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Abstract

Erd +os asked if the removal of few edges in a large 4-color-critical graph always leaves a

3-chromatic graph. Erd +os and Hajnal asked if a graph is 3-colorable if all its induced

subgraphs can be made bipartite by the omission of few edges (relative to the number of

vertices). We answer both problems, which are stated in Bollobas’ monograph Extremal Graph

Theory from 1978, in the negative.
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1. Introduction

How close can a 4-chromatic graph be to a bipartite graph? Bollobás’ monograph
[2] contains two problems on that question. The bipartite edge-index of a graph G is
the smallest number of edges that must be deleted in order to obtain a bipartite
graph. We denote it by bieðGÞ: Erd +os asked the following question, see Problem 60
on p. 291 in [2].

Problem 1. Let f ðnÞ denote the smallest bipartite edge-index of a 4-color-critical
graph with n vertices. Does f ðnÞ tend to infinity as n tends to infinity?

The bipartite edge-ratio of a graph G is the smallest number q such that
any subgraph H of G has bipartite edge-index at most qjVðHÞj: We denote
it by birðGÞ: Erd +os and Hajnal asked the following question, see Problem 37 on
p. 287 in [2].
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Problem 2. Does there exist a positive number e such that any graph of bipartite
edge-ratio oe is 3-colorable?

We show that appropriate quadrangulations of the projective plane answer both
questions in the negative. We follow the notation of Mohar and Thomassen [4].

2. Quadrangulations of the projective plane

A quadrangulation of a surface is a 2-connected graph embedded in the surface
such that every face is bounded by a (contractible) 4-cycle. A quadrangulation is
minimal if it does not contain another quadrangulation as a proper subgraph.
Youngs [6] discovered the fascinating result that every quadrangulation of the
projective plane has chromatic number 2 or 4. The chromatic number of
quadrangulations on other surfaces has also been studied, see [1] and its references.
Youngs’ result was generalized in another direction by Gimbel and Thomassen [3]: A
graph in the projective plane which has no contractible triangles is 3-colorable if and
only if it does not contain a nonbipartite quadrangulation. This result, which was
conjectured by Rademacher [5], implies the following.

Theorem 2.1. If Q is a nonbipartite minimal quadrangulation of the projective plane,
then Q is 4-color-critical, that is, Q has chromatic number 4 and every proper subgraph

is 3-colorable.

The edge-width ewðGÞ of a graph G on a surface is the length of a shortest
noncontractible cycle.

Theorem 2.2. If Q is a nonbipartite quadrangulation of the projective plane, and Q� is

its geometric dual graph, then bieðGÞ ¼ ewðG�Þ:

Proof. If C is a cycle in Q� of length ewðG�Þ; then we delete from the projective plane
the edges and vertices of C; and we delete from Q all dual edges of C: This
transforms the projective plane into a disc and Q into a near-quadrangulation of that
disc, that is, all faces but one are bounded by 4-cycles. That near-quadrangulation is
bipartite and hence bieðGÞpewðG�Þ:
Consider now any maximal (not necessarily maximum) bipartite subgraph B of Q:

Clearly B is connected and contains all vertices of Q: Let e be an edge of Q not in B:
The maximality of B implies that B,feg contains an odd cycle C: As all contractible
cycles of Q are even, it follows that C is noncontractible. If we delete C from the
projective plane, then the resulting space is a disc in the plane. So, we may think of
the projective plane as obtained from a closed disc bounded by a cycle C0 by
identifying diametrically opposite points of C0 in such a way that identifying
diametrically opposite points of C0 transforms C0 into C: Thus C0 has two edges
e1; e2 whose identification results in e: C0 	 fe1; e2g has precisely two components
P1;P2: As B is bipartite it has no path joining a vertex of P1 with a vertex of P2 and
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having all other vertices inside C0: So all C-components of B are attached to either P1
or to P2: Moreover, the maximality of B implies that every edge in Q but not in C

joins a C-component of B attached to P1 to a C-component of B attached to P2:
Thus the dual edges of the edges in Q but not B form a cycle in the dual graph Q�:
This shows that bieðGÞXewðG�Þ: &

Theorem 2.3. If Q is a quadrangulation of the projective plane of maximum degree d;
and its geometric dual graph Q� has m pairwise edge-disjoint noncontractible cycles,
then birðQÞpd=2m:

Proof. Let C1;C2;y;Cm be pairwise edge-disjoint noncontractible cycle in Q�: Let
H be any subgraph of Q: Let Ci be a cycle among C1;C2;y;Cm such that its set of
dual edges has smallest intersection with EðHÞ: Let q denote the number of dual
edges of Ci in H: Then beiðHÞpq: On the other hand, jEðHÞjXmq by the minimality
of q; and jEðHÞjpdjVðHÞj=2 as H has maximum degree at most d: Therefore,
beiðHÞpdjVðHÞj=2m: Since this holds for every subgraph H; it follows that
birðQÞpd=2m: &

3. Problems 1 and 2

Let Gðq;mÞ denote the cartesian product of a path of length q 	 1 and a path of
length m 	 1: This is a near-quadrangulation of the plane. Now add an edge between
any two diametrically opposite vertices of the outer cycle. This results in a
quadrangulation Hðq;mÞ of the projective plane. If both of q;m are X3; then
Hðq;mÞ is a minimal quadrangulation of the projective plane. If, in addition, q;m

have the same parity, then it is nonbipartite and hence 4-color-critical, by Theorem
2.1. If q ¼ 3 and mX3 and m is odd (or q ¼ 4 and mX4 and m is even), then its dual
graph has edge-width 4 and so f ð3mÞp4; by Theorem 2.2. This answers Problem 1 in
the negative. On the other hand, if q ¼ mX4 and m is even, then its dual graph has at
least m=2 pairwise edge-disjoint noncontractible cycles, and therefore Qðm;mÞ is 4-
color-critical and has bipartite edge-ratio at most 4=m; by Theorem 2.3. This answers
Problem 2 in the negative.
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