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Abstract

We propose a new syndrome variety, which can be used to decode cyclic codes. We present also
a generalization to erasure and error decoding. We can exhibit a polynomial whose roots give the
error locations, once it has been specialized to a given syndrome. This polynomial hag degnee
variable corresponding to the error locations and its coefficients are polynomials in the syndromes.
© 2005 Elsevier B.V. All rights reserved.

MSC:11T71;12Y05

1. Introduction

Coding theory is one of the main research areas where algebraic tools can be applied
to industrial problems. Cyclic codes are a class of error correcting codes which have been
widely studied in the last fifty yeaf®,16,19] While it is relatively simple to study their
internal properties (distance, weight distribution, etc.) to some useful extent, no efficient
decoding algorithm is known.

BCH codes form an interesting sub-class of cyclic codes: their internal properties are
well known and very efficient decoding procedures ejd$t
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This is why BCH codes have been one of the “de facto” standards in industrial appli-
cations. Unfortunately, long BCH codes are known to have unsatisfactory properties (see
[14]). Cyclic codes are not known to suffer from this limitation. What we need for cyclic
codes is a good decoding procedure.

In some paper§3,6,7,15] the authors have proposed a decoding procedure for cyclic
codes which relies on the computation of the lexicographical Grobner basis of a suitable
ideal. The corresponding variety is known as the CRHT syndrome variety. We are going to
show in this paper some related results:

(1) the CRHT syndrome variety has certain drawbacks and so we propose a modified
syndrome variety which contains exactly the solutions we are seeking,

(2) we show how our syndrome variety gives rise to an improved decoding algorithm,

(3) we extend our ideas to the simultaneous correction of erasures and errors (although
some special cases have been studied by others),

(4) we show that each cyclic code possesses a general error locator polynomial, i.e. a
polynomial which contains the error location once it has been specialized to a given
syndrome; moreover, we show the existence of similar polynomials for the case of
simultaneous correction of errors and erasures.

Probably, the existence of general error locator polynomials for each cyclic code is our
main result and we plan future work where these polynomials will be deeply studied. An
investigation on the complexity of their computation and on practical decoding via their
properties can be found [d]. It is interesting to note that the existence of general error
locator polynomials is not guaranteed for a generic linear code, as shof22]inThe
determination of classes of codes admitting general error locator polynomials is an open
and stimulating problem.

In [1], a variant of the CRHT variety has been used to get a heuristic decoding of some
binary cyclic codes, also with medium length (umte512), which turns outto be relatively
fast. It may be possible that similar methods can be adapted to our case, with possibly even
more effect.

There has been some research on exploiting a variant of the CRHT variety to get internal
properties of cyclic codes and their shortened codes[2de20). Some of the techniques
employed there (e.g., the use of the polynomidbefinition 6.1) have been adapted to our
case.

This paper is organized as follows:

In Section 2 notation and preliminaries are given. In Section 3 we illustrate the concept
of general error locator polynomials. In Section 4 we recall the CRHT syndrome variety
and we recall how knowledge of its structure can be used to decode cyclic codes. We study
the general structure of some ideals we are going to use in Section 5. We are particularly
interested in investigating how the structure of the underlying variety restricts the shape of
the Grobner basis of theideal. In Section 6, we propose a new syndrome variety and describe
the structure of the reduced Grobner basis of the associated ideal; from this basis it is trivial
to obtain the general error locator polynomial of the cyclic code, showing its existence. We
extend our syndrome variety to the case when there are also erasures in Section 7. We can
prove a similar structure for the reduced Grébner basis of the corresponding ideal and so we
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can exhibit for any cyclic code the general error locator polynomials of any type. In Section

8 we show how to use the general error locator polynomial in order to decode a cyclic
code, providing also a comparison to Caboara and Mora’s algorithm; we show also how to
use general locator polynomials of any type in order to decode simultaneously errors and
erasures; we provide some examples. We pose some remarks on complexity issues related
both to the computation of the general error locator polynomial and to its actual use in
Section 9. In Section 10, some possible further work is discussed. In appendix, we prove
a technical result which is needed to show the structure of the Grobner basis of our ideals
(and this will open the path to the determination of the general error locator polynomials).

2. Notation and preliminaries

In this section we recall some basic facts about cyclic codes and Grobner bases that will
be used in the remainder of the paper.

2.1. Cyclic codes

Let C be an[n, k, d] cyclic code on a field, with (¢,n) = 1. Letg be thegenerator
polynomialof the codeC, that is,g is a polynomial of degree =n — k such that

C ={c(x) € Fylx] | c(x) =a(x)g(x) for somea(x) with deg(a(x)) <k}.

We denote byr = [, the splitting field ofx” — 1 over[F, and by a primitive nth root of
unity, i.e.o € F is such that its powers generate all roots®f 1:

n—1
X" —1= H(x —a').
i=0

As g dividesx” — 1, its roots are all distinct and form a subset of the roots"of 1.
Traditionally we defineS¢ to be the set

Sc=1i | g) =0}

which is called theomplete defining sef C. As S¢ is partitioned into cyclotomic classes,
there are some subsetf S¢, any of them sufficient to specify the code unambiguously
and any sucl$ is called adefining set
Itis known that we can view as thel,-kernel of the parity-check matrif (with entries
in [):
1 OCil O(Zil . OC(n—l)i]_
1 o2 22 ... y0=Diz
H =

1 O(i' OCZi’ L. O((n_l)i’
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We can consider the error vect®as a polynomial:

u
e(x) = Zalxk’ € Fylx],
=1
where the weight satisfieq: <t =[(d — 1) /2] and the magnitudes and locations of this error
pattern are, respectivelfy, ..., a,} and{ky, ..., k,}, witha; € I, and 0<ky <k < - - -
<k,<n—1.
The locations of the error pattern are coded withindher locator polynomial

u

L) =[] -".

=1

Remark 2.1. Traditionally, the reciprocal of.(z), with roots the inverseg/)~1, is used
as the error locator polynomial. This change of notation is convenient to us.

Letc=(co,...,cy-1),V=(vo,...,v,—1) ande= (e, ..., e,—1) be, respectively, the
transmitted codeword, the received vector and the error vector. If we apply the parity-check
matrix H tov, we get

HvI =H(c" +e")=Hc" + He" =0+ He =&

where ther-vectors = (s1, ..., s,) is called thesyndrome vectoassociated to (and its
entriess; are calledsyndrome)s

The syndromes depend only on the error pattern and two syndromes corresponding to
two different errors with weightt <t are necessarily distinct. If no errors occurred in the

transmission thes=0; otherwise ie=(0, ..., 0,41,0,...,0,4;,0,...,0,4,,0,...,0),
k1—1 kq k; Ky n—l—k,,
we have

n—1 - H
T N T ik :
sj = H;v =Zv;(u’f> =Hje =Zaz(u’f)’, i=L...r
=0 I=1

While an error occurs when a symbol in a transmitted word is changedrasure
occurs when the decoder cannot understand a symbol at a certain position (but the position
is known). For example, if the binary blodgd, 1, 1, 1) suffers from an error in the last
component, it becomes the blo¢k 1, 1, 0). If the same block(1, 1, 1, 1), suffers from
an erasure in the last component, it becoiiieq, 1, x), where %’ means that the value is
unknown.

Let d be the distance of'. We know that the correction capability of the code is
[1/2(d — 1)]; in case there are also some erasures, denotingy numbers of erasures
and byt the numbers of errors that the code can simultaneously correct, we have

2t +v<d.

We denote the erasure locations{dy, ..., i,}, 0<h1 < -+ - <h,<n — 1, and retain our
notation for errors. Note thaty, ..., hy} N {ky, ..., k) =0.
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We define:
1. the vectow = (vg, ..., v,—1) S.t.Vi we have
oo v i iE R VIS,
"7 10 otherwise
2. the vectoe= (eg, ..., €,-1) S.t.
o e iR YIS <y,
"7 10 otherwise
3. the vectoc = (cg, ..., cp_1) S.t.
_— if i=h;, V1<j<y,
"7 10 otherwise

Remark 2.2. While Vv and€ may have non-zero components only in the coordinates dif-
ferent from erasure positions,may have non-zero components only in the coordinates
corresponding to erasure positions.

4. thetruncated syndrome= HV:

n—1
5= v = > v, =1,
=0

1{0,....n—=1\{h1,....h,}

Remark 2.3. Note thatc =V — €+ T, becaus& — € is the transmitted word restricted to
the componentf0, ..., n — 1}\{k1, ..., hy} andC is the transmitted word restricted to the
other component§iy, ..., h,}.

We haveH (V — €+ C) = Hc= 0 and, in case of successful decoding, we can write

u v
5= Y @@+ e () T=0, 1< <r,
=1 =1
i.e.
u v
5j— Yy a3y e =0, 1<j<r (1)
=1 =1

2.2. Polynomials

LetK[T]=K]|[Ty, ..., T,] be apolynomial ring with coefficients in the fiekd.
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Definition 2.4. For any term-ordering- on K[T'] and any polynomialf in K[T], f =
Yo axT* withdeg(f) = max.{o € N | a, # 0}, we define:

Lt(f) = T8 the leading term off.

If we consider the lexicographical ordering such that- - - - > 7,,, each elemenf €
K|[Ty, ..., T,] can be viewed uniquely as a univariate polynomial in the vari@bleith
coefficients in the polynomial ring [T, . .., T,1:

f = bh(T27 AR ] Tn)Tf + bh*l(TZ’ AR ] Tn)Tf_l + Tt + bO(T25 ey Tn)»

where we will denote byLp(f) = b, (T>, ..., T,) the (T1) leading polynomialand by
Tp(f)=bo(T>,...,T,) the(Ty) trailing polynomialof f.

Let I be an ideal inK[Tx, ..., T,]. We denote byK the algebraic closure of. Let
S c K". We denote by

V() ={(,....00) € K" | f(o1,...,00) =0, Vf €I},

the set of all the roots dfand by.# (S) the ideal formed by the polynomials k[ T3, . .., T, ]
vanishing onsS.

Definition 2.5. Let I be anideal irK[T4, ..., T,]. The kh elimination ideal/; is the ideal
of K[Tj11, ..., T, defined byl = I N K[T}41, ..., T,].

Let 7, v andr be positive natural numbers.

Let/ c F,[X,W,Z, U,Y] be an ideal, withX = (x1,...,x,), W = (w1, ..., wy),
Z=(2¢,...,21),U=(uy,...,u1), Y =01, ..., y). Let G be a subset of. We will use
the following notation:

Px =F[X], Ix =1NPx, Gx =G NPy,

Pxw =Fy[X, WNF,[X], Ixw =1 N Pxw, Gxw =GN Pxw,

Pxwz =Fg[X, W, Z\Fy[X, W], Ixwz =1 N Pxwz, Gxwz =GN Pxwz,
Pxwzu =Fg[X, W, Z, UNFJX, W, Z], Ixwzu =10 Pxwzu,

Gxwzu =GN2xwzu,

Pxwzuy =Fg[ X, W, Z, U, Y\FG[X, W, Z, U], Ixwzuy =1NPxwzuy.,
Gxwzuy =GN Pxwzuy-

Observe thaf = Ix U IXW Ll IXWZ Ll IXWZU L IXWZUY and thatG = Gx L GXW L
Gxwz UGxwzu UGxwzuy (U denotes disjoint union).

Remark 2.6. We extend our notation to the case- 0, meaning that the variable séts
andU are void, e.92xwz = ?xz = F4[X, Z1\F,[X].
When convenient, we enclose the ideal name within brackets(/gg= Ix.

AssumeG is a Grobner basis for an idedl ¢ K[S,Z,T], S = (s1,...,sp), Z =
(z1,...,21), T =(t1, ..., tyr) w.r.t. a block order witt§ < Z < T and with theZ-variables
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lexicographically ordered bgp > z2 > - - - > z;.. Thenthe elements af N (K [S, Z]\K[S])
can be collected in blocks;}; <; <.

Gi=1{g11(5, 2z, ..., 20), .-, &un(S, zp, ..., 2D}
Go=1{g21(8,20,...,22), ..., 82(S, 2L, ..., 22)},

Gr={gra1(S,z0),...,8L.1,(S,zL)},
in such a way that:

e foreachi, G; C K[S,zr, ..., zi+1llzi\KI[S, zL, - .., zi+1],
e the ideal generated Hy|;_; G is theith elimination ideal/;.

Jj>i

Clearly eachG;, 1<i <L, can be decomposed into blocks of polynomials according to
their degree with respect to the variahle

A;
Gi=]JGis.
o=1

In this way, ifg € G;5, we have

e g€ KIS, zr, ..., zi+allziNKIS, 21, - - -, zital],
o deg, (g)=0,i.e.g=az)+---anda=Lp(g) € K[S.zp, ..., zi+1].

Let N;5 be the number of elements d@f;5. We name the elements of the 9&@t5 =
{gisj» 1< j < N;s} after their order:

h<j <& Li(gisn) < Lt(gisj)-

Remark 2.7. We can summarize our description.
Given any two polynomialg;p, € G;p andg;s; € G;s, then

l>ior
giph < 8is; < Lt(gipn) < Lt(gis;) & {l =i, D<o or 2)
I=i, D=d,h<].

3. General error locator polynomial

LetC be an[n, k, d] linear code oveF, andr =[(d — 1)/2] its correction capability. Let
v andr be two natural numbers such that2v < d, so thatC can correct simultaneously
erasures anderrors. We assume the condition ¢) = 1, which is helpful in defining the
notion oferror location (for a discussion see Section 10).

Let H be one of its parity check matrices. We rest#itto lie in [, the splitting field of
x" — 1 overl, (for a discussion see Section 10). So the syndromes will & jh (with
r<n — k) and they will form a vector space of dimension— k) over[,. Let « be a
primitive nth root of unity in[F.
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Definition 3.1. Let £ ¢ a polynomial inF,[X, z], whereX = (x1, ..., x,). ThenZc isa
general error locator polynomiadf C if

(1) Lc(X,2)=z7"+a_12" "1+ +ag, witha; € F,[X],0<j <t — 1, thatis, Zc is a
polynomial with degree with respect to the variabteand its coefficients are iR, [ X1;

(2) given a syndrome= (51, ...,5,) € (F)"~*, corresponding to an error of weight ¢
and error locationgks, .. ., k,}, if we evaluate theX variables ins, then the roots of
Pc(s z) are exactlfot, ... ok, 0, ..., 0.

———
t—p

Given a generic linear codg, the existence of a polynomi& ¢ is not guaranteed and
there are examples of linear codes not admittifig (see[22]).

Actually, general error locator polynomials are known only for very simple codes and
we recall the case of the binary narrow-sense primitive BCH withl in the following
example.

Example 3.2. Letm > 2 be an integer. We can consider the binary cyclic cBdsuch that
n=2" —1andSg ={1, 2}. The BCH bound ensures that3 <d. It is a well-known fact
that in this case = 6 = 3 (as 3= 22 — 1). SoB can correct 1 error.

For this code the following equation holds (Section 4)

i1=Xx1

wherez; represents the location of the error (or 0, if no error occurred)ans the first
syndrome. So we have a polynomial in theariable

P)=z—-x1
with coefficients in the syndromes, leading coefficient 1 and such that its root is:

e either the location of the error, if one error occurred,
e or O, if no error occurred,

which is exactly what we want from a general error locator polynomialBfpand so
Y= P(2).

One of our main results is Theorem 6.9, which states
Every cyclic code admits a general error locator polynomial
We can extend Definition 3.1 to the case when there are also erasures.

Definition 3.3. Let . a polynomial inl, [X, W, z], X = (x1, ..., x,) and W = (wy, ...,
w1), Wherev is the number of erasures that occurred. Ti€ris ageneral error locator
polynomial of typer of C if and only if

(1) X, W,2)=2"+ar12" 1+ +ag, witha; € F,[X, W],0<j <t -1, thatis?
is a polynomial with degreein the variablez and coefficients irff, [ X, W1,
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(2) foranysyndrome=(s1,...,s,)and any erasureg=(wy, ..., w1), corresponding to
an error of weighp: <t and error locationgks, . . ., k,}, if we evaluate theX variables
in sand theW variables inw, then the roots ofZ (s, w, z) are{o*t, ..., a0, ..., O}.
————

T—q

If such % exists for a given cod€, then we name the polynomiat’y..

To be consistent with our notation, we refert- also as to general locator polynomial
of type0, where clearly?c = £2.

For acode”, the possession of a general locator polynorigl of typev forall 0< v < d
is clearly a stronger condition then the possession of a general error locator polyémial
but in Section 7 we prove one of our main results, Theorem 7.7, which states

Every cyclic code admits a general locator polynomial of
type v,for 0<v<d.

4. CRHT syndrome variety

In [6] Chen et al. proposed an algorithm for error decoding of cyclic codes starting from
the Grobner basis of a suitable ideal. In this section we describe the structure of the ideal and
of the underlying variety, using the improvements due to Caboara and[Blorsdthough
no original results are presented here, we give some insights in Remark 4.2 and Remark
4.3, which will be the starting point of our subsequent construction.

Let C be an[n, k, d] cyclic code with parameters following our previous notation (e.g.

d is the code distance).

Definition 4.1. We callcorrectable syndromdbe syndrome vectosse " corresponding
to errors with weighp: < ¢. And we denote by« C [ the set of all correctable syndromes
associated to the code

Suppose there are exactherrors. We want to express the solutions of the equations:
ﬂ .
Zal(a’-/)k’ —-5;=0, 1<j<r, 3)
=1
where{q;} and{k;} are unknown, as points in a variety defined by multivariate polynomials.
The solutions of (3) are of the form

(kl7"‘9k,u7a1""7a/.t)

andareino,...,n—1}*x [FZ. Observe that this solution set is not naturally endowed with
any algebraic structure. Unfortunately we do not kngwve know only thaju <¢. For this
reason we consider an equation:

t
Zal(ocif)k’—szo, 1< <, (4)
=1
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suchthatitis satisfied by the solutions of all equations of kind (3), for€ll&< . To ensure
this, we choose a symbbkland from now on we set by definition thﬂt: 0,Vp € [F. Using
this notation, we can view the solutions of (4) as lying in the sglce ., n — 1, k}' x Ffl.
Again, this solutions set is not naturally endowed with any algebraic structure, it is just
a set.

If we take a solution of (3), sagks, ..., kg, a1, ..., a,), we can extend it to a solution
of (4) as follows:

ki, ... ky,ar,...,a0) — (ky, ook koo koan, o ap, k%)
~—— ~——
t—u t—pu

wherex stands for any non-zero elementlgf. This way, to any solutions of (3), we can
associatég — 1)’ solutions of (4). These extended solutions will be catlzect extensions

Remark 4.2. There are some solutions of (4), which come from solutions of (3), but
which are not their direct extensions. For example, if thererare2 errors 1 =t —

2) and(ky, ..., ky, a1, ..., a,) is a solution of (3), then, for any € I, andb € T,
(k1,....ku b, b a1, ..., ay, a, —a) is a solution of (4), ag(«7)? — a(e'/)? = 0.

We introduce the variable$ = (x1, ..., x,), Z=(z, ..., z1) andY = (y1, ..., y;), with
the following meaning:

x; stands for the syndromg, 1< <r,

stands forl the error location if 1 <1<y,
’ 0 if u<i<t,
the error magnitude; if 1<i<pu,

yi stands for{ any non-zero element df if u<I<r.

Using this notation, we can now rewrite the equations (3) and (4) in terms of the variables
X, ZandY:

n y

fj:Zylz;"—szo, 1<j<r, (5)
=1
t i

fi: Zylz;’ —x;=0, 1<j<r (6)
=1

We can add other equations to specify the range of values that can be assigned to our
variables:

oj :x;? —x; =0, 1<j<r, sinces; € F;
mi 2 =z =0, 1<i <1, since(«)! are eithemth roots of unity or zerp

syt —1=0, 1<i<t, sinceq e F,\{O};

1
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Then we obtain the following polynomial equation system:
Fc=\fj.0;.n;, A 1< j<n1<i<} C F,[X, Z, Y]

The ideall generated by ¢ is theCRHT-syndrome ideassociated to the codeand it
is easy to see that it is a zero-dimensional ideal. The vaViéty ¢) defined byZ ¢ is the
CRHT-syndrome varietgnd clearly we hav& (% ¢) = V(I¢).

Remark 4.3. For every given correctable syndrorsec X¢, there are some points in
V(Z ¢) that determine the error locations and the error values, Butif ) there are also
other points that do not correspond directly to error vectors. In fact, there are points of type

1oz 00, 0yt e Vs Y1 e Vi)
t—u

with y; an arbitrary element ii, for any j, that clearly correspond to direct extensions
of (z1,...,2zu y1, - .-, yu) and these points are the points consideref8j6,15] But, if
u<t — 2, there are also some pointsWi{.# ¢) not corresponding to direct extensions:

(Zla"-7Z,U,azaz703"-707y17~"ayﬂ5y17'-'ay[—ﬂ)v
1—(u+2)
with z anynth root of unity and the other components as above.
Remark 4.4. The role of the polynomials;, i;, 4; is noteworthy. They remove all the

roots that are in algebraic extensions outdidend moreover they make the other roots
simple. That is/¢ is a radical ideal and

V(ZFc) CF x F x (Fy).
If we calculate the Grébner basisc of the ideallc, w.r.t. the lexicographical order
induced by
X1<X2<-<Xp<ZL<---<z1<y1<---<)y,

the Gianni—Kalkbrenner Grobner Shape Theorem[{&,13) gives us information on the
structure ofG ¢, as proved if3]:

Theorem 4.5(Caboara and Mord3]). LetG be the reduced Grébner basis of the CRHT-
syndrome ideal¢ w.r.t. the lexicographical order induced by

XL <X <+ <Xy <Zy <+ <Z1<Yy1<-+ <.

ThenG has the following structure

1. G:le_Izel_IGXZY WithGXZ:U§:1Gi, Gl’ (- yX[Z{, e Zi+1][Zi]\._7ﬁx[Zt, RN Zi+1]
and

A;
Gi=]JGis.
o=1
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2. for eachi, if we evaluate the polynomials 6f; in (s1,...,s,,0,...,0),letg € G;s
~———

t—i
be the first polynomial s.t

Lp(@i)(s1,...,5,0,...,00#0
i.e.

e Lp(g)(s1,...,5-,0,...,00=0, Vg € G;p, D <9;
e for eachg € G,s such thatLz(g) < Lt(gi) (cf. Remark2.7)) we have

Lp(g)(s:]_, -'-vsrvoy 70):0
2. Then

(21) g(s1, ..., 8, 2, 0,..., O) =0, Vg € Gip, Lt(g) < Lt(g);
(2.2) gi(s1, ... 8/, 2i,0,...,0) £ 0;
(2.3) for eachg € G;p s.t.Lt(g) < Lt(g)

0i(s1, ... 8,2i,0,...,00 | g(s1,...,5,2,0,...,0);
3. if we suppose that there are at mst ¢ errors, we could have the following cases
(3.1) either
Lp(g)(s1,...,5,0,...,00=0 Vge Gy,
then

(@) g(s1,...,8,24,0,...,00 =0, Vg € Gy
(b) there are at most — 1 errors;
(3.2) or

dg € Gy s.t. Lp(g)(s1, ..., 5,,0,...,0) #0,
then if
Tp(g)(sy,....s,0,...,00#0:

(c) there arep errors,
(d) L(z) =g(s1,...,5,0,...,0,2);

else

(e) there are at mostt — 1 errors.
Proof. For a proof we refer t§3,12,13,15] 0O

From this theorem it is clear how to proceed to get the error locations from a given
correctable syndrome It is enough to evaluate the polynomials@f,, in s for eachy,
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until we find one which does not vanish. This will be the error locator polynomial. The
exact algorithm by Caboara and Mora is reported in Section 6, as Algorithm 8.1.

5. On the structure of some ideals

In this section we state and prove some results which will be useful in later sections. The
proof of one of our lemmas is very technical and can be found in the appendix. Our aim is to
describe the structure of the reduced Grébner basis for a special class of zero-dimensional
ideals. Independently, the authorgd1] were investigating similar settings.

Lemma 5.1. Let! be aradical0-dimensionalideal irK[S’, Z’, T1,with §'={s1, ..., sn},
T={t1,....tu}, Z' ={z;, ..., z1} and letG be a reduced Grobner basis biv.r.t. a block
order s.t.S’ < Z’ < T and a lexicographical order on th&”: z, < - - - < z1.

If v (1) c KNT+M and v (Ig) = |_|’j=12,- c KN, with

2;={(1,...,5y) € V" (Ig) | there are exactly) values{z,(l), ...,Z”)},

StGL ... 5v. 2 € P Usug,), 1<i <),
2 #0.1<j<t,
then we have

o G =15 1G, 5 with A>1,
o G, s # W for1l<o<s.

Proof. Recall thatG, = G N K[S’, z, ]\K[5'].
If s=(51,...,5y) € 21, our hypotheses say that exactly one vazﬁé exists, with
(51, ..., SN, Zﬁl)) € V" (Isu,)), thatis the partial solutiose ¥ (Iy) can be extended to a

rootin’” (I ,)) only by appending!”. Then atleast one polynomigd(s1, . . ., sn, z/) €
Dy = 0 and this polynomial will be the

G, exists s.tdeg, (g1) = 1 andgi(51, ..., 5N, %,
generator of the image, (/su(;,}), wherep, is the specializatiorf — £ (s, z;) (se€[12]).
Now let j be any number & j <t. If s=(51, ..., 5y) € 2, our hypotheses say that ex-
actly j value§§1), el Zﬁj) exist, such that thg points(ss, .. ., sy, Zfl)), ey (51, ..., 5N,
Zt(j)) € ¥ (Iyuyz,y), that is the partial solutios € 2; can be extended only by appending
Zt(l), e ij).Then atleastone polynomigl(si, ..., sy, z:) € G, existss.tdeg, (g«)=,

g«(51, ..., SN, Zt(l)) =0,...,2.01,...,5n, ij)) =0. Again, the polynomia¢, will be the
generator of the image; (Isuy,,}), Whereg ; is the specializatiorf — f(s, z;) (se€{12]).
O

Lemma 5.1 guarantees that the s@tsare non-empty for ¥ j <, but this lemma says
nothing about th& ; with j > 1.
In the appendix, we prove the following lemma:
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Lemma 5.2. LetJ be a0-dimensional radical ideal in a polynomial rinkf[ V1, ..., V],
wherelK is any field an®@ < ./". Lett be a natural numbet < t. LetG be the lexicographic
Grobner basis of/ (with order V1 <--- <V ) and letZ denote the maximal degree in
V- possessed by the polynomialsGn Let.# be any set of points inl<”"" of the type
S ={(s1, ..., 5.4~1,20), ..., (51, ..., 5.4/—1, Zj)}, where(sy, ..., s 4~—1) does not belong
to the variety?"(J N [K[V1, ..., V _1]) andj<t. Denote byJ’ the ideal formed by all
polynomials inJ vanishing on¥. Let G’ be the lexicographic Grobner basis #fand let
2’ denote the maximal degree ¥~ possessed by the polynomialsGh Then

e J'is again radical
o if 7<t, thenZ' <.

Using previous lemma, we now specialize Lemma 5.1 to a case which is more interesting
to us.

Lemma 5.3. Let us consider the same notation and the same hypotheses adopted in Lemma
5.1.Let 2, be the subset of " (I5yy;,;) formed by points of typ&(s, Z,(i))}, withs € 2
and1<i<j. Let] be the ideal formed by all polynomials [, z,] vanishing onZ.

Let G be the Grobner basis df and D denote the maximal degree inpossessed by the
polynomials inG. Suppose) <t. Then

A=t

Proof. If t =1 we have by definitiod = I, so thatD = 4 and hence <4 = D <t.

We have to show the case: 2.

Lets be a pointinX, and let(s, z1), (5, z2) be its two extensions 0" (Isu(,))- We now
apply Lemma 5.2 using:

o K[Vi,....Vy1=KIS, zl, J=1,

o ¥={(5,7Y), (5, z%)} (and hence’ will be formed by the polynomials ifi which vanish
on the two point§(3, zY), (5, z9)}),

e t=t,j=2.

The radicality of/ implies the radicality of all its elimination ideals and £@y,, =
J(ugzlij), showing.# (21) = I D I. The hypotheses of Lemma 5.2 are clearly satisfied
as the ideal is obviously radical an& = D <t. But then Lemma 5.2 says thatis again
radical and that in its Grobner basis the degreg is again bounded by,

We can repeat this argument adding another pair of points of Bpe. ., sy, Zﬁl)),
(51, ..., SN, Zfz)), where(sy, ..., Sy) € 22 and hence we can show that the ideal we obtain
will be again radical and with our bound on the degree. We can proceed until we have added
all points of that type. As a result we have that the same properties are shared by the ideal
I 12}, that is formed by the polynomials @,.,) vanishing on the sef; LU 3».

If = 2 we have finished. Otherwise let us chl} the ideal formed by the polynomials
of I,y vanishing on the s@?zlij, where X i <r. We want to prove by induction on
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h that I}, possesses the following properties:

e [ is radical,
e in its Grébner basis the degreegnis bounded by,

forall b s.t. 1<h <t. These properties are satisfiedpy = I and/[2;. We assume then
that I;, 1) satisfies our properties and we have to prove that gisaloes (with 3<h <t).
We again apply Lemma 5.2, choosiagpoints (E,Zﬁl)), cee, (E,th)) in 7" (Isu,)) St
s € 2y, and considering

o K[Vi,...,V1=K[S,z], J = Iih—1y,

o Y ={(5, Zfl)), oo (8, th))} (and hence’ will be formed by the polynomials ify;,_1;
which vanish on thé points in.%),

et=t,j=h.

Once again, the hypotheses of Lemma 5.2 are clearly satisfied atdssadical and in
its Grobner basis the degreeznis bounded by. As before we can repeat the argument
adding suitablé-tuples of points, oné-tuple at a time, and as soon as we have considered
all points in X, we will have that our properties are shared by the ideal formed by the
polynomial of I;;, 17 vanishing on the seX;, i.e. exactly by the ideal,) = Iz, O

Theorem 5.4. Let I be a radicalO-dimensional ideal inK[S, A, T1, S = {s1,...,sn},

T={t,...,ty},A={a,...,a1} andG areduced Grobner basis @fw.r.t. a block order

s.t.§ < A < T and a lexicographical order on thé: a; < - - - < a1. Supposd is such that
1 )

Q) v Us) = szlzj , with

Z(/.l) = {1, ...,5x5) € ¥ (Is) | there are exactlyj values{a”, ...,a"},

5.0.51, ., 5N, A ) € ¥ Usupa), 1<i < Jj);

) ¥ Usuay) = L5247, with

Z(/.l‘l) ={G1.....5x. @) € ¥ (Isuia) | there are exactlyj values
0 » B .
{al(f)]_’ R} a[(i)l}v S.t.(s_‘]_, - SN, Al a[(i)l) € n/(ISU{a[,a[_l})ﬂ
1<i<j};

@) ¥ Usutay...a) = L2127, 2<h <l — Lwith

U = {G1 .. SN @G0 €V UsUa....) | 3 exactly j values
a n B o .
{a}(;—)l’ e, a}(lj_)l}, s.t.(S1,...,SN, 4y, ..., dp, a}(llll)
S W‘(ISU{a[ ..... ah,]_})v 1<l <.]}7

(4) the Grobner basis of the ideaﬂ(Z&h’l)) C K[S,{a, ..., a}] does not contain poly-
nomials with degree higher thanw.r.t. the variableay,.
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Then we havdor 1<i </,

i
Gi=|]Gi.
o=1
with G5 # ¥, 1<9<i and1<i <I.
Proof.

e Inthe casé=r=I, our statementis just a rephrasing of Lemma 5.3, With S, Z’' = A
and obviouslyx; = >
o In the other cases, we can apply Lemma 5.3, choosing the suitable variable sets. To be
more precise, for anydi </ — 1, we apply Lemma 5.3 settin§f = S U {a;, ..., a;},
Z' ={aj41,...,a1} andX; = Zg.i). We clearly have by definitiod = J(Z(lh’b) C
K[(S, {a,...,ap}]. O

Theorem 5.5. Under the hypotheses of Theor&m and with its notationwe have

(1) V1<i<l, Gii = {gii1}, i.e. only one polynomial exists @; with degree’ w.rt. a;;
(2) V1<i<l, Lp(giin) = 1, Lt(giin) = ;.

Proof. Sincel is a 0-dimensional ideal ar@ is a Grobner basis df, then for all 1<i </,
there ism; € N such thataf”" = LT(g;) for someg; € G. We claim that, for each
1<i<l, g € G;.Infact, ifi =/ and if we suppose thay € G;, withi </, theng, €
KI[S,a,...,ai+1][a;\KI[S, a;, ..., a;+1] and there would be ig; variablesq;_1, ..., a;
greater thany becausey <a;—1 <--- <a;. But thenLt(g;) # al’”’ and this contradicts
our hypothesis. So we deduce thate G;. The same argument can be used to prove
thatg; € G;, V1<i <I. Then at least one polynomig] exists inG;, 1<i </, such that
Li(gi)=a;".

Due to Theorem 5.4, eacl; does not contain polynomials with degree higher thaout
it does contain polynomials with degreednexactlyi. Som; <i, Vi </. We want to show
thatg; is the polynomial with the greatest leading ternGpand that it is the only one with

degree in a;. Suppose on the contrary that for soiriere is a polynomiag; € G; s.t.
deg, (g;) =m; +e&, with ¢>0. Let the leading term qf; beLa;”"“, with L a monomial in
K[S,a, ..., a;—1]. Butthenitis obvious that the leading tertfi’ of g; divides the leading
term of g/, sincea’” |a{""+‘5. So we have two polynomials in a reduced Grébner basis with
the leading term of one dividing the leading term of the other one, which is impossible.

6. A new syndrome variety

Let C be an[n, k, d] cyclic code.

The CRHT-variety described in Section 4 defines a larger variety than that corresponding
to all possible correctable syndromes and, as we have already pointed out in Remark 4.3,
there are points iV (% ¢) that do not determine error vectors. If we denote by
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the variety in(F)” x (F)" x (F,)" corresponding to all error vectors with weightz,
then? ¢ C V(Z ¢). In order to restrict the variety (% ¢) to ¥ ¢, we have to add new
polynomials to the polynomial systeg.

Definition 6.1. Letn € N be an integer andl,[x, y] a polynomial ring with(g, n) = 1.
We denote by(n, x, y) € F;[x, y] the following polynomial:

lel’lll

Lemma 6.2. Letn € N be an integer withg, n) = 1. Let I the ideal inF, [x, y]

I = ({x”l - 17 yn - 17 p(”»x» y)})
Let S be the set of points ifiZ s.t

p(n,x,y) =

x,yeS& X' =17y"=1x#5y}.
Theny (I)=S

Proof. Letx, y betwo pointsinS, then, a&” =1 andy” =1,x" —y" =0. Butx" —y" =
x+y)pn,x,y)andx £y, sop(n,x,y) =0. Thatis,S c ¥ (I).

Letx, y be two points outsid§. If x* — 1 # 0, thenx does not satisfy one polynomial
in 7. The same argument works fof — 1. So if (x, ¥) is notinS and yet it is in/, we must
havex = y. But then:

p(n,X,y) =pn,x,%) = Z)—m—c** =nx"1
i=0
and,asqg,n)=1,p(n,x,y) #0. O

The previous lemma guarantees that the conditi@n x, y) removes the pointé, y)
such thate = y and bothx andy are non-zero.
The following lemma is then obvious.

Lemma 6.3. With the same notation and hypotheses of Lerradetx, y e F. If x - y -
p(n, x,y) =0then

x#yor x=00r y=0).
By adding the polynomials:
Xigtzi-a e pn, g, z) =0, 1<l <1<t @)

to 7 ¢, we have that for all and! eitherz; andz; are distinct or at least one of them is zero,
and we obtain a new syndrome variefy,:

Fig =1L )iy 2 17, | 1<) <, 1<i <1, 1<E < U<t} C Ryl X, Z, Y],
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We denote by the new syndrome ideal generateddy- and we follow this notation in

the remainder of the paper. We must now make sure that the solutiafjs afe exactly

the direct extensions, i.e. that we have not removed too much and that we have removed
enough. This is shown by the next lemma.

Lemma 6.4. For any cyclic codeC, the solutions ofl . are the direct extensions of all
errors of weighD< u <.

Proof. The direct extensions of errors of weights are solutions of/., because they
were present ir”(I¢) and the adding of conditions of type - z; - p(n, z;7, z;) = 0 does
not remove these roots, since the locations of errors are obviously distinct.

Now we want to prove the converse. Let

B :(E17~"97r5zl9'~'3217yl5 "'7?[)
be a solution of;.. We have thatz,, ..., z1) is of the form
(07"'50’21’07"‘90’2[“05""0)5

that is, there are: non-zero elements ift with z; # z;, 1<i < j<pu, and the others
elements are all zeros. We can wriig, ..., y,) in the form

Ghy oo %, V1%, o %, Yy K, o, %),

that is, there arg« non-zero elements ifi, in the same coordinates as, ..., Z,, and
t — w other non-zero elements &f,. As {z;}, < j <, arenth roots of unity, we can find
kj, 0<k;<n — 1, such that; = o/ and ast; # Z;, ¥ 1<i < j<pu, we havek; # k;.
Now we construct the vectar= (0,...,0,y1,0,...,0,y,,0,...,0) such that its non-
zero elements are in the coordinakes. . ., k. Itis now immediate to see thatis a direct
extension of the solution of (3) correspondingzto [

Definition 6.5. We denote by>¢; C [ the set of all syndromes corresponding to error
vectors with weight exactly.

Lemma 6.6. LetJ be the ideal /)y = I N F[X]. Then

rHh=2%c= || Zci
1<u<s

Proof. First we prove thatc = Ulgugzzai- Let (x1,...,x,) be an element iX¢.
As it is a correctable syndrome, it has to correspond to an error with weight Thus
(*1,...,%,) € Zc . Conversely, letxy, ..., x,) € 2¢;. This is a syndrome correspond-
ing to an error with weightt<¢, that is,(x1, ..., Xx,) is a correctable syndrome.

We are left to show that”(J) = UKH@ZCJ.

We proveXc , C ¥ (J). Let(xy,...,Xx,;) € 2¢cu then itis a syndrome corresponding
to an error with weigh.<¢, such that the error locations afeg, . .., z,) and the error
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values ardyy, ..., y,). The point

B=(1....%, 20, .., 2, 0,..., 0y, o Y 1 D)
——— ——
t—u t—u

is a direct extension of an error of weight{ r and so from the previous lemniac Y UEH),
butthenB N K" = (x1,...,%,) € V(J).
We prove nowV (J) C X¢. Let (x1,...,x,) € V(J), then there arézili< < and

{yvilicj<ssuchthatxy, ..., %, 21, ..., 2%, Y1, - - - ¥,) € V(). By the previous lemma,
we can write this point as

(X1,.--,%,0,...,0,71,0,...,0,%,,0,...,0,51,0,...,0, 7,0, ..., 0),

where(Z, ..., Zu, ¥1, - - -, Yy is @a solution of (5) with syndroméry, . . ., x,-) correspond-
ing to an error with weight<t. Thus(xy, ..., x,) € Zc . O

Remark 6.7. The same considerations present in Remark 4.4 hold. In partidilas
radical for any cyclic cod€.

Lemma 6.6 is needed to show that our syndrome idgahas exactly the properties
described in Section 5, which guarantee the structure of its lexicographic Grobner basis, as
shown in the following theorem.

Theorem 6.8. Let I/. be the syndrome ideal generated %y, and letG be the reduced
Grobner basis of . w.r.t. the lexicographical order induced by

XL <X2<- - <Xp <7<+ <Z1<Yy1<---<).

Then

1. G=GxUGxzUGxzy;

2. Gxz = U;:lGi;

3. Gi=;s_1GisandG;5 # ¥, for 1<i <r and1<d<i;

4. G;; = {gii1}, for 1<i <zt, i.e. exactly one polynomial exists with degiew.r.t. the
variablez; in G;, and its leading term and leading polynomials are

Lt(gii1) =z, Lp(gi) =1,

5. forl<i<randl<o<i — 1,foreachg € G;s5, Tp(g) =0.

Proof. Points (1) and (2) are clear.

To show point (3), we need to apply Theorem 5.4. As Theorem 5.5 shares the same
hypotheses, the application of the latter will give automatically point 4.

We want to apply Theorem 5.4 with the following setting:

e S=X,A=ZandT =Y (implying in particular that = 1),
o [ = I/C'
e the order on thé[X, Z, Y] we have chosen.
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Thelexicographicorderdi X, Y, Z]stxi<xp <+ <X, <z <+ <71 <y1<--- <)
is obviously a block order s.t. boti< Z < Y andz; < - - - < z1. In this setting, we have to
make clear:

° whatZﬁ’) represents, for & j <t,
° Whatzy’_l) represents, for h<rand 1< j <h — 1,
t
o that? (Ix) = |_|;=12§.),
By definition
® _ = - ; =D =()
Zj ={(1,...,5n8) € ¥ (Ix)| there are exactly values{z,”, ..., z,""},
st (1,558,200 € 7 Uxug)), 1< < ).
In other words, a point org’) is a syndrome and its extension*o(I/xyz) is a point

(5,2)=G1, ..., SN Zty...,21) e FF x F

such that among itg coordinates there are onjydistinct components. If & j <7 — 1, the
point (s, z) will then be formed by a syndroniecorresponding to an error of weight- 1
and the elements if,, ..., z1} which are distinct will form the se{tzgl), e Z,m}. This
set contains precisely the locations of error (which jare1) and the value 0.

The case withy = ¢ is analogous but more complex:

e eithers corresponds to an error of weight- 1, and sqz§1>, cey Zt(j)} will be ther — 1
locations of the error plugd}, _
e Or 5 corresponds to an error of weightand so{z,(l), e, Zf’)} will be exactly ther

locations of the error.

Summing up, we see (Definition 6.5) that
25.1) ZZC,j—l’ 1<‘]<f— 1, Zl(t) =Z‘C,t—lUZC,l

and so Lemma 6.6 (and the radicality of our ideals) ensures that

t

7 (x) = | 25.’)

Jj=1
The proof of
h—1
Y Ux0iz.zn)) = |_| Z;h—l)
j=1

can be given with similar arguments.
To show point (4) of Theorem 5.4, we observe that the Grobner bas'@(ﬁih_l))
(for 3<h <) will be formed by some polynomials only in thE variables plus the
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single polynomialz,, because if there is only one possible extension then we must add
only 0.

We are left with showing point (5), i.e. that almost all polynomialsGin (all but the
greatest) have no trailing polynomials. This is equivalent to say that any such polynomials,
once evaluated on a syndroméand its portion of — 1 Z components), must have 0 as
a root (seen as a polynomial iiz;]), which is obviously always the case, except when
considering the greatest polynomigl;. O

We are now ready (see Definition 3.1 ) for our main result of this section:
Theorem 6.9. Each cyclic code” possesses a general error locator polynon#é¢:.

Proof. Justtake?¢ = g/i1(x1. ..., X, 2). Itis trivial to see that this polynomial satisfies
all properties needed by a general error locator polynomial. Actually:

o itliesinF,[X, z], becausg;1 is an element of a Grébner basis which can be computed
by Buchberger algorithm starting from the polynomi&d$., with 7 . € F,[X, Z, Y;

e it never becomes identically zero once evaluated on a correctable syndrome (compare
to point 2.2 in Theorem 4.5), as its leading polynomial 1 never vanishes, and so it will
contain all locations of errors (and multiple zeros, when appropriate);

e its degree iny is exactly:. [

Remark 6.10. We observe that if8] to find the error locator polynomial we have to study
all Gxz, precisely if we know that there are at mas{ ¢ errors, we search fdi(z) in G .
Instead, thanks to Theorem 6.9, we have only to specidafizeto a given syndrome. So,
we can present and discuss in Section 8 new decoding procedures for cyclic codes.

We now give an example, which illustrates very well the structure of the Grébner basis
as predicted by Theorem 6.8.

Example 6.11. We consider the same example discusse@,ib5]. Let C be the 3 error-
correcting BCH17,6,8]over Z,. The CRHT syndrome idedl = I¢ is generated by -,
ie.

21+ z2+z3+x1, zi’+z§+z§+x2, z§+z§+z§+m,

21 —x1, x2%—x2  x3®—xs,

30— zy, 30— zp 30— z3
If we calculate the Grobner bagisw.r.t. the lexicographical order induced by: < x2 <
X3 <z3<2z2<1z1, the elements 06 xz are: Gz = G33 U G316, G33 = {8331, 8332},
G316 = {83161, G2 = G22 U G216, G22 = {8221, 8222 8223}, G216 = {82161},
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G1=G11={g111}, where
— 53 3y.
Lpz3(g33l) - 23(x2 + xl)’
— 73 5.
Lng(g332) - 23(x3 + -xl)v
83161= Zée + 23;
_ 2 3y.
Lp.,(g221 = Z5(x2 + x1);
— 52 5y.
Lp,,(g222) = Z5(x3 + x7);
Lp.,(8223 = Z(z3 + x1);
(g2160 = Z°+ 22

Lp, (8111 =21+ 22+ 23+ x1.

We can comment on this structure.

First, observe that the greatest polynomiatig is z3 + z3 and is the only one iiG 3
which does not become identically zero once evaluated on a syndrome. It could be a good
candidate as a general error locator polynomial, but unfortunately its degree is 16 instead
of 3 and it will never tell us anything useful, except the trivial fact that the error locations
must be searched among the 15th roots of unity.

Second, if we look a3 3 we see two polynomials, any of them becoming identically
zero on some correctable syndrome and so neither could be a candidate for a general error
locator polynomial. To show that for eaglin G3 there is a correctable syndromsuch that
g(s, z) becomes identically zero, we observe thét z) = 0 is equivalenttd.p(g)(s) =0,
due to Gianni's Theorem, and then it is enough for us to check if there are correctable
syndromes among the roots bp(g). The check can be easily done by hand.

Last, there are no polynomials@y 1 orin Gz 2. So if we have a syndrome corresponding
to an error with weight 1, we will not have a polynomial of degree 1 which will give us the
error location (once specialized), but we will need a polynomial at least of degree three.
This is an apparent contradiction to Gianni’'s Theorem, but in reality what happens is that
to an error of weight 1 many othervalues correspond: the ones coming from rootg of
which arenotdirect extensions (see Section 4).

If we add conditions (7) td, we obtain our syndrome ide&l = 1.

ittt S4B x5+ 3+ s,
XiG —x1, x]% — X2, xjfi — X3,

116 — 21, 226 — 22, Z36 — I3
7122p(15, 21, 22),  z123p(15,z1,23),  z2z3p(15, 22, 23)

We call G the corresponding Grobner basis and so the elemertis gfare:

15_15 15 15 .
g311=23(x3"x1" + x5° + x1° + 1);
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8321= Z%(les + x214xf + )czl‘o’xi3 + x%zx% + lelx%z + leox%s + xgxf

+ xgxg + xgxf + xgx%Z + xgx%S + xgxf + x%x? + x%x? + xzx%Z

+ x%s +1 + 23(x215x1 + x214xi1 + lesxz + lezx%O + )c%lxl13 + x210x1

+ xgxf + xgxz + xe}O + xgx%3 + xgxl + xgxf + xgxz

+ x%xllo + xzx%3);
3 2 9 8.3 4 9 15 2 145
8331=123+ Z3x1 + 23(X3x2 + X3X5X] + X3Xp + X3X2X] + X57X] + X5 X7
13.8 12 11 1114 10..2 7. 11 6 14+ x25xf + xgxs

XX XX XX X Txy + XXy T+ XX 1
+ x%x%l + x%) + (xgxgxl + x?,)chi1 + xgxgxl + xgxzx%o + x215xf

15 103 7 .12 6..15

13.9 1212 ll)C:L + x3%3 + xJx12 4 xSx]

+ogted + o + %+ g
+ xgxf + xgxf + x%x%z + x2);

15 15 , 15, 15 :
g211=22(x5"x1" + x3° + x1° + 1);

921 2=22(z3x3° + 23303 + 23w 230 + 23x12x P + 2322 4 2xd0 10

+ zgxgxf + nggxf + zsxgxf + zngx%z + zgx%x%s + zgxgxf + zgx%xf
+ 23x3x3 + z3x2x12 + z3x3° 4 23);

8221=25+ Z2(z3 + x1) + (25 + z3x1 + x3x5 + x3x5x3 + x3x7 + xzrox] + 132
I TN e
+23xf + 328+ xdart + )

g111=21+ (z2+ 23+ x1);

Thus,
G3=G33UG32UG31, G3z={g331}, Gz2=1{g321}, G31=1{g311},
G2=G22UG21, Goo={g221},G21=1{g211, 8212},
G1=G11={g111}.
Note thatG3 has exactly the structure described in Theorem 6.8:

1. For each Xi <3, there are inG; polynomials for each degre®g 1<o0<i, wW.r.t. z;.
That is, inG3 we have polynomials of degree (@) 3, 2 and 1, without gaps (compare
to the case previously discussed).dn, we have polynomials of degree (in) 2 and
1. In G4, there are polynomials of degree 1 in)

2. There are no greater degree polynomials, i.€4rthere are no polynomials of degree
in z3 greater than 3, ii2 there are no polynomials of degreezingreater than 2 and
in G1 there are no polynomials of degreezingreater than 1.

3. The greatest degree polynomialGh is the uniqgue member df; ;, i.e. there is only
one polynomial inG 3 of degree 3, there is only one polynomialii of degree 2, there
is only one polynomial inG41 of degree 1. These three polynomials have, respectively,
73, 73, z1 as leading terms and 1 as leading polynomial.

4. In particular, the polynomialsz1 is ageneral error locator polynomiadf BCH[17,6,8]
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5. The trailing polynomials are all zero, except for the greatest polynomials in@ach

Tp(g311) =0, Tp(gz20 =0, Tp(gazpn #0;
Tp(g2110) =0, Tp(g221 #0;
Tp(gr111) #0.

Remark 6.12. In some examples that we have computed (like Example 6.11), in addition
to the structure that we have foreseen, a curious property holds: inGgactnere is only

one polynomial. It would be interesting to know for which cyclic codes this stricter property
holds.

7. Extended syndrome variety

Let C be a cyclic code with the same notation used in the preceding section. We will
now extend previous results to the case when there are also erasures. To accomplish this,
we have to find the solutions of equations (1):

u v
S+ > a@ +> Ee) =0, 1<j<r
I=1 =1
where{k;}, {a;} and{c;} are unknown angs; }, {;} are known. We keep consistent with our

setting (introduced in Section 4 and Section 6) and we introduce vari@basu,, . . ., wi)
andU = (u1, ..., uy), where

wy, stands for the erasure locatiofd/ )7, 1<h<v:
u stands for the erasure values 1<h<v.

As soon as the word(x) is received, we know the numberof erasures, their positions
{wy}, and that

t1<(d —v)/2.

As usual we assume that t and for this reason we can write

T vV
S+ )@@t + Y GeT=0 1<j<r ®
=1 =1
Then we rewrite Egs. (8) in term of, Z, Y, W and U, where nowx; stands for the
truncated syndrome;, 1< j <r:

fit Yooz + Xj_qupwy —x; =0, 1<) <r,

gj: qu.’” —x; =0, 1<j<r, sinces € [ (note that we are denoting tsythe truncated
syndrome);

n;: z?“ —z; =0, 1<i<x, since(o//)¥ arenth-roots of unity or zero;

iyt —1=0, 1<i<x, sinceq € F,/{0};
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Eprwp —1=0, 1<h<y, since(océ.)hi arenth-roots of unity;

Gt ul —up =0, 1<h <y, sincec; € Fy;

it zizpn, zi z) =0, 1<i <I<x, since(di)! # (ai)kr;

Tint zip(m, ziswp) =0, 1<i <1, 1<h <y, since(adi )k £ (odi);
Tk Pwp, wp) =0, 1<h <k<v, since(oi)' £ (i),

The equations of typg;, ensure that two error locations are distinct if they are non-zero
(see Lemma 6.3). The equations of typge ensure that an error cannot occur in a position
corresponding to an erasure. The equations of fiypeensure that two erasure locations
are distinct.

Remark 7.1. Inthis sectionwhen we say “syndrome” we always mean “truncated syndrome”
and so our previous notation for syndromes and syndrome components, such, &sc.,
will now apply correspondingly to the truncated syndromes and their components.

With this notations we have
Fe =05 Mi 4is Sy Cns Yt Tans T | 1<J < 1< <, 1S,
1I<i<I<t,1<h<k<VCRy[X, W, Z,U, Y]
The ideall}. generated by (- is theextended syndrome ideahd 7" (7 ) = 7" (1}) is
theextended syndrome variety

Remark 7.2. While the syndrome idealc depends only on the codg, the extended
syndrome ideal . depends also on the number of erasures

We now need an extension of Definition 4.1:

Definition 7.3. We call correctable pairsthe pairs of typgs, w), with syndrome vector
s € " and error location vectow € [, corresponding to errors with weight<t. We
denote byX}. C " x " the set of all correctable pairs associated to the codehenv
erasures have occurred.

We can extend also Definition 6.5:

Definition 7.4. We denote by ; C " x [ the set of all correctable pairs corresponding
to error vectors with weight exactly

With arguments similar to those used in the proof of Lemma 6.6 (the key point being that
a correctable pair will identifyiniquelyan error vector, thanks to equations of kind ;,,
andy,,), itis easy to show the following lemma:

Lemma 7.5. Let J¥ be the ideal ) x = 1. N F[X]. Then

r=2t= || Zt.
INEN
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By Lemma 7.5 and using arguments analogous to those used in Theorem 6.8, it is easy
to show the following theorem on the structure of the Grobner basis of our ideal:

Theorem 7.6. Let I} be the syndrome ideal generated %y, and letG be the reduced
Grobner basis of . w.r.t. the lexicographical order induced by

X1< <X <WL <+ <Wy<Zr< - <Z7I<UI < <U <V <+ <Vr.

Then

1L.G=GxuGxwuUGxwzUGxwzu UGxwzuy-

2. Gxwz = UiZ1Gi;

3. Gi=;s_1GisandG;5 # ¥, for 1<i <t and1<0 <i;

4. G;; = {gii1}, for 1<i <7, i.e. exactly one polynomial exists with degiee.r.t. the

variablez; in G;, and its leading term and leading polynomials are
Lt(gii) =2, Lp(gi)=1

5. for 1<i<tand1<d6<i — 1,foreachg € G;5, Tp(g) =0.
From Theorem 7.6, the main result (see Definition 3.3) of this section follows:

Theorem 7.7. Each cyclic codeC possesses a general error locator polynomié}. of
any typev, for 0<v <d.

Proof. Just take? |- = grr1(x1, ..., xr, w1, ..., wy, 2). Itis trivial to see that this poly-
nomial satisfies all the properties needed by a general error locator polynomial. Actually:

o it lies in [,[X, W, z], becauseg;1 is an element of a Grobner basis which can be
computed by Buchberger algorithm starting from the polynomials, with 7. <
Fg[X, W, Z,U, Y]

e it never becomes identically zero once evaluated on a correctable pair, as its leading
polynomial 1 never vanishes, and so it will contain all locations of errors (and multiple
zeros, when appropriate);

e its degree iry is exactlyr. [

8. Algorithms and examples

In this section we first recall the revised CRHT decoding algorifBinand then we
present a new decoding algorithm for cyclic codes that exploits the properties of a gen-
eral error locator polynomial (see Theorem 6.9). We are going to show also how to de-
code simultaneously errors and erasures using general error locator polynomials (see Theo-
rem 7.7).

In [3] Caboara and Mora propose Algorithm 8.1. It accepts as input a syndrome vector
and outputs an error locator polynomial.
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Algorithm 8.1 (Revised CRHT-decoding algoritHB] ).

Inputs = (s1,...,sr);
w:=t;L:=1
Repeat
j:=0
Repeat
ji=j+1
Until Lpzﬂ(gwj)(sl, o8, 0,000 #0o0r >
If j > juu then
wi=p—1
else
If szﬂ(guuj)(sl’ ..., 5,0,...,0=0do
wr=pu—1
else
L:=guuj(s1,...,5,0,...,0,2);
Output u, L(z)
Until L #1o0r u=0
Output y, L(z)

The number of polynomial evaluations that this algorithm has to perform in the worst
case is clearly

t
N(8.1) = Z Nij+1+1t+1
i=1

Thanks to Theorem 6.9, to find the error locator polynomial we can consider directly the
general error locator polynomial:

Loty X ) =2 Fa—1(x1, ., x0T - Fao(x, . xp).

From that we can directly design the following algorithm.

Algorithm 8.2.

Inputs = (s1, ..., )

u=t

While a;_,(s1,...,s,) =0 do
por=p—1

Output u, L(z)/(zZ'™H)

The number of polynomial evaluations that our algorithm has to perform in the worst
case is just

N(82) =t —1.
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Example 8.3. We now apply Algorithm 8.2 to Example 6.11. We have that
P =gaz1= 123+ a(x1, x2,x3)z5 + b(x1, x2, x3)23 + c(x1, X2, x3)
and

a =X,
b= X3xg + xgxgxf + )C3x£1 + x3x2x% + lesxf + x214xi’ + x213xf + lezx%l
+x3tq 2%+ odat + 2B ®  afad + adad Bt +
c= xychl + xgxgxf + xgxg'xl + X3x2x%o + lesxf + x214x? + x%?’xf + lezxiz
+ x%lx%S + leoxf + x;x%z + xgx%s + xgxf + xg’x% + x%xllz + x2.
So we decode this way:

First, given a syndromés, s2, s3) # (0, 0, 0), we evaluate the three polynomials
A =a(s1, s2,53) =51, B=>b(s1, 52, 53), C = c(s1, 52, 53).
if C #£0thenu:=3,L(z) =z§+Az§+ Bzz+ C,
elseifC=0, B#0
thenp:=2,L(z) =23+ Azs+ B
elseifC=0, B=0, A #0,
thenu: =1 L(z) =z3+ A (and soz3z = s1).
The last casé = B = C =0 cannot occur, because this is equivalent to a no error event and
this is checked at the beginning, when we make sure that the vector syn@ranie s3)
is not the zero vecto(O, 0, 0).

A modified version of this algorithm can cover the case with erasures. Actually, Theorem
7.7 suggests that, in order to find the error locator polynomial wieeasures have occurred,
we exploit the properties of the general error locator polynomial of type
E(xlv"'3xr7wlv"'swV1Z)

=2 a1 (XLy o Xy WL, e W) T A QXL . Xy WL -, W),

It is then natural to design the following:

Algorithm 8.4.

Inputs = (s1, ..., 8), W= (w1, ..., wy)
H=1

While a;_;(s1,...,s,)=0do
we=p—1

Output u, L(z)/(z"H)

Algorithm 8.4 will give us the locations of the errors. But to complete our decoding we
need also to find the values of the erasures. To find them there are two ways:

e One can set up a systefusing Eq. (1) with X j <r: the only unknowns iiT" are (after
performance of Algorithm 8.4) the syndrome valdes }; the systent" is linear with
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respect to the variabldsh].} and so it can be easily solved. This is one of the standard
approaches in the simultaneous decoding of errors and erasures.

¢ An alternative approach is to use again our knowledge of the varigt.): once the
syndromes, the erasure locations and the error locations are fixed there is only one value
for each of thdu; } (the values of the erasures). So in the reduced Grébner Gabere
must be a polynomial of degree 1 in the lowesfand coefficients in theX, W, Z}), i.e.
inu1. Let us callP; such polynomial. We can compute a similar Grébner basis putting
uy as the lowest variable among the }. We would get a polynomial of degree 1:n.
And so on. Let us call this polynomialy, for 1<i <v. The polynomials are computed
once and for all, before any decoding process starts. So the complete decoding can work
this way:

o we receive a vector with some erasuneand we compute its associated syndrome
s.

We give to Algorithm 8.4 as input the pais, w) and we get as output the error
locator polynomialL(z).

From L(z) we get the error positiorns

We computer; — P; (S, w, z) for 1<i < vand the results will be the erasure locations.
o We find the error values with some standard metja@%

e}

o

(e}

The next example concludes this section. Here we take a very simple cyclic code and we
show both its syndrome ideal and one of its extended syndrome ideals.

Example 8.5. We consider the BCH: = 7, 6 = 5) codeC over Fy, i.e. C = {0000000
1111213. If v =0 then our syndrome ideal is
I={z14+22+m+x,5+3+25+x2,
2 2
X1 — X1, X9 — X2,
z122p(7, 21, 22), z223p(7, 22, 23), z123p(7, 21, 23)},
and the reduced Grobner basiss
g1= Xf + x1;
82 = xg + x2;
931 =23(xax{ +x3 +x{ + 1);

g32= Z%(xg + xgxf + xgxg’ + xéx% + xg’xf + x%xl + )czxi1 + xZ +1)
+ 23(x27x1 + xg’xf + xgxz + xgxf + x%x? + x%x% + x2 % xir’);

833= Zg + Z%xl + Zg(xe% + xgxi:’ + xgxl + xgxf + xgxz + xg)
+ x27xf + )chg3 + xgxf + xgxi’ +x2 + xf;

7.7 7 7 .
8211=22X9X1 + 22Xy + 22X + 22;
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9212=2223%4 + 2223x5X3 + 2223x5x> 4 2223x5%% + 2223X5x3 + 2273X5x1

+ zzzsxzxi1 + 12Z3xz + 2223;

8221= 25 + 2223 + z2x1 + 25 + z3x1 + x5x% + x5x7 + x3x1 + x5x7

+x§’x1+xg’;
g111=21+ 22+ 23+ x1.

G has the structure described in Theorem 6.8: in tagthas exactly one polynomial
for each degreé < 3. The trailing polynomials og31 and g3» are zero, and the leading
polynomial ofgsz is 1.

If v=1then2 + 1<7,i.e.t<2. The extended syndrome ideal is

I ={z1+ 22+ uiwq + x1, z§+z§+u1w:f+xz,
z? + 21, zg + 22, wZ +1, u% — ui,
2122p(7, 21, 22), zap(7, z1, w1), z2p(7, 22, w1), };

and the reduced Grobner baséiss

8 .
8 .
82 =Xx3 + x2;
g3 = wi’xzxz + w%xz + wlxgxz + wlxé1 + x%xz + x%;

g4 = wfxg + w%x%x? + u)fxzxf + wfxf + w%xgxl + w%x%xz + w%xzxf + w%x‘f
+ wlxg + wlxgxf + wlxgxi’ + wl)czxi1 + xgxl + xgxf + xg + xgxf
+ xzxf =+ x1;

gs=w]+1;

g6 =22(xox] + x5+ x] +1);

g7 = Zg(w%x{ + w:{’ + wlxgxz + wlxg + xzxz + x2);

g8 = Zz(ngg + w1z6x§xf + w?x% + w?x%xl + w?x%xf + w?x% + wfxgxf
4.2.5 3.2.6 2.2

+ wixsx? + wix] + wixdxd + wixdxf + wix? + wixdx] + wixj

+ w%x? + wlxgx% + wlxgxl + wlxz + xgxz + xg + x%x? + x%x% + x1);
g9 = Zg + Zz(w?xf + w?xz + w‘llxi1 + w%x%x? + wi’xgxf + wfx? + wfxgxl
+ w%x%x{ + w%x% + w%xzxf + w%x? + wlxgxf + wlxzxi1 + wlxz
+ x%xl + xgxf + xg + xgxf + xzxf’ +x1) + (w?xz + w?xf + w?xle
+ w?xf + wi‘x%x? + w‘llxgxf + w%xzx:f + w%x? + w%xér’xf + w%x%xl
+ w%xzxf + w%xz + wlxgxf + wlxgxis + wlxzxi’ + wix1

+ xef + xgxi’ + xgxl + xgxf);
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810=21+z2+ w?x% + w?xz + wfxf + wi’x%x% + wi’xzxf + wfxf + w%x;'xl

+ w%xzzxz + w%xzz + w%xzx:f + w%x? + wlxgxi3 + wlxzxi1 + wpcz

+ xgxl + )cg)ci1 + xg + xgx:l)’ + )cz)ci3 —+ x1

g11=U1 + w?xl + w?x% + w‘llxz + wfxf + w%xg + wlxg + x;
+ xgxf + xgxg + x%x? + xI.
Note that we have only one polynomial of degree &in but we have some polynomials

of degree 1 inG1. According to Theorem 7.%g is a general locator polynomial of type 1
for C, i.e.

=?é(z) ZZ% +azp + b,

with
a= w?x% + w?xz + w‘l‘xi1 + wi’xzzx% + wi’xzx% + w%xi’ + w%xgxl + w%x%x{
+ w%x% + w%xzxi)’ + w%x? + wlxgxf + wlxzxf + wle + x5x1 + xgxf'
+ xg + xgxf + xzxf + x1,
b= w?xz + w?xi’ + wfxle + w?xf + wi‘x%x? + w‘llxzxf + wfxzxf + wi’x?
+ w%x%x? + w%xzle + w%xzxf + w%xz + wlxgxf + wlxgx? + wlxgxi’
+ wix1 + xgx% + xgxir’ + xgxl + xgxf.
If we apply Algorithm 8.4 we obtain

e given a correctable pa(s, w), we evaluated = a(s, w) andB = b(s, w),
if B#0Othen u:=2,L(z) =25+ Azo + B,
elseifB=0, A #0,
then u:=1,L(z)=z2+ A

Remark 8.6. If u =1 then we obtain directly, = A.

Remark 8.7. To calculate the erasure valug, we could use the polynomid = g11, as
explained in the discussion after Algorithm 8.4.

9. Computational remarks

In this paper we are interested in studying the structure of our syndrome ideal and in
showing the existence of general error locator polynomials for cyclic codes. We are not
concerned about complexity issues, which are deeply analyzdd.iAlbeit our focus is
not on the computational side, we feel committed to sketch some ideas, at least for the
erasure free case.

There are two kinds of problems:

e the Grobner basis of our ide&t requires a lot of time to be computed, even for small
codes,
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e even if we get the general error locator polynomial, it can be a polynomial composed of
many monomials and so its use can give rise to a non-efficient decoding.

The first remark we would like to pose is that we do not nagatiori to compute the
Grobner basis to get a general error locator polynontfal for C. As we have shown
the existence of/¢ (Theorem 6.9), we are allowed to seek it in any way we find con-
venient. For example, it is possible thatcs can be computed with some interpolation
technique.

The second remark is that even if we have to compute the Grobner basis, it could be that
for some classes of codes it turns out to be an easy task, exploiting some extra algebraic
conditions (a similar approach can be foundllii] for the determination of the distance of
cyclic codes using the syndrome variety).

Suppose now that we have got, somehow, the general error locator polynontallfor
could be that? ¢ is a huge polynomial, making it apparently infeasible for decoding. We
would like to make two comments on this apparently bad situation:

e the polynomial#¢ cannot be really huge, because it is an element ofr¢deced
Grobner basis of our ideal; that means in particular that its coefficients (which are poly-
nomialsinthgx;}) are reduced with respectto the idé&l) y whose variety is composed
by all correctable syndromes (and a Grobner basis for that ideal is easily got taking all
elements inG x); this fact imposes some restrictions on the shap& pf

e in[1], itis shown how the CRHT variety can be used in practice to get efficient decoding
of cyclic codes also for medium length cyclic codes (up te 512 in the binary case);
it is clear that similar methods can be adapted to our case, with possibly even more
effect.

10. Further work

First, we would like to discuss the hypothesis g) = 1, which we have enforced.
This hypothesis is traditionally used in the context of cyclic code theory and is relaxed
rarely (but se¢23,5]). This guarantees in particular that the generator polynomial will be a
simple polynomial. In effect, this condition is very helpful in defining the notion of “error
location”. An error location is some power of an elemerdf [F, with « of ordern. The
condition(n, ¢g) = 1 clearly implies the existence of sughlf we relax this hypothesis, we
will need to redefine aarror locationin a way which does not lose its important properties.
Further research in this direction is planned.

Second, we would like to note a detail of our definition of general error locator polynomial:
the coefficients of# ¢ have to lie inl, and not inf. This is a strict condition. On the other
hand, foranylinear code, it is not difficult to prove the existence of a polynomial with a
similar definition but with coefficients in the larger field. But this case is only important for
codes like the Reed—Solomon codes, where the two fields coincide.

Last, we believe itisimportant to investigate other algebraic codes to see whether they ad-
mit a general error locator polynomial or not. The second author, with others, is investigating
the cases of classical Goppa codes and of quasi-cyclic codes.
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Appendix
This section is devoted to prove Lemma 5.2.

Lemma 5.2. LetJ be a0-dimensional radical ideal in a polynomial ring[ V1, ..., V],
where [ is any field and2<./". Lett be a natural numbed <t. Let G be the lexi-
cographic Grébner basis of, V1 <--- <V, and letZ denote the maximal degree in
V - possessed by the polynomialsdn Let.# be any set of points inlk*"" of the type
S ={(s1,...,5.4/~1,21), ..., (51, ..., 5.4/—1, Zj)}, where(sy, ..., s 4~—1) does not belong
to the variety?"(J N [K[V1, ..., V_1]) andj<t. Denote byJ’ the ideal formed by all
polynomials inJ vanishing on¥’. Let G’ be the lexicographic Grébner basis #fand let
2’ denote the maximal degree ¥~ possessed by the polynomialsth Then

e J'is again radical
o if 2<t,then?’ <t.

We want to use Theorem 3.1 frofb8]. Using their notation, we rephrase their result in
the case

o M=A=A9=K[Vy,..., V1,
e H isjustthe identity o[V, ..., V1],
e M;andM;,1 areideals if<[ V4, ..., V 4-]. For simplicity, we use/ andN instead.

Theorem 10.1(OKeeffe and Fitzpatrickl8]). LetM > N betwoidealsif€[V1, ..., V 4]
such that

e there is al<-linear mapt; : M > K s.t ker(0;) = N,
e there are./” elementdf,} in Ks.t (Vy — )M C N.

LetW = {W[1],..., W[r]} be a strictly ordered Grobner basis &1 relative to a term
order <, then a Grébner basi®’ of N can be constructed as follows

1. computer, = 0;(W[h]), for L<h<r,
2. if o, = Oforall i, thenW’' = W,
3. otherwise let:, be the least s.t.a;, # 0.
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We then havéV’ = W1 U Wo U W3, with

o Wi ={W[hllh<h.},
o W2 ={(Vk — f)WIh ]| 1<k< A,
o W3 ={W[h]— (on/on)WI[hillh> hy}.

Theorem 10.1 says that the new Grobner basis, if it is different from the old, is formed by
some elements of the old, the shifts of a special element of the old, and the other elements
of the old translated by a suitable multiple of the special element.

Remark 10.2. Let D be the maximal degree with respect to a variajlgpossessed by

the polynomials inW. Let D’ be the maximal degree with respect to the same varigble
possessed by the polynomialsii. Moving from W to W’ can raise this degree (and so
D'= D + 1) only if the special elemen¥ [1,] is a polynomial with degre® in V;, in fact:

e in W1 nothing changes,

e in W the polynomial(V; — f;) W[h.] has degree iv; obviously increased by 1 w.r.t.
Wlhyl,

e in W3, for any W[h] the degree irV; cannot increase to a value higher than raieg,
Wlh.], deg, W[h]), which is clearly not greater thai.

We now proceed to the proof.

Proof of Lemma 5.2. The idealJ’ is again radical, ag was radical and we are adding
new points to its variety, with no multiplicity.

The Grobner basis can be decomposed into two paits-G 101G 4, sothaiG 1=
GNK[Vy,...,Vy_1]landG y = G\G_y_1. The polynomial se; - _; is obviously the
(lexicographic) Grobner basis of the elimination idéal_; = J N IK[ V1, ..., V y_1].

We want to apply Theorem 10.1 to the following nested ideals:

M=,
Moy ={f e M| f(s1,...,5.4-1,21) =0}, Mo C My,

)

J = Mig1=A{fe Ml fs1,....50-1,2) = 0}, M 1 C M;.

We first considen1 andM». The mapi; : My — K is clearly the evaluatiofi;(f) =
f(s1,...,s4_1, z1) and the conditionéVy — f,) M1 C M> are satisfied if we takg, = s,
for 1<k <A —1,andp ;- =z1. So we can apply Theorem 10.1 directly, with= G and
W’ the Grobner basis a¥f».

We claim thatW 4, ] lies in G -_1. Otherwise, as all elements 6f ;-_1 precede the
other elements of;, we havef;(g) = 0 for eachg € G_-_1. This is equivalent to saying
that (s1,...,s 4 _1) is a root of each element i@ ,-_1 and then it is an element of the
corresponding variety”(J y-_1), which contradicts the hypothesis.
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As g1 = W[h,] lies in G 4_1, the new Grobner basi§, = W’ does not increase its
maximum degree in th& ,-, unless it was zero, because of the adding of the polynomial
(V. — z1)g1 (see Remark 10.2). So, the degree bound6mwill be max(1, D) <t. Let
us call D1 the new degree bound.

If j =1, we have finished. Otherwise, we consid&r and M3. The mapis : Mo — [K
is the evaluatio®1(f) = f(s1, ..., s —_1, z2) and the condition§V — f5,) M1 C M are
satisfied if we take8, = si, for 1<k < A" — 1, andf ;- = zo. We can apply Theorem 10.1
directly, with W = G, andW’ the Grobner basis a¥/3.

This time itis not guaranteed thit[ 4, ] lies in the portion oW having degree 0 (because
we have removeds). If it happens, we can argue as before and we get the same result, i.e.
the degree bound oW’ will be max(1, D7) <t.

Otherwise, we claim that there is at least an elemerWiof degree 1 inV - which
vanishes ofisq, . .., s 41, z2). Actually, the recently added polynomi@t ,- — z1) g1 will
do. If (V. y—z1)g1(s1, ..., S —1,22) =0, thengi(s1, ..., s _1) mustbe zero, ag # z».

But then we are again in the case wheregaih G vanish on(ss, ..., s 4 _1), which has
been proved to be impossible.

Let go = W[h,]. Then the new Grébner badig = W’ does not increase its maximum
degree in thé/ -, unless it was 1, because of the addition of the polynot¥al — z2)g2
(see Remark 10.2). So, the degree boundidnvill be max(2, D1) <t. Let us callD, the
new degree bound.

Let us call D; the degree bound on the Grobner basidf ;. It is clear that we can
argument similarly in the other cases, showing that we never add polynomials in the bases
with degree inV_ ;- greater thai. In this way, we obtain thab; is

max(l, D;_1) <t.

As D; = D" andj<t, we have finished.

Remark 10.3. This result could be deduced by the uniform geometric decomposition of
the ideal, as independently shown[ii]. But our proofs are preferred because of their
constructive nature.
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