‘H
t DISCRETE
;@@ APPLIED

MATHEMATICS

ELSEVIER Discrete Applied Mathematics 104 (2000) 3—44

Inverse inbreeding coefficient problems with an application
to linkage analysis of recessive diseases in inbred
populations

Richa Agarwala® !, Leslie G. Biesecker®, Alejandro A. Schiffer®d: *

ANHGRI, NIH, National Center for Biotechnology Information, NIH, 8600 Rockville Pike, Bethesda,
MD 20894, USA
YGDRB/NHGRI, NIH, Bldg. 49, Bethesda, MD 20892, USA
CIDRB/INHGRI, NIH, National Center for Biotechnology Information, NIH, 8600 Rockuville Pike,
Bethesda, MD 20894, USA
d National Institutes of Health, Baltimore, MD, USA

Abstract

Medical geneticists connect relatives having the same disease into a family structure called a
pedigree. Genetic linkage analysis uses pedigrees to find the approximate chromosomal locations
of disease-causing genes. The problem of choosing a pedigree is particularly interesting for
diseases inherited in an autosomal recessive pattern in inbred populations because there are
many possible paths of inheritance to choose from. A variety of shortcuts are taken to produce
plausible pedigrees from inbred populations. We lay the mathematical foundations for a shortcut
that was recently used in a pedigree-disease study of an inbred Mennonite population. Recessive
disease genes can be localized using the shortcut of homozygosity mapping by finding regions
of the genome where affected persons are homozygous. An important quantity in homozygosity
mapping is the inbreeding coefficient of a person, which is the prior probability that the person
inherited the same piece of DNA on both copies of the chromosome from a single ancestor.
Software packages are ill-suited to handle large pedigrees with many inbreeding loops. Therefore,
we consider the problem of generating small pedigrees that match the inbreeding coefficient of
one or more affected persons in the larger pedigree. We call such a problem an inverse inbreeding
coefficient problem. We focus on the case where there is one sibship with one or more affected
persons, and consider the problem of constructing a pedigree so that it is “simpler” and gives the
sibship a specified inbreeding coefficient. First, we give a construction that yields small pedigrees
for any inbreeding coefficient. Second, we add the constraint that ancestor-descendant matings
are not allowed, and we give another more complicated construction to match any inbreeding
coefficient. Third, we show some examples of how to use the one-sibship construction to do
pedigree replacement on real pedigrees with multiple affected sibships. Fourth, we give a different
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construction to match the inbreeding coefficient of one sibship, while attempting to minimize a
measure of the inbreeding loop complexity. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper addresses a family tree construction problem that arises in mapping genes
that cause genetic diseases inherited in an autosomal recessive pattern. The mapping
of disease-causing genes in the human genome is often carried out starting with the
following major steps:

1. Find related persons affected with the same disease.
2. Connect the affected relatives into one or more family pedigrees.
3. Find the genotypes of affected and unaffected relatives at a large number of variable

DNA markers that span the genome.

4. Use a collection of statistical and algorithmic tools called genetic linkage analysis

to find those DNA markers that segregate with the disease [16].

Inbred populations are used in many human genetics studies partly because the in-
breeding allows rare genetic diseases to appear. Existing linkage analysis software tools
are not well suited to large inbred pedigrees, so users take a variety of shortcuts either
in the pedigree construction or in the linkage analysis. We formulate and investigate
mathematical and algorithmic questions underlying a pedigree construction shortcut
taken by Chang et al. [3], in their recent location of the gene that causes glycogen
storage disease type VI in an inbred Mennonite population.

Inbred populations have a high incidence of a number of diseases inherited in a
recessive pattern because one “carrier” ancestor can pass a rare disease-causing mutation
down several distinct paths of inheritance to affected descendants. We say that a person
d is homozygous by descent at a gene or marker if he has two copies of an allele
a of the gene or marker such that both copies were on the same chromosome copy
in some ancestor p. Homozygosity mapping [18,9] is a shortcut in linkage analysis
based on the idea that an affected person is likely to be homozygous by descent at the
disease gene and nearby, but not throughout the genome. Homozygosity mapping starts
by searching for DNA markers at which the affected persons are homozygous and then
looks for the disease gene in the vicinity of those markers. Homozygosity mapping can
yield false positive results when homozygosity occurs other than by descent (e.g., the
same common allele reaches a person from two different ancestors). This can usually
be detected because when we have a false positive, it is very likely that very close
markers are heterozygous. An accurate measure of the prior probability of homozygosity
by descent at a marker or region is important for successful homozygosity mapping
(see [5] and the references therein).
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The probability that a person is homozygous by descent at an arbitrary point (e.g.
base pair or allele) in the genome is called the inbreeding coefficient and has been
widely used in genetics for decades [24,23]. The inbreeding coefficient of a person
can be defined with respect to a (small) linkage analysis pedigree or an entire (large)
genealogy. For recessive diseases in inbred populations, the pedigree construction phase
entails making some assumptions about which ancestors are most likely to have carried
the disease mutation and what paths the mutation may have followed.

A first question is: how can one extract a pedigree of a few dozen or hundred indi-
viduals from a genealogy and preserve the likely paths of disease gene inheritance? We
addressed this question with algorithms encoded in a software system called PedHunter
[1]. A second question is: what can one do if the initial pedigree is too large and/or
too inbred for the linkage analysis software? A common solution is to formally ignore
some of the inbreeding loops (see [15] for an example). This is done because some
of the existing linkage analysis software can handle very large pedigrees, if there is
not too much inbreeding in a sense defined below. However, ignoring paths that reflect
inbreeding can significantly change the inbreeding coefficient of the affected persons
and can skew the results of homozygosity mapping. Another approach proposed by
Thompson [21] is to find the most likely paths of inheritance. More generally, Kong,
Lange, Thomas, Thompson, and co-workers [7,11,13,14,22,20] have proposed to com-
pute approximate solutions to linkage analysis problems on complex pedigrees by a
variety of randomization techniques. One software package that encodes such random-
ized methods is PANGAEA distributed by E. A. Thompson.

Chang et al. [3] proposed a different shortcut for pedigrees that have high inbreed-
ing. They replaced the input pedigree by another pedigree in which the inbreeding
coefficients of the affected sibships remained approximately the same. The replacement
pedigree must include the affected sibships and their parents, and may replace the rest
of the pedigree by fictitious persons and fictitious parent/child relationships. The ficti-
tious persons typically replace real persons whose DNA is unavailable, serving only as
placeholders to approximate the overall inbreeding coefficient for the affected persons.
Chang et al. [3] did the replacement by a simple heuristic in which the inbreeding co-
efficients are not exactly preserved and the replacement pedigree size is not minimized.
We present a more rigorous and exact algorithmic approach.

We address several variants of the fundamental question: given an inbreeding co-
efficient, W, can one construct a pedigree such that some person in it has inbreeding
coefficient W? Karigl [6] (see [21, p. 28]) provided such a construction for any ratio-
nal W with denominator a power of 2. However, Karigl’s construction “may involve
repeated matings of many descendants to the same ancestor, and so will not be of
practical relevance in human genetics [21, p. 28]”. First, we extend the basic prob-
lem by adding various measures of pedigree complexity to optimize that correspond
to the running time characteristics of widely used linkage analysis packages. Second,
we prove that any rational W with denominator a power of 2 is achievable even when
ancestor-descendant matings are not allowed and every individual is required to have
two genetically distinct parents. Third, we consider a variation in which the pedigree



6 R. Agarwala et al. | Discrete Applied Mathematics 104 (2000) 3—44

is allowed to have at most one person or couple at the top; this constraint is moti-
vated by recessive diseases in which it may be desirable to assume that the disease
allele entered the pedigree just once at the top. We call problems of this type, inverse
inbreeding coefficient problems.

In the pedigree replacement problem, the input pedigree will often have multiple
sibships with an affected person. We show two examples of how to use our construction
for one sibship multiple times to make a combined pedigree that replaces the input
pedigree and matches the inbreeding coefficient for each sibship with an affected person.

It may be useful to make the replacement pedigrees “optimal”. In this paper we seek
to match the input inbreeding coefficient(s) exactly, and try to optimize other criteria.
One could instead give optimization higher priority and seek only to approximate the
inbreeding coefficient(s). To define useful optimality criteria it is necessary to present
terms and concepts of pedigrees and existing linkage analysis software. We will for-
mally define a graph representation for pedigrees and many related terms in the next
section. For this introduction, it is sufficient that a pedigree can be represented as a
graph with one vertex per person and an edge between parent and child. In this rep-
resentation a loop is an undirected cycle. A loop breaker is a vertex whose removal
from the graph breaks one or more cycles, with the additional constraint that the person
at the bottom of the cycle cannot be used as a loop breaker where the person at the
bottom of a cycle is the person in the cycle who does not have any descendants in
the cycle. For example, when two first cousins mate and have a child, that child closes
a loop, but only ancestors of the child in the loop can be used to break the loop.
The number of distinct vertices (persons) whose removal breaks all loops is called the
number of loop breakers. The loops that contribute to the inbreeding coefficient of a
person p are called the inbreeding loops for p.

There are two classes of algorithms for linkage analysis most often used in prac-
tice, Elston—Stewart [4], and Lander—Green [10]. Elston—Stewart has the advantage
that its time and space is polynomial in the number of persons in the pedigree, but
the disadvantage that time and space is exponential in the number of markers and the
number of loop breakers needed to break all the cycles. The Lander—Green algorithm
is polynomial in the number of markers, but exponential in the number of persons.
The most popular current software implementation of Elston—Stewart for looped pedi-
grees is called LINKAGE [12], and its improved variant called FASTLINK, particu-
larly for looped pedigrees [17]. The most popular current implementation of Lander—
Green for looped pedigrees and homozygosity mapping is MAPMAKER/HOMOZ
[8], which has been included in the more comprehensive software package GENE-
HUNTER.

The time/space performance of the two prevalent linkage analysis algorithms, sug-
gests that the following optimality criteria are useful for the replacement pedigrees we
construct:

(C1) Minimum number of individuals in the pedigree.
(C2) Minimum number of inbreeding loops needed for the pedigree.
(C3) Minimum number of loop breakers needed for the pedigree.
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Criterion (C1) is geared towards making the pedigrees small enough for the Lander—
Green algorithm. Criteria (C2) and (C3) are geared to the Elston—Stewart algorithm.
Criterion (C3) can differ from (C2) only when a person with multiple marriages is
used to break loops which results in the number of loop breakers being less than the
number of inbreeding loops [2]. Our first construction optimizes (C1) for all coefficients
and optimizes (C3) if the coefficient is < % Our second construction produces human
pedigrees for all valid coefficients. It optimizes (C2) and provides an approximation
guarantee on (C1), both if the coefficient is < % We also present a third construction
and some results on optimizing (C3). Inbreeding coefficients below é are of more
practical importance because that is more common in real populations. The offspring
of a first cousin marriage have inbreeding coefficient % One may see higher inbreeding
coefficients when there are nested consanguineous marriages, but above % is rare.

The rest of this paper is organized as follows. Section 2 presents definitions and ba-
sic theorems. Section 3 gives our first construction. Section 4 includes the second con-
struction and examples with real pedigrees having multiple affected sibships. Section 5
contains our third construction. Section 6 contains a short summary, some open prob-

lems, and a discussion of another potential application.

2. Preliminary definitions and theorems

We first introduce the notion of a pedigree graph. A pedigree graph is a represen-
tation of a pedigree by a graph that has a vertex for each person and an edge for
each child—parent pair among the persons in the pedigree. In this paper, we sometimes
use undirected edges and sometimes use directed edges; when we use directed edges
they are directed upward from the child vertex to the parent vertex. For example, the
pedigree taken from [1] and shown in Fig. 1 can be represented as in Fig. 2. The graph
traces the passage of genetic information over generations and provides a convenient
mathematical representation. The individuals who do not have any of their ancestors
in a pedigree are called founders of the pedigree.

A path from vertex u to vertex v in pedigree graph G is an alternating sequence of
distinct vertices and edges of G, beginning with u and ending with v, such that each pair
of consecutive vertices are joined by an edge. A path p connecting u to v is denoted
D u U, Uy, ..., Uy, U Where uy, ..., u, is the sequence of other vertices on the path. We
can also denote the same path as a sequence of edges p : (u,u;),(u1,uz2),...,(u,,v) or
as p:u— u; — uy — -+ — u, — v. For example, 33 — 10 — 9 — 8 is a directed
path in the graph of Fig. 2. A directed path p from u to v in a pedigree graph traces
one way u receives genetic material from v. The vertices on p are also a (partial)
list of ancestors of u. The absence of a directed path from u to v indicates that v is
not an ancestor of u. Hence, there is no way that u can receive genetic material from
v, e.g, in Fig. 2, person 28 does not receive genetic material directly from person 6,
although they have a common ancestor. The length of a path is the number of edges
in the path.
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Fig. 1. Pedigree drawing using genetics conventions for the graph in the next figure; squares are males and
circles are females.

A pedigree graph G connects a set of individuals S if there is a vertex in V(G)
for each individual in S and in the undirected version of the graph is connected.
Geneticists usually use the term pedigree to mean a set of parent—child relationships
that correspond to a pedigree graph whose undirected version is connected.

A cycle is an undirected path that begins and ends at the same vertex. If a graph
has no cycles, it is called acyclic. Any directed pedigree graph is acyclic since the
edges are directed from parent to child, and it is biologically impossible to have a
cycle in this setting. A loop in a pedigree is a cycle in the undirected representation.
For example, a first-cousin marriage with offspring leads to a loop in the undirected
marriage graph, but not to a cycle in the directed pedigree graph.

The inbreeding coefficient of an individual X is the prior probability that the two al-
leles of X are homozygous by descent; here “prior” means depending only on the pedi-
gree structure and not on any DNA or phenotype information. The kinship coefficient
between individuals X and Y is the prior probability that a randomly selected allele of
X and a randomly selected allele of Y at the same locus are the same allele in a com-
mon ancestor of X and Y passed by one path to X and by another path to Y. Since X
inherits a randomly selected allele from its mother and a randomly selected allele from
its father, the inbreeding coefficient of X is same as the kinship coefficient between the
parents of X. Mathematically, if father(X) [mother(X)] is the father [mother] of X and
generation(X) is the length of the longest path from any founder to X, then inbreeding
and kinship coefficients can be computed by the following recursive formula [23]:

inbreeding(X)

[ kinship(father(X ), mother(X)) if both father and mother of X are known,
~ 1 0 otherwise.
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Fig. 2. Directed graph for the pedigree in the previous figure.

and

kinship(X,Y')
0 if X or Y is not known,
(1 + inbreeding(X))/2 if X =7,
(kinship(X, father(Y)) + kinship(X, mother(Y)))/2 otherwise, where
generation(X ) < generation(Y ), without loss of generality.

When computing inbreeding and kinship coefficients, we usually restrict the paths of
inheritance being considered to the ones that are present in some pedigree P. When
inheritance paths are ignored, the coefficients get underestimated since we ignore some
paths through which the copied allele could descend. This is why extracting a (small)
pedigree from a (large) genealogy typically introduces some heuristic approximation
into linkage analysis of recessive diseases.

We use #(X,P) to denote the inbreeding coefficient of X in pedigree P and
A (Y,Z,P) to denote the kinship coefficient of ¥ and Z in P. X can represent a
person or a sibship since any set of full siblings have the same inbreeding coefficient.
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Lemma 2.1 (Thompson [21]). Every valid inbreeding and kinship coefficient can be
written as Y., 1/2% for some n, integer L; >0, and L; # L; for i # j.

Definition 2.1. If W = Z;’:I 1/25 for some n, integer L; > 0, and L; # L; for i # j,
we call 1/2%1,...,1/2% the factors of W.

Definition 2.2. For a valid inbreeding coefficient W, we define Bits(W) = {l},...,1,}
where
L Vil > 1,
2. J=min{n: W =3, 1/2171 L; > 1}, and
3. W=, )2k,

For example, for W =21/2% = 1/2' 4+ 1/2% + 1/2°, we get Birs(21/2°) = {2,4,6}.
Because of the minimality of J, for all i # j,[; # [;.

Definition 2.3. Let Birs(W)={l,,...,1;}. We say that bit 1 <i<J is the most [least]
significant bit it Vj # i,1; > I;[1; < I;] and the value of the most [least] significant bit
is /;. For example, in Birs(3}) = {2,4,6}, the most significant bit is 1, the value of
the most significant bit is 2, the least significant bit is 3, and the value of the least
significant bit is 6.

Definition 2.4. A pair of edge-disjoint directed paths P;, P, of the form
Py : X, father(X),...,Y and P,:X, mother(X),...,Y

in a pedigree P are said to form an inbreeding loop for X in (the undirected version)
of P. We will use # ¥ ¥ (X,P) to denote all inbreeding loops of X in pedigree P.

An undirected cycle in a pedigree graph need not be an inbreeding loop, for example
two brothers who marry two sisters and have children create a cycle that is not an
inbreeding loop. On the other hand, an inbreeding loop can be the union of several
edge-disjoint but not vertex-disjoint cycles, but it always contains an undirected cycle.

Lemma 2.2. Let L; be the length of loop C;.
ILSXP)={Cy,....C,} = I(X,P)=)

i=1

2L,—1'

Proof. Define HBD(X,A4) to mean that X is homozygous by descent due to an allele
inherited twice from 4, but not inherited twice (as a copy) from a descendant of 4.
Then

J(X,P)= Y Prob(HBD(X,A)).
A€V (P)
Each contribution to the right-hand side is due to a pair of edge-disjoint paths from X
to A. If the total length of the paths is L;, then the contribution to the right-hand side
is 1241 [
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Definition 2.5. A loop breaker b is a vertex whose removal breaks an undirected cycle
in which b has a child. The number of loop breakers in a pedigree is the minimum
number of vertices needed to break all cycles (whether they are inbreeding loops or
not).

The problem of finding the minimum number of loop breakers in a graph arises in
the study of Bayesian networks and has been proven NP-complete [19]. However, in
some cases we can identify a minimum-size loop breaker set.

Lemma 2.3. If X has inbreeding coefficient W, then the minimum number of inbreed-
ing loops in any pedigree P such that #(X,P)=W is |Birs(W)|.

Proof. From Lemma 2.1 we know that every valid inbreeding coefficient W can be
written as » ., 1/2% for some n, integer L; >0, and L; # L; for i # j. From the
definition of Birs, it follows that the minimum 7 that can achieve W ="  1/2k
is [Birs(W)| and from Lemma 2.2 it follows that an inbreeding loop of length /
contributes 1/2/~! towards the inbreeding coefficient. Therefore, the minimum number
of inbreeding loops required in the pedigree P such that it has an individual X with
J(X,P)=W is |Birs(W)|. [

Lemma 2.4. Let X be a sibship with inbreeding coefficient W. If Birs(W) # (), then
the minimum number of individuals in any pedigree P such that #(X,P)= W is the
value of the least significant bit in Birs(W); otherwise, the minimum number is 1.

Proof. If Birs(W) =0, then W =0 and a pedigree P with a single vertex X has the
property that .#(X,P) = W. Otherwise, let / be the value of the least significant bit
in Birs(W). Tt follows from the definition of Birs that 1/2/~! is a factor of W. From
Lemma 2.2, it follows that the length of an inbreeding loop that contributes at most
1/2/~! must be at least /. Hence, the number of individuals in P must be at least /.

O

Definition 2.6. A pedigree P for a given inbreeding coefficient W is called an inbreed-
ing pedigree if it contains a vertex X such that S (X,P)=W.

In some non-human populations, such as mice, there are strains that are so inbred
that it is possible for the two parents of an individual to be effectively identical at the
non-X chromosomes. We use identical parents in our first construction, but only for
coefficients >1/2, and this leads to the pedigree graph being a multi-graph. For the
sake of clarity, we shall denote two copies of directed edge (X,Y) between child X
and identical parents Y as (X,Y)! and (X, Y ). A second difference between human and
non-human populations is that matings between ancestor and descendant are generally
not allowed among humans. To reflect human populations, we say that a pedigree is a
human pedigree if for every pair of parents X and Y of the same person, X # Y, and
X 1is not an ancestor of Y.
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3. Non-human pedigree construction

In this section we present algorithm GENERAL that constructs an inbreeding pedigree
for every valid inbreeding coefficient such that the pedigree minimizes the number
of individuals and minimizes the number of inbreeding loops for every inbreeding
coefficient, and minimizes the number of loop breakers for every inbreeding coefficient
< 1/2. However, the output pedigree is not necessarily a human pedigree.

Algorithm. GENERAL

Input: A valid inbreeding coefficient W

Output: An inbreeding pedigree P such that it has an individual X with 4 (X,P)=W,
satisfies (C1) for any W and satisfies (C3) for any 0<W < 1/2.

begin
L — Birs(W)
if L=10 return V(P) — {X}, E(P) < 0
V(P) — {X =x1,x2,...,x,} where n=max{/|/ € L}
E(P) — 0,k — 2
while & € L do begin
E(P) — E(P) U {(xt—1,%)", (oe—1,x)*}

L—L—{k}
k—k+1
end

if L # () then begin
E(P) «— E(P) U {(Xt—1,Xk ), (Xk—1,X511)}
fori=k+1ton—1do E(P)— EWP)U{(x;,xit+1)}
for cach i € L do E(P) — E(P) U {(x;,xx)}
end
return P
end

Fig. 3 shows an example pedigree graph constructed with GENERAL. Identical parents
are used only if W >1/2. The following theorems assert the correctness of GENERAL
and its optimality properties.

Theorem 3.1. For every valid inbreeding coefficient W, GENERAL(W) outputs a pedi-
gree P that has a sibship X such that 9(X,P)=W.

Proof. If W =0, then Birs(W )=() and GeNerAL(0) produces a pedigree P with V(P)=
{X},E(P)=0. Hence, #(X,P)=0=W. Otherwise, let Birs(W)={1,..., 1, | l; < l;11,
1 <i < n}. The output of GENERAL is a multigraph with at most two copies of each
edge.

Following the strategy of the proofs of Lemmas 2.1 and 2.2, we seek to count how
many inbreeding loops of each length have X at the bottom. Let K be the value of k£
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X=X1

Fig. 3. Example of GENERAL where BiTs(W) = {2,3,4,6,8}.

when the while loop finishes. We first consider the simpler case where K =2 and the
loop never executes. Then the only vertex with at least two incoming edges is x, so it
must be at the top of every inbreeding loop. The only way to get pairs of edge-disjoint
paths from x; to x; is to use

P =X, x2),
Py = (X, x3),(X3,%4),...,(x;,x2).

There is one such pair of paths yielding an inbreeding loop of length i if and only if
i € Birs(W). The correctness follows from Lemma 2.2.

If K > 2, define sets of loops Cj,C,,...,C, as follows. C; consists of a single
inbreeding loop resulting from paths P; = (X,x2)', P, = (X,x2)>. For 1<p <K — 1,
Cp41 contains exactly two loops of length 2(p + 1) for each loop of length 2p in C,,.
For each loop in C, composed of the two paths

Pl = (X;x2)aa~ . ~9(-xp7xp+l)ca

PZ = (X:x2)bs-"9(xp7xp+l)dy
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where a # b, ¢ # d and a,b,c,d =1 or 2, construct 2 pairs of longer paths (P{,P5)
and (P?,Pb):

Pil = (XXZ)aa L) (xpa-xp+1 )C: (xp+lsxp+2)l»

Py =(Xox2) ey (X pu X pt ) (X pi 15X pan )

and

2
Py =(Xox2)% s (X pit ) (X1, X pi2),
Py =(Xx2) sy (s X pt ) (X pi15X pi2)

These two pairs of longer paths make up two loops in C,y;.
For i =K, let p=1I;. Construct C; as follows: For each pair of paths

P =Xx2)" ..., (g —2,Xk—1)",

Py =(Xx2), ., (xk—2sxk—1)%,

where a # b, ¢ # d and a,b,c,d =1 or 2, resulting in an inbreeding loop in Cx_,
construct 2 pairs of paths (P¢,P4) and (P}, P}) resulting in 2 inbreeding loops in C;
as follows:

Ptll = (AX:-XZ)aa"'a(fozafol)ca (-fols-xK)a
Pg = (X:xz)ba"'a(xK—z’xK—l)da (xK—laxK+1)" . "('xp—laxp)9 (xpa-xK)

and

Py = (X,x2)% oy (k25 XK — 1) (XK — 15 XK1 )5+ > (X p— 15X )y (X o XK )
Py =(Xx2) s (xk—2sxk—1 ) (X —1,XK)-

The loops in each set C; are of the same length, and the loops in two different sets
are of different lengths. One can prove by induction that for all i < K, C; consists of
2/=1 loops of length 2i and for all i =K, C; consists of 2X loops of length /;4+K. Using
Lemma 2.2 and definition of Birs, it suffices to show that # Z.%(X,P)=J._, C;. We
prove set containment in each direction.

Two loops in C; are always distinct either because they were formed from distinct
smaller loops or because they were formed from the same loop by adding the last pair
of edges in two different ways. It follows that U;’Zl C,CILI(X,P).

Our other aim is to prove J £ %(X,P)CJ;_, C;. Partition # ¥ (X,P) into two
parts ¢, and %, such that if loop C € S L ¥(X,P) and length of C is at most
2(K — 1) then C € %), else C € €,. Then we seek to prove that €, QUKK C; and

(62 g UiZK Ci-
% C Ul. ~x Cit Each iteration of the while loop introduces two copies of the same
edge. One can prove by induction that the above construction of Cy,...,Cg_; accounts

for all possible ways in which the two edges into x; are the last edges on the two
paths constituting the cycles. Moreover, any inbreeding loop of length 27, with X at
the bottom, must be composed of two equal length paths from X =x; to x;;;. Therefore,
¢ C € Ui<K G
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%> C ;> Cit Every iteration of the last for loop introduces one edge and creates
loops of length /; + K. The above construction accounts for all possible ways in which
we can get a loop in which the new edge is the last edge on one of the two paths. Any
loop of length >2K must include two edges into Xx because that is the only vertex
far enough away from X with two incoming edges. Therefore, > C € (J;, Ci. [

Theorem 3.2. For every valid inbreeding coefficient W, GENERAL(W) outputs pedigree
P that satisfies (C1).

Proof. If Birs(W)=(), then V(P)={X} else |V (P)| equals the value of least significant
bit of Bits(#). The result follows from Lemma 2.4. [

Theorem 3.3. For every valid inbreeding coefficient 0<W < 1/2, GeNeraL(W) out-
puts a pedigree P that satisfies (C3).

Proof. If W =0, there are no loops in P. For 0 < W < 1/2, the value of the most
significant bit in Bits(#) is at least 3. Hence, the while loop of GENERAL(W) is never
executed and all the loops can be broken by x,. As the minimum number of loop
breakers needed to break a non-empty set of loops is 1, we get the result. [J

4. Human pedigree construction

In this section we present a construction for human pedigrees with one sibship to
match any inbreeding coefficient . The description is divided into 4 parts. The first
part describes an algorithm MmLoors for 0 < < 1/8, and shows that it minimizes
criterion (C2) and provides an approximation guarantee on the number of people (C1).
The second part describes some practical examples using MmLoops. The third part
extends the algorithm to 1/8<W < 1/2. The fourth part extends the construction to
%< W < 1. This shows that any valid inbreeding coefficient can be matched with a
human pedigree. We do not give any optimality guarantees for W > 1/8, but this range
is less important for human populations.

4.1. Algorithm for 0<inbreeding(X) < 1/8
Algorithm MmNLoops constructs an inbreeding pedigree for every valid inbreeding
coefficient of at most 1/8 such that the pedigree is a human pedigree and has minimum

number of inbreeding loops.

Algorithm. MmNLoops
Input: A valid inbreeding coefficient W < 1/8.
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Output: A human inbreeding pedigree P such that it satisfies (C2) and has an
individual X with S(X,P)=W.

begin
L — Bius(W)y=A{l,...,1,}
Let m* =max{/|l € {0} U{l;|l; € L,1; is even}},
m®=max{l|l € {0}U{l;|l; €L, is odd}}, and
p =max{m®,m° — 1}
if p#£0
then V(P) = {X =x1,x2,x3}, E(P) = {(x1,x2), (x1,X3) }
else return V(P)={X},E(P)=10
for i=2to p/2 do V(P) — V(P)U {xz}
/* Create common backbone */
fori=1to p/2—1do E(P) — E(P)U {(X2,*,X2(,'+1))}
for i =3 to m®/2 do V(P) — V(P) U {x5;}
if m® # 0,E(P)=E(P)U {(x3,x{)}
/* Create even backbone #/
for i=3tom®/2 —1do E(P) — E(P)U {(xgi,xg(iﬂ))}
for i=2to (m°—1)/2do V(P) — V(P)U{x5,,}
if m° # 0, E(P) = E(P) U {(x3,x2)}
/* Create odd backbone */
for i =2 to (m° —3)/2 do E(P) — E(P)U {(x3;,,x5,,3)}
for i =1 to n do begin /* Add loops */
if /; is odd
then E(P) = E(P) U {(x},x;,—1)}
else £(P)=E(P)U{(x],x;)}
end
end
return P
end

For a non-zero W, we can partition V' (P) as follows:
[ ] Vr(P) = {xl,x3}

o Vo(P)={xz|1<i<p/2}

o Vi(P)={x5;|3<i<m/2}

o Vo(P)={x5;,,|2<i<(m°® —1)/2}

The algorithm can be viewed as producing 3 “backbones” with no vertices in com-
mon: a base backbone consisting of vertices Vy,(P), an odd backbone consisting of
vertices Vo(P), and an even backbone consisting of vertices V.(P). The odd and even
backbones are connected by edges (x3,x$) and (x3,x¢), which in turn is connected to
the base backbone by edges (x1,x3) and (xj,x;). For every odd bit, we add an edge
from a vertex in odd backbone to a vertex in base backbone. Similarly, for every even
bit, we add an edge from a vertex in even backbone to a vertex in base backbone.
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X=X1

Fig. 4. Example of MINLoops where Bits(W) = {5,6,7,8}.

Fig. 4 shows a pedigree produced by MiNnLoops. The following lemmas prove that the
output is correct and satisfies some optimality guarantees.

Lemma 4.1. For every valid inbreeding coefficient 0<W < 1/8, MiNLoors(W') out-
puts a human pedigree.

Proof. If W =0, P consists of a single vertex and no edges and the result holds. If
W >0, to prove that the output of MmLoors(#') is a human pedigree P, we need
to show that the outdegree of every vertex is at most 2 and if (X,Y) and (X,Z) are
two edges in P, then Y # Z and Y is not an ancestor of Z. Next, we show that the
conditions hold for each set of vertices V;(P), V,(P), Ve(P), and V,(P).

For vertices in V;(P), namely x; and x3, we have that the edges going out of them
are always a subset of edges {(x1,x2),(x1,x3),(x3,x2),(x3,x5)}. Since x, # x3,x3 #
x¢, x2[x$] is not an ancestor of x3[x¢], and vice versa, the conditions hold for vertices
in Vi(P).

Every vertex x; in Vy(P) has at most one outgoing edge (x;,x;1»). Hence, the con-
ditions hold for vertices in V,(P).

Every vertex xj in F(P) has at most one outgoing edge (x{,x{,,) to a vertex in
Ve(P), no outgoing edges from x{ to a vertex in V,(P) or V.(P), and at most one
outgoing edge from x{ to a vertex in V,(P), namely (x7,x;). Since x; # xj,_, and
x;i[x7 ,] is not an ancestor of x7,,[x;], the conditions hold for vertices in Ve(P).

Every vertex x7 in V,(P) has at most one outgoing edge (x7,x7,,) to a vertex in
Vo(P), no outgoing edges from x{ to a vertex in V;(P) or V:(P), and at most one
outgoing edge from x} to a vertex in Vy(P), namely (x},x;—1). Since x;_; # x?,, and
x;—1[x}?,,] is not an ancestor of x? ,[x;_1], the conditions hold for vertices in Vo(P).

[
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Theorem 4.1. Let 0<W < 1/8 be a valid inbreeding coefficient and let P be the
pedigree output by MinLooprs(W'). Then,

Birs(W) = {l|1 = length(C),C € LS (X,P)}.

Proof. We prove the set containment in each direction.

[/ € Birs(W) = 3C € S LS (X,P) such that length(C)=1]. Let [ € Birs(W). If
[ is odd, then 3C € F L ¥ (X, P) of length / comprised of the following edge-disjoint
pair of paths:

Prix1,x2,%4,..,%1
and
. (s} (4]
Py x1,x3,X5, ..., X7, X1—1.

If [ is even, then 3C € S LS (X,P) of length / comprised of the following pair of
edge-disjoint paths:

P x1,X0,X4,...,%;
and
. (&) (&)
Py xy,x3,%¢, ..., X[, X1

[C € PP (X,P),length(C) =1 = | € Birs(W)]. By definition of an inbreeding
loop, every inbreeding loop in ¥ ¥.%(X,P) must consist of an edge-disjoint pair of
paths such that one path has edge (x;,x;) and the other path has edge (x;,x3). The
path containing edge (x,x;) can only be comprised of x; followed by a portion of the
base backbone because each vertex in V4, (P) has at most one outgoing edge, and that
edge goes to another vertex in V(P). The path containing (x;,x3) can be comprised
of x;,x3 followed by either a portion of the odd backbone or a portion of the even
backbone because there is no edge between the odd and even backbones. Then the
path that starts (x;,x3) must be followed by a vertex in base backbone to complete the
loop. Since the only edges from odd/even backbone to the base backbone correspond
to the bits in Birs(W'), we get the result. [

Lemma 4.2. For every valid inbreeding coefficient 0<W < 1/8, MinLooprs(W') out-
puts a human pedigree P that has a sibship X such that #(X,P)= W and satisfies
(C2).

Proof. Follows from Theorem 4.1 and Lemma 2.3. [

Theorem 4.2. Let 0<W < 1/8 be the given valid inbreeding coefficient and P be the
pedigree output by MiNLooes(W) with |V (P)|=n. If the number of individuals in any
pedigree P’ with a sibship with inbreeding coefficient W is 1, then n<31/2.
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3708

Fig. 5. Graph representation of “Israel-Kindred 3”.

Proof. Let / be the value of the least significant bit in Birs(#'). Then, by Lemma 2.4,
any pedigree P’ with a sibship with inbreeding coefficient /¥ has at least / individuals.
From construction, the number of vertices in pedigree P are 2 + p/2 + (m®/2 — 2) +
(m° —3)/2. Since m°,m°, p<I, we get |V (P)| <3//2. O

4.2. Application to pedigree replacement

In this subsection we illustrate by example how the previous construction can be used
to do pedigree replacement in real disease pedigrees. The first example is taken from
a recent paper that localized the gene for thiamine-responsive megaloblastic anemia
syndrome to a region on chromosome 1 [15]. The paper indicates that the authors
took the shortcut of ignoring some inbreeding loops to make their linkage analysis
computations feasible. Fig. 5 shows our graph representation of one of their pedigrees,
which they called “Israel-kindred 3” (kindred is another synonym of pedigree).

Israel-kindred 3 contains two affected sibships labeled as the single vertices 1714
and 3708. The edges labeled A and B are the only edges connecting the two pieces of
the pedigree, and they do not participate in any inbreeding loops, so we treat this as
two separate pedigrees with one sibship each. The left pedigree with sibship 1714 has
inbreeding coefficient 35/512 = 1/16 + 1/256 + 1/512, and it can be replaced by the
pedigree shown in Fig. 6. In the replacement pedigree (Fig. 6), X corresponds to the
affected person 1714, x, and x; correspond to the parents of 1714, namely 1611 and
1612, and the rest of the pedigree is fictitious. The right pedigree with sibship 3708
has inbreeding coefficient 129/2048 = 1/16 + 1/2048, and it can be replaced by the
pedigree in Fig. 7. As before, in the replacement pedigree (Fig. 7), X corresponds to
the affected person 3708, x, and x3 correspond to the parents of 3708, namely 3603
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Fig. 6. Graph representation of replacement pedigree for sibship 1714 of “Isracl-Kindred 3.

and 3604, and the rest of the pedigree is fictitious. The two replacement pedigrees
improve the total number of vertices from 29 to 25.

Our second example is taken from the paper by Chang et al. [3] that found the gene
for glycogen storage disease type VI (GSD). In this case, the initial pedigree has 6
sibships with at least 1 affected person. The initial pedigree is shown in Fig. 9. The
inbreeding coefficients for the affected sibships are 29/2'4(X,),1/2'2(X;), 15/2'4(X,),
73/215(X4),15/2B3(X, ), 11/2"3(X ), which are all < 1/8.

If there is more than one sibship and each sibship has inbreeding coefficient at most
1/8, we can adapt MiNLoops to create one pedigree for all the sibships by creating a
common base backbone and separate odd and even backbones for each sibship. When
multiple sibships are affected, one still expects that the disease allele entered the pedi-
gree once and passed down two paths from one founder to each affected person. Our
construction preserves this possibility. In the case of Israel Kindred 3 our construction
gives the related affected persons a common ancestor. The coalesced replacement pedi-
gree for Israel Kindred 3, which has only 17 persons, is shown in Fig. 8. For the GSD
pedigree, we can produce the replacement pedigree shown in Fig. 10 that preserves the
6 inbreeding coefficients. The input pedigree has 125 persons, while the replacement
pedigree has only 70.
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Fig. 7. Graph representation of replacement pedigree for sibship 3708 of “Israel-Kindred 3”.

In linkage analysis software it is conventional to include either both parents or zero
parents for each person, rather than only those parents needed to show the possible
paths of disease inheritance. This yields an inflated count of the number of persons
needed in both original and replacement pedigrees. The count with spouses included
sometimes gives a better performance ratio for MinLoops, and sometimes gives a worse
performance ratio.

4.3. Algorithm for 1/8 <inbreeding(X) < 1/2

In this subsection, we give an algorithm for constructing human pedigrees for an
individual with inbreeding coefficient of at most 1/2. The algorithm attempts to min-
imize the number of individuals but we do not claim that the pedigree produced has
any of properties (C1), (C2) or (C3). Each component of the construction is described
in symbols and in a figure, and the figures show that each mating we use is allowed
in human pedigrees.
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Fig. 8. Coalescing the two replacement pedigrees for “Israel-Kindred 3” reduces the number of persons
further to 17.

The construction has 8 nested cases depending on how large the coefficient is. We
divide the range of 1/8 <inbreeding(X) < 1/2 as follows:
1. 1/8<inbreeding(X) < 3/16,
2. 3/16 <inbreeding(X) < 7/32,
3. 7/32<inbreeding(X) < 15/64,
4. 15/64 <inbreeding(X) < 1/4,
5. 1/4<inbreeding(X) < 5/16,
6. 5/16 <inbreeding(X) < 3/8,
7. 3/8<inbreeding(X) < 7/16,
8. 7/16 <inbreeding(X) < 1/2.
For each range i, we give an algorithm GabpGetl that builds on algorithms already
developed for smaller inbreeding coefficients. Some ranges have a special construction
for when the inbreeding coefficient is exactly equal to the lower endpoint of the interval.
The algorithm is nested in that it sometimes uses the algorithms for smaller ranges,
and those usages are denoted as if they were function calls in a program. Since each
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Fig. 9. Graph representation of GSD pedigree; number of persons is 125.
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Fig. 10. Graph representation of GSD replacement pedigree;number of persons is 70.
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G Cr

Fig. 11. GADGETI.

call returns a sibship X, for sake of clarity, we will denote a vertex x € V(P)[V(P)]
as x'[x"] where P[P,] distinguish the pedigrees returned by the calls. The descriptions
of GaDGETI, ..., GADGET8 and the proofs that they produce a pedigree P with a sibship
X that has any given coefficient /¥ in the corresponding ranges is given next.

GapGetl(W): If W < 1/8, return MinLoops(W). If W = 1/8, return V(P) =
{X,a;,a,,b},E(P) = {(X,a;),(X,a,),(a;,b),(a,,b)}. Otherwise, let P;, B, = MiNLoops
QW = 1/4). V(PY={X,a1,ar,b,b1, by c1,c, } UV (PO\ (X241 U (F(B) \ {X7,55}),
E(P)={(X,ar), (X, a,), (a1 b1), (as, b, (ar, ), (ar, b, ), (b c1), (b, ¢, )} UE(P)UE(R.). Col-
lapse xé,xi[xg,xg] with by, c[b,,c,], respectively. GADGET] is illustrated in Fig. 11.

Since MinLoops is called for 1/8 < inbreeding(X) < 3/16, it is called for values in
range 0 < 2W — 1/4 < 1/8. In the pedigree produced, there are no inbreeding loops
for B and no loop connecting b;[b,] and b,,c,[b;,c;]. Hence, we get

J(X,P)=1/8 + .F(B,P)/8 + A (B,b;,P)/4 + A (B,b,,P)/4 + H (b, b,,P)/4
= 1/8 + A (br,c1,P)/S + A (by,c, P)/8
= 1/8+ A (b1, c1,P)/8 + H (b, crn )8
= 1/8 + 220 — 1/4)/8 + 22W — 1/4)/8
=W

GADGET2(W): If W <3/16, use GADGET2A(W'), otherwise use GADGET2B(W). Fig. 12
shows GADGET2.
GADGET2A(W): If W < 3/16, return GADGETI(W). Otherwise, let

V(P) = {)(, al;ara b[a bl‘a C}a

E(P) = {(.X, al)a ()(9 ar)a (al) bl)a (ala br)s (ah bl)a (ara C)a (C, br)}
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Fig. 12. GADGET2B; for GADGET2A the subpedigrees P; and P- are the single vertices b; and b,.

GADGET2B(W): If 3/16 < W <27/128, then let P, = GADGET2A(8W — 3/2) and P, =
NULL, else let
P, = GapGeT2A(3/16) and B, = MinLoops(16W — 27/8).
V(P)={Xai,a,;,b;,b,,c} UV(P)UV(F),
E(P)={(X,a)),(X,a,),(ar,bi), (a1, b:),(ar, b1), (ar, ), (¢, b))} U E(P) U E(B).

Collapse X! with b; and if P. is not NULL, then collapse X" with b,. For 3/16 < W <
27/128, we have that 0 < 8W — 3/2<3/16 and for 27/128 < W < 7/32, we have that

0< 16 —27/8 < 1/8.
For 3/16 < W <27/128:
J(X,P)=3/16 + 7 (b, P)/8 + I (b,,P)/16 + 34 (b,, b,, P)/8
=3/16+ 4 (b1, P)/8
=3/16 4+ (8W — 3/2)/8
=W
For 27/128 < W < 7/32:
J(X,P)=3/16 + 9 (b;,P)/8 + I (b,,P)/16 + 34" (b;, b,, P)/8
=3/16 + S (b1, P)/8 + I(b,, B)/16
=3/16+ (3/16)/8 + (16 — 27/8)/16
=W

GADGET3(W): If W <7/32, use GADGET3A(W'), otherwise use GApGET3B(W). Fig. 13
shows GADGET3.
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Fig. 13. GADGET3B; for GADGET3A delete Py, P-,d;,d;.

GADGET3A(W): If W < 7/32, return GADGET2(W'). Otherwise,

V(P)={X,a,a;,a,,b;,b,,c;,¢,,d}.
E(P)={(X.a),(a,a1),(X,a,),(as,b1). (a1, b;), (ar, b1), (ar,by), (br, 1), (br, cr),
(br,c1), (by,cr), (cr,d), (cr,d)}.
GADpGeT3B(W): If 7/32 < W <119/512, then let P, = GADGET3A(16W — 7/2) and
B = NULL, else let P, = GApGET3A(7/32) and P. = MinLoops(32W — 119/16).
V(P)={X.a,a1,ar,bi,by,cr ¢, d,dind,} U (V) \{X'H UV (R,
E(P)={(X,4),(4,a,),(X,ar),(a,b), (a1, br ), (ar, br), (ar, b;), (b1, 1), (by, cr),
(bry 1)y (brycr), (c1,d1), (c1, D), (¢crydy), (cryd)} UE(P) U E(B).
Collapse xé,xé with d;,d,, respectively, and if P. is not NULL, then collapse X" with

D. For 7/32 < W <119/512, we have that 0 < 16/ — 7/2<7/32 and for 119/512 <
W < 15/64, we have that 0 < 32 — 119/16 < 1/16.
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For 7/32 < W<119/512:

J(X,P)=(T+ 9(d,P)+ 34 (d},d,P)+ 24 (d},d,,P) + 34 (d,,d, P))/32
=732+ #(d1,d,, P)/16
=7/32 + (16W —7/2)/16
=W

For 119/512 < W < 15/64:

(X, P)=(7+ 9(d,P)+34(d;,d,P)+ 24 (d;,d,,P) + 3.4°(d,,D, P))/32
=7/32+ 9(d,B,)/32 + A#'(d;,d,,P)/16
=7/32+ (32W — 119/16)/32 + (7/32)/16
=W

GApGeT4(W): If W < 15/64, return GaDpGET3(W). Otherwise, Let PP =
MinLoops(8W — 15/8).

V(P)={X,a,d',b'.c,a;,a,,b;,b,c, ¢ d,drdrer e} U (V(P)\ {X,x))
UV (P) \ {X".x3}),

E(P)={(X,a),(a,ar),(X,a,),(a1,b1), (a1, b,),(ar,b1),(ar, b,), (b1, 1), (bi, c,),
(br,c1), (brscr), (e, d)), (cr,d), (cr,d,), (¢ryd), (a,d), (d, ),
(B',c), (¢ d)),(d,e),(d,e.)} UE(P) U E(R).

Collapse x4,x}[x5,x;] with d;,e/[d,,e,], respectively. Fig. 14 shows Gapcerd. For
15/64 < W <1/4, we have that 0 < 8 — 15/8<1/8 and

(X, P)=(15 +3.9(d,P) + 104(d),d,P) + 64 (d,d,, P) + 64 (d,d,))/64
=(15+54°(d},e,P) + 34 (d,. e, P.))/64
= (15 + 5(8W — 15/8) + 3(8W — 15/8))/64
=W

GADGETS(W): If W <1/4, use GADGET5A(W'), otherwise use GapGer5B(W). Fig. 15
shows GADGETS.

GADGETSA(W): If W < 1/4, return GApGet4(W). Otherwise, V(P)={X, a;,a,,b;, b, }.

EP)={(X a1),(X,a,),(a;,b;),(a;,b,),(ar,b;),(ar, b,)}

GaDGETSB(W): Let P, P = GADGET4(4W — 1).

V(P) = {)(’alaaryblybr} U V(Pl) U V(B’)y
E(P) = {()(aal)s ()(sar)’ (alabl)a (alabr)’ (ara bl)s (arabr)} UE(PI) UE(P,)
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X

Fig. 14. GADGET4.

Collapse X'[X"] with b,[b,]. For 1/4 < W < 5/16, we have that 0 < 4W — 1 < 1/4
and

J(X,P)= (2 + (b, P)+ I(b,,P) + 24 (b;, b, P))/8
=2+ I(b,P)+ I (b, B))/8
=2+ @W = 1)+ @W —1))/8
=W

GADGETO6(W ): If W < 5/16, return GADGET5(W). Otherwise, let P, P.=GADGET5(4W —
5/4). Fig. 16 shows GADGET6.

V(P)={X,a,a,,b1,b,,c,cpyc did, } U(V(P)\ X' HUT(B)\ {XD),
E(P) = {(Xva al)o ()(9 ar‘)a (al) bl)a (a], br): (ar: bl)a (ah br)’ (bla Ci )z (bl: C)a (brn C))
(brrc,),(C,d)),(Cod, )} UE(R) UE(R).
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Fig. 15. GADGET5B; for GADGETSA the subpedigrees P; and P- are the single vertices b; and b,.

X

Fig. 16. GADGET6.

Collapse x},x5[x5,x5] with ¢;,d[c,,d,], respectively. For 5/16<W < 3/8, we have
that 0<4W — 5/4 < 1/4 and
FX,P)= (5 + J(C,P)+ 24 (cpdp, P) + 24 (crrdy, P) + 24 (crod, P)
424 (crvd,, P))/16
=5+ 24 (cr,di, Pr) + 2A (¢r,dr, F))/16
— (54 2(4W — 5/4) + 2(4W — 5/4))/16
=W.
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Fig. 17. GADGETT.

Gapcer7(W): If W < 3/8, return GADpGeET6(W). Otherwise, let P, P, = GADGETS
(4w —3/2). Fig. 17 shows GADGET7.
V(P)={X,aiar,bi,by,cp, ¢ d1,da,ds,da} U(V(P)\ XD UV (B)\ {X7)),
E(P)={(X,a),(X.a,),(ar,b1),(ar, b;),(ar, b1),(ar, b;), (b1, c1), by, ¢ ), (by, c1),
(byscr)s (e, dr), (c1,d2), (cr,d3), (¢ da)} U E(P) UE(R).
Collapse x4, x4[x5,x5] with dy,da[d2,d3], respectively. For 3/8<W < 7/16, we have
that 0<4W —3/2 < 1/4 and
F(X,P)=(6+ A (d1,dr, P)+ H(d3,d4,P)+ 24 (d,d3,P) + 24 (d1,d4, P)
=424 (d2,d3,P) + 24 (d2,d4, P))/16
=(6+24(d\,ds, By) + 24 (d2,d3,F))/16
=B+ @AW —=3/2)+ (AW —3/2))/8
=Ww.
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X

Fig. 18. GADGET8B; for GADGET3A delete Py, P-,d;, d;.

GADGET8(W): If W <7/16, use GADGETS8A(W'), otherwise use GADGETSB(W). Fig. 18
shows GADGETS.
GADGET8A(W ): If W < 7/16, return GADGET7(W). Otherwise,
V(P) = {K a, ay, bl; bra Cl,Cry d}
E(P) = {(X: al )) (X" ar)a (a[7 bl)5 (a[7 br)a (ara bl )7 (ara br)a (b[> C[)s (b[7 Cr), (br7 C[)a
(bra Cr), (C], d), (Cra d)}

GADGET8B(W): If 7/16 < W <63/128, then let P, = GADGET2A(8W — 7/2) and P, =
NULL, else let P, = GapGeT2A(7/16) and P, = MinLoops(16W — 63/8).

V(P)={X,as,a,,b1, by cr,crdydiyd,} U(V(R) — {(X')HUV (B,
E(P) = {(X" a[)) ()(9 aV)7 (alybl)ﬁ (alabV)ﬂ (ar: bl)) (ara br)a (blacl)ﬂ (blycr)9 (bracl):
(b, cr), (c1,dp), (c1,d),(¢cr,d), (cr, d,)} UE(P)UE(R).

Collapse x},x}, X" with d;,d,,d, respectively. For 7/16 <W < 63/128, we have that
0<8W —7/2 < 7/16 and for 63/128<W < 1/2, we have that 0< 16/ — 63/8 < 1/8
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For 7/16 <W < 63/128:

J(X,P)=(1+ 9(d,P)+34(d;,d,P)+ 34 (d,,d,P)+24°(d,,d,,P))/16
=(7+24(d;,d,., P))/16
= (7 +2(8W —17/2))/16
=W.

For 63/128<W < 1/2:

JX,P)= (T + F(d,P) +3A4(d},d,P) + 34 (d,,d,P) + 24 (d},d,, P))/16
=(7+ 9(d,P)+24(d,d, P))/16
=(7+ (16 — 63/8) + 2(7/16))/16
=W

The above constructions and calculations prove that:

Theorem 4.3. For every valid inbreeding coefficient W such that 1/8 < W < 1/2,

there is a human pedigree P with a sibship X, such that (X,P)=W

4.4. Algorithm for 1/2 <inbreeding(X) < 1

In this section, we give an incremental method of constructing human pedigrees with
inbreeding coefficients >1/2. The method works in two stages. In the first stage we

construct a sequence of pedigrees P!, P?,...

, such that for i < j, I(X,P") < I(X,P/)

and lim;_,...#(X,P*) — 1. This gives an infinite sequence of inbreeding coefficients
spanning the interval [1/2,1) that are achievable. In the second stage we fill in all
the gaps in the infinite sequence. Depending on the desired coefficient, we take a
suitable pedigree P, and add one of the six specialized extender pedigrees on top of
P!. Some of the extender pedigrees are disconnected but when they are added to a P/,

the resulting pedigree is always connected.
Consider the family of pedigrees P°,P',... defined as follows:

V(P ={X,a0,a%, b9,b°, %, L°, R},
E(P") = {(X,a}),(X,a)),(a}, b)), (a], b)), (a), b}), (a), b)),

(b0, ¢))s (b1, D), (B, D), (BL, ), (¢, L), (1, R®), (¢), L), (¢!, R%)},
V(Pk):V(Pk 1)U{a1,a2,a3,a4,b bk cl,c k [k Rk}
E(PY)=EP" ") u{ " d). (L, d5), (R, a5), (R, d}),

(af, b)), (ak, b)), (a5, b)), (a5, BF). (ab, b)), (5, D). (., B). (df. B)),

(B, c§), (B, k), (BE, ), (BE, ), (e L), (cf, RE), (cf, L), (ck, R}

Each Pf is composed of the Base P’ shown in Fig. 19 which has been

extended by adding k stacked copies of ExTeENDER shown in Fig. 20.
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L° @ r°
C[o. . Cro

Fig. 19. BASE.

Lemma 4.3. Let S* be any pedigree that has P*, as defined above, at the bottom and
has an additional (possibly disconnected) pedigree Z stacked on top of LF and R*. We
assume that Z has two vertices at the bottom and those vertices are named and coa-
lesced with LF, R*. Unlike our other pedigrees, we allow Z to have two disconnected
pieces, one on top of LF and one on top of R*. Then

1 64" (LF,R¥,Z) + #(L*,Z) + S (R", Z)

ky
JXS)=1-gq + e

When Z has just the two vertices and no edges,

1

; ky
AP =1 5

Proof. We prove the first, more general, statement by induction on k. If the special-
ized extender pedigree Z consists of two disconnected pieces, then the kinship term
64 (L*,R*,Z)=0. If Z consists of just the two vertices, then the inbreeding terms are
also 0, yielding the more specialized second formula from the first formula.

Base (k =0): P° is as shown in Fig. 19. We consider P°UZ, where Z is any
(arbitrary) specialized extender pedigree put on top of L° and R°. For the base case
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N [ X4
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Fig. 20. EXTENDER.

we apply the recursive inbreeding coefficient calculation.
S (X, P%) = A (d},a), P’ UZ)
=Q+IBPPUZ)+ 7P UZ)+ 40 (BH0,b0, P UZ))/8
=6+ 7 PUZ)Y+ I, PPUZ)+84°(Y, 0, PP U Z))/16
=@+ 7L PPUZ)+ 7R, P°UZ)+ 6 (LR, P’ U Z))/16
=8+ 75U 2)+ (R, Z2)+ 64 (L°,R°, 2))/16.
Induction hypothesis: Suppose the claim hold true for all £ < n and for all special-

ized extender pedigrees Z.
Induction step (k =n): Using the induction hypothesis, we get

JXP Y =1—1/2"+ (64 (LR Z)+ 7L, Z2)+ (R, Z))/2" 3
= J(X,P)=1-1/2"+(64 (L, R, 8"+ (L, 8" +.7(R"!,5"))/2" "3
=1—-1/2"+ QXA (a},a3,8") + 24 (a5, a;,8") + 34 (a}, a5, S")
+3.4°(a}, d, S") + 3A (s, dl, S™) + 3.H (b, dl, S™)) /2"
=1—1/2"4+ @2+ 7B}, 8"+ I, S") + 44°(b], b",8"))/2" 3
=1—1/2"+ (6 +.7(c},S") + F(c",S") + 84 (c}, c",8"))/2" T
=1—1/2"+ 8+ 7", S")+ F(R",S") + 64 (L",R",S"))/2"*
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Fig. 21. EXTENDERI.

=1—12"+ @B+ J(L",Z)+ F(R",Z) + 64 (L",R", Z))/2"+*
=1—1/2""' 1 (F(UL",Z)+ I (R",Z) + 64 (L",R", Z))/2""*. [

Corollary 4.1. For i < j, S(X,P) < #(X,P/).
Corollary 4.2. lim;_ . .#(X,PF) — 1.

The above lemma and corollaries complete the first phase of the construction for
inbreeding(X) > 1/2. For the second phase, we subdivide the range of inbreeding
coefficients 1 — 1/2K+1 < W < 1 — 1/2%+2 as follows (for any k>=0):

— 12w < 1 — 7/2kH4,
— 72w < 1 — 132543,
— 132K <w < 1 —3/2F43,
— 323w < 1 — 5/2k+4,
— 52k W < 1 —9/2k3,
— 92K LW < 1 — 1/2k2,
For each range i, we define a function ExTENDERI that constructs a pedigree Z such
that P U Z matches the inbreeding coefficient # in the corresponding range. The
extender pedigree does not directly depend on £, but the constructions for EXTENDER4,
EXTENDERS, and EXTENDERG are nested. The primary role of & is to determine how large
a stack P to put underneath the extender. For example, if W = 925/1024, then the
largest k& such that 1 —1/2% + 1< W is k =2. Given that k =2, then 925/1024 falls in
the third range 920/1024 = (1 — 13/23)<W < (1 — 3/2K3) =928/1024. The output
pedigree has ExTeNDER3(925/1024) stacked on top of P2.

ExTENDER](W): Let P, P, = GApGETS(2XT3(W — 1 + 1/2K+1y).

V(P)=V(PYUV(P)UV(E),

E(P)=E(PY)UE(P) UE(R.).

Coalesce vertices X/, X" with L¥, R¥, respectively. Fig. 21 shows ExTenperl. Since
the ExTeNDER] construction is for 1 — 1/25F1 < W < 1 —7/28+4, we call GADGETS with
0<2M3(W — 1 +1/21) < 1/2. In the pedigree produced,

1
1
1
1
1
1

SANRANE O

JX,P)=1— 12" 4 (64 (L, R, P) + #(L*,P) + S (R*,P))/2+*
—1— 1/2k+1 +2k+3(W_ 1 4 1/2k+1)/2k+4+2k+3(W_ 1 + 1/2k+1)/2k+4
=Ww.
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Fig. 22. EXTENDER2.

EXTENDER2(W): Let Py, P, = GADGETS(2KT4(W — 1 + 7/2F+4)).

V(Py=V(P*YU{a,bs, b, cr,c,} UV (P)UV(B),

E(P)={(LX,a), (R, b1), (R", b,), (@ ¢1), (as ¢, ), (brs er), (brs ¢ ), (Bys 1), (rs )}
UE(P*) UE(P)UE(B).

Coalesce X', X" with ¢;,c,, respectively. Fig. 22 shows ExTENDER2. Since the
EXTENDER2 construction is for 1 — 7/25*4<W < 1 — 13/2¥3, we call GapGer8 with
0< 254 (W — 1 +7/2F4) < 1/2. In the pedigree produced,

J(X,P)=1— 12" (64 (L}, R*, P) + #(L*, P) + #(RF, P)) /2"
=1—1/2"" + (34 (a, by, P) + 34 (a,b,, P) + 24 (b, b,, P))/2"
=112+ 2+ F(c;,P) + F(cr, P) + 4K (1, ¢, P))[23
— 1 7)2kH Lok | 7k kS kA | g okt kS
=W.

ExTENDER3(W): Let P, = GADGET8(2K4(W — 1 + 13/2F5)).

V(P)=V(P*)U{ar,ar,bi,by,croc } UV (P),

E(P)={(L*,a)).(L*,a,),(R", b,), (R, b,), (as, 1), (ar ¢, ). (brrcr), (bry ¢ ), (brocr),
(byscr)s(ar,cr)y UEP).

Coalesce X! with ¢;. Fig. 23 shows ExTENDER3. Since the EXTENDER3 construc-
tion is for 1 — 13/2855<W <1 — 3/2F3, we call Gapcer8 with 0<2F4(Ww — 1
+ 13/2%+3) < 1/2. In the pedigree produced,

JX,P)=1—1/2"" + (6 (LF,RF, P) + #(LF, P) + #(RF, P)))2k+*
=1 — 12" + 34 °(a;, b;, P) + 34 (a1, by, P) + 24 (b, b,, P)
+ 34 (ay, b1, P) + 34 (ar, by, P) + 2.4 (a;, a, P))/25F3
=1— 12"+ (3 +29(c;, P) + F(c,, P) + 6.4 (c1,cp, P))[283
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Fig. 24. EXTENDER4.

=1 — 13285 2. 2K — 1 4 13/2kF5) )2k
=Ww.
EXTENDER4(W ): Let P, P, = GADGETS(2K 3 (W — 1 + 3/283)).
V(P)=V(P")U{as,ar,bi,bycre,} UV(P) UV (R,
E(P) = {(L*, ar),(L*, a,), (R, by), (R, b,), (ar, 1), (ar, ¢, ), (br, 1), (i, ¢, ), (bys 1),
(brocr).(ar,cr).(arc,)} U E(PY) U E(P) U E(P,).

Coalesce X', X" with ¢;,¢,, respectively. Fig. 24 shows ExTeEnDEr4. Since the
ExTENDER4 construction is for 1 — 3/2F3<W < 1 — 5/2F%* we call GapGeT8 with
0253 (W — 1 +3/2F3) < 1/2. In the pedigree produced,

J(X,P)y=1— 12" 4 (64 (L*, R, P) + J(LF, P) + J(R*, P))/2"+*
=1— 12"+ 34 (a;,b,,P)+ 34 (ay, by, P) + 24 (b, by, P)
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Fig. 25. EXTENDERS.

=3A (a,, b1, P) + 3A (a, b, P) + 2.4 (a, a,, P))/2"
=112+ 2+ I (e, P) + I (cr, P) + 4K (1., P)) 2
—1— 3/2k+3 +2k+3(W -1 +3/2k+3)/2k+4 +2k+3(W -1 +3/2k+3 )/2k+4
=Ww.
EXTENDERS(W ): Let Py, P.= GApGET8(2K4(W —1+45/257)) and P, = ExTENDER4(1 —
3/2k+3 )
V(P)=V(P.)u{d,d,} UV(P)UV(E),
E(P) = {(Cl>dl)7 (C[,dr), (Cradl); (Cr,dr)} U E(Pe) U E(I)l) UE(R’)
Collapse X', X" with d,,d,, respectively. Fig. 25 shows EXTENDERS. Since the
EXTENDERS construction is for 1 — 5/284<W <1 — 9/283 we call Gapcer8 with

0 <254 (W — 1 +5/2K4) < 1/2. To get the inbreeding coefficient of X. In the pedigree
produced we start with one of the equations in the EXTENDER4 calculation,

JX,P)=1—1/2M" 4 2+ F(c;,P) + F(c,, P) + 4H (¢}, c,, P))J2KH
=1-3/2" 4+ 2+ 4(d),P)+ #(d,,P) + 84 (d,d,, P))/2F
—1— 5/2k+4 +2k+4(W -1 4 5/2k+4)/2k+5 +2k+4(W -1 + 5/2k+4)/2k+5
=Ww.
EXTENDERG(W ): Let P; = GADGETS(2KT4(W — 1 + 9/2%3)) and P, = ExTENDERS(1 —
5/2k+4).
V(P)=V(P.)U{e.ere,} UV (P),
E(P)={(di,e1),(d1,e),(dr,e),(dy,e,)} UE(P) UE(R).
Coalesce a?,a? of P with ey, e,, respectively. Fig. 26 shows EXTENDERG. Since the
EXTENDERG construction is for 1 — 9/285 <W < 1 — 1/252, we call GapGer8 with

0<25H4(W —149/2F5) < 1/2. To get the inbreeding coefficient of X. In the pedigree
produced we start with one of the equations in the EXTENDERS calculation,

J(X,P)y=1—-3/2"3 4 2+ 4(d;,P)+ 9(d,,P)+ 84 (d;,d,,P))2*"
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Fig. 26. EXTENDERG.

=1-52% 4 (1 + F(e,P)+ 34 (e,e;,P) + 34 (e, e, P)
+ 24 (e, e1,P)))25F3

=1 9/2k+5 4 2. 2k+4(W -1 =+ 9/2k+5)/2k+5

=W.

The above constructions and calculations prove that:

Theorem 4.4. For every valid inbreeding coefficient W such that % < W <1, there is
a human pedigree P with a sibship X, such that I(X,P)=W.

5. Minimizing loop breakers

In this section we consider an inverse inbreeding coefficient problem in which we
require all the loop breakers to be founders. We present an algorithm that given a
coefficient of at most %, constructs a human pedigrees where all the loop breakers are
founders and minimizes (C3).

When studying rare recessive diseases, geneticists sometimes look to minimize the
number of times the disease allele must have entered the pedigree. In the extreme this
means that the disease causing mutation occurred once, say in one founder individual
F, and all the affecteds in the population have the mutation in both copies of DNA
by inheriting a mutated copy from their father and mother who in turn inherited a
mutated copy from F. Therefore, when studying a rare recessive disease, we may wish
to construct a pedigree where all the mutations are explained by a single founder or
founder couple and all the inbreeding loops are broken by the founder or founder pair.
We call a pedigree with this property a minimum founder human pedigree (MFHP).

We present an algorithm Loops that constructs a MFHP with one founder when the
given coeflicient W<% and a MFHP with a founder couple when % < W<%. The
pedigrees have only one loop breaker for Wéé and two loop breakers for % <W< }1,
where the loop breakers are required to be founders. We argue that this is the min-
imum number of loop breakers needed in any MFHP for these ranges of inbreeding

coefficients. Fig. 27 shows a pedigree constructed by Loops for inbreeding coefficient
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Fig. 27. Pedigree generated by Loops for coefficient 15/512.

15/512. Algorithm Loops uses two simple algorithms: BiNarRY and LEaves. BINARY takes
2 input parameters n,d where n<2%, 3 output parameters X, V, E, and returns a binary
tree with n branches of depth d such that X is the root, V' is the set of vertices, and E
is the set of edges of the binary tree. LEAVEs takes 3 input parameters X, V, E defining
a tree where X is the root, V is the set of vertices, and E is the set of edges of the
tree, and returns the set of leaves in the tree.

Algorithm. Loors
Input: A valid inbreeding coefficient WS%
Output: A MFHP P such that it has an individual X with #(X,P)=W.

begin
if W >1/8
then W — W)/2, double — true
else double — false
find p, p, and minimum d such that W = p; p,/2%/*! and p,, p, <2¢7!
Bmary(p1,d — 1,x1, Vi, Ep), BNARY( pa,d — 1,x2, V., E,)
V(P)={X,F}UV,UV,, E(P)={(X,x1),(X,x2)} UE;,UE,
if double =true, V(P)=V(P)U{M}
if double = true
then VI € LEaves(P), E(P)=EP)U{(F,D,(M, 1)}
else V/ € Leaves(P), E(P)=EP)U{(F,])}
return P
end

Lemma 5.1. For every valid inbreeding coefficient W < %, Loops(W) outputs MFHP
P that has a sibship X such that $(X,P)=W.

Proof. First, we show that Loops(W') always succeeds in finding p;, pp,d. Since
0<W < and we consider W/2 if W > ¢, we need to show that for 0< W <y there
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exist pi, p2,d such that W = p; p,/2%¢*! and py, po<297!. Let W = u/2". Assign
p1=4u, p»=2""' d=v. Then p| p,/2%*" =4y - 207122+ =y /2" =W, p, =291,
p1=4u =4W2°<4(1/8)2" =21 =29-1 and we have py, p,,d with the required
properties. For the proof, it suffices to show that when double is false [true], the num-
ber of inbreeding loops is p; - p2[2- p1 - p2] and the length of each inbreeding loop is
2d + 2. We show this next.

BmarY( py,d,x1, Vi, E;) creates a binary tree with p; leaves and p; paths of length
d. Similarly, BNARY( po,d, x5, V,, E,) creates a binary tree with p, leaves and p, paths
of length d. Let [ € Vj[r € V,] be a leaf and P[P.] be the path connecting x[x;] to
[[r]. Then the pair of paths (X,x;)P(I,F) and (X,x;)P.(r,F) results in an inbreeding
loop of length 2d + 2 for X. If double is true, we get another inbreeding loop from
the pair of paths (X,x)P(/,M) and (X,x;)P.(r,M). As there are p; choices for / and
p2 choices for r, the number of inbreeding loops is pi - pa2[2 - py - p2] if double is
false [true] and the length of each inbreeding loop is 2d +2. [

For 0< Wgé, the loop breaker in the pedigree produced by Loops is F' and for
% < W< %, the loop breakers in the pedigree produced by Loops are F and M. Next,
we show that the maximum inbreeding coefficient that can be realized with one or two
loop breakers in MFHP is indeed % and %, respectively. We first need the following
preliminary result.

Lemma 5.2. If P is a pedigree with one loop breaker F, #(X,P)= W, and the length
of longest path from F to X is d, then there exists a pedigree P' with one loop
breaker F, #(X,P')= W such that the length of every path from F to X is d.

Proof. Let P,X,F,W be as stated. For every path P; : X,...,y,F of length k <d,
create a binary tree of depth (d — k), coalesce the root of the binary tree with y, delete
edge (»,F) and for every leaf x of the binary tree, add the edge (x, F"). For the proof,
it suffices to show that the above modification maintains the inbreeding coefficient.

Let L be an inbreeding loop consisting of path P; and some other path P,, such
that £ 4+ z was the length of the loop. The reduction in inbreeding coefficient because
of deleting edge (y,F) and breaking loop L is 1/2f**~! The gain because of creating
297k loops of length d + z with path P, is 297 /2d+:=1 = /2k+=—1 ]

Lemma 5.3. If the number of loop breakers in a MFHP P is one [two], then ¥ (X, P)
for any X € V(P) is at most é[i].

Proof. Let P be a pedigree with one loop breaker F and #(X,P)= W. From the
definition of MFHP and Lemma 5.2, we can assume that /' does not have an ancestor
in P and the lengths of all the paths from X to F are equal, say d + 1. As there can be
at most 2~ paths from F to father(X) and mother(X), the maximum inbreeding
coefficient we can get is 2041 x 2(@=1)/22d+1) — %.
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Let P be a pedigree with two loop breakers F' and M and let d + 1 be the length of
a longest path from X to F or M. From the proof of Lemma 5.2, it follows that we
can construct a pedigree such that the lengths of all the paths from X to F and from
X to M are equal, say d + 1, and the inbreeding coefficients are kept the same. The
maximum number of paths from father(X) and mother(X) to F or M can be 2¢@—1
when the length of a longest path from X to F or M is d + 1. All of these paths can
be present in the same pedigree if /' and M is a married couple. Hence, the maximum
inbreeding we can get is 2 x 2@ x 2(d=1)/pQd+1) — i. O

If we do not restrict ourselves to MFHP but are interested in human pedigree, then
we can have pedigrees with one [two] loop breaker(s], such that #(X,P) for any

X € V(P) is more than g[;]. For example, pedigree P with edges

E(P)={(x1,x2), (x1,x3), (x2,x4), (x3,X4), (x4, X5), (x4, X6 ),

(5, x7), (x5,x8), (X6, X7), (X6, X8 ) }

has only one loop breaker x, and .#(x;,P)=5/32 and pedigree P’ with edges

E(P")=E(P) U {(x2,x9),(x3,X9), (x9,X10), (X0, X11),
(10,7, (x10,X8), (X11,X7), (x11,X8) }

has two loop breakers x; and xs and .#(x;,P)=5/16.

6. Discussion and open problems

We defined a collection of problems called inverse inbreeding coefficient problems.
We presented three constructions for pedigrees in which one sibship has an inbreeding
coefficient matching a specified probability. The constructions differ in whether they
allow all matings or only (typical) human matings, and in which optimality criteria
are satisfied. We wrote a program to construct human pedigrees for coefficients of at
most 13—6 using MinLoops and Gapcerl. The software is available by sending e-mail to
richa@helix.nih.gov.

Many open problems remain. The most important open problem for one sibship is to
find a construction for human pedigrees that simultaneously minimizes the number of
persons (C1) and either of the loop criteria (C2) or (C3). We also left open the possibly
simpler problems of finding human pedigrees to minimize just the number of persons,
or minimize just the number of inbreeding loops for coefficients > 1, or minimize just
the number of loop breakers for coefficients > i. For non-human applications we left
open the problem of finding a construction that minimizes the number of loop breakers
when the coefficient is > % All variants of the inverse inbreeding coefficient problem
are open for multiple sibships in the same pedigree. One could also add a constraint
on how well a multi-sibship construction approximates the kinship coefficient of each
non-sibling pair of affected persons.
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Our work was primarily motivated by a problem of pedigree replacement in linkage
analysis of recessive diseases [3], and we showed that our human pedigree construction
yields smaller pedigrees for the motivating example, and another recently published
example. Our work is also applicable to more large-scale epidemiology studies of inbred
populations. In the epidemiology setting it is useful to construct simulated pedigrees
matching the inbreeding coefficient pattern, and to trace the inheritance of traits under
various models of inheritance, as a test of the models. Our constructions make it
possible to systematically generate small pedigrees from any desired distribution of
inbreeding coefficients.
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