
 

  

 

Aalborg Universitet

Coordinated Control Based on Bus-Signaling and Virtual Inertia for Islanded DC
Microgrids
Wu, Dan; Tang, Fen; Dragicevic, Tomislav; Guerrero, Josep M.; Quintero, Juan Carlos
Vasquez
Published in:
I E E E Transactions on Smart Grid

DOI (link to publication from Publisher):
10.1109/TSG.2014.2387357

Publication date:
2015

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Wu, D., Tang, F., Dragicevic, T., Guerrero, J. M., & Vasquez, J. C. (2015). Coordinated Control Based on Bus-
Signaling and Virtual Inertia for Islanded DC Microgrids. I E E E Transactions on Smart Grid, 6(6), 2627 - 2638 .
DOI: 10.1109/TSG.2014.2387357

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            ? You may not further distribute the material or use it for any profit-making activity or commercial gain
            ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 26, 2017

http://dx.doi.org/10.1109/TSG.2014.2387357
http://vbn.aau.dk/en/publications/coordinated-control-based-on-bussignaling-and-virtual-inertia-for-islanded-dc-microgrids(ddceb70f-9a3b-4c06-95c7-9af1b1b514ec).html


This document downloaded from www.microgrids.et.aau.dk is the preprint version of the final paper: 
D. Wu, F. Tang, T. Dragicevic, J. M. Guerrero, J. C. Vasquez, “Coordinated Control Based on Bus-Signaling and Virtual 
Inertia for Islanded DC Microgrids,” IEEE Trans. Smart Grid, early access 2015. 

1 

  
Abstract-- A low-voltage DC islanded microgrid contains a 

number of renewable energy sources (RES), local loads, and 
energy storage systems (ESS). To avoid the over-charging and 
over-discharging situations of ESS, a coordinated control strategy 
should be used in DC islanded microgrids. In this paper, a novel 
bus-signaling method (BSM) is proposed to achieve autonomous 
coordinated performance of system according to different state of 
charge (SoC) conditions. Additionally, a secondary coordinated 
control is introduced to restore the voltage deviation produced by 
primary control level without decaying coordinated performance. 
The proposed control algorithm and controller implementation 
based on BSM are also presented. Finally, real-time simulation 
results show the feasibility of the proposed approach by 
presenting the operation of a DC islanded microgrid in different 
testing scenarios.    

Index Terms-- Coordinated control, primary control, 
secondary control, bus-signaling method, DC islanded microgrids. 

NOMENCLATURE 
Vdc

*               Nominal value of bus voltage 
Vdc                DC bus voltage 
SoC0              Lower-threshold of SoC 
SoC1             Upper-threshold of SoC 
m1                 Boosting slope of bus voltage 
m0                 Descending slope of bus voltage 
Vmax               Maximum value of bus voltage 
Vmin               Minimum value of bus voltage 
PL                          Total power rating of loads 
PL1                Power rating of load when one step is shed 
PL2                Power rating of load when two steps are shed  
SoCe                    Steady-state SoC in high SoC case 
Vdce               Steady-state bus voltage in high SoC case 
PRES                     Power generated from RES 
Pe                 Steady-state power of RES with power 
                     curtailment 
PMPP             Maximum power generated from RES  
Vmeas                Measured bus voltage by RES 
n                   Virtual inertia coefficient of RES 
τ                   Time constant of low pass filter measuring Vmeas   
Gvi(s)            Closed-loop system inertia of RES 
VL1_OFF          Bus voltage threshold when shedding Load1  
VL1_ON           Bus voltage threshold when reconnecting Load1 
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VL2_OFF          Bus voltage threshold when shedding Load2  
VL2_ON           Bus voltage threshold when reconnecting Load2 

∆V                 Steady-state voltage deviation in high SoC case 
dV                 Shifting-voltage term of secondary control 
kpsec               Proportional term of secondary control 
kisec                Integral term of secondary control 
Vsec

*               Secondary bus voltage reference 
Vmeas2             Measured bus voltage by secondary control 
Gsec(s)            Secondary controller 
τ2                   Time constant of low pass filter measuring Vmeas2   
Iref                  Current reference of RES inner loop controller 
SoCs1                       SoC threshold for shedding Load1 
SoCr1                       SoC threshold for reconnecting Load1 
SoCs2                       SoC threshold for shedding Load2 
SoCr2                       SoC threshold for reconnecting Load2 

I.  INTRODUCTION 
ICROGRID is a local grid with a number of renewable 
energy sources (RES), energy storage systems (ESS), 

and local loads, which can be seen as an independent system 
with capability to operate in either grid-connected or islanded 
mode [1], [2]. Nowadays, DC microgrids or nanogrids have 
drawn great attention. Compared to AC microgrids which 
require multiple AC/DC and DC/AC conversions, DC 
microgrids can provide higher efficiency and reliability [3]. 
Therefore, they have great potential in applications such as 
future building electrical systems, datacom centers and plug-in 
hybrid electric vehicles [4]-[6].  

In islanded DC microgrids, the power generation and load 
consumption by dispersed units should not be conceived 
separately, but in a coordinated way to achieve the energy 
management. Furthermore, the power fluctuation of both 
power generation and load consumption will result in charging 
or discharging of ESS. Then the state of charge (SoC) of ESS 
should also be taken into account when controlling the system, 
so that to avoid over-charging and over-discharging situations. 
Usually this coordinated function is achieved by a microgrid 
central controller at upper level [7]-[9], which is classified as 
tertiary level of hierarchical structure described in [10] and 
[11]. Detailed illustrations of this kind of control structure are 
presented in [12] and [13], where the islanded microgrid 
operation is classified into different control modes. The central 
controllers are making decisions based on the SoC conditions 
of the ESS collected from primary level, and then sending 
back control mode signals to the distributed units. However, 
this conventional control structure may result in single point of 
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failure, which means that the islanded microgrid loses 
coordination performance when the central controller or 
communication link fails. In previous studies, droop control is 
famous and widely used in both AC and DC microgrids in 
order to realize autonomous coordinated control among 
distributed units [14]-[16]. In [17], an overview of distributed 
control strategies of power converters is given. And in [18], an 
advanced parameters design procedure is shown in order to 
optimize the power sharing performance with droop controlled 
components. While the modeling of microgrid with droop 
control is presented in [19], targeting at improving islanding 
process response. However, in terms of coordinated 
performance, these control strategies based on droop method 
meet the limitations: i) droop control is usually implemented 
on voltage control mode (VCM) converters, while most RES 
units embrace current control mode (CCM) converters [20], 
[21]; ii) the conditions of SoC are not taken into account when 
developing decentralized power control strategies. 

 In this sense, power line communication methods are 
proposed in [22]-[25], which inject a range of high frequency 
components over AC or DC power lines as communication 
signals to achieve power management among converters. They 
attract much attention since the coordinated signals (i.e. SoC 
of ESS, power generation of RES) can be exchanged depend 
on power lines instead of using external fast communication 
links. However, these methods intensively introduce a series of 
high frequency noise to the power cables. Another similar 
technique employs bus voltage levels as communication 
signals, which is presented in [26], [27]. Based on these bus 
voltage signals, ESS and RES units change output power or 
operation modes. However, this control law needs the mode 
changing actions, which makes the parameters of each mode 
hard to be designed and even may cause system instabilities 
during the dynamic switching process. In addition, few of them 
discuss the full scenario considering both power generation 
and demand side management (DSM). 

In this paper, a novel coordinated control for islanded DC 
microgrids is proposed, which consists of two levels: a primary 
local control and centralized secondary control. The primary 
control is based on bus-signaling method (BSM), where the 
bus voltage is regulated as a function of SoC and acts as a 
coordination signal to control power generation/consumption 
from RES/distributed loads. In addition, a higher secondary 
level is presented to restore bus voltage for the applications 
that require strict bus voltage regulation. Comparing with 
aforementioned existing studies, the proposed coordinated 
control in this paper takes the following advantages: i) the 
coordinated performance of DC islanded microgrid based on 
SoC conditions is independent from the central controller at 
upper level, which makes the control of overall microgrid 
toward more decentralized. ii)  the design of primary loop 
takes into account the inherent difference of VCM and CCM 
inner loops and therefore can be applied on both VCM and 
CCM units. iii) the proposed coordinated control can be easily 
implemented on top of the conventional inner loop algorithms 
without altering operational modes.  

 
Fig. 1. Typical configuration of a DC microgrid. 

This paper is organized as follows. Section II gives a 
general description of coordinated operation of DC 
microgrids. Section III illustrates fundamentals of the 
proposed BSM to achieve autonomous coordinated operation. 
Section IV introduces the secondary coordinated control for 
restoring the bus voltage. Section V explains the control 
algorithms implementation. Finally, Section VI shows the real-
time hardware-in-the-loop (HiL) results that verify the 
proposed coordinated control based on BSM.  

II.  COORDINATED OPERATION OF DC MICROGRIDS  
In a DC microgrid as shown in Fig. 1, RES units (such as 

photovoltaic and wind turbine systems) are used to provide 
clean energy, while ESS unit is utilized to compensate power 
fluctuation between power generation and consumption. In 
grid-connected operation, the power balance between the 
power generation and load consumption is managed by both 
main grid and ESS, depending on SoC conditions of ESS and 
time of use of the electricity from main grid [28]. However, in 
islanded operation, ESS has to take the main role as energy 
buffer to compensate unbalanced power. When the ESS is not 
fully charged, the RESs should operate at the maximum power 
point (MPP) to make an efficient utilization of renewable 
energy. When the ESS is approaching to be full of charged so 
that its SoC is very high, then ESS should limit its input power 
according to SoC conditions. Coordinately, RES units should 
decrease power to balance the energy of generated and 
demanded. Once RESs with curtailed power are not able to 
supply load consumption, then ESS should start to discharge 
and RESs restore their MPP operation.  On the contrary, if 
SoC of ESS is too low, ESS should limit its discharging power 
to avoid system collapse. In this situation, non-critical loads 
should be disconnected from DC microgrids to decrease power 
consumption. Therefore, the coordinated operation of DC 
islanded microgrid system is achieved by managing power 
flow from all RES, ESS and loads depending on different SoC 
scenarios. 

The proposed coordinated control is shown in Fig. 2. The 
ESS unit is defined as a master unit and controlled in VCM 
based on BSM in order to regulate DC bus voltages. The BSM  
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Fig. 2. Proposed coordinated operation of system based on master-slave 
control. 

makes the ESS change bus voltage values depending on SoC 
conditions, while RES units and loads are defined as slave 
units to regulate their power according to bus voltage. It is 
worth noticing that the proposed DC-BSM is applied for 
islanded operation of DC microgrids. In this case the ESS unit 
has ability to regulate DC bus voltage to perform signaling 
actions to slave units. When the DC islanded microgrid is 
required to transfer into grid-connected mode, the 
corresponding coordinated control strategy in grid-connected 
operation can be referred to [28], [29], and is not considered 
within the scope of this paper. 

III.  PROPOSED BUS-SIGNALING CONTROL STRATEGY 
The BSM for the autonomous coordinated control of DC 

islanded microgrid is classified as ESS master control, RES 
virtual inertia control and demand side control. These control 
strategies can be combined together in order to target at 
different SoC scenarios of ESS in a decentralized way.  

A.  ESS Master Control: Bus-Signaling Control.   
The ESS master control aims at controlling bus voltage 

based on SoC conditions. According to different SoC 
scenarios, the ESS bus-signaling control can be classified into 
high SoC control and low SoC control. When applying the 
BSM to AC microgrids, the signaling variable should be 
changed to AC bus frequency in order to regulate power 
generation from RES units [30]. The corresponding 
application in AC microgrids can be found in [31]. 

The high SoC control, also called primary coordinated 
control, is obtained by coordination of ESS and RES units as 
shown in Fig. 3. There are three ranges of SoC determining 
bus voltage signaling behavior of ESS that can be expressed as  
 

 

       (a)                                                (b) 
Fig. 3. Primary coordinated control of ESS and RES. (a) ESS master control 
with BSM and (b) RES virtual inertial control. 

 
Fig. 4. Demand side control of ESS master control with BSM and load slave 
control.(a) two steps of load triping procecdures and (b) zoom in on one step 
of load actions. 

*
0 1

*
1 1 1

*
0 0 0

( )

( )

dc dc

dc dc

dc dc

V V if SoC SoC SoC

V V m SoC SoC if SoC SoC

V V m SoC SoC if SoC SoC

 = ≤ ≤
 = + ⋅ − >
 = − ⋅ − <

        (1a) 

The boosting and descending coefficients m1 and m0 can be 
defined as 

*
max

1
1100%

dcV Vm
SoC

−
=

−
                             (1b) 

*
min

0
0

dcV Vm
SoC

−
=                                         (1c) 

   As shown in Fig. 3, when SoC is lower than SoC1 but higher 
than SoC0, the ESS operates as ideal VCM which regulates its 
output voltage as nominal value. When SoC is higher than the 
upper-threshold, the ESS controls its output voltage gradually 
increasing with slope of m1 to inform RES units to decrease 
power generation. When SoC is below lower-threshold, the 
ESS controls its output voltage decreasing gradually with the 
slope of m0, so that the bus voltage acts as a signal to enable 
load shedding procedures, as shown in Fig. 4(a). In this paper, 
noticing that the microgrid coordination performance targets at 
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using one ESS as master unit with multiple RES units as slave 
units connected to single bus. When more ESS units are added 
to the system, additional droop control with virtual resistance 
should be incorporated in order to achieve power sharing 
performance and energy management inside storage systems 
[32]. The voltage references of distributed units can be set in a 
coordinated way in order to control the current flow between 
DC buses. Detailed illustrations in this case can be found in 
[33].  

B.  RES Slave Control: Virtual Inertia Control. 
In high-SoC scenario, the performance of RES should be 

coordinated with the bus voltage values, as Fig. 3(b) shows. 
When bus voltage is kept at nominal value, each RES unit 
controls its output power at MPP with conventional current 
control mode. When the bus voltage is continuously 
increasing, the charging power of ESS should be limited. In 
this case, each RES unit decreases power from MPP, and this 
power curtailment of RES units is achieved by adding virtual 
inertia. The virtual inertia performance of RES units is shown 
in Fig. 3(b). Here virtual inertia is not presented as in AC 
system using the variation of the power with respect to the 
frequency, but with respect to the voltage. As the feedback bus 
voltage reflects the SoC conditions of ESS, the higher value 
the bus voltage is, the lower the power generated from RES 
units. Finally, when the power absorbed by the ESS is low 
enough to maintain SoC at SoCe, the bus voltage level will be 
stable at Vdce, and power from RES units will be decreased to 
Pe. The generated power of each RES can be expressed as 
follows 

*

* *( )
RES MPP meas dc

RES MPP meas dc meas dc

P P if V V

P P n V V if V V

 = ≤


= − ⋅ − >
     (2a) 

The virtual inertia coefficient n is defined as  

*
max

MPP

dc

Pn
V V

=
−

                          (2b) 

While the Vmeas is obtained with a first order low pass filter, 
which can be expressed as: 

1
1meas dcV V

sτ
=

+
                              (3) 

Considering that the ESS is operating in the range of 
SoC1<SoC<100%, taking (3) into (2a) we have 

*

1RES MPP dc dc
nP P V n V

s
= − ⋅ + ⋅

+τ
           (4) 

Then combing (1a) and (4), the RES output power in high 
SoC scenario can be written as 

1 1( )
1RES MPP dc

n sP P V nm SoC SoC
s

= + ⋅ − ⋅ −
+

τ
τ

 (5) 

As different from the conventional RES system that the 
output power is independent of the bus voltage, the RES units 
under coordinated control have inertia response with respect to 
the bus voltage. Consequently, the closed-loop system inertia 
can be calculated by using small-signal analysis 

(s)
( )

(s) 1
RES

vi
dc

P nG s
s V s

τ
τ

∆
= =

∆ +
                       (6) 

 

 
                             (a)                                                   (b) 
Fig. 5. Secondary coordinated control of ESS and RES. (a) ESS bus-
signaling control and (b) RES virtual inertial control. 

The Gvi(s) of RES is a virtual value that is determined by the 
slope coefficient n and time constant τ . Usually n is 
constrained by the allowable bus voltage deviation, then by 
designing different time constants τ, the inertia response of the 
RES units can be changed. 

C.  Demand Side Control.  
The demand side control is also obtained by detecting the 

DC bus voltage to perform the load shedding and recovering 
procedures as shown in Fig. 4, where Fig. 4(b) is one step of 
load action zoomed in from Fig. 4(a). It can be observed that a 
relay action with different voltage levels VL1_OFF and VL1_ON are 
assigned to the contactor of loads for tripping and recovering 
actions, in order to avoid the chattering phenomenon. In 
addition, if multiple load shedding steps are required, different 
pre-set bus voltage levels should be applied on different load 
steps respectively. Based on these voltage levels, the priorities 
are assigned to these loads with critical and non-critical 
property respectively, in order to realize a series of load 
shedding procedures. For example, the non-critical loads 
assigned with lowest priority can be cut-off when the bus 
voltage firstly decreases to the specific level. With bus voltage 
continuously decreasing to a lower level which means that less 
energy is stored in ESS, another part of loads with a higher 
priority should be then cut-off. Some candidates for those 
loads can be disconnected for demand side management 
includes domestic appliance, plug-in vehicles etc. according to 
[34]. While some most critical loads such as power supply for 
data centers or emergency systems should be remained as long 
as possible. When recovering tripped loads, the reconnected 
action is in the reverse order that the loads with the higher 
priority are firstly recovered and those with the lower priority 
are later connected. 

IV.  SECONDARY COORDINATED CONTROL  
As previously shown in Fig. 3, with only primary 

coordinated control of ESS and RES, no communication link 
is needed between units for coordination performance based 
on SoC. However, bus voltage deviation ∆V is generated in 
steady state as a result of BSM. This voltage deviation can be 
designed within an allowable range according to (1), but in the 
applications that strict voltage regulation is required, 
additional secondary controller with communication 
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technology should be implemented in order to regulate the bus 
voltage at the required value, e.g. the nominal value. Although 
the communication link between the secondary control and 
primary control is of low bandwidth, this central secondary 
control is still optional in the proposed BSM since the 
coordination performance is already achieved in primary level. 
This tradeoff between the investment of communication link 
and high quality of power supply should be decided by 
customer with respect to different applications.  
    Fig. 5 shows the secondary coordinated control of ESS and 
RES units based on BSM. Fig. 5(a) shows the secondary 
response of ESS. When SoC≤SoC1, which means the ESS is 
not approaching to be fully charged, the DC bus voltage 
regulation remains the same as primary control. While in the 
range of SoC>SoC1, Vdc–SoC curve of the ESS which is 
determined by primary response shifts downwards, in order to 
regulate the microgrid DC bus voltage as nominal value. Then, 
we can modify the control strategy (1a) by adding dV, thus 
when SoC>SoC1 (1a) can be rewritten as 

*
1 1 1( )dc dcV V m SoC SoC V if SoC SoC= + ⋅ − + >d       (7) 

This dV generated by secondary control is regulated by the 
following centralized PI controller 

* *sec
sec sec 2 sec sec 2( ) ( ) ( )i

meas p meas
k

V G s V V k V V
s

δ  = ⋅ − = + ⋅ − 
 

 

(8) 
Same as (3) presented, Vmeas2 can be expressed as 

2
2

1
1meas dcV V

sτ
=

+
                                  (9) 

For the secondary control of RES units, if the DC bus 
voltage is restored as nominal value, the effect of the RES 
inertia control will be cancelled since they cannot receive the 
signal of boosting bus voltage to decrease output power. 
Therefore, to maintain coordinated control, the signaling DC 
bus voltage value in RES units to regulate output power should 
also be modified coordinately as Fig. 5(b) shows. The output 
power generated by RES units in terms of DC bus voltage in 
(2a) is modified as following 

*

* *( )
RES MPP meas dc

RES MPP meas dc meas dc

P P if V V V

P P n V V V if V V V

d

d d

 = ≤ +


= − ⋅ − − > +
 

(10) 
Notice that instead of using Vdc

* as DC bus voltage 
threshold, now the dV is also incorporated with Vdc

* to 
determine the regulation of output power of RES units. In this 
way, after shifting downward both curves of ESS and RES, the 
DC bus voltage can be controlled at nominal value in steady 
state in the range of SoC>SoC1, and at the same time ensuring 
the output power of RES units decreases to constrain the 
power injecting to ESS. 

For coherency, the secondary voltage reference is selected 
as Vsec

* = Vdc
*. By combining (7) and (10), the dynamics of 

RESs output power and closed-loop system inertia will be the 
same as (5) and (6). This indicates that the utilization of 
secondary coordinated control will not change the dynamics 
and the inertia of RES units which is performed in the primary 
level.  
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Fig. 6. Control algorithm for BSM coordinated operation. 

V.  CONTROLLER IMPLEMENTATION 
The coordinated control implementation is realized through 

hierarchical control levels where the lower control level 
receives commands from the higher control level to take 
actions. The proposed control algorithm of DC islanded 
microgrids is shown in Fig. 6. 

A.  Inner loop Control. 

The inner control loops are designed to obtain the desired 
voltages and currents of each unit. The ESS operates as a grid-
forming unit in VCM and regulates the output voltage 
according to primary control commands. Considering the grid 
side converter as a buck converter, the inner loop control of 
ESS with VCM utilizes the voltage-current double loop 
control over the capacitor voltage and inductor current with 
two proportional integral (PI) controllers. On the other hand, 
RESs are controlled in CCM with a single loop PI controller to 
regulate its output current according to primary level 
commands. The calculation of inner loop PI controller 
parameters depends on symmetrical optimum that tuning the 
cross over frequency and phase margin which can be referred 
to [35]. 

B.  ESS Master Control in Primary Level. 
The objective of primary ESS master control is to regulate 

the DC bus voltage reference in different SoC scenarios, 
according to Fig. 3 and Fig. 4. In practical applications the 
SoC estimation error can be incorporated by setting the upper  
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TABLE I 
BUS-SIGNALING OF LOAD SLAVE CONTROL 

Estimated 
SoC 

DC Bus 
thresholds  Load1 status Load2 status 

SoCr1 VL1_ON ON NC 

SoCr2 VL2_ON NC ON 

SoCs1 VL1_OFF OFF NC 

SoCs2 VL2_OFF NC OFF 
Note: NC indicates no changing action. 

and lower thresholds of SoC in order to reduce the effect of 
SoC estimation error on the coordination accuracy, e.g. giving 
5% of the SoC margin according to [36]. In high SoC control, 
the bus voltage steadily increases based on (1a), and slope m1 
is designed according to allowable maximum bus voltage Vmax 
as (1b). In low SoC scenario, the bus voltage is decreased 
based on slope of m0 which is set according to allowable 
minimum bus voltage Vmin to enable loads shedding procedure. 
The bus voltage deviation in emergency and standby power 
systems should be limited within [-13%, +6%] as demanded in 
[37]. And this paper adopts power supply systems for 
communication equipment as an example of DC islanded 
microgrids in which the nominal value is kept at 48V. The 
specific technical requirement for this application can be found 
in [38], in which the DC bus voltage is required to be kept 
between 43 and 53V. Then Vmin and Vmax are selected as 44V 
and 50.4V respectively in this paper to meet both technical 
requirements above.  

C.  RES Slave Control in Primary Level. 
The primary RES control aims to control the output power 

of each RES unit according to the bus voltage signaling from 
ESS, as shown in Fig. 3(b). When the bus voltage is detected 
above the nominal value, the output power of RES is 
controlled by using (2a). Also, the inertias of RESs are 
designed with respect to different time constants of low pass 
filter and slope n as depicted in (2b). Since the relation of 
primary RES control is PRES-Vdc, the power reference of RES 
should be converted to current reference as 

RES
ref

dc

P
I

V
=                                        (11) 

    Then this current reference can be sent to the CCM inner 
control loop. In primary control of RES, the time constant τ 
used in the low pass filter should be much larger than the inner 
loop regulation time, so that the control performance of these 
two levels are not interacted with each other and can be tuned 
independently. 

D.  Demand Side Control. 
In the demand side control, the process of load shedding 

and recovering based on two load steps can be referred to 
Table I, where the SoC thresholds for load shedding and 
recovering are corresponding to specific voltage levels. Then 
with relay actions presented in Fig. 4, the bus voltage levels 
VL1_OFF and VL1_ON are applied with Load1 for tripping and  

TABLE II 
POWER STAGE AND CONTROL PARAMETERS 

Parameter Symbol Value Unit 
Power Stage 

Nominal DC Bus Voltage Vdc
* 48 V 

Filter  Inductance  L 1.8 mH 
Filter Capacitance C 2200 µF 

Inner loop Control 
ESS Voltage Controller  kpV, kiV 5, 50 -, s-1 
ESS Current Controller kpI, kiI 10,300 -, s-1 
RES Current Controller kpR, kiR 10,300 -, s-1 

Primary Coordinated Control 
SoC  Upper-threshold SoC1 95 % 
SoC  Lower-threshold SoC0 40 % 
Boosting Slope of Bus 

Voltage m1 0.48 V/% 

Descending Slope of Bus 
Voltage m0 0.1 V/% 

Virtual Inertia Coefficient of 
RES1 

n1 83 W/V 

Virtual Inertia Coefficient of 
RES2 

n2 42 W/V 

Secondary Coordinated Control 
Secondary Bus Voltage 

Reference Vsec 48 V 

Proportional Term kpsec 0.001 - 
Integral Term kisec 1 s-1 

Demand Side Control 
SoC Thresholds of Load 

Shedding  
 SoCs1, 
SoCs2 

 20,  
12 % 

SoC Thresholds of Load 
Recovering  

 SoCr1, 
SoCr2 

 31,  
        23 % 

Bus Voltage Thresholds of  
Load Shedding Vs1, Vs2 46, 45.2 V 

Bus Voltage Thresholds of  
Load Recovering Vr1, Vr2 47.1, 46.3 V 

 
recovering respectively, while VL2_OFF and VL2_ON are adopted 
by Load2 respectively.  

E.  Secondary Coordinated Control. 
The secondary controller includes a PI controller in Gsec(s) 

expressed by (8). Then the voltage adjusting term dV is sent to 
the ESS and RES units at the lower control level in order to 
maintain the coordinated performance. The modified primary 
control is achieved by using (7) and (10). In this design 
procedure of different loops for coordinated control, the 
bandwidth of control loops is also following a hierarchical 
manner (decreasing from the lower level to the higher level) 
[10], so that the time constant in (3) and (9) for primary and 
secondary control should be designed asτ2 >>τ. 

VI.  HARDWARE-IN-THE-LOOP RESULTS 
In order to verify the proposed control strategy, the 

hardware-in-the-loop (HiL) real-time simulation is carried out 
based on dSPACE 1006 platform. Under this test system, the 
DC islanded microgrid consists of one ESS, two RES units 
modeling as photovoltaic (PV) generation, and two load  
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Fig. 7. HiL simulation diagram with proposed coordinated control strategy. 

 
Fig. 8. HiL simulation diagram with conventional coordinated control 
strategy. 

tripping and recovering steps are taken into consideration, in 
which the power stage and control parameters are shown in 
Table II. 

Fig. 7 shows the overall system diagram under the proposed 
control structure with bus-signaling method. In power stage 
part, DC-DC converters are utilized to connect prime sources 
with common DC bus. ESS and PV generation units are 
consistently controlled under VCM and CCM respectively 
over the full range of SoC scenario. The central controller 
shown in the diagram sends out shifting voltage commands to 
distributed units through communication link in order to 
restore bus voltage by measuring DC bus voltage. Since the 
proposed control system uses electrical DC bus to carry the 
information of SoC of ESS and power generated from PV 
units, there is no need to collect these signals by means of 
communication link and send it to the central controller for 
data process.  

Moreover, the proposed control strategy is compared with 
the traditional coordinated control method that is described in 
[12], [13] with numerical simulation results. In this case, the 
central controller takes the role as energy management system, 
so that it is necessary to use communication link to collect 
information of distributed units like SoC and PRES, and then 
send it to the central controller for processing, as shown in Fig. 
8.  When the ESS is not fully charged, the overall system 
operates in normal case where the ESS and PV units are 
controlled in VCM and CCM respectively. When detecting 
that the SoC is above upper-threshold, the central controller 
sends out mode changing signal to distributed units and makes 
ESS change to idle mode, while PV units are switched from 
CCM to VCM mode under off-MPP situation to support loads. 
The proper operation of PV units in this scenario is ensured by 
using droop control with proportional virtual impedance that  

S1 S2 S3 S4

(sec.)

(sec.)

(sec.)

(sec.)

(a)

(b)

(c)

(d)

PV1
PV2

∆V

(sec.)(e)  
Fig. 9. Simulation results for high SoC case of ESS with proposed control. 

has been shown in [13]. The detailed description of this 
conventional testing scenario for coordinated control can be 
referred to [12].  

Fig. 9 shows the simulation results for high SoC scenario of 
ESS with the proposed control. For simplicity, constant 
irradiation is utilized for two PV generation units in order to 
compare microgrid performance with and without secondary 
control. The response of microgrid during different scenarios 
is summarized as follows: 

• Scenario S1: The SoC of ESS (Fig. 9(a)) is lower than the 
upper-threshold 95%. Therefore, overall system operates 
in normal case which the PV units are operating at MPP 
with output power of 100 and 200W respectively (Fig. 
9(d)) while the ESS is charging the surplus power (Fig. 
9(c)) at 70W. In this normal scenario, the bus voltage is 
fixed at nominal value 48V (Fig. 9(b)).  

• Scenario S2: The SoC of ESS reaches the upper-threshold 
95%, and the primary coordinated control is taking 
effect. The bus voltage is boosting gradually to 48.6V by 
ESS with the increase of SoC. It can be seen that due to 
the autonomous performance of coordinated control, the 
power of PV units are able to decrease gradually, 
meanwhile the charging power of ESS is able to reduce  
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S1 S2 S3 S4 S5 S6

PV1 PV2

(a)

(b)

(c)

(d)

(e)

(sec.)

(sec.)

(sec.)

(sec.)

(sec.)  
Fig. 10. Simulation results for low SoC case of ESS with proposed control. 

to zero. However, the results show that the bus voltage 
deviation is ∆V=0.6V due to the solely primary 
coordinated control.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            

• Scenario S3: The secondary coordinated control is 
activated. It can be seen that the bus voltage deviation 
can be restored effectively to the nominal value 48V, 
without degrading primary coordinated control 
performance.  

• Scenario S4: The load consumption increases from 230W 
to 325W, then the ESS starts to discharge power and SoC 
decreases from upper-threshold. It can be seen that the 
instantaneous power increase is absorbed by the ESS, 
after that PV units gradually restore to MPP, which 
finally support load consumption together with the ESS, 
and the overall system comes back to normal operation. 

Fig. 10 shows the low SoC case of ESS. There are two 
steps of load shedding in the simulation. The bus voltage 
thresholds for disconnecting and reconnecting loads are based 
on Table II. The load shedding process is described as follows: 

• Scenario S1: The demand side consumes power at 230W 
in total (Fig. 10(e)) and PV units generate power at 30 
and 60W respectively (Fig. 10(d)). In this period, the 
ESS is discharging power (Fig. 10(c)) and SoC is  

S1 S3 S4

(sec.)

(sec.)

(sec.)

(sec.)

(sec.)

(sec.)

(a)

(b)

(c)

(d)

(e)

(f)

PV1

PV2

S2

 
Fig. 11. Simulation results in full SoC scenario of ESS. 

decreasing accordingly (Fig. 10(a)).   
• Scenario S2: The SoC of ESS (Fig. 10(a)) reaches the first 

load shedding threshold at 20%, meanwhile the DC bus 
voltage drifts from nominal value 48V to 46V (Fig. 
10(b)) with the slope 0.1V/%. By detecting this voltage 
threshold defined in Table I and Table II, the load is shed 
automatically to 154W with tripping Load1. Then the 
SoC of ESS continues to decrease since the total power 
consumption is still higher than total power generation. It 
should be noted if RES units increase power generation 
to keep SoC increasing before SoC decreases to the load 
shedding threshold, this load shedding procedure can be 
then avoided.  

• Scenario S3: The SoC of ESS reaches the second load 
shedding threshold at 12%, corresponding to the bus 
voltage at 45.2V. As the same mechanism shown in 
Scenario S2, the load is shed to 77W by tripping Load2.  

• Scenario S4: The generation of PV units increases to 100 
and 200W respectively and then ESS is charging power 
of 223W. In this period, the SoC is increasing steadily. 

• Scenario S5: The SoC of ESS reaches the first load 
recovering threshold at 23%, corresponding to bus 



 9 

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(d)

(sec.)

(sec.)

(sec.)

(sec.)

(sec.)

(sec.)

(sec.)

(sec.)

PV2 ESSPV1PV2 ESSPV1

Sag

over-charged

Case I Case II  
Fig. 12. Simulation results of system performance using conventional control with central control action (Case I) and without central control action (CaseII). 

(a)

(b)

(c)

(d)

(a)

(b)

(c)

(sec.)

(sec.)

(sec.)

(sec.)

(sec.)

(sec.)

(sec.)

(sec.)(d)

PV2 ESSPV1 PV2 ESSPV1

∆V

Case I Case II  
Fig. 13. Simulation results of system performance using proposed control with central control action (Case I) and without central control action (CaseII). 

voltage 46.3V. By detecting this voltage threshold, Load2 
is reconnected with the relay control shown in Fig. 4.  

• Scenario S6: The SoC of ESS reaches the second load 
recovering threshold at 31%, corresponding to bus 
voltage 47.1V. In this case as the same mechanism shown 
in Scenario S5, Load1 is reconnected finally. 

Fig.11 shows the full range of SoC scenario of ESS, taking 
into account of both intermittent characteristics of PV 
generation (Fig. 11(d)), and the load fluctuation in demand 
side (Fig. 11(f)), which is described as follows: 

• Scenario S1: The power generated from PV units (Fig. 

11(e)) is continuously lower than the power consumed 
from demand side, which results in low SoC scenario 
(Fig. 11(a)). Then bus voltage Vdc is decreased steadily 
with slope of 0.1V/% based on DC bus-signaling control 
(Fig. 11(b)). In this case two steps of loads shedding 
procedures are enabled to cut off non-critical loads (Fig. 
11(f)).  

• Scenario S2: The PV units gradually increase power 
generation due to the increase of solar irradiance (Fig. 
11(d)), while the ESS keeps charging power (Fig. 11(c)). 
And then two steps of load reconnection are enabled.  
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• Scenario S3: The overall system operates in normal 
condition, while the DC bus voltage is kept at nominal 
value 48V.  

• Scenario S4: The overall system operates in high scenario 
of operation when SoC reaches the upper-threshold 95%. 
Then both primary and secondary coordinated controllers 
are taking effect automatically. It can be seen that due to 
coordinated control, the PV power generation can be 
decreased gradually to suppress charging power into 
ESS, which keeps the SoC from continuously increasing 
effectively.   

In order to further highlight the advantages and 
effectiveness of the proposed control strategy, comparison 
study is carried out which is shown in Fig. 12 and Fig. 13. Fig. 
12 is based on conventional central control as Fig. 8 shows. 
When SoC is not above upper-threshold 95%, the overall 
system operates in normal condition that ESS is controlled in 
VCM to support DC bus voltage and PV units operate in CCM 
following MPP. Under the condition that SoC above upper-
threshold 95%, the central controller sends out mode changing 
signal to all units so that the ESS is in idle mode, and both PV 
units operate in VCM while sharing the load together by using 
droop control. Case I and Case II of Fig. 12 show the 
simulation results of conventional control algorithm with and 
without central control actions respectively. It can be seen 
from Fig. 12(d) in Case I that the coordinated control can be 
achieved well by switching PV units to VCM mode when SoC 
reaches upper-threshold. In this case the ESS can be 
effectively kept from over-charging scenario as shown in Fig. 
12(a). However there is large transient bus voltage decay when 
the overall system switching control mode to prevent the over-
charging scenario by using conventional control algorithm. 
Moreover, Case II in Fig. 12 shows the scenario of 
conventional coordinated algorithm when the central control 
action fails. This situation can happen when either the central 
controller or communication link fails. In case II, Fig. 12(a) 
shows that ESS reaches fully charged however PV units are 
not able to decrease power to limit charging power to ESS 
(Fig. 12(d)). Which means, in this case, over-charged situation 
can happen.  

In contrast, Fig. 13 shows the simulation results using the 
proposed coordinated control strategy under the situation with 
(Case I) and without (Case II) the central control action. By 
comparing Case I in both Fig. 12(b) and Fig. 13(b), it can be 
seen that with the proposed control strategy the islanded DC 
microgrid is able to achieve a more smooth bus voltage 
regulation when SoC is approaching to be fully charged. In 
addition, by contrasting Case II in Fig. 12 and Fig. 13, the 
simulation results show that with the proposed control strategy, 
the coordinated performance can be well achieved by 
regulating power among ESS and PV units (Fig. 13(a)) to keep 
SoC in a safe range (Fig. 13(d)), even without the interference 
of the central controller from upper level. 

VII.  CONCLUSION 
This paper proposed a coordinated control strategy among 

RES, ESS and loads based on a novel bus-signaling method. In 
the primary control level, ESS unit performs the bus-signaling 
by controlling the bus voltage at different thresholds. Reacting 
to these bus voltage deviations, the RES units and loads 
implement virtual inertia control and demand side control 
respectively. In this way, the autonomous coordinated 
performance of DC islanded microgrid is achieved in full 
range of SoC of ESS. Then additional secondary control is 
implemented to eliminate steady state bus voltage deviation. 
Finally, the real-time hardware-in-the-loop simulation results 
verified the proposed coordinated control strategy by 
presenting the coordinated operation of DC islanded microgrid 
system under different SoC scenarios.  
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