(z̃1, . . . , z̃�, ỹ1, . . . , ỹ�) is a solution of (5) with syndrome(x1, . . . , xr ) correspond-
ing to an error with weight�� t . Thus(x1, . . . , xr ) ∈ �C,�. �

Remark 6.7. The same considerations present in Remark 4.4 hold. In particular,I ′C is
radical for any cyclic codeC.

Lemma 6.6 is needed to show that our syndrome idealI ′C has exactly the properties
described in Section 5, which guarantee the structure of its lexicographic Gröbner basis, as
shown in the following theorem.

Theorem 6.8. Let I ′C be the syndrome ideal generated byF′
C and letG be the reduced

Gröbner basis ofI ′C w.r.t. the lexicographical order induced by

x1<x2< · · ·<xr < zt < · · ·<z1<y1< · · ·<yt .
Then:

1. G=GX ∪GXZ ∪GXZY ;
2. GXZ =⋃t

i=1Gi ;
3. Gi =⋃i

�=1Gi� andGi� �= ∅, for 1� i� t and1��� i;
4. Gii = {gii1}, for 1� i� t , i.e. exactly one polynomial exists with degreei w.r.t. the

variablezi in Gi , and its leading term and leading polynomials are

Lt(gii1)= zii , Lp(gii)= 1,

5. for 1� i� t and1��� i − 1, for eachg ∈ Gi�, Tp(g)= 0.

Proof. Points (1) and (2) are clear.
To show point (3), we need to apply Theorem 5.4. As Theorem 5.5 shares the same

hypotheses, the application of the latter will give automatically point 4.
We want to apply Theorem 5.4 with the following setting:

• S =X, A= Z andT = Y (implying in particular thatl = t),
• I = I ′C .
• the order on theF[X,Z, Y ] we have chosen.
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The lexicographic order onF[X, Y,Z]s.t.x1<x2< · · ·<xr < zt < · · ·<z1<y1< · · ·<yt
is obviously a block order s.t. bothX<Z<Y andzt < · · ·<z1. In this setting, we have to
make clear:

• what�(t)j represents, for 1�j� t ,
• what�(h−1)

j represents, for 2�h� t and 1�j�h− 1,

• thatV(IX)=⊔t
j=1�

(t)
j ,

• thatV(IX∪{zt ,...,zh})=
⊔h−1
j=1�

(h−1)
j .

By definition

�(t)j = {(s1, . . . , sN ) ∈V(IX) | there are exactlyj values{z̄(1)t , . . . , z̄(j)t },
s.t. (s1, . . . , sN , z̄

(i)
t ) ∈V(IX∪{zt }),1� i�j}.

In other words, a point of�(t)j is a syndrome and its extension toV(IX∪Z) is a point

(s̄, z)= (s1, . . . , sN , zt , . . . , z1) ∈ Fr × Ft

such that among itsZ coordinates there are onlyj distinct components. If 0�j� t −1, the
point (s̄, z) will then be formed by a syndromēs corresponding to an error of weightj − 1
and the elements in{zt , . . . , z1} which are distinct will form the set{z̄(1)t , . . . , z̄(j)t }. This
set contains precisely the locations of error (which arej − 1) and the value 0.

The case withj = t is analogous but more complex:

• eithers̄ corresponds to an error of weightt − 1, and so{z̄(1)t , . . . , z̄(j)t } will be thet − 1
locations of the error plus{0},

• or s̄ corresponds to an error of weightt , and so{z̄(1)t , . . . , z̄(j)t } will be exactly thet
locations of the error.

Summing up, we see (Definition 6.5) that

�(t)j = �C,j−1, 1�j� t − 1, �(t)t = �C,t−1 ∪ �C,t

and so Lemma 6.6 (and the radicality of our ideals) ensures that

V(IX)=
t⊔
j=1

�(t)j

The proof of

V(IX∪{zt ,...,zh})=
h−1⊔
j=1

�(h−1)
j

can be given with similar arguments.
To show point (4) of Theorem 5.4, we observe that the Gröbner basis ofI(�(h−1)

1 )

(for 3�h� t) will be formed by some polynomials only in theX variables plus the
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single polynomialzh, because if there is only one possible extension then we must add
only 0.

We are left with showing point (5), i.e. that almost all polynomials inGi (all but the
greatest) have no trailing polynomials. This is equivalent to say that any such polynomials,
once evaluated on a syndromes̄ (and its portion ofi − 1 Z components), must have 0 as
a root (seen as a polynomial inF[zi]), which is obviously always the case, except when
considering the greatest polynomialgii1. �

We are now ready (see Definition 3.1 ) for our main result of this section:

Theorem 6.9. Each cyclic codeC possesses a general error locator polynomialLC .

Proof. Just takeLC = gtt1(x1, . . . , xr , z). It is trivial to see that this polynomial satisfies
all properties needed by a general error locator polynomial. Actually:

• it lies in Fq [X, z], becausegtt1 is an element of a Gröbner basis which can be computed
by Buchberger algorithm starting from the polynomialsF′

C , with F′
C ∈ Fq [X,Z, Y ];

• it never becomes identically zero once evaluated on a correctable syndrome (compare
to point 2.2 in Theorem 4.5), as its leading polynomial 1 never vanishes, and so it will
contain all locations of errors (and multiple zeros, when appropriate);

• its degree inz is exactlyt . �

Remark 6.10. We observe that in[3] to find the error locator polynomial we have to study
allGXZ, precisely if we know that there are at most�� t errors, we search forL(z) inG��.
Instead, thanks to Theorem 6.9, we have only to specializeLC to a given syndrome. So,
we can present and discuss in Section 8 new decoding procedures for cyclic codes.

We now give an example, which illustrates very well the structure of the Gröbner basis
as predicted by Theorem 6.8.

Example 6.11.We consider the same example discussed in[3,15]. Let C be the 3 error-
correcting BCH[17,6,8]overZ2. The CRHT syndrome idealI = IC is generated byFC ,
i.e.

z1 + z2 + z3 + x1, z31 + z32 + z33 + x2, z51 + z52 + z53 + x3,

x16
1 − x1, x16

2 − x2, x16
3 − x3,

z16
1 − z1, z16

2 − z2, z16
3 − z3

If we calculate the Gröbner basisG w.r.t. the lexicographical order induced by:x1<x2<

x3<z3<z2<z1, the elements ofGXZ are:G3 = G3,3 ∪ G3,16, G3,3 = {g3 3 1, g3 3 2},
G3,16 = {g3 16 1}, G2 = G2,2 ∪ G2,16, G2,2 = {g2 2 1, g2 2 2, g2 2 3},G2,16 = {g2 16 1},
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G1 =G1,1 = {g1 1 1}, where

Lpz3(g3 3 1)= z33(x2 + x3
1);

Lpz3(g3 3 2)= z33(x3 + x5
1);

g3 16 1= z163 + z3;

Lpz2(g2 2 1)= z22(x2 + x3
1);

Lpz2(g2 2 2)= z22(x3 + x5
1);

Lpz2(g2 2 3)= z22(z3 + x1);

(g2 16 1)= z162 + z2;
Lpz1(g1 1 1)= z1+ z2 + z3 + x1.

We can comment on this structure.
First, observe that the greatest polynomial inG3 is z16

3 + z3 and is the only one inG3
which does not become identically zero once evaluated on a syndrome. It could be a good
candidate as a general error locator polynomial, but unfortunately its degree is 16 instead
of 3 and it will never tell us anything useful, except the trivial fact that the error locations
must be searched among the 15th roots of unity.

Second, if we look atG3,3 we see two polynomials, any of them becoming identically
zero on some correctable syndrome and so neither could be a candidate for a general error
locator polynomial. To show that for eachg inG3 there is a correctable syndromes̄ such that
g(s̄, z) becomes identically zero, we observe thatg(s̄, z) ≡ 0 is equivalent toLp(g)(s̄)=0,
due to Gianni’s Theorem, and then it is enough for us to check if there are correctable
syndromes among the roots ofLp(g). The check can be easily done by hand.

Last, there are no polynomials inG3,1 or inG3,2. So if we have a syndrome corresponding
to an error with weight 1, we will not have a polynomial of degree 1 which will give us the
error location (once specialized), but we will need a polynomial at least of degree three.
This is an apparent contradiction to Gianni’s Theorem, but in reality what happens is that
to an error of weight 1 many otherz values correspond: the ones coming from roots ofI

which arenotdirect extensions (see Section 4).
If we add conditions (7) toI , we obtain our syndrome idealI ′ = I ′C :

z1 + z2 + z3 + x1, z31 + z32 + z33 + x2, z51 + z52 + z53 + x3,

x16
1 − x1, x16

2 − x2, x16
3 − x3,

z16
1 − z1, z16

2 − z2, z16
3 − z3

z1z2p(15, z1, z2), z1z3p(15, z1, z3), z2z3p(15, z2, z3)

We callG the corresponding Gröbner basis and so the elements ofGXZ are:

g3 1 1= z3(x15
2 x

15
1 + x15

2 + x15
1 + 1);
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g3 2 1= z23(x
15
2 + x14

2 x
3
1 + x13

2 x
6
1 + x12

2 x
9
1 + x11

2 x
12
1 + x10

2 x
15
1 + x9

2x
3
1

+ x8
2x

6
1 + x7

2x
9
1 + x6

2x
12
1 + x5

2x
15
1 + x4

2x
3
1 + x3

2x
6
1 + x2

2x
9
1 + x2x

12
1

+ x15
1 + 1)+ z3(x15

2 x1 + x14
2 x

4
1 + x13

2 x
7
1 + x12

2 x
10
1 + x11

2 x
13
1 + x10

2 x1

+ x9
2x

4
1 + x8

2x
7
1 + x7

2x
10
1 + x6

2x
13
1 + x5

2x1 + x4
2x

4
1 + x3

2x
7
1

+ x2
2x

10
1 + x2x

13
1 );

g3 3 1= z33 + z23x1 + z3(x3x
9
2 + x3x

8
2x

3
1 + x3x

4
2 + x3x2x

9
1 + x15

2 x
2
1 + x14

2 x
5
1

+ x13
2 x

8
1 + x12

2 x
11
1 + x11

2 x
14
1 + x10

2 x
2
1 + x7

2x
11
1 + x6

2x
14
1 + x5

2x
2
1 + x3

2x
8
1

+ x2
2x

11
1 + x2

1)+ (x3x
9
2x1 + x3x

8
2x

4
1 + x3x

4
2x1 + x3x2x

10
1 + x15

2 x
3
1

+ x14
2 x

6
1 + x13

2 x
9
1 + x12

2 x
12
1 + x11

2 x
15
1 + x10

2 x
3
1 + x7

2x
12
1 + x6

2x
15
1

+ x5
2x

3
1 + x3

2x
9
1 + x2

2x
12
1 + x2);

g2 1 1= z2(x15
2 x

15
1 + x15

2 + x15
1 + 1);

g2 1 2= z2(z3x15
2 + z3x14

2 x
3
1 + z3x13

2 x
6
1 + z3x12

2 x
9
1 + z3x11

2 x
12
1 + z3x10

2 x
15
1

+ z3x9
2x

3
1 + z3x8

2x
6
1 + z3x7

2x
9
1 + z3x6

2x
12
1 + z3x5

2x
15
1 + z3x4

2x
3
1 + z3x3

2x
6
1

+ z3x2
2x

9
1 + z3x2x

12
1 + z3x15

1 + z3);

g2 2 1= z22 + z2(z3 + x1)+ (z23 + z3x1 + x3x
9
2 + x3x

8
2x

3
1 + x3x

4
2 + x3x2x

9
1 + x15

2 x
2
1

+ x14
2 x

5
1 + x13

2 x
8
1 + x12

2 x
11
1 + x11

2 x
14
1 + x10

2 x
2
1 + x7

2x
11
1 + x6

2x
14
1

+ x5
2x

2
1 + x3

2x
8
1 + x2

2x
11
1 + x2

1);
g1 1 1= z1+ (z2 + z3 + x1);

Thus,
G3 =G3,3 ∪G3,2 ∪G3,1, G3,3 = {g3 3 1}, G3,2 = {g3 2 1}, G3,1 = {g3 1 1},
G2 =G2,2 ∪G2,1, G2,2 = {g2 2 1},G2,1 = {g2 1 1, g2 1 2},
G1 =G1,1 = {g1 1 1}.
Note thatG3 has exactly the structure described in Theorem 6.8:

1. For each 1� i�3, there are inGi polynomials for each degree�, 1��� i, w.r.t. zi .
That is, inG3 we have polynomials of degree (inz3) 3, 2 and 1, without gaps (compare
to the case previously discussed). InG2, we have polynomials of degree (inz2) 2 and
1. InG1, there are polynomials of degree 1 in (z1).

2. There are no greater degree polynomials, i.e. inG3 there are no polynomials of degree
in z3 greater than 3, inG2 there are no polynomials of degree inz2 greater than 2 and
in G1 there are no polynomials of degree inz1 greater than 1.

3. The greatest degree polynomial inGi is the unique member ofGi,i , i.e. there is only
one polynomial inG3 of degree 3, there is only one polynomial inG2 of degree 2, there
is only one polynomial inG1 of degree 1. These three polynomials have, respectively,
z33, z

2
2, z1 as leading terms and 1 as leading polynomial.

4. In particular, the polynomialg331 is ageneral error locator polynomialof BCH[17,6,8].
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5. The trailing polynomials are all zero, except for the greatest polynomials in eachGi :

Tp(g3 1 1)= 0, Tp(g3 2 1)= 0, Tp(g3 3 1) �= 0;
Tp(g2 1 1)= 0, Tp(g2 2 1) �= 0;
Tp(g1 1 1) �= 0.

Remark 6.12. In some examples that we have computed (like Example 6.11), in addition
to the structure that we have foreseen, a curious property holds: in eachGt,� there is only
one polynomial. It would be interesting to know for which cyclic codes this stricter property
holds.

7. Extended syndrome variety

Let C be a cyclic code with the same notation used in the preceding section. We will
now extend previous results to the case when there are also erasures. To accomplish this,
we have to find the solutions of equations (1):

sj +
�∑
l=1

al(�ij )kl +
�∑
l=1

cl(�
ij )hl = 0, 1�j�r.

where{kl}, {al} and{cl} are unknown and{sj }, {hl} are known. We keep consistent with our
setting (introduced in Section 4 and Section 6) and we introduce variablesW=(w�, . . . , w1)

andU = (u1, . . . , u�), where

wh stands for the erasure locations(�ij )hl , 1�h��;
uh stands for the erasure valuescl, 1�h��.

As soon as the wordv(x) is received, we know the number� of erasures, their positions
{wh}, and that

��(d − �)/2.

As usual we assume that��� and for this reason we can write

sj +
�∑
l=1

al(�ij )kl +
�∑
l=1

cl(�
ij )hl = 0, 1�j�r. (8)

Then we rewrite Eqs. (8) in term ofX, Z, Y, W andU , where nowxj stands for the
truncated syndromesj , 1�j�r:

fj :
∑t
l=1ylz

ij
l +

∑�
l=1ulw

ij

l
− xj = 0, 1�j�r,

	j : x
qm
j − xj = 0, 1�j�r, sincesj ∈ F (note that we are denoting bys the truncated

syndrome);

i : z

n+1
i − zi = 0, 1� i��, since(�ij )kl arenth-roots of unity or zero;

�i : y
q−1
i − 1= 0, 1� i��, sinceal ∈ Fq/{0};
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�h: w
n
h − 1= 0, 1�h��, since(�ij )

hl arenth-roots of unity;

�h: u
q
h − uh = 0, 1�h��, sincecl ∈ Fq ;

�il : zizlp(n, zi, zl)= 0, 1� i < l��, since(�ij )kl �= (�ij )kl′ ;
�ih: zip(n, zi, wh)= 0, 1� i��, 1�h��, since(�ij )kl �= (�ij )hl ;
�̃hk: p(wh,wk)= 0, 1�h<k��, since(�ij )hl �= (�ij )hl̃ .

The equations of type�il ensure that two error locations are distinct if they are non-zero
(see Lemma 6.3). The equations of type�ih ensure that an error cannot occur in a position
corresponding to an erasure. The equations of type�̃hk ensure that two erasure locations
are distinct.

Remark 7.1. In this section when we say “syndrome” we always mean “truncated syndrome”
and so our previous notation for syndromes and syndrome components, such ass̄, xi , etc.,
will now apply correspondingly to the truncated syndromes and their components.

With this notations we have

F�
C = {fj ,	j , 
i , �i , �h, �h, �il , �ih, �̃hk | 1�j�r,1� i��,1�h��,

1� i < l��,1�h<k��} ⊂ Fq [X,W,Z,U, Y ]}.
The idealI �

C generated byF�
C is theextended syndrome idealandV(F�

C)=V(I �
C) is

theextended syndrome variety.

Remark 7.2. While the syndrome idealIC depends only on the codeC, the extended
syndrome idealI �

C depends also on the number of erasures�.

We now need an extension of Definition 4.1:

Definition 7.3. We call correctable pairsthe pairs of type(s,w), with syndrome vector
s ∈ Fr and error location vectorw ∈ F�, corresponding to errors with weight���. We
denote by��

C ⊂ Fr × F� the set of all correctable pairs associated to the codeC, when�
erasures have occurred.

We can extend also Definition 6.5:

Definition 7.4. We denote by��
C,i ⊂ Fr ×F� the set of all correctable pairs corresponding

to error vectors with weight exactlyi.

With arguments similar to those used in the proof of Lemma 6.6 (the key point being that
a correctable pair will identifyuniquelyan error vector, thanks to equations of kind�il , �ih
and�̃hk), it is easy to show the following lemma:

Lemma 7.5. LetJ � be the ideal(I �
C)X = I �

C ∩ F[X]. Then

V(J )= ��
C =

⊔
1����

��
C,i .
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By Lemma 7.5 and using arguments analogous to those used in Theorem 6.8, it is easy
to show the following theorem on the structure of the Gröbner basis of our ideal:

Theorem 7.6. Let I �
C be the syndrome ideal generated byF�

C and letG be the reduced
Gröbner basis ofI �

C w.r.t. the lexicographical order induced by

x1< · · ·<xr <w1< · · ·<w�<z�< · · ·<z1<u1< · · ·<u�<y1< · · ·<y�.
Then:

1. G=GX �GXW �GXWZ �GXWZU �GXWZUY .
2. GXWZ =⋃�

i=1Gi ;
3. Gi =⋃i

�=1Gi� andGi� �= ∅, for 1� i�� and1��� i;
4. Gii = {gii1}, for 1� i��, i.e. exactly one polynomial exists with degreei w.r.t. the

variablezi in Gi , and its leading term and leading polynomials are

Lt(gii1)= zii , Lp(gii)= 1

5. for 1� i�� and1��� i − 1, for eachg ∈ Gi�, Tp(g)= 0.

From Theorem 7.6, the main result (see Definition 3.3) of this section follows:

Theorem 7.7. Each cyclic codeC possesses a general error locator polynomialL�
C of

any type�, for 0��<d.

Proof. Just takeL�
C = g��1(x1, . . . , xr , w1, . . . , w�, z). It is trivial to see that this poly-

nomial satisfies all the properties needed by a general error locator polynomial. Actually:

• it lies in Fq [X,W, z], becausegtt1 is an element of a Gröbner basis which can be
computed by Buchberger algorithm starting from the polynomialsF�

C , with F�
C ∈

Fq [X,W,Z,U, Y ];
• it never becomes identically zero once evaluated on a correctable pair, as its leading

polynomial 1 never vanishes, and so it will contain all locations of errors (and multiple
zeros, when appropriate);

• its degree inz is exactly�. �

8. Algorithms and examples

In this section we first recall the revised CRHT decoding algorithm[3] and then we
present a new decoding algorithm for cyclic codes that exploits the properties of a gen-
eral error locator polynomial (see Theorem 6.9). We are going to show also how to de-
code simultaneously errors and erasures using general error locator polynomials (see Theo-
rem 7.7).

In [3] Caboara and Mora propose Algorithm 8.1. It accepts as input a syndrome vector
and outputs an error locator polynomial.
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Algorithm 8.1 (Revised CRHT-decoding algorithm[3] ).

Input s = (s1, . . . , sr );
� : =t ; L : =1
Repeat
j : =0
Repeat
j : =j + 1

Until Lpz�(g��j )(s1, . . . , sr ,0, . . . ,0) �= 0 or j > j��

If j > j�� then
� : =�− 1

else
If Tpz�(g��j )(s1, . . . , sr ,0, . . . ,0)= 0 do

� : =�− 1
else
L : =g��j (s1, . . . , sr ,0, . . . ,0, z);
Output �, L(z)

Until L �= 1 or �= 0
Output �, L(z)

The number of polynomial evaluations that this algorithm has to perform in the worst
case is clearly

N(8.1)=
t∑
i=1

Nii + 1+ t + 1.

Thanks to Theorem 6.9, to find the error locator polynomial we can consider directly the
general error locator polynomial:

LC(x1, . . . , xr , z)= zt + at−1(x1, . . . , xr )z
t−1 + · · · + a0(x1, . . . , xr ).

From that we can directly design the following algorithm.

Algorithm 8.2.

Input s = (s1, . . . , sr )
�= t
While at−�(s1, . . . , sr )= 0 do
� : =�− 1;
Output �, L(z)/(zt−�)

The number of polynomial evaluations that our algorithm has to perform in the worst
case is just

N(8.2)= t − 1.
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Example 8.3.We now apply Algorithm 8.2 to Example 6.11. We have that

LC = g3 3 1= z33 + a(x1, x2, x3)z
2
3 + b(x1, x2, x3)z3 + c(x1, x2, x3)

and

a = x1,

b = x3x
9
2 + x3x

8
2x

3
1 + x3x

4
2 + x3x2x

9
1 + x15

2 x
2
1 + x14

2 x
5
1 + x13

2 x
8
1 + x12

2 x
11
1

+ x11
2 x

14
1 + x10

2 x
2
1 + x7

2x
11
1 + x6

2x
14
1 + x5

2x
2
1 + x3

2x
8
1 + x2

2x
11
1 + x2

1,

c = x3x
9
2x1 + x3x

8
2x

4
1 + x3x

4
2x1 + x3x2x

10
1 + x15

2 x
3
1 + x14

2 x
6
1 + x13

2 x
9
1 + x12

2 x
12
1

+ x11
2 x

15
1 + x10

2 x
3
1 + x7

2x
12
1 + x6

2x
15
1 + x5

2x
3
1 + x3

2x
9
1 + x2

2x
12
1 + x2.

So we decode this way:

First, given a syndrome(s1, s2, s3) �= (0,0,0), we evaluate the three polynomials
A= a(s1, s2, s3)= s1, B = b(s1, s2, s3), C = c(s1, s2, s3).
if C �= 0 then � : =3,L(z)= z33 + Az23 + Bz3 + C,
else ifC = 0, B �= 0

then � : =2,L(z)= z23 + Az3 + B
else ifC = 0, B = 0, A �= 0,

then � : =1L(z)= z3 + A (and soz3 = s1).
The last caseA=B=C=0 cannot occur, because this is equivalent to a no error event and
this is checked at the beginning, when we make sure that the vector syndrome(s1, s2, s3)

is not the zero vector(0,0,0).

A modified version of this algorithm can cover the case with erasures. Actually, Theorem
7.7 suggests that, in order to find the error locator polynomial when� erasures have occurred,
we exploit the properties of the general error locator polynomial of type�:

L�
C(x1, . . . , xr , w1, . . . , w�, z)

= z� + a�−1(x1, . . . , xr , w1, . . . , w�)z
�−1 + · · · + a0(x1, . . . , xr , w1, . . . , w�).

It is then natural to design the following:

Algorithm 8.4.

Input s = (s1, . . . , sr ), w = (w1, . . . , w�)

�= �
While a�−�(s1, . . . , sr )= 0 do
� : =�− 1;
Output �, L(z)/(z�−�)

Algorithm 8.4 will give us the locations of the errors. But to complete our decoding we
need also to find the values of the erasures. To find them there are two ways:

• one can set up a systemT using Eq. (1) with 1�j�r: the only unknowns inT are (after
performance of Algorithm 8.4) the syndrome values{chl̄ }; the systemT is linear with
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respect to the variables{chl̄ } and so it can be easily solved. This is one of the standard
approaches in the simultaneous decoding of errors and erasures.

• An alternative approach is to use again our knowledge of the varietyV(I �
C): once the

syndromes, the erasure locations and the error locations are fixed there is only one value
for each of the{ui} (the values of the erasures). So in the reduced Gröbner basisG there
must be a polynomial of degree 1 in the lowestui (and coefficients in the{X,W,Z}), i.e.
in u1. Let us callP1 such polynomial. We can compute a similar Gröbner basis putting
u2 as the lowest variable among the{ui}. We would get a polynomial of degree 1 inu2.
And so on. Let us call this polynomialsPi , for 1� i��. The polynomials are computed
once and for all, before any decoding process starts. So the complete decoding can work
this way:

◦ we receive a vector with some erasuresw and we compute its associated syndrome
s.

◦ We give to Algorithm 8.4 as input the pair(s,w) and we get as output the error
locator polynomialL(z).

◦ FromL(z) we get the error positionsz.
◦ We computeu1−Pi(s,w, z) for 1� i�� and the results will be the erasure locations.
◦ We find the error values with some standard methods[10].

The next example concludes this section. Here we take a very simple cyclic code and we
show both its syndrome ideal and one of its extended syndrome ideals.

Example 8.5.We consider the BCH(n = 7, � = 5) codeC over F2, i.e.C = {0000000,
1111111}. If �= 0 then our syndrome ideal is

I = {z1 + z2 + z3 + x1, z
3
1 + z32 + z33 + x2,

z81 − z1, z82 − z2, z83 − z3,
x2

1 − x1, x
2
2 − x2,

z1z2p(7, z1, z2), z2z3p(7, z2, z3), z1z3p(7, z1, z3)},
and the reduced Gröbner basisG is

g1 = x8
1 + x1;

g2 = x8
2 + x2;

g31= z3(x7
2x

7
1 + x7

2 + x7
1 + 1);

g32= z23(x
7
2 + x6

2x
3
1 + x5

2x
6
1 + x4

2x
2
1 + x3

2x
5
1 + x2

2x1 + x2x
4
1 + x7

1 + 1)

+ z3(x7
2x1 + x6

2x
4
1 + x5

2x
7
1 + x4

2x
3
1 + x3

2x
6
1 + x2

2x
2
1 + x2 ∗ x5

1);
g33= z33 + z23x1 + z3(x7

2x
2
1 + x6

2x
5
1 + x5

2x1 + x4
2x

4
1 + x3

2x
7
1 + x3

2)

+ x7
2x

3
1 + x6

2x
6
1 + x5

2x
2
1 + x4

2x
5
1 + x2 + x3

1;
g2 1 1= z2x7

2x
7
1 + z2x7

2 + z2x7
1 + z2;
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g2 1 2= z2z3x7
2 + z2z3x6

2x
3
1 + z2z3x5

2x
6
1 + z2z3x4

2x
2
1 + z2z3x3

2x
5
1 + z2z3x2

2x1

+ z2z3x2x
4
1 + z2z3x7

1 + z2z3;

g2 2 1= z22 + z2z3 + z2x1 + z23 + z3x1 + x7
2x

2
1 + x6

2x
5
1 + x5

2x1 + x4
2x

4
1

+ x3
2x

7
1 + x3

2;
g1 1 1= z1 + z2 + z3 + x1.

G has the structure described in Theorem 6.8: in factG3 has exactly one polynomial
for each degree��3. The trailing polynomials ofg31 andg32 are zero, and the leading
polynomial ofg33 is 1.

If �= 1 then 2�+ 1<7, i.e.��2. The extended syndrome ideal is

I = {z1 + z2 + u1w1 + x1, z
3
1 + z32 + u1w

3
1 + x2,

z81 + z1, z82 + z2, w7
1 + 1, u2

1 − u1,

z1z2p(7, z1, z2), z1p(7, z1, w1), z2p(7, z2, w1), };
and the reduced Gröbner basisG is

g1 = x8
1 + x1;

g2 = x8
2 + x2;

g3 = w3
1x2x

7
1 + w3

1x2 + w1x
4
2x

7
1 + w1x

4
2 + x2

2x
7
1 + x2

2;

g4 = w3
1x

4
2 + w3

1x
2
2x

6
1 + w3

1x2x
2
1 + w3

1x
5
1 + w2

1x
4
2x1 + w2

1x
2
2x

7
1 + w2

1x2x
3
1 + w2

1x
6
1

+ w1x
7
2 + w1x

6
2x

3
1 + w1x

3
2x

5
1 + w1x2x

4
1 + x7

2x1 + x6
2x

4
1 + x5

2 + x4
2x

3
1

+ x2x
5
1 + x1;

g5 = w7
1 + 1;

g6 = z2(x7
2x

7
1 + x7

2 + x7
1 + 1);

g7 = z2(w3
1x

7
1 + w3

1 + w1x
3
2x

7
1 + w1x

3
2 + x2x

7
1 + x2);

g8 = z2(w6
1x

3
2 + w1z

6x2
2x

3
1 + w6

1x
2
1 + w5

1x
3
2x1 + w5

1x
2
2x

4
1 + w5

1x
3
1 + w4

1x
3
2x

2
1

+ w4
1x

2
2x

5
1 + w4

1x
4
1 + w3

1x
3
2x

3
1 + w3

1x
2
2x

6
1 + w3

1x
5
1 + w2

1x
3
2x

4
1 + w2

1x
2
2

+ w2
1x

6
1 + w1x

3
2x

5
1 + w1x

2
2x1 + w1x

7
1 + x5

2x
7
1 + x5

2 + x3
2x

6
1 + x2

2x
2
1 + x1);

g9 = z22 + z2(w6
1x

2
1 + w5

1x2 + w4
1x

4
1 + w3

1x
2
2x

6
1 + w3

1x2x
2
1 + w3

1x
5
1 + w2

1x
4
2x1

+ w2
1x

2
2x

7
1 + w2

1x
2
2 + w2

1x2x
3
1 + w2

1x
6
1 + w1x

5
2x

6
1 + w1x2x

4
1 + w1x

7
1

+ x7
2x1 + x6

2x
4
1 + x5

2 + x4
2x

3
1 + x2x

5
1 + x1)+ (w6

1x2 + w6
1x

3
1 + w5

1x2x1

+ w5
1x

4
1 + w4

1x
2
2x

6
1 + w4

1x2x
2
1 + w3

1x2x
3
1 + w3

1x
6
1 + w2

1x
5
2x

6
1 + w2

1x
2
2x1

+ w2
1x2x

4
1 + w2

1x
7
1 + w1x

4
2x

3
1 + w1x

3
2x

6
1 + w1x2x

5
1 + w1x1

+ x7
2x

2
1 + x6

2x
5
1 + x5

2x1 + x4
2x

4
1);
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g10= z1+ z2 + w6
1x

2
1 + w5

1x2 + w4
1x

4
1 + w3

1x
2
2x

6
1 + w3

1x2x
2
1 + w3

1x
5
1 + w2

1x
4
2x1

+ w2
1x

2
2x

7
1 + w2

1x
2
2 + w2

1x2x
3
1 + w2

1x
6
1 + w1x

5
2x

6
1 + w1x2x

4
1 + w1x

7
1

+ x7
2x1 + x6

2x
4
1 + x5

2 + x4
2x

3
1 + x2x

5
1 + x1

g11= u1 + w6
1x1 + w5

1x
2
1 + w4

1x2 + w3
1x

4
1 + w2

1x
4
2 + w1x

2
2 + x7

2

+ x6
2x

3
1 + x5

2x
6
1 + x3

2x
5
1 + x7

1.

Note that we have only one polynomial of degree 2 inG2, but we have some polynomials
of degree 1 inG1. According to Theorem 7.7,g9 is a general locator polynomial of type 1
for C, i.e.

L1
C(z)= z22 + az2 + b,

with

a = w6
1x

2
1 + w5

1x2 + w4
1x

4
1 + w3

1x
2
2x

6
1 + w3

1x2x
2
1 + w3

1x
5
1 + w2

1x
4
2x1 + w2

1x
2
2x

7
1

+ w2
1x

2
2 + w2

1x2x
3
1 + w2

1x
6
1 + w1x

5
2x

6
1 + w1x2x

4
1 + w1x

7
1 + x7

2x1 + x6
2x

4
1

+ x5
2 + x4

2x
3
1 + x2x

5
1 + x1,

b = w6
1x2 + w6

1x
3
1 + w5

1x2x1 + w5
1x

4
1 + w4

1x
2
2x

6
1 + w4

1x2x
2
1 + w3

1x2x
3
1 + w3

1x
6
1

+ w2
1x

5
2x

6
1 + w2

1x
2
2x1 + w2

1x2x
4
1 + w2

1x
7
1 + w1x

4
2x

3
1 + w1x

3
2x

6
1 + w1x2x

5
1

+ w1x1 + x7
2x

2
1 + x6

2x
5
1 + x5

2x1 + x4
2x

4
1.

If we apply Algorithm 8.4 we obtain

• given a correctable pair(s,w), we evaluateA= a(s,w) andB = b(s,w),
if B �= 0 then � : =2,L(z)= z22 + Az2 + B,
else ifB = 0, A �= 0,

then � : =1,L(z)= z2 + A
Remark 8.6. If �= 1 then we obtain directlyz2 = A.

Remark 8.7. To calculate the erasure valueu1, we could use the polynomialP1 = g11, as
explained in the discussion after Algorithm 8.4.

9. Computational remarks

In this paper we are interested in studying the structure of our syndrome ideal and in
showing the existence of general error locator polynomials for cyclic codes. We are not
concerned about complexity issues, which are deeply analyzed in[4]. Albeit our focus is
not on the computational side, we feel committed to sketch some ideas, at least for the
erasure free case.

There are two kinds of problems:

• the Gröbner basis of our idealIC requires a lot of time to be computed, even for small
codes,



222 E. Orsini, M. Sala / Journal of Pure and Applied Algebra 200 (2005) 191–226

• even if we get the general error locator polynomial, it can be a polynomial composed of
many monomials and so its use can give rise to a non-efficient decoding.

The first remark we would like to pose is that we do not needa priori to compute the
Gröbner basis to get a general error locator polynomialLC for C. As we have shown
the existence ofLC (Theorem 6.9), we are allowed to seek it in any way we find con-
venient. For example, it is possible thatLC can be computed with some interpolation
technique.

The second remark is that even if we have to compute the Gröbner basis, it could be that
for some classes of codes it turns out to be an easy task, exploiting some extra algebraic
conditions (a similar approach can be found in[17] for the determination of the distance of
cyclic codes using the syndrome variety).

Suppose now that we have got, somehow, the general error locator polynomial forC. It
could be thatLC is a huge polynomial, making it apparently infeasible for decoding. We
would like to make two comments on this apparently bad situation:

• the polynomialLC cannot be really huge, because it is an element of thereduced
Gröbner basis of our ideal; that means in particular that its coefficients (which are poly-
nomials in the{xi}) are reduced with respect to the ideal(IC)X whose variety is composed
by all correctable syndromes (and a Gröbner basis for that ideal is easily got taking all
elements inGX); this fact imposes some restrictions on the shape ofLC ;

• in [1], it is shown how the CRHT variety can be used in practice to get efficient decoding
of cyclic codes also for medium length cyclic codes (up ton= 512 in the binary case);
it is clear that similar methods can be adapted to our case, with possibly even more
effect.

10. Further work

First, we would like to discuss the hypothesis(n, q) = 1, which we have enforced.
This hypothesis is traditionally used in the context of cyclic code theory and is relaxed
rarely (but see[23,5]). This guarantees in particular that the generator polynomial will be a
simple polynomial. In effect, this condition is very helpful in defining the notion of “error
location”. An error location is some power of an element� of F, with � of ordern. The
condition(n, q)= 1 clearly implies the existence of such�. If we relax this hypothesis, we
will need to redefine anerror locationin a way which does not lose its important properties.
Further research in this direction is planned.

Second, we would like to note a detail of our definition of general error locator polynomial:
the coefficients ofLC have to lie inFq and not inF. This is a strict condition. On the other
hand, forany linear code, it is not difficult to prove the existence of a polynomial with a
similar definition but with coefficients in the larger field. But this case is only important for
codes like the Reed–Solomon codes, where the two fields coincide.

Last, we believe it is important to investigate other algebraic codes to see whether they ad-
mit a general error locator polynomial or not. The second author, with others, is investigating
the cases of classical Goppa codes and of quasi-cyclic codes.
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Appendix

This section is devoted to prove Lemma 5.2.

Lemma 5.2. LetJ be a0-dimensional radical ideal in a polynomial ringK[V1, . . . , VN],
whereK is any field and2�N. Let t be a natural number1�t. Let G be the lexi-
cographic Gröbner basis ofJ , V1< · · ·<VN, and letD denote the maximal degree in
VN possessed by the polynomials inG. Let S be any set ofj points inKN of the type
S={(s1, . . . , sN−1, z1), . . . , (s1, . . . , sN−1, zj)}, where(s1, . . . , sN−1) does not belong
to the varietyV(J ∩ K[V1, . . . , VN−1]) and j�t. Denote byJ ′ the ideal formed by all
polynomials inJ vanishing onS. LetG′ be the lexicographic Gröbner basis ofJ ′ and let
D′ denote the maximal degree inVN possessed by the polynomials inG′. Then

• J ′ is again radical,
• if D�t, thenD′�t.

We want to use Theorem 3.1 from[18]. Using their notation, we rephrase their result in
the case

• M = A = Aq = K[V1, . . . , VN],
• H is just the identity onK[V1, . . . , VN],
• Ml andMl+1 are ideals inK[V1, . . . , VN]. For simplicity, we useM andN instead.

Theorem 10.1(O’Keeffe and Fitzpatrick[18]). LetM ⊃ N be two ideals inK[V1, . . . , VN]
such that:

• there is aK-linear map�l : M �→ K s.t. ker(�l ) = N ,
• there areN elements{�k} in K s.t. (Vk − �k)M ⊂ N .

LetW = {W [1], . . . ,W [r]} be a strictly ordered Gröbner basis ofM relative to a term
order<, then a Gröbner basisW ′ ofN can be constructed as follows:

1. compute�h = �l (W [h]), for 1�h�r,
2. if �h = 0 for all h, thenW ′ = W ,
3. otherwise leth4 be the leasth s.t.�h �= 0.



224 E. Orsini, M. Sala / Journal of Pure and Applied Algebra 200 (2005) 191–226

We then haveW ′ =W1 ∪W2 ∪W3, with

• W1 = {W [h]|h<h4},
• W2 = {(Vk − �k)W [h4]|1�k�N},
• W3 = {W [h] − (�h/�h4)W [h4]|h>h4}.

Theorem 10.1 says that the new Gröbner basis, if it is different from the old, is formed by
some elements of the old, the shifts of a special element of the old, and the other elements
of the old translated by a suitable multiple of the special element.

Remark 10.2. Let D be the maximal degree with respect to a variableVi possessed by
the polynomials inW . LetD′ be the maximal degree with respect to the same variableVi
possessed by the polynomials inW ′. Moving fromW toW ′ can raise this degree (and so
D′ =D+1) only if the special elementW [h4] is a polynomial with degreeD in Vi , in fact:

• inW1 nothing changes,
• in W2 the polynomial(Vi − �i )W [h4] has degree inVi obviously increased by 1 w.r.t.
W [h4],

• inW3, for anyW [h] the degree inVi cannot increase to a value higher than max(degVi
W [h4],degViW [h]), which is clearly not greater thanD.

We now proceed to the proof.

Proof of Lemma 5.2. The idealJ ′ is again radical, asJ was radical and we are adding
new points to its variety, with no multiplicity.

The Gröbner basisGcan be decomposed into two partsG=GN−1�GN, so thatGN−1=
G ∩K[V1, . . . , VN−1] andGN =G\GN−1. The polynomial setGN−1 is obviously the
(lexicographic) Gröbner basis of the elimination idealJN−1 = J ∩K[V1, . . . , VN−1].

We want to apply Theorem 10.1 to the following nested ideals:

• M1 = J ,
• M2 = {f ∈ M1|f (s1, . . . , sN−1, z1) = 0},M2 ⊂ M1,
• . . . ,
• J ′ = Mj+1 = {f ∈ Mj|f (s1, . . . , sN−1, zj) = 0},Mj+1 ⊂ Mj.

We first considerM1 andM2. The map�1 : M1 �→ K is clearly the evaluation�1(f )=
f (s1, . . . , sN−1, z1) and the conditions(Vk−�k)M1 ⊂ M2 are satisfied if we take�k= sk,
for 1�k�N− 1, and�N= z1. So we can apply Theorem 10.1 directly, withW =G and
W ′ the Gröbner basis ofM2.

We claim thatW [h4] lies inGN−1. Otherwise, as all elements ofGN−1 precede the
other elements ofG, we have�1(g) = 0 for eachg ∈ GN−1. This is equivalent to saying
that (s1, . . . , sN−1) is a root of each element inGN−1 and then it is an element of the
corresponding varietyV(JN−1), which contradicts the hypothesis.
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As g1 = W [h4] lies inGN−1, the new Gröbner basisG2 = W ′ does not increase its
maximum degree in theVN, unless it was zero, because of the adding of the polynomial
(VN − z1)g1 (see Remark 10.2). So, the degree bound onW ′ will be max(1,D)�t. Let
us callD1 the new degree bound.

If j= 1, we have finished. Otherwise, we considerM2 andM3. The map�2 : M2 �→ K

is the evaluation�1(f )= f (s1, . . . , sN−1, z2) and the conditions(Vk − �k)M1 ⊂ M2 are
satisfied if we take�k = sk, for 1�k�N− 1, and�N = z2. We can apply Theorem 10.1
directly, withW =G2 andW ′ the Gröbner basis ofM3.

This time it is not guaranteed thatW [h4] lies in the portion ofW having degree 0 (because
we have removedg1). If it happens, we can argue as before and we get the same result, i.e.
the degree bound onW ′ will be max(1,D1)�t.

Otherwise, we claim that there is at least an element inW of degree 1 inVN which
vanishes on(s1, . . . , sN−1, z2). Actually, the recently added polynomial(VN− z1)g1 will
do. If (VN−z1)g1(s1, . . . , sN−1, z2)=0, theng1(s1, . . . , sN−1)must be zero, asz1 �= z2.
But then we are again in the case where allg in G vanish on(s1, . . . , sN−1), which has
been proved to be impossible.

Let g2 =W [h4]. Then the new Gröbner basisG3 =W ′ does not increase its maximum
degree in theVN, unless it was 1, because of the addition of the polynomial(VN − z2)g2
(see Remark 10.2). So, the degree bound onW ′ will be max(2,D1)�t. Let us callD2 the
new degree bound.

Let us callDl the degree bound on the Gröbner basis ofMl+1. It is clear that we can
argument similarly in the other cases, showing that we never add polynomials in the bases
with degree inVN greater thanl. In this way, we obtain thatDl is

max(l,Dl−1)�t .

AsDj =D′ andj�t, we have finished.

Remark 10.3. This result could be deduced by the uniform geometric decomposition of
the ideal, as independently shown in[11]. But our proofs are preferred because of their
constructive nature.
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