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Abstract

Medical geneticists connect relatives having the same disease into a family structure called a
pedigree. Genetic linkage analysis uses pedigrees to �nd the approximate chromosomal locations
of disease-causing genes. The problem of choosing a pedigree is particularly interesting for
diseases inherited in an autosomal recessive pattern in inbred populations because there are
many possible paths of inheritance to choose from. A variety of shortcuts are taken to produce
plausible pedigrees from inbred populations. We lay the mathematical foundations for a shortcut
that was recently used in a pedigree-disease study of an inbred Mennonite population. Recessive
disease genes can be localized using the shortcut of homozygosity mapping by �nding regions
of the genome where a�ected persons are homozygous. An important quantity in homozygosity
mapping is the inbreeding coe�cient of a person, which is the prior probability that the person
inherited the same piece of DNA on both copies of the chromosome from a single ancestor.
Software packages are ill-suited to handle large pedigrees with many inbreeding loops. Therefore,
we consider the problem of generating small pedigrees that match the inbreeding coe�cient of
one or more a�ected persons in the larger pedigree. We call such a problem an inverse inbreeding
coe�cient problem. We focus on the case where there is one sibship with one or more a�ected
persons, and consider the problem of constructing a pedigree so that it is “simpler” and gives the
sibship a speci�ed inbreeding coe�cient. First, we give a construction that yields small pedigrees
for any inbreeding coe�cient. Second, we add the constraint that ancestor-descendant matings
are not allowed, and we give another more complicated construction to match any inbreeding
coe�cient. Third, we show some examples of how to use the one-sibship construction to do
pedigree replacement on real pedigrees with multiple a�ected sibships. Fourth, we give a di�erent
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construction to match the inbreeding coe�cient of one sibship, while attempting to minimize a
measure of the inbreeding loop complexity. ? 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper addresses a family tree construction problem that arises in mapping genes
that cause genetic diseases inherited in an autosomal recessive pattern. The mapping
of disease-causing genes in the human genome is often carried out starting with the
following major steps:
1. Find related persons a�ected with the same disease.
2. Connect the a�ected relatives into one or more family pedigrees.
3. Find the genotypes of a�ected and una�ected relatives at a large number of variable
DNA markers that span the genome.

4. Use a collection of statistical and algorithmic tools called genetic linkage analysis
to �nd those DNA markers that segregate with the disease [16].
Inbred populations are used in many human genetics studies partly because the in-

breeding allows rare genetic diseases to appear. Existing linkage analysis software tools
are not well suited to large inbred pedigrees, so users take a variety of shortcuts either
in the pedigree construction or in the linkage analysis. We formulate and investigate
mathematical and algorithmic questions underlying a pedigree construction shortcut
taken by Chang et al. [3], in their recent location of the gene that causes glycogen
storage disease type VI in an inbred Mennonite population.
Inbred populations have a high incidence of a number of diseases inherited in a

recessive pattern because one “carrier” ancestor can pass a rare disease-causing mutation
down several distinct paths of inheritance to a�ected descendants. We say that a person
d is homozygous by descent at a gene or marker if he has two copies of an allele
a of the gene or marker such that both copies were on the same chromosome copy
in some ancestor p. Homozygosity mapping [18,9] is a shortcut in linkage analysis
based on the idea that an a�ected person is likely to be homozygous by descent at the
disease gene and nearby, but not throughout the genome. Homozygosity mapping starts
by searching for DNA markers at which the a�ected persons are homozygous and then
looks for the disease gene in the vicinity of those markers. Homozygosity mapping can
yield false positive results when homozygosity occurs other than by descent (e.g., the
same common allele reaches a person from two di�erent ancestors). This can usually
be detected because when we have a false positive, it is very likely that very close
markers are heterozygous. An accurate measure of the prior probability of homozygosity
by descent at a marker or region is important for successful homozygosity mapping
(see [5] and the references therein).
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The probability that a person is homozygous by descent at an arbitrary point (e.g.
base pair or allele) in the genome is called the inbreeding coe�cient and has been
widely used in genetics for decades [24,23]. The inbreeding coe�cient of a person
can be de�ned with respect to a (small) linkage analysis pedigree or an entire (large)
genealogy. For recessive diseases in inbred populations, the pedigree construction phase
entails making some assumptions about which ancestors are most likely to have carried
the disease mutation and what paths the mutation may have followed.
A �rst question is: how can one extract a pedigree of a few dozen or hundred indi-

viduals from a genealogy and preserve the likely paths of disease gene inheritance? We
addressed this question with algorithms encoded in a software system called PedHunter
[1]. A second question is: what can one do if the initial pedigree is too large and=or
too inbred for the linkage analysis software? A common solution is to formally ignore
some of the inbreeding loops (see [15] for an example). This is done because some
of the existing linkage analysis software can handle very large pedigrees, if there is
not too much inbreeding in a sense de�ned below. However, ignoring paths that reect
inbreeding can signi�cantly change the inbreeding coe�cient of the a�ected persons
and can skew the results of homozygosity mapping. Another approach proposed by
Thompson [21] is to �nd the most likely paths of inheritance. More generally, Kong,
Lange, Thomas, Thompson, and co-workers [7,11,13,14,22,20] have proposed to com-
pute approximate solutions to linkage analysis problems on complex pedigrees by a
variety of randomization techniques. One software package that encodes such random-
ized methods is PANGAEA distributed by E. A. Thompson.
Chang et al. [3] proposed a di�erent shortcut for pedigrees that have high inbreed-

ing. They replaced the input pedigree by another pedigree in which the inbreeding
coe�cients of the a�ected sibships remained approximately the same. The replacement
pedigree must include the a�ected sibships and their parents, and may replace the rest
of the pedigree by �ctitious persons and �ctitious parent=child relationships. The �cti-
tious persons typically replace real persons whose DNA is unavailable, serving only as
placeholders to approximate the overall inbreeding coe�cient for the a�ected persons.
Chang et al. [3] did the replacement by a simple heuristic in which the inbreeding co-
e�cients are not exactly preserved and the replacement pedigree size is not minimized.
We present a more rigorous and exact algorithmic approach.
We address several variants of the fundamental question: given an inbreeding co-

e�cient, W , can one construct a pedigree such that some person in it has inbreeding
coe�cient W ? Karigl [6] (see [21, p. 28]) provided such a construction for any ratio-
nal W with denominator a power of 2. However, Karigl’s construction “may involve
repeated matings of many descendants to the same ancestor, and so will not be of
practical relevance in human genetics [21, p. 28]”. First, we extend the basic prob-
lem by adding various measures of pedigree complexity to optimize that correspond
to the running time characteristics of widely used linkage analysis packages. Second,
we prove that any rational W with denominator a power of 2 is achievable even when
ancestor-descendant matings are not allowed and every individual is required to have
two genetically distinct parents. Third, we consider a variation in which the pedigree
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is allowed to have at most one person or couple at the top; this constraint is moti-
vated by recessive diseases in which it may be desirable to assume that the disease
allele entered the pedigree just once at the top. We call problems of this type, inverse
inbreeding coe�cient problems.
In the pedigree replacement problem, the input pedigree will often have multiple

sibships with an a�ected person. We show two examples of how to use our construction
for one sibship multiple times to make a combined pedigree that replaces the input
pedigree and matches the inbreeding coe�cient for each sibship with an a�ected person.
It may be useful to make the replacement pedigrees “optimal”. In this paper we seek

to match the input inbreeding coe�cient(s) exactly, and try to optimize other criteria.
One could instead give optimization higher priority and seek only to approximate the
inbreeding coe�cient(s). To de�ne useful optimality criteria it is necessary to present
terms and concepts of pedigrees and existing linkage analysis software. We will for-
mally de�ne a graph representation for pedigrees and many related terms in the next
section. For this introduction, it is su�cient that a pedigree can be represented as a
graph with one vertex per person and an edge between parent and child. In this rep-
resentation a loop is an undirected cycle. A loop breaker is a vertex whose removal
from the graph breaks one or more cycles, with the additional constraint that the person
at the bottom of the cycle cannot be used as a loop breaker where the person at the
bottom of a cycle is the person in the cycle who does not have any descendants in
the cycle. For example, when two �rst cousins mate and have a child, that child closes
a loop, but only ancestors of the child in the loop can be used to break the loop.
The number of distinct vertices (persons) whose removal breaks all loops is called the
number of loop breakers. The loops that contribute to the inbreeding coe�cient of a
person p are called the inbreeding loops for p.
There are two classes of algorithms for linkage analysis most often used in prac-

tice, Elston–Stewart [4], and Lander–Green [10]. Elston–Stewart has the advantage
that its time and space is polynomial in the number of persons in the pedigree, but
the disadvantage that time and space is exponential in the number of markers and the
number of loop breakers needed to break all the cycles. The Lander–Green algorithm
is polynomial in the number of markers, but exponential in the number of persons.
The most popular current software implementation of Elston–Stewart for looped pedi-
grees is called LINKAGE [12], and its improved variant called FASTLINK, particu-
larly for looped pedigrees [17]. The most popular current implementation of Lander–
Green for looped pedigrees and homozygosity mapping is MAPMAKER=HOMOZ
[8], which has been included in the more comprehensive software package GENE-
HUNTER.
The time=space performance of the two prevalent linkage analysis algorithms, sug-

gests that the following optimality criteria are useful for the replacement pedigrees we
construct:
(C1) Minimum number of individuals in the pedigree.
(C2) Minimum number of inbreeding loops needed for the pedigree.
(C3) Minimum number of loop breakers needed for the pedigree.
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Criterion (C1) is geared towards making the pedigrees small enough for the Lander–
Green algorithm. Criteria (C2) and (C3) are geared to the Elston–Stewart algorithm.
Criterion (C3) can di�er from (C2) only when a person with multiple marriages is
used to break loops which results in the number of loop breakers being less than the
number of inbreeding loops [2]. Our �rst construction optimizes (C1) for all coe�cients
and optimizes (C3) if the coe�cient is ¡ 1

2 . Our second construction produces human
pedigrees for all valid coe�cients. It optimizes (C2) and provides an approximation
guarantee on (C1), both if the coe�cient is 6 1

8 . We also present a third construction
and some results on optimizing (C3). Inbreeding coe�cients below 1

8 are of more
practical importance because that is more common in real populations. The o�spring
of a �rst cousin marriage have inbreeding coe�cient 18 . One may see higher inbreeding
coe�cients when there are nested consanguineous marriages, but above 1

4 is rare.
The rest of this paper is organized as follows. Section 2 presents de�nitions and ba-

sic theorems. Section 3 gives our �rst construction. Section 4 includes the second con-
struction and examples with real pedigrees having multiple a�ected sibships. Section 5
contains our third construction. Section 6 contains a short summary, some open prob-
lems, and a discussion of another potential application.

2. Preliminary de�nitions and theorems

We �rst introduce the notion of a pedigree graph. A pedigree graph is a represen-
tation of a pedigree by a graph that has a vertex for each person and an edge for
each child–parent pair among the persons in the pedigree. In this paper, we sometimes
use undirected edges and sometimes use directed edges; when we use directed edges
they are directed upward from the child vertex to the parent vertex. For example, the
pedigree taken from [1] and shown in Fig. 1 can be represented as in Fig. 2. The graph
traces the passage of genetic information over generations and provides a convenient
mathematical representation. The individuals who do not have any of their ancestors
in a pedigree are called founders of the pedigree.
A path from vertex u to vertex v in pedigree graph G is an alternating sequence of

distinct vertices and edges of G, beginning with u and ending with v, such that each pair
of consecutive vertices are joined by an edge. A path p connecting u to v is denoted
p : u; u1; u2; : : : ; un; v where u1; : : : ; un is the sequence of other vertices on the path. We
can also denote the same path as a sequence of edges p : (u; u1); (u1; u2); : : : ; (un; v) or
as p : u → u1 → u2 → · · · → un → v. For example, 33 → 10 → 9 → 8 is a directed
path in the graph of Fig. 2. A directed path p from u to v in a pedigree graph traces
one way u receives genetic material from v. The vertices on p are also a (partial)
list of ancestors of u. The absence of a directed path from u to v indicates that v is
not an ancestor of u. Hence, there is no way that u can receive genetic material from
v, e.g, in Fig. 2, person 28 does not receive genetic material directly from person 6,
although they have a common ancestor. The length of a path is the number of edges
in the path.
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Fig. 1. Pedigree drawing using genetics conventions for the graph in the next �gure; squares are males and
circles are females.

A pedigree graph G connects a set of individuals S if there is a vertex in V (G)
for each individual in S and in the undirected version of the graph is connected.
Geneticists usually use the term pedigree to mean a set of parent–child relationships
that correspond to a pedigree graph whose undirected version is connected.
A cycle is an undirected path that begins and ends at the same vertex. If a graph

has no cycles, it is called acyclic. Any directed pedigree graph is acyclic since the
edges are directed from parent to child, and it is biologically impossible to have a
cycle in this setting. A loop in a pedigree is a cycle in the undirected representation.
For example, a �rst-cousin marriage with o�spring leads to a loop in the undirected
marriage graph, but not to a cycle in the directed pedigree graph.
The inbreeding coe�cient of an individual X is the prior probability that the two al-

leles of X are homozygous by descent; here “prior” means depending only on the pedi-
gree structure and not on any DNA or phenotype information. The kinship coe�cient
between individuals X and Y is the prior probability that a randomly selected allele of
X and a randomly selected allele of Y at the same locus are the same allele in a com-
mon ancestor of X and Y passed by one path to X and by another path to Y . Since X
inherits a randomly selected allele from its mother and a randomly selected allele from
its father, the inbreeding coe�cient of X is same as the kinship coe�cient between the
parents of X . Mathematically, if father(X ) [mother(X )] is the father [mother] of X and
generation(X ) is the length of the longest path from any founder to X , then inbreeding
and kinship coe�cients can be computed by the following recursive formula [23]:

inbreeding(X )

=
{
kinship(father(X ); mother(X )) if both father and mother of X are known;
0 otherwise:
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Fig. 2. Directed graph for the pedigree in the previous �gure.

and

kinship(X; Y )

=




0 if X or Y is not known;
(1 + inbreeding(X ))=2 if X = Y;
(kinship(X; father(Y )) + kinship(X;mother(Y )))=2 otherwise; where
generation(X )6generation(Y ); without loss of generality:

When computing inbreeding and kinship coe�cients, we usually restrict the paths of
inheritance being considered to the ones that are present in some pedigree P. When
inheritance paths are ignored, the coe�cients get underestimated since we ignore some
paths through which the copied allele could descend. This is why extracting a (small)
pedigree from a (large) genealogy typically introduces some heuristic approximation
into linkage analysis of recessive diseases.
We use I(X; P) to denote the inbreeding coe�cient of X in pedigree P and

K(Y; Z; P) to denote the kinship coe�cient of Y and Z in P. X can represent a
person or a sibship since any set of full siblings have the same inbreeding coe�cient.
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Lemma 2.1 (Thompson [21]). Every valid inbreeding and kinship coe�cient can be
written as

∑n
i=1 1=2

Li for some n; integer Li ¿ 0; and Li 6= Lj for i 6= j.

De�nition 2.1. If W =
∑n

i=1 1=2
Li for some n, integer Li ¿ 0, and Li 6= Lj for i 6= j,

we call 1=2L1 ; : : : ; 1=2Ln the factors of W .

De�nition 2.2. For a valid inbreeding coe�cient W , we de�ne BITS(W ) = {l1; : : : ; lJ}
where
1. ∀i; li ¿ 1,
2. J =min{n: W =

∑n
i=1 1=2

Li−1; Li ¿ 1}, and
3. W =

∑J
i=1 1=2

li−1.
For example, for W = 21=25 = 1=21 + 1=23 + 1=25, we get BITS(21=25) = {2; 4; 6}.

Because of the minimality of J , for all i 6= j; li 6= lj.

De�nition 2.3. Let BITS(W )={l1; : : : ; lJ}. We say that bit 16i6J is the most [least]
signi�cant bit if ∀j 6= i; lj ¿ li[lj ¡ li] and the value of the most [least] signi�cant bit
is li. For example, in BITS

(
21
25
)
= {2; 4; 6}, the most signi�cant bit is 1, the value of

the most signi�cant bit is 2, the least signi�cant bit is 3, and the value of the least
signi�cant bit is 6.

De�nition 2.4. A pair of edge-disjoint directed paths P1; P2 of the form

P1 : X; father(X ); : : : ; Y and P2 : X; mother(X ); : : : ; Y

in a pedigree P are said to form an inbreeding loop for X in (the undirected version)
of P. We will use ILS(X; P) to denote all inbreeding loops of X in pedigree P.

An undirected cycle in a pedigree graph need not be an inbreeding loop, for example
two brothers who marry two sisters and have children create a cycle that is not an
inbreeding loop. On the other hand, an inbreeding loop can be the union of several
edge-disjoint but not vertex-disjoint cycles, but it always contains an undirected cycle.

Lemma 2.2. Let Li be the length of loop Ci.

ILS(X; P) = {C1; : : : ; Cn} ⇒ I(X; P) =
n∑
i=1

1
2Li−1

:

Proof. De�ne HBD(X; A) to mean that X is homozygous by descent due to an allele
inherited twice from A, but not inherited twice (as a copy) from a descendant of A.
Then

I(X; P) =
∑
A∈V (P)

Prob(HBD(X; A)):

Each contribution to the right-hand side is due to a pair of edge-disjoint paths from X
to A. If the total length of the paths is Li, then the contribution to the right-hand side
is 1=2Li−1.



R. Agarwala et al. / Discrete Applied Mathematics 104 (2000) 3–44 11

De�nition 2.5. A loop breaker b is a vertex whose removal breaks an undirected cycle
in which b has a child. The number of loop breakers in a pedigree is the minimum
number of vertices needed to break all cycles (whether they are inbreeding loops or
not).

The problem of �nding the minimum number of loop breakers in a graph arises in
the study of Bayesian networks and has been proven NP-complete [19]. However, in
some cases we can identify a minimum-size loop breaker set.

Lemma 2.3. If X has inbreeding coe�cient W; then the minimum number of inbreed-
ing loops in any pedigree P such that I(X; P) =W is |BITS(W )|.

Proof. From Lemma 2.1 we know that every valid inbreeding coe�cient W can be
written as

∑n
i=1 1=2

Li for some n, integer Li ¿ 0, and Li 6= Lj for i 6= j. From the
de�nition of BITS, it follows that the minimum n that can achieve W =

∑n
i=1 1=2

Li

is |BITS(W )| and from Lemma 2.2 it follows that an inbreeding loop of length l
contributes 1=2l−1 towards the inbreeding coe�cient. Therefore, the minimum number
of inbreeding loops required in the pedigree P such that it has an individual X with
I(X; P) =W is |BITS(W )|.

Lemma 2.4. Let X be a sibship with inbreeding coe�cient W . If BITS(W ) 6= ∅; then
the minimum number of individuals in any pedigree P such that I(X; P) =W is the
value of the least signi�cant bit in BITS(W ); otherwise; the minimum number is 1.

Proof. If BITS(W ) = ∅, then W = 0 and a pedigree P with a single vertex X has the
property that I(X; P) = W . Otherwise, let l be the value of the least signi�cant bit
in BITS(W ). It follows from the de�nition of BITS that 1=2l−1 is a factor of W . From
Lemma 2.2, it follows that the length of an inbreeding loop that contributes at most
1=2l−1 must be at least l. Hence, the number of individuals in P must be at least l.

De�nition 2.6. A pedigree P for a given inbreeding coe�cient W is called an inbreed-
ing pedigree if it contains a vertex X such that I(X; P) =W .

In some non-human populations, such as mice, there are strains that are so inbred
that it is possible for the two parents of an individual to be e�ectively identical at the
non-X chromosomes. We use identical parents in our �rst construction, but only for
coe�cients ¿1=2, and this leads to the pedigree graph being a multi-graph. For the
sake of clarity, we shall denote two copies of directed edge (X; Y ) between child X
and identical parents Y as (X; Y )1 and (X; Y )2. A second di�erence between human and
non-human populations is that matings between ancestor and descendant are generally
not allowed among humans. To reect human populations, we say that a pedigree is a
human pedigree if for every pair of parents X and Y of the same person, X 6= Y , and
X is not an ancestor of Y .
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3. Non-human pedigree construction

In this section we present algorithm GENERAL that constructs an inbreeding pedigree
for every valid inbreeding coe�cient such that the pedigree minimizes the number
of individuals and minimizes the number of inbreeding loops for every inbreeding
coe�cient, and minimizes the number of loop breakers for every inbreeding coe�cient
61=2. However, the output pedigree is not necessarily a human pedigree.

Algorithm. GENERAL
Input: A valid inbreeding coe�cient W
Output: An inbreeding pedigree P such that it has an individual X with I(X; P)=W ,

satis�es (C1) for any W and satis�es (C3) for any 06W ¡ 1=2.

begin
L← BITS(W )
if L= ∅ return V (P)← {X }; E(P)← ∅
V (P)← {X = x1; x2; : : : ; xn} where n=max{l | l ∈ L}
E(P)← ∅; k ← 2
while k ∈ L do begin
E(P)← E(P) ∪ {(xk−1; xk)1; (xk−1; xk)2}
L← L− {k}
k ← k + 1

end
if L 6= ∅ then begin
E(P)← E(P) ∪ {(xk−1; xk); (xk−1; xk+1)}
for i = k + 1 to n− 1 do E(P)← E(P) ∪ {(xi; xi+1)}
for each i ∈ L do E(P)← E(P) ∪ {(xi; xk)}

end
return P

end

Fig. 3 shows an example pedigree graph constructed with GENERAL. Identical parents
are used only if W¿1=2. The following theorems assert the correctness of GENERAL
and its optimality properties.

Theorem 3.1. For every valid inbreeding coe�cient W; GENERAL(W ) outputs a pedi-
gree P that has a sibship X such that I(X; P) =W .

Proof. If W=0, then BITS(W )=∅ and GENERAL(0) produces a pedigree P with V (P)=
{X }; E(P)=∅. Hence, I(X; P)=0=W . Otherwise, let BITS(W )={l1; : : : ; ln | li ¡ li+1;
16i¡n}. The output of GENERAL is a multigraph with at most two copies of each
edge.
Following the strategy of the proofs of Lemmas 2.1 and 2.2, we seek to count how

many inbreeding loops of each length have X at the bottom. Let K be the value of k
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Fig. 3. Example of GENERAL where BITS(W ) = {2; 3; 4; 6; 8}.

when the while loop �nishes. We �rst consider the simpler case where K = 2 and the
loop never executes. Then the only vertex with at least two incoming edges is x2, so it
must be at the top of every inbreeding loop. The only way to get pairs of edge-disjoint
paths from x1 to x2 is to use

P1 = (X; x2);

P2 = (X; x3); (X3; x4); : : : ; (xi; x2):

There is one such pair of paths yielding an inbreeding loop of length i if and only if
i ∈ BITS(W ): The correctness follows from Lemma 2.2.
If K ¿ 2, de�ne sets of loops C1; C2; : : : ; Cn as follows. C1 consists of a single

inbreeding loop resulting from paths P1 = (X; x2)1; P2 = (X; x2)2. For 16p¡K − 1,
Cp+1 contains exactly two loops of length 2(p+1) for each loop of length 2p in Cp.
For each loop in Cp composed of the two paths

P1 = (X; x2)a; : : : ; (xp; xp+1)c;

P2 = (X; x2)b; : : : ; (xp; xp+1)d;
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where a 6= b; c 6= d and a; b; c; d = 1 or 2, construct 2 pairs of longer paths (Pa1 ; Pa2)
and (Pb1 ; P

b
2):

Pa1 = (X; x2)
a; : : : ; (xp; xp+1)c; (xp+1; xp+2)1;

Pa2 = (X; x2)
b; : : : ; (xp; xp+1)d; (xp+1; xp+2)2

and

Pb1 = (X; x2)
a; : : : ; (xp; xp+1)c; (xp+1; xp+2)2;

Pb2 = (X; x2)
b; : : : ; (xp; xp+1)d; (xp+1; xp+2)1:

These two pairs of longer paths make up two loops in Cp+1.
For i¿K , let p= li. Construct Ci as follows: For each pair of paths

P1 = (X; x2)a; : : : ; (xK−2; xK−1)c;

P2 = (X; x2)b; : : : ; (xK−2; xK−1)d;

where a 6= b; c 6= d and a; b; c; d = 1 or 2, resulting in an inbreeding loop in CK−1,
construct 2 pairs of paths (Pa1 ; P

a
2) and (P

b
1 ; P

b
2) resulting in 2 inbreeding loops in Ci

as follows:

Pa1 = (X; x2)
a; : : : ; (xK−2; xK−1)c; (xK−1; xK);

Pa2 = (X; x2)
b; : : : ; (xK−2; xK−1)d; (xK−1; xK+1); : : : ; (xp−1; xp); (xp; xK)

and

Pb1 = (X; x2)
a; : : : ; (xK−2; xK−1)c; (xK−1; xK+1); : : : ; (xp−1; xp); (xp; xK);

Pb2 = (X; x2)
b; : : : ; (xK−2; xK−1)d; (xK−1; xK):

The loops in each set Ci are of the same length, and the loops in two di�erent sets
are of di�erent lengths. One can prove by induction that for all i¡K , Ci consists of
2i−1 loops of length 2i and for all i¿K , Ci consists of 2K loops of length li+K . Using
Lemma 2.2 and de�nition of BITS, it su�ces to show that ILS(X; P) =

⋃n
i=1 Ci. We

prove set containment in each direction.
Two loops in Ci are always distinct either because they were formed from distinct

smaller loops or because they were formed from the same loop by adding the last pair
of edges in two di�erent ways. It follows that

⋃n
i=1 Ci⊆ILS(X; P).

Our other aim is to prove ILS(X; P)⊆⋃n
i=1 Ci. Partition ILS(X; P) into two

parts C1 and C2 such that if loop C ∈ ILS(X; P) and length of C is at most
2(K − 1) then C ∈ C1, else C ∈ C2. Then we seek to prove that C1⊆

⋃
i¡K Ci and

C2⊆
⋃
i¿K Ci.

C1⊆
⋃
i¡K Ci: Each iteration of the while loop introduces two copies of the same

edge. One can prove by induction that the above construction of C1; : : : ; CK−1 accounts
for all possible ways in which the two edges into xi are the last edges on the two
paths constituting the cycles. Moreover, any inbreeding loop of length 2i, with X at
the bottom, must be composed of two equal length paths from X=x1 to xi+1. Therefore,
C1⊆ ∈

⋃
i¡K Ci.
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C2⊆
⋃
i¿K Ci: Every iteration of the last for loop introduces one edge and creates

loops of length li+K . The above construction accounts for all possible ways in which
we can get a loop in which the new edge is the last edge on one of the two paths. Any
loop of length ¿2K must include two edges into XK because that is the only vertex
far enough away from X with two incoming edges. Therefore, C2⊆ ∈

⋃
i¿K Ci.

Theorem 3.2. For every valid inbreeding coe�cient W; GENERAL(W ) outputs pedigree
P that satis�es (C1).

Proof. If BITS(W )=∅, then V (P)={X } else |V (P)| equals the value of least signi�cant
bit of BITS(W ). The result follows from Lemma 2.4.

Theorem 3.3. For every valid inbreeding coe�cient 06W ¡ 1=2; GENERAL(W ) out-
puts a pedigree P that satis�es (C3).

Proof. If W = 0, there are no loops in P. For 0¡W ¡ 1=2, the value of the most
signi�cant bit in BITS(W ) is at least 3. Hence, the while loop of GENERAL(W ) is never
executed and all the loops can be broken by x2. As the minimum number of loop
breakers needed to break a non-empty set of loops is 1, we get the result.

4. Human pedigree construction

In this section we present a construction for human pedigrees with one sibship to
match any inbreeding coe�cient W . The description is divided into 4 parts. The �rst
part describes an algorithm MINLOOPS for 06W ¡ 1=8, and shows that it minimizes
criterion (C2) and provides an approximation guarantee on the number of people (C1).
The second part describes some practical examples using MINLOOPS. The third part
extends the algorithm to 1=86W ¡ 1=2. The fourth part extends the construction to
1
26W ¡ 1. This shows that any valid inbreeding coe�cient can be matched with a
human pedigree. We do not give any optimality guarantees for W ¿ 1=8, but this range
is less important for human populations.

4.1. Algorithm for 06inbreeding(X )¡ 1=8

Algorithm MINLOOPS constructs an inbreeding pedigree for every valid inbreeding
coe�cient of at most 1=8 such that the pedigree is a human pedigree and has minimum
number of inbreeding loops.

Algorithm. MINLOOPS
Input: A valid inbreeding coe�cient W ¡ 1=8.
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Output: A human inbreeding pedigree P such that it satis�es (C2) and has an
individual X with I(X; P) =W .

begin
L← BITS(W ) = {l1; : : : ; ln}
Let me = max{l | l ∈ {0} ∪ {li | li ∈ L; li is even}},
mo = max{l | l ∈ {0} ∪ {li | li ∈ L; li is odd}}, and
p=max{me; mo − 1}

if p 6= 0
then V (P) = {X = x1; x2; x3}; E(P) = {(x1; x2); (x1; x3)}

else return V (P) = {X }; E(P) = ∅
for i = 2 to p=2 do V (P)← V (P) ∪ {x2i}
=∗ Create common backbone ∗=

for i = 1 to p=2− 1do E(P)← E(P) ∪ {(x2i ; x2(i+1))}
for i = 3 to me=2 do V (P)← V (P) ∪ {xe2i}
if me 6= 0; E(P) = E(P) ∪ {(x3; xe6)}
=∗ Create even backbone ∗=

for i = 3 to me=2− 1 do E(P)← E(P) ∪ {(xe2i ; xe2(i+1))}
for i = 2 to (mo − 1)=2 do V (P)← V (P) ∪ {xo2i+1}
if mo 6= 0; E(P) = E(P) ∪ {(x3; xo5)}
=∗ Create odd backbone ∗=

for i = 2 to (mo − 3)=2 do E(P)← E(P) ∪ {(xo2i+1; xo2i+3)}
for i = 1 to n do begin =∗ Add loops ∗=
if li is odd
then E(P) = E(P) ∪ {(xoli ; xli−1)}
else E(P) = E(P) ∪ {(xeli ; xli)}

end
end
return P

end

For a non-zero W , we can partition V (P) as follows:
• Vr(P) = {x1; x3}
• Vb(P) = {x2i | 16i6p=2}
• Ve(P) = {xe2i | 36i6me=2}
• Vo(P) = {xe2i+1 | 26i6(mo − 1)=2}

The algorithm can be viewed as producing 3 “backbones” with no vertices in com-
mon: a base backbone consisting of vertices Vb(P), an odd backbone consisting of
vertices Vo(P), and an even backbone consisting of vertices Ve(P). The odd and even
backbones are connected by edges (x3; xo5) and (x3; x

e
6), which in turn is connected to

the base backbone by edges (x1; x3) and (x1; x2). For every odd bit, we add an edge
from a vertex in odd backbone to a vertex in base backbone. Similarly, for every even
bit, we add an edge from a vertex in even backbone to a vertex in base backbone.
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Fig. 4. Example of MINLOOPS where BITS(W ) = {5; 6; 7; 8}.

Fig. 4 shows a pedigree produced by MINLOOPS. The following lemmas prove that the
output is correct and satis�es some optimality guarantees.

Lemma 4.1. For every valid inbreeding coe�cient 06W ¡ 1=8; MINLOOPS(W ) out-
puts a human pedigree.

Proof. If W = 0; P consists of a single vertex and no edges and the result holds. If
W ¿ 0, to prove that the output of MINLOOPS(W ) is a human pedigree P, we need
to show that the outdegree of every vertex is at most 2 and if (X; Y ) and (X; Z) are
two edges in P, then Y 6= Z and Y is not an ancestor of Z . Next, we show that the
conditions hold for each set of vertices Vr(P); Vb(P); Ve(P); and Vo(P).
For vertices in Vr(P), namely x1 and x3, we have that the edges going out of them

are always a subset of edges {(x1; x2); (x1; x3); (x3; xo5); (x3; xe6)}. Since x2 6= x3; xo5 6=
xe6; x2[x

o
5] is not an ancestor of x3[x

e
6], and vice versa, the conditions hold for vertices

in Vr(P).
Every vertex xi in Vb(P) has at most one outgoing edge (xi; xi+2). Hence, the con-

ditions hold for vertices in Vb(P).
Every vertex xei in Ve(P) has at most one outgoing edge (x

e
i ; x

e
i+2) to a vertex in

Ve(P), no outgoing edges from xei to a vertex in Vo(P) or Vr(P), and at most one
outgoing edge from xei to a vertex in Vb(P), namely (x

e
i ; xi). Since xi 6= xei+2 and

xi[xei+2] is not an ancestor of x
e
i+2[xi], the conditions hold for vertices in Ve(P).

Every vertex xoi in Vo(P) has at most one outgoing edge (x
o
i ; x

o
i+2) to a vertex in

Vo(P), no outgoing edges from xoi to a vertex in Ve(P) or Vr(P), and at most one
outgoing edge from xoi to a vertex in Vb(P), namely (x

o
i ; xi−1). Since xi−1 6= xoi+2 and

xi−1[xoi+2] is not an ancestor of x
o
i+2[xi−1], the conditions hold for vertices in Vo(P).
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Theorem 4.1. Let 06W ¡ 1=8 be a valid inbreeding coe�cient and let P be the
pedigree output by MINLOOPS(W ). Then;

BITS(W ) = {l | l= length(C); C ∈ ILS(X; P)}:

Proof. We prove the set containment in each direction.
[l ∈ BITS(W ) ⇒ ∃C ∈ ILS(X; P) such that length(C) = l]. Let l ∈ BITS(W ). If

l is odd, then ∃C ∈ ILS(X; P) of length l comprised of the following edge-disjoint
pair of paths:

P1: x1; x2; x4; : : : ; xl−1

and

P2: x1; x3; xo5 ; : : : ; x
o
l ; xl−1:

If l is even, then ∃C ∈ ILS(X; P) of length l comprised of the following pair of
edge-disjoint paths:

P1: x1; x2; x4; : : : ; xl

and

P2: x1; x3; xe6; : : : ; x
e
l ; xl:

[C ∈ ILS(X; P); length(C) = l ⇒ l ∈ BITS(W )]. By de�nition of an inbreeding
loop, every inbreeding loop in ILS(X; P) must consist of an edge-disjoint pair of
paths such that one path has edge (x1; x2) and the other path has edge (x1; x3). The
path containing edge (x1; x2) can only be comprised of x1 followed by a portion of the
base backbone because each vertex in Vb(P) has at most one outgoing edge, and that
edge goes to another vertex in Vb(P). The path containing (x1; x3) can be comprised
of x1; x3 followed by either a portion of the odd backbone or a portion of the even
backbone because there is no edge between the odd and even backbones. Then the
path that starts (x1; x3) must be followed by a vertex in base backbone to complete the
loop. Since the only edges from odd=even backbone to the base backbone correspond
to the bits in BITS(W ), we get the result.

Lemma 4.2. For every valid inbreeding coe�cient 06W ¡ 1=8; MINLOOPS(W ) out-
puts a human pedigree P that has a sibship X such that I(X; P) =W and satis�es
(C2).

Proof. Follows from Theorem 4.1 and Lemma 2.3.

Theorem 4.2. Let 06W ¡ 1=8 be the given valid inbreeding coe�cient and P be the
pedigree output by MINLOOPS(W ) with |V (P)|=n. If the number of individuals in any
pedigree P′ with a sibship with inbreeding coe�cient W is l; then n63l=2.
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Fig. 5. Graph representation of “Israel-Kindred 3”.

Proof. Let l be the value of the least signi�cant bit in BITS(W ). Then, by Lemma 2.4,
any pedigree P′ with a sibship with inbreeding coe�cient W has at least l individuals.
From construction, the number of vertices in pedigree P are 2 + p=2 + (me=2 − 2) +
(mo − 3)=2. Since me; mo; p6l, we get |V (P)|¡ 3l=2.

4.2. Application to pedigree replacement

In this subsection we illustrate by example how the previous construction can be used
to do pedigree replacement in real disease pedigrees. The �rst example is taken from
a recent paper that localized the gene for thiamine-responsive megaloblastic anemia
syndrome to a region on chromosome 1 [15]. The paper indicates that the authors
took the shortcut of ignoring some inbreeding loops to make their linkage analysis
computations feasible. Fig. 5 shows our graph representation of one of their pedigrees,
which they called “Israel-kindred 3” (kindred is another synonym of pedigree).
Israel-kindred 3 contains two a�ected sibships labeled as the single vertices 1714

and 3708. The edges labeled A and B are the only edges connecting the two pieces of
the pedigree, and they do not participate in any inbreeding loops, so we treat this as
two separate pedigrees with one sibship each. The left pedigree with sibship 1714 has
inbreeding coe�cient 35=512 = 1=16 + 1=256 + 1=512, and it can be replaced by the
pedigree shown in Fig. 6. In the replacement pedigree (Fig. 6), X corresponds to the
a�ected person 1714, x2 and x3 correspond to the parents of 1714, namely 1611 and
1612, and the rest of the pedigree is �ctitious. The right pedigree with sibship 3708
has inbreeding coe�cient 129=2048 = 1=16 + 1=2048, and it can be replaced by the
pedigree in Fig. 7. As before, in the replacement pedigree (Fig. 7), X corresponds to
the a�ected person 3708, x2 and x3 correspond to the parents of 3708, namely 3603
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Fig. 6. Graph representation of replacement pedigree for sibship 1714 of “Israel-Kindred 3”.

and 3604, and the rest of the pedigree is �ctitious. The two replacement pedigrees
improve the total number of vertices from 29 to 25.
Our second example is taken from the paper by Chang et al. [3] that found the gene

for glycogen storage disease type VI (GSD). In this case, the initial pedigree has 6
sibships with at least 1 a�ected person. The initial pedigree is shown in Fig. 9. The
inbreeding coe�cients for the a�ected sibships are 29=214(Xa); 1=212(Xb); 15=214(Xc);
73=215(Xd); 15=213(Xe); 11=213(Xf), which are all ¡ 1=8.
If there is more than one sibship and each sibship has inbreeding coe�cient at most

1=8, we can adapt MINLOOPS to create one pedigree for all the sibships by creating a
common base backbone and separate odd and even backbones for each sibship. When
multiple sibships are a�ected, one still expects that the disease allele entered the pedi-
gree once and passed down two paths from one founder to each a�ected person. Our
construction preserves this possibility. In the case of Israel Kindred 3 our construction
gives the related a�ected persons a common ancestor. The coalesced replacement pedi-
gree for Israel Kindred 3, which has only 17 persons, is shown in Fig. 8. For the GSD
pedigree, we can produce the replacement pedigree shown in Fig. 10 that preserves the
6 inbreeding coe�cients. The input pedigree has 125 persons, while the replacement
pedigree has only 70.
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Fig. 7. Graph representation of replacement pedigree for sibship 3708 of “Israel-Kindred 3”.

In linkage analysis software it is conventional to include either both parents or zero
parents for each person, rather than only those parents needed to show the possible
paths of disease inheritance. This yields an inated count of the number of persons
needed in both original and replacement pedigrees. The count with spouses included
sometimes gives a better performance ratio for MINLOOPS, and sometimes gives a worse
performance ratio.

4.3. Algorithm for 1=86inbreeding(X )¡ 1=2

In this subsection, we give an algorithm for constructing human pedigrees for an
individual with inbreeding coe�cient of at most 1=2. The algorithm attempts to min-
imize the number of individuals but we do not claim that the pedigree produced has
any of properties (C1), (C2) or (C3). Each component of the construction is described
in symbols and in a �gure, and the �gures show that each mating we use is allowed
in human pedigrees.
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Fig. 8. Coalescing the two replacement pedigrees for “Israel-Kindred 3” reduces the number of persons
further to 17.

The construction has 8 nested cases depending on how large the coe�cient is. We
divide the range of 1=86inbreeding(X )¡ 1=2 as follows:
1. 1=86inbreeding(X )¡ 3=16,
2. 3=166inbreeding(X )¡ 7=32,
3. 7=326inbreeding(X )¡ 15=64,
4. 15=646inbreeding(X )¡ 1=4,
5. 1=46inbreeding(X )¡ 5=16,
6. 5=166inbreeding(X )¡ 3=8,
7. 3=86inbreeding(X )¡ 7=16,
8. 7=166inbreeding(X )¡ 1=2.
For each range i, we give an algorithm GADGET1 that builds on algorithms already
developed for smaller inbreeding coe�cients. Some ranges have a special construction
for when the inbreeding coe�cient is exactly equal to the lower endpoint of the interval.
The algorithm is nested in that it sometimes uses the algorithms for smaller ranges,
and those usages are denoted as if they were function calls in a program. Since each
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Fig. 9. Graph representation of GSD pedigree; number of persons is 125.

Fig. 10. Graph representation of GSD replacement pedigree;number of persons is 70.
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Fig. 11. GADGET1.

call returns a sibship X , for sake of clarity, we will denote a vertex x ∈ V (Pl)[V (Pr)]
as xl[xr] where Pl[Pr] distinguish the pedigrees returned by the calls. The descriptions
of GADGET1; : : : ;GADGET8 and the proofs that they produce a pedigree P with a sibship
X that has any given coe�cient W in the corresponding ranges is given next.
GADGET1(W ): If W ¡ 1=8; return MINLOOPS(W ). If W = 1=8; return V (P) =

{X; al; ar; b}; E(P) = {(X; al); (X; ar); (al; b); (ar; b)}. Otherwise, let Pl; Pr = MINLOOPS
(2W − 1=4). V (P)={X; al; ar; b; bl; br; cl; cr}∪(V (Pl)\{X l; xl2}) ∪ (V (Pr) \ {X r; xr2});
E(P)={(X; al); (X; ar); (al; bl); (al; b); (ar; b); (ar; br); (b; cl); (b; cr)}∪E(Pl)∪E(Pr). Col-
lapse xl3; x

l
4[x

r
3; x

r
4] with bl; cl[br; cr], respectively. GADGET1 is illustrated in Fig. 11.

Since MINLOOPS is called for 1=8¡inbreeding(X )¡ 3=16, it is called for values in
range 0¡ 2W − 1=4¡ 1=8. In the pedigree produced, there are no inbreeding loops
for B and no loop connecting bl[br] and br; cr[bl; cl]. Hence, we get

I(X; P) = 1=8 +I(B; P)=8 +K(B; bl; P)=4 +K(B; br; P)=4 +K(bl; br; P)=4

= 1=8 +K(bl; cl; P)=8 +K(br; cr ; P)=8

= 1=8 +K(bl; cl; Pl)=8 +K(br; cr ; Pr)=8

= 1=8 + 2(2W − 1=4)=8 + 2(2W − 1=4)=8

=W:

GADGET2(W ): If W63=16, use GADGET2A(W ), otherwise use GADGET2B(W ). Fig. 12
shows GADGET2.
GADGET2A(W ): If W ¡ 3=16; return GADGET1(W ). Otherwise, let

V (P) = {X; al; ar; bl; br; c};
E(P) = {(X; al); (X; ar); (al; bl); (al; br); (ar; bl); (ar; c); (c; br)}:
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Fig. 12. GADGET2B; for GADGET2A the subpedigrees Pl and Pr are the single vertices bl and br .

GADGET2B(W ): If 3=16¡W627=128, then let Pl = GADGET2A(8W − 3=2) and Pr =
NULL, else let

Pl =GADGET2A(3=16) and Pr =MinLoops(16W − 27=8):
V (P) = {X; al; ar; bl; br; c} ∪ V (Pl) ∪ V (Pr);
E(P) = {(X; al); (X; ar); (al; bl); (al; br); (ar; bl); (ar; c); (c; br)} ∪ E(Pl) ∪ E(Pr):

Collapse X l with bl and if Pr is not NULL, then collapse X r with br . For 3=16¡W6
27=128, we have that 0¡ 8W − 3=263=16 and for 27=128¡W ¡ 7=32, we have that
0¡ 16W − 27=8¡ 1=8.
For 3=16¡W627=128:

I(X; P) = 3=16 +I(bl; P)=8 +I(br; P)=16 + 3K(bl; br; P)=8

= 3=16 +I(bl; Pl)=8

= 3=16 + (8W − 3=2)=8
=W:

For 27=128¡W ¡ 7=32:

I(X; P) = 3=16 +I(bl; P)=8 +I(br; P)=16 + 3K(bl; br; P)=8

= 3=16 +I(bl; Pl)=8 +I(br; Pr)=16

= 3=16 + (3=16)=8 + (16W − 27=8)=16
=W:

GADGET3(W ): If W67=32, use GADGET3A(W ), otherwise use GADGET3B(W ). Fig. 13
shows GADGET3.
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Fig. 13. GADGET3B; for GADGET3A delete Pl; Pr ; dl; dr .

GADGET3A(W ): If W ¡ 7=32; return GADGET2(W ). Otherwise,

V (P) = {X; a; al; ar; bl; br; cl; cr ; d}:
E(P) = {(X; a); (a; al); (X; ar); (al; bl); (al; br); (ar; bl); (ar; br); (bl; cl); (bl; cr);

(br; cl); (br; cr); (cl; d); (cr; d)}:
GADGET3B(W ): If 7=32¡W6119=512, then let Pl = GADGET3A(16W − 7=2) and

Pr = NULL, else let Pl =GADGET3A(7=32) and Pr =MinLoops(32W − 119=16).
V (P) = {X; a; al; ar; bl; br; cl; cr ; d; dl; dr} ∪ (V (Pl) \ {X l}) ∪ V (Pr);
E(P) = {(X; A); (A; al); (X; ar); (al; bl); (al; br); (ar; bl); (ar; br); (bl; cl); (bl; cr);

(br; cl); (br; cr); (cl; dl); (cl; D); (cr; dr); (cr; d)} ∪ E(Pl) ∪ E(Pr):
Collapse xl3; x

l
2 with dl; dr , respectively, and if Pr is not NULL, then collapse X

r with
D. For 7=32¡W6119=512, we have that 0¡ 16W − 7=267=32 and for 119=512¡
W ¡ 15=64, we have that 0¡ 32W − 119=16¡ 1=16.
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For 7=32¡W6119=512:

I(X; P) = (7 +I(d; P) + 3K(dl; d; P) + 2K(dl; dr; P) + 3K(dr; d; P))=32

= 7=32 +K(dl; dr; Pl)=16

= 7=32 + (16W − 7=2)=16
=W:

For 119=512¡W ¡ 15=64:

I(X; P) = (7 +I(d; P) + 3K(dl; d; P) + 2K(dl; dr; P) + 3K(dr; D; P))=32

= 7=32 +I(d; Pr)=32 +K(dl; dr; Pl)=16

= 7=32 + (32W − 119=16)=32 + (7=32)=16
=W:

GADGET4(W ): If W ¡ 15=64, return GADGET3(W ). Otherwise, Let Pl; Pr =
MINLOOPS(8W − 15=8).

V (P) = {X; a; a′; b′; c′; al; ar ; bl; br; cl; cr ; d; dl; dr; el; er} ∪ (V (Pl) \ {X l; xl2})
∪(V (Pr) \ {X r; xr2});

E(P) = {(X; a); (a; al); (X; ar); (al; bl); (al; br); (ar; bl); (ar; br); (bl; cl); (bl; cr);
(br; cl); (br; cr); (cl; dl); (cl; d); (cr; dr); (cr; d); (a; a′); (a′; b′);

(b′; c′); (c′; dl); (d; el); (d; er)} ∪ E(Pl) ∪ E(Pr):

Collapse xl3; x
l
4[x

r
3; x

r
4] with dl; el[dr; er], respectively. Fig. 14 shows GADGET4. For

15=64¡W61=4, we have that 0¡ 8W − 15=861=8 and

I(X; P) = (15 + 3I(d; P) + 10K(dl; d; P) + 6K(dl; dr; P) + 6K(d; dr))=64

= (15 + 5K(dl; el; Pl) + 3K(dr; er ; Pr))=64

= (15 + 5(8W − 15=8) + 3(8W − 15=8))=64
=W:

GADGET5(W ): If W61=4, use GADGET5A(W ), otherwise use GADGET5B(W ). Fig. 15
shows GADGET5.
GADGET5A(W ): If W ¡ 1=4, return GADGET4(W ). Otherwise, V (P)={X; al; ar; bl; br}.
E(P) = {(X; al); (X; ar); (al; bl); (al; br); (ar; bl); (ar; br)}
GADGET5B(W ): Let Pl; Pr =GADGET4(4W − 1).

V (P) = {X; al; ar; bl; br} ∪ V (Pl) ∪ V (Pr);
E(P) = {(X; al); (X; ar); (al; bl); (al; br); (ar; bl); (ar; br)} ∪ E(Pl) ∪ E(Pr):
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Fig. 14. GADGET4.

Collapse X l[X r] with bl[br]. For 1=4¡W ¡ 5=16, we have that 0¡ 4W − 1¡ 1=4
and

I(X; P) = (2 +I(bl; P) +I(br; P) + 2K(bl; br; P))=8

= (2 +I(bl; Pl) +I(br; Pr))=8

= (2 + (4W − 1) + (4W − 1))=8
=W:

GADGET6(W ): If W ¡ 5=16, return GADGET5(W ). Otherwise, let Pl; Pr=GADGET5(4W−
5=4). Fig. 16 shows GADGET6.

V (P) = {X; al; ar; bl; br; c; cl; cr ; dl; dr} ∪ (V (Pl) \ {X l}) ∪ (V (Pr) \ {X r});
E(P) = {(X; al); (X; ar); (al; bl); (al; br); (ar; bl); (ar; br); (bl; cl); (bl; C); (br; C);

(br; cr); (C; dl); (C; dr)} ∪ E(Pl) ∪ E(Pr):
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Fig. 15. GADGET5B; for GADGET5A the subpedigrees Pl and Pr are the single vertices bl and br .

Fig. 16. GADGET6.

Collapse xl3; x
l
2[x

r
3; x

r
2] with cl; dl[cr; dr], respectively. For 5=166W ¡ 3=8, we have

that 064W − 5=4¡ 1=4 and

I(X; P) = (5 +I(C; P) + 2K(cl; dl; P) + 2K(cl; dr; P) + 2K(cr; dl; P)

+2K(cr; dr; P))=16

= (5 + 2K(cl; dl; Pl) + 2K(cr; dr; Pr))=16

= (5 + 2(4W − 5=4) + 2(4W − 5=4))=16
=W:
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Fig. 17. GADGET7.

GADGET7(W ): If W ¡ 3=8, return GADGET6(W ). Otherwise, let Pl; Pr = GADGET5
(4W − 3=2). Fig. 17 shows GADGET7.

V (P) = {X; al; ar; bl; br; cl; cr ; d1; d2; d3; d4} ∪ (V (Pl) \ {X l}) ∪ (V (Pr) \ {X r});
E(P) = {(X; al); (X; ar); (al; bl); (al; br); (ar; bl); (ar; br); (bl; cl); (bl; cr); (br; cl);

(br; cr); (cl; d1); (cl; d2); (cr; d3); (cr; d4)} ∪ E(Pl) ∪ E(Pr):
Collapse xl3; x

l
2[x

r
3; x

r
2] with d1; d4[d2; d3], respectively. For 3=86W ¡ 7=16, we have

that 064W − 3=2¡ 1=4 and

I(X; P) = (6 +K(d1; d2; P) +K(d3; d4; P) + 2K(d1; d3; P) + 2K(d1; d4; P)

=+2K(d2; d3; P) + 2K(d2; d4; P))=16

= (6 + 2K(d1; d4; Pl) + 2K(d2; d3; Pr))=16

= (3 + (4W − 3=2) + (4W − 3=2))=8
=W:
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Fig. 18. GADGET8B; for GADGET3A delete Pl; Pr ; dl; dr .

GADGET8(W ): If W67=16, use GADGET8A(W ), otherwise use GADGET8B(W ). Fig. 18
shows GADGET8.
GADGET8A(W ): If W ¡ 7=16, return GADGET7(W ). Otherwise,

V (P) = {X; al; ar; bl; br; cl; cr ; d}:
E(P) = {(X; al); (X; ar); (al; bl); (al; br); (ar; bl); (ar; br); (bl; cl); (bl; cr); (br; cl);

(br; cr); (cl; d); (cr; d)}:
GADGET8B(W ): If 7=16¡W663=128, then let Pl = GADGET2A(8W − 7=2) and Pr =

NULL, else let Pl =GADGET2A(7=16) and Pr =MinLoops(16W − 63=8).

V (P) = {X; al; ar; bl; br; cl; cr ; d; dl; dr} ∪ (V (Pl)− {X l}) ∪ V (Pr);
E(P) = {(X; al); (X; ar); (al; bl); (al; br); (ar; bl); (ar; br); (bl; cl); (bl; cr); (br; cl);

(br; cr); (cl; dl); (cl; d); (cr; d); (cr; dr)} ∪ E(Pl) ∪ E(Pr):
Collapse xl3; x

l
2; X

r with dl; dr; d, respectively. For 7=166W ¡ 63=128, we have that
068W − 7=2¡ 7=16 and for 63=1286W ¡ 1=2, we have that 0616W − 63=8¡ 1=8
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For 7=166W ¡ 63=128:

I(X; P) = (7 +I(d; P) + 3K(dl; d; P) + 3K(dr; d; P) + 2K(dl; dr; P))=16

= (7 + 2K(dl; dr; Pl))=16

= (7 + 2(8W − 7=2))=16
=W:

For 63=1286W ¡ 1=2:

I(X; P) = (7 +I(d; P) + 3K(dl; d; P) + 3K(dr; d; P) + 2K(dl; dr; P))=16

= (7 +I(d; Pr) + 2K(dl; dr; Pl))=16

= (7 + (16W − 63=8) + 2(7=16))=16
=W:

The above constructions and calculations prove that:

Theorem 4.3. For every valid inbreeding coe�cient W such that 1=8¡W ¡ 1=2;
there is a human pedigree P with a sibship X; such that I(X; P) =W .

4.4. Algorithm for 1=26inbreeding(X )¡ 1

In this section, we give an incremental method of constructing human pedigrees with
inbreeding coe�cients ¿1=2. The method works in two stages. In the �rst stage we
construct a sequence of pedigrees P1; P2; : : : ; such that for i¡ j; I(X; Pi)¡I(X; Pj)
and limk→∞I(X; Pk) → 1. This gives an in�nite sequence of inbreeding coe�cients
spanning the interval [1=2; 1) that are achievable. In the second stage we �ll in all
the gaps in the in�nite sequence. Depending on the desired coe�cient, we take a
suitable pedigree Pi, and add one of the six specialized extender pedigrees on top of
Pi. Some of the extender pedigrees are disconnected but when they are added to a Pi,
the resulting pedigree is always connected.
Consider the family of pedigrees P0; P1; : : : de�ned as follows:

V (P0) = {X; a0l ; a0r ; b0l ; b0r ; c0l ; c0r ; L0; R0};
E(P0) = {(X; a0l ); (X; a0r ); (a0l ; b0l ); (a0l ; b0r ); (a0r ; b0l ); (a0r ; b0r );

(b0l ; c
0
l ); (b

0
l ; c

0
r ); (b

0
r ; c

0
l ); (b

0
r ; c

0
r ); (c

0
l ; L

0); (c0l ; R
0); (c0r ; L

0); (c0r ; R
0)};

V (Pk) = V (Pk−1) ∪ {ak1; ak2; ak3; ak4; bkl ; bkr ; ckl ; ckr ; Lk ; Rk};
E(Pk) = E(Pk−1) ∪ {(Lk−1; ak1); (Lk−1; ak2); (Rk−1; ak3); (Rk−1; ak4);

(ak1; b
k
l ); (a

k
1; b

k
r ); (a

k
2; b

k
l ); (a

k
2; b

k
r ); (a

k
3; b

k
l ); (a

k
3; b

k
r ); (a

k
4; b

k
l ); (a

k
4; b

k
r );

(bkl ; c
k
l ); (b

k
l ; c

k
r ); (b

k
r ; c

k
l ); (b

k
r ; c

k
r ); (c

k
l ; L

k); (ckl ; R
k); (ckr ; L

k); (ckr ; R
k)}:

Each Pk is composed of the BASE P0 shown in Fig. 19 which has been
extended by adding k stacked copies of EXTENDER shown in Fig. 20.
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Fig. 19. BASE.

Lemma 4.3. Let Sk be any pedigree that has Pk; as de�ned above; at the bottom and
has an additional (possibly disconnected) pedigree Z stacked on top of Lk and Rk . We
assume that Z has two vertices at the bottom and those vertices are named and coa-
lesced with Lk ; Rk . Unlike our other pedigrees; we allow Z to have two disconnected
pieces; one on top of Lk and one on top of Rk . Then

I(X; Sk) = 1− 1
2k+1

+
6K(Lk ; Rk ; Z) +I(Lk ; Z) +I(Rk; Z)

2k+4
:

When Z has just the two vertices and no edges;

I(X; Pk) = 1− 1
2k+1

:

Proof. We prove the �rst, more general, statement by induction on k. If the special-
ized extender pedigree Z consists of two disconnected pieces, then the kinship term
6K(Lk ; Rk ; Z)= 0. If Z consists of just the two vertices, then the inbreeding terms are
also 0, yielding the more specialized second formula from the �rst formula.
Base (k = 0): P0 is as shown in Fig. 19. We consider P0∪Z , where Z is any

(arbitrary) specialized extender pedigree put on top of L0 and R0. For the base case
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Fig. 20. EXTENDER.

we apply the recursive inbreeding coe�cient calculation.

I(X; P0) =K(a0l ; a
0
r ; P

0 ∪ Z)
= (2 +I(b0l ; P

0 ∪ Z) +I(b0r ; P
0 ∪ Z) + 4K(b0l ; b

0
r ; P

0 ∪ Z))=8
= (6 +I(c0l ; P

0 ∪ Z) +I(c0r ; P
0 ∪ Z) + 8K(c0l ; c

0
r ; P

0 ∪ Z))=16
= (8 +I(L0; P0 ∪ Z) +I(R0; P0 ∪ Z) + 6K(L0; R0; P0 ∪ Z))=16
= (8 +I(L0; Z) +I(R0; Z) + 6K(L0; R0; Z))=16:

Induction hypothesis: Suppose the claim hold true for all k ¡n and for all special-
ized extender pedigrees Z .
Induction step (k = n): Using the induction hypothesis, we get

I(X; Pn−1) = 1− 1=2n + (6K(Ln−1; Rn−1; Z) +I(Ln−1; Z) +I(Rn−1; Z))=2n+3

⇒ I(X; Pn) = 1−1=2n+(6K(Ln−1; Rn−1; Sn)+I(Ln−1; Sn)+I(Rn−1; Sn))=2n+3

= 1− 1=2n + (2K(an1; a
n
2; S

n) + 2K(an3; a
n
4; S

n) + 3K(an1; a
n
3; S

n)

+3K(an1; a
n
4; S

n) + 3K(an2; a
n
3; S

n) + 3K(an2; a
n
4; S

n))=2n+4

= 1− 1=2n + (2 +I(bnl ; S
n) +I(bnr ; S

n) + 4K(bnl ; b
n
r ; S

n))=2n+3

= 1− 1=2n + (6 +I(cnl ; S
n) +I(cnr ; S

n) + 8K(cnl ; c
n
r ; S

n))=2n+4

= 1− 1=2n + (8 +I(Ln; Sn) +I(Rn; Sn) + 6K(Ln; Rn; Sn))=2n+4
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Fig. 21. EXTENDER1.

= 1− 1=2n + (8 +I(Ln; Z) +I(Rn; Z) + 6K(Ln; Rn; Z))=2n+4

= 1− 1=2n+1 + (I(Ln; Z) +I(Rn; Z) + 6K(Ln; Rn; Z))=2n+4:

Corollary 4.1. For i¡ j; I(X; Pi)¡I(X; Pj).

Corollary 4.2. limk→∞I(X; Pk)→ 1.

The above lemma and corollaries complete the �rst phase of the construction for
inbreeding(X )¿ 1=2. For the second phase, we subdivide the range of inbreeding
coe�cients 1− 1=2k+16W ¡ 1− 1=2k+2 as follows (for any k¿0):

1. 1− 1=2k+16W ¡ 1− 7=2k+4,
2. 1− 7=2k+46W ¡ 1− 13=2k+5,
3. 1− 13=2k+56W ¡ 1− 3=2k+3,
4. 1− 3=2k+36W ¡ 1− 5=2k+4,
5. 1− 5=2k+46W ¡ 1− 9=2k+5,
6. 1− 9=2k+56W ¡ 1− 1=2k+2.
For each range i, we de�ne a function EXTENDERI that constructs a pedigree Z such
that Pk ∪ Z matches the inbreeding coe�cient W in the corresponding range. The
extender pedigree does not directly depend on k, but the constructions for EXTENDER4,
EXTENDER5, and EXTENDER6 are nested. The primary role of k is to determine how large
a stack Pk to put underneath the extender. For example, if W = 925=1024, then the
largest k such that 1− 1=2k +16W is k =2. Given that k =2, then 925=1024 falls in
the third range 920=1024 = (1− 13=2k+5)6W ¡ (1− 3=2k+3) = 928=1024. The output
pedigree has EXTENDER3(925=1024) stacked on top of P2.
EXTENDER1(W ): Let Pl; Pr =GADGET8(2k+3(W − 1 + 1=2k+1)):
V (P) = V (Pk) ∪ V (Pl) ∪ V (Pr),
E(P) = E(Pk) ∪ E(Pl) ∪ E(Pr).
Coalesce vertices X l; X r with Lk ; Rk , respectively. Fig. 21 shows EXTENDER1. Since

the EXTENDER1 construction is for 1− 1=2k+16W ¡ 1− 7=2k+4, we call GADGET8 with
062k+3(W − 1 + 1=2k+1)¡ 1=2. In the pedigree produced,

I(X; P) = 1− 1=2k+1 + (6K(Lk ; Rk ; P) +I(Lk ; P) +I(Rk; P))=2k+4

= 1−1=2k+1+2k+3(W −1+1=2k+1)=2k+4+2k+3(W −1+1=2k+1)=2k+4
=W:
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Fig. 22. EXTENDER2.

EXTENDER2(W ): Let Pl; Pr =GADGET8(2k+4(W − 1 + 7=2k+4)):
V (P) = V (Pk) ∪ {a; bl; br; cl; cr} ∪ V (Pl) ∪ V (Pr);
E(P) = {(Lk ; a); (Rk; bl); (Rk; br); (a; cl); (a; cr); (bl; cl); (bl; cr); (br; cl); (br; cr)}

∪E(Pk) ∪ E(Pl) ∪ E(Pr):
Coalesce X l; X r with cl; cr , respectively. Fig. 22 shows EXTENDER2. Since the

EXTENDER2 construction is for 1 − 7=2k+46W ¡ 1 − 13=2k+5, we call GADGET8 with
062k+4(W − 1 + 7=2k+4)¡ 1=2. In the pedigree produced,

I(X; P) = 1− 1=2k+1 + (6K(Lk ; Rk ; P) +I(Lk ; P) +I(Rk; P))=2k+4

= 1− 1=2k+1 + (3K(a; bl; P) + 3K(a; br; P) + 2K(bl; br; P))=2k+5

= 1− 1=2k+1 + (2 +I(cl; P) +I(cr; P) + 4K(cl; cr ; P))=2k+5

= 1− 7=2k+4 + 2k+4(W − 1+ 7=2k+4)=2k+5 + 2k+4(W − 1+ 7=2k+4)=2k+5
=W:

EXTENDER3(W ): Let Pl =GADGET8(2k+4(W − 1 + 13=2k+5)).
V (P) = V (Pk) ∪ {al; ar; bl; br; cl; cr} ∪ V (Pl);
E(P) = {(Lk ; al); (Lk ; ar); (Rk; bl); (Rk; br); (al; cl); (al; cr); (bl; cl); (bl; cr); (br; cl);

(br; cr); (ar; cl)} ∪ E(Pl):
Coalesce X l with cl. Fig. 23 shows EXTENDER3. Since the EXTENDER3 construc-

tion is for 1 − 13=2k+56W ¡ 1 − 3=2k+3, we call GADGET8 with 062k+4(W − 1
+ 13=2k+5)¡ 1=2. In the pedigree produced,

I(X; P) = 1− 1=2k+1 + (6K(Lk ; Rk ; P) +I(Lk ; P) +I(Rk; P))=2k+4

= 1− 1=2k+1 + (3K(al; bl; P) + 3K(al; br; P) + 2K(bl; br; P)

+3K(ar; bl; P) + 3K(ar; br; P) + 2K(al; ar; P))=2k+5

= 1− 1=2k+1 + (3 + 2I(cl; P) +I(cr; P) + 6K(cl; cr ; P))=2k+5
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Fig. 23. EXTENDER3.

Fig. 24. EXTENDER4.

= 1− 13=2k+5 + 2 · 2k+4(W − 1 + 13=2k+5)=2k+5
=W:

EXTENDER4(W ): Let Pl; Pr =GADGET8(2k+3(W − 1 + 3=2k+3)).
V (P) = V (Pk) ∪ {al; ar; bl; br; cl; cr} ∪ V (Pl) ∪ V (Pr);
E(P) = {(Lk ; al); (Lk ; ar); (Rk; bl); (Rk; br); (al; cl); (al; cr); (bl; cl); (bl; cr); (br; cl);

(br; cr); (ar; cl); (ar; cr)} ∪ E(Pk) ∪ E(Pl) ∪ E(Pr):
Coalesce X l; X r with cl; cr , respectively. Fig. 24 shows EXTENDER4. Since the

EXTENDER4 construction is for 1 − 3=2k+36W ¡ 1 − 5=2k+4, we call GADGET8 with
062k+3(W − 1 + 3=2k+3)¡ 1=2. In the pedigree produced,

I(X; P) = 1− 1=2k+1 + (6K(Lk ; Rk ; P) +I(Lk ; P) +I(Rk; P))=2k+4

= 1− 1=2k+1 + (3K(al; bl; P) + 3K(al; br; P) + 2K(bl; br; P)
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Fig. 25. EXTENDER5.

= 3K(ar; bl; P) + 3K(ar; br; P) + 2K(al; ar; P))=2k+5

= 1− 1=2k+1 + (2 +I(cl; P) +I(cr; P) + 4K(cl; cr ; P))=2k+4

= 1−3=2k+3+2k+3(W −1+3=2k+3)=2k+4+2k+3(W −1+3=2k+3)=2k+4
=W:

EXTENDER5(W ): Let Pl; Pr=GADGET8(2k+4(W −1+5=2k+4)) and Pe=EXTENDER4(1−
3=2k+3).
V (P) = V (Pe) ∪ {dl; dr} ∪ V (Pl) ∪ V (Pr);
E(P) = {(cl; dl); (cl; dr); (cr; dl); (cr; dr)} ∪ E(Pe) ∪ E(Pl) ∪ E(Pr).
Collapse X l; X r with dl; dr , respectively. Fig. 25 shows EXTENDER5. Since the

EXTENDER5 construction is for 1 − 5=2k+46W ¡ 1 − 9=2k+5, we call GADGET8 with
062k+4(W −1+5=2k+4)¡ 1=2. To get the inbreeding coe�cient of X . In the pedigree
produced we start with one of the equations in the EXTENDER4 calculation,

I(X; P) = 1− 1=2k+1 + (2 +I(cl; P) +I(cr; P) + 4K(cl; cr ; P))=2k+4

= 1− 3=2k+3 + (2 +I(dl; P) +I(dr; P) + 8K(dl; dr; P))=2k+5

= 1−5=2k+4+2k+4(W −1+5=2k+4)=2k+5+2k+4(W −1+5=2k+4)=2k+5
=W:

EXTENDER6(W ): Let Pl = GADGET8(2k+4(W − 1 + 9=2k+5)) and Pe = EXTENDER5(1−
5=2k+4).
V (P) = V (Pe) ∪ {e; el; er} ∪ V (Pl),
E(P) = {(dl; el); (dl; e); (dr; e); (dr; er)} ∪ E(Pe) ∪ E(Pl).
Coalesce a0l ; a

0
r of Pl with el; er , respectively. Fig. 26 shows EXTENDER6. Since the

EXTENDER6 construction is for 1 − 9=2k+56W ¡ 1 − 1=2k+2, we call GADGET8 with
062k+4(W −1+9=2k+5)¡ 1=2. To get the inbreeding coe�cient of X . In the pedigree
produced we start with one of the equations in the EXTENDER5 calculation,

I(X; P) = 1− 3=2k+3 + (2 +I(dl; P) +I(dr; P) + 8K(dl; dr; P))=2k+5
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Fig. 26. EXTENDER6.

= 1− 5=2k+4 + (1 +I(e; P) + 3K(e; el; P) + 3K(e; er; P)

+2K(er; el; P))=2k+5

= 1− 9=2k+5 + 2 · 2k+4(W − 1 + 9=2k+5)=2k+5
=W:

The above constructions and calculations prove that:

Theorem 4.4. For every valid inbreeding coe�cient W such that 12¡W ¡ 1; there is
a human pedigree P with a sibship X; such that I(X; P) =W .

5. Minimizing loop breakers

In this section we consider an inverse inbreeding coe�cient problem in which we
require all the loop breakers to be founders. We present an algorithm that given a
coe�cient of at most 14 , constructs a human pedigrees where all the loop breakers are
founders and minimizes (C3).
When studying rare recessive diseases, geneticists sometimes look to minimize the

number of times the disease allele must have entered the pedigree. In the extreme this
means that the disease causing mutation occurred once, say in one founder individual
F , and all the a�ecteds in the population have the mutation in both copies of DNA
by inheriting a mutated copy from their father and mother who in turn inherited a
mutated copy from F . Therefore, when studying a rare recessive disease, we may wish
to construct a pedigree where all the mutations are explained by a single founder or
founder couple and all the inbreeding loops are broken by the founder or founder pair.
We call a pedigree with this property a minimum founder human pedigree (MFHP).
We present an algorithm LOOPS that constructs a MFHP with one founder when the

given coe�cient W6 1
8 and a MFHP with a founder couple when

1
8¡W6 1

4 . The
pedigrees have only one loop breaker for W6 1

8 and two loop breakers for
1
8¡W6 1

4 ,
where the loop breakers are required to be founders. We argue that this is the min-
imum number of loop breakers needed in any MFHP for these ranges of inbreeding
coe�cients. Fig. 27 shows a pedigree constructed by LOOPS for inbreeding coe�cient
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Fig. 27. Pedigree generated by LOOPS for coe�cient 15=512.

15=512. Algorithm LOOPS uses two simple algorithms: BINARY and LEAVES. BINARY takes
2 input parameters n; d where n62d; 3 output parameters X; V; E, and returns a binary
tree with n branches of depth d such that X is the root, V is the set of vertices, and E
is the set of edges of the binary tree. LEAVES takes 3 input parameters X; V; E de�ning
a tree where X is the root, V is the set of vertices, and E is the set of edges of the
tree, and returns the set of leaves in the tree.

Algorithm. LOOPS
Input: A valid inbreeding coe�cient W6 1

4
Output: A MFHP P such that it has an individual X with I(X; P) =W .

begin
if W ¿ 1=8
then W ← W=2, double← true
else double← false

�nd p1; p2 and minimum d such that W = p1p2=22d+1 and p1; p262d−1

BINARY(p1; d− 1; x1; Vl; El); BINARY(p2; d− 1; x2; Vr; Er)
V (P) = {X; F} ∪ Vl ∪ Vr , E(P) = {(X; x1); (X; x2)} ∪ El;∪Er
if double = true, V (P) = V (P) ∪ {M}
if double = true
then ∀l ∈ LEAVES(P); E(P) = E(P) ∪ {(F; l); (M; l)}
else ∀l ∈ LEAVES(P); E(P) = E(P) ∪ {(F; l)}

return P
end

Lemma 5.1. For every valid inbreeding coe�cient W6 1
4 ; LOOPS(W ) outputs MFHP

P that has a sibship X such that I(X; P) =W .

Proof. First, we show that LOOPS(W ) always succeeds in �nding p1; p2; d. Since
06W6 1

4 and we consider W=2 if W ¿ 1
8 , we need to show that for 06W6 1

8 there
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exist p1; p2; d such that W = p1p2=22d+1 and p1; p262d−1. Let W = u=2v. Assign
p1 = 4u, p2 = 2v−1, d= v. Then p1p2=22d+1 = 4u · 2v−1=22v+1 = u=2v =W , p2 = 2d−1,
p1 = 4u = 4W2v64(1=8)2v = 2v−1 = 2d−1, and we have p1; p2; d with the required
properties. For the proof, it su�ces to show that when double is false [true], the num-
ber of inbreeding loops is p1 ·p2[2 ·p1 ·p2] and the length of each inbreeding loop is
2d+ 2. We show this next.
BINARY(p1; d; x1; Vl; El) creates a binary tree with p1 leaves and p1 paths of length

d. Similarly, BINARY(p2; d; x2; Vr; Er) creates a binary tree with p2 leaves and p2 paths
of length d. Let l ∈ Vl[r ∈ Vr] be a leaf and Pl[Pr] be the path connecting x1[x2] to
l[r]. Then the pair of paths (X; x1)Pl(l; F) and (X; x2)Pr(r; F) results in an inbreeding
loop of length 2d + 2 for X . If double is true, we get another inbreeding loop from
the pair of paths (X; x1)Pl(l;M) and (X; x2)Pr(r;M). As there are p1 choices for l and
p2 choices for r, the number of inbreeding loops is p1 · p2[2 · p1 · p2] if double is
false [true] and the length of each inbreeding loop is 2d+ 2.

For 06W6 1
8 , the loop breaker in the pedigree produced by LOOPS is F and for

1
8¡W6 1

4 , the loop breakers in the pedigree produced by LOOPS are F and M . Next,
we show that the maximum inbreeding coe�cient that can be realized with one or two
loop breakers in MFHP is indeed 1

8 and
1
4 , respectively. We �rst need the following

preliminary result.

Lemma 5.2. If P is a pedigree with one loop breaker F;I(X; P)=W; and the length
of longest path from F to X is d; then there exists a pedigree P′ with one loop
breaker F;I(X; P′) =W such that the length of every path from F to X is d.

Proof. Let P; X; F;W be as stated. For every path P1 : X; : : : ; y; F of length k ¡d,
create a binary tree of depth (d−k), coalesce the root of the binary tree with y, delete
edge (y; F) and for every leaf x of the binary tree, add the edge (x; F). For the proof,
it su�ces to show that the above modi�cation maintains the inbreeding coe�cient.
Let L be an inbreeding loop consisting of path P1 and some other path P2, such

that k + z was the length of the loop. The reduction in inbreeding coe�cient because
of deleting edge (y; F) and breaking loop L is 1=2k+z−1. The gain because of creating
2d−k loops of length d+ z with path P2 is 2d−k =2d+z−1 = 1=2k+z−1.

Lemma 5.3. If the number of loop breakers in a MFHP P is one [two]; then I(X; P)
for any X ∈ V (P) is at most 1

8 [
1
4 ].

Proof. Let P be a pedigree with one loop breaker F and I(X; P) = W . From the
de�nition of MFHP and Lemma 5.2, we can assume that F does not have an ancestor
in P and the lengths of all the paths from X to F are equal, say d+1. As there can be
at most 2(d−1) paths from F to father(X ) and mother(X ), the maximum inbreeding
coe�cient we can get is 2(d−1) × 2(d−1)=2(2d+1) = 1

8 :
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Let P be a pedigree with two loop breakers F and M and let d+1 be the length of
a longest path from X to F or M . From the proof of Lemma 5.2, it follows that we
can construct a pedigree such that the lengths of all the paths from X to F and from
X to M are equal, say d + 1, and the inbreeding coe�cients are kept the same. The
maximum number of paths from father(X ) and mother(X ) to F or M can be 2(d−1)

when the length of a longest path from X to F or M is d+ 1. All of these paths can
be present in the same pedigree if F and M is a married couple. Hence, the maximum
inbreeding we can get is 2× 2(d−1) × 2(d−1)=2(2d+1) = 1

4 .

If we do not restrict ourselves to MFHP but are interested in human pedigree, then
we can have pedigrees with one [two] loop breaker[s], such that I(X; P) for any
X ∈ V (P) is more than 1

8 [
1
4 ]. For example, pedigree P with edges

E(P) = {(x1; x2); (x1; x3); (x2; x4); (x3; x4); (x4; x5); (x4; x6);
(x5; x7); (x5; x8); (x6; x7); (x6; x8)}

has only one loop breaker x4 and I(x1; P) = 5=32 and pedigree P′ with edges

E(P′) = E(P) ∪ {(x2; x9); (x3; x9); (x9; x10); (x9; x11);
(x10; x7); (x10; x8); (x11; x7); (x11; x8)}

has two loop breakers x4 and x5 and I(x1; P) = 5=16.

6. Discussion and open problems

We de�ned a collection of problems called inverse inbreeding coe�cient problems.
We presented three constructions for pedigrees in which one sibship has an inbreeding
coe�cient matching a speci�ed probability. The constructions di�er in whether they
allow all matings or only (typical) human matings, and in which optimality criteria
are satis�ed. We wrote a program to construct human pedigrees for coe�cients of at
most 3

16 using MINLOOPS and GADGET1. The software is available by sending e-mail to
richa@helix.nih.gov.
Many open problems remain. The most important open problem for one sibship is to

�nd a construction for human pedigrees that simultaneously minimizes the number of
persons (C1) and either of the loop criteria (C2) or (C3). We also left open the possibly
simpler problems of �nding human pedigrees to minimize just the number of persons,
or minimize just the number of inbreeding loops for coe�cients ¿ 1

8 , or minimize just
the number of loop breakers for coe�cients ¿ 1

4 . For non-human applications we left
open the problem of �nding a construction that minimizes the number of loop breakers
when the coe�cient is ¿ 1

2 . All variants of the inverse inbreeding coe�cient problem
are open for multiple sibships in the same pedigree. One could also add a constraint
on how well a multi-sibship construction approximates the kinship coe�cient of each
non-sibling pair of a�ected persons.
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Our work was primarily motivated by a problem of pedigree replacement in linkage
analysis of recessive diseases [3], and we showed that our human pedigree construction
yields smaller pedigrees for the motivating example, and another recently published
example. Our work is also applicable to more large-scale epidemiology studies of inbred
populations. In the epidemiology setting it is useful to construct simulated pedigrees
matching the inbreeding coe�cient pattern, and to trace the inheritance of traits under
various models of inheritance, as a test of the models. Our constructions make it
possible to systematically generate small pedigrees from any desired distribution of
inbreeding coe�cients.
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