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INTRODUCTION 

By a Wiener process we shall mean a smooth generalized stochastic 
process with independent increments. We give a precise definition 
in Section 1. Our choice of the name is motivated by the similarity 
of these processes to those given by Wiener himself in [6]. Our 
purpose in the present paper is to develop the theory of Wiener 
processes with a view to applying them to continuously splittable 
distributions on Hilbert space. These were introduced by us in [.5], 
as a special cases of weak distributions in Hilbert space. The latter 
were introduced by Segal in [3] and [d]. A definition for splittable 
distributions is given in Section 2. This section also contains our main 
technical result; namely: the proof that certain classes of random 
variables associated with Wiener processes are infinitely divisible. 
As corollaries we derive similar results for integration in Hilbert space. 
In Section 3 we analyze the infinitesimal structure of Wiener Processes 
in a way that makes precise the analog between them and the rather 
nebulous concept of continuous direct products of probability measure 
spaces, In Section 4 we develop the theory of stochastic integrals, and 
as examples introduce the normal, the Poisson, and the Cauchy 
Wiener processes. We discuss the connection between splittability and 
stochastic integrals for Poisson Wiener Processes in Section 5 and 
for normal Wiener processes in Section 6 together with their appli- 
cations to integration on Hilbert space. 

This paper gives an account of some work done by us during the 
summers of 1966 and 1967. 

* Research supported in part by the National Science Foundation, contract GP 7683. 
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1. WIENER PROCESSES 

By a Wiener process we shall mean a countably addivitive may $ 
from a Boolean a-algebra llJz of subsets of a space iI4 to random 
variables that has independent values on disjoint subsets. Here and 
throughout this paper, whenever we refer implicitly to a topology on 
random variables as we have just done in the phrase “countably 
additive map,” we shall always mean the topology of convergence in 
measure. We shall say that $ is a continuous Wiener process if $(A) = 0 
whenever $( A’) is either 0 or #(A), f or all elements A’ of !N contained 
in A. 

It is sometimes of technical convenience to form the measure ring 
of a Wiener process. To do this we let % be the family of all elements 
A of flJz such that 1,4 vanishes on all elements of %N contained in A. 
It is obvious that ‘8 is a u-ideal in ‘%Q, that W/‘% is a Boolean u-algebra, 
and that # induces a countably additive function on m/m. Actually, 
it follows from Lemma 1 below that m/‘% is a complete Boolean 
algebra and # is completely additive on it for the same reason that this 
is so in the more familiar case of the measure ring of a probability 
space. If 1c, is a continuous Wiener process, then the Boolean algebra 
$3n/% has no atoms. 

LEMMA 1. Let (X(y) : y E r} be an indexed family of independent 
random variables. Suppose CX(yn) converges in measure for all non- 
repeating sequences {m} from I’. Then X(y) = 0 for all but countably 
many y in r. 

Proof Let x’(y) coincide with X(y) when / X(y)1 < 1 and vanish 
otherwise. We apply the Kolmogoroff three-series theorem (see 
[2], p. 307, or [I], p. 111) to all nonrepeating sequences {yn} from r. 

Since ZX(y%) converges in measure, it follows that 

(1) -w X(Y?&>l > cl 
(2) 2 Variance [X’(yn)] 

and 

(3) ~W’(Yn)) 

all converge. Since (1) always converges, / X(y)1 < E for all but 
countably many y in r. Since (2) always converges, X’(y) is constant 
for all but countably many y in r. Since (3) and all its rearrangements 
converge; that is, since (3) always converges absolutely, E(X’(y)) = 0 
for all but countably many y in I’. Consequently, X(y) vanishes for 
all but countably many y in r. 
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2. INFINITE DIVISIBILITY 

It is classical that the random variables of a suitably smooth 
stochastic process with independent increments have infinitely 
divisible probability distributions (see [2], p. 308, or [I], p. 420). 
A probability distribution on a finite-dimensional real vector space is 
defined to be infinitely divisible if for all positive integers n it is the 
n-fold convolution of some probability distribution with itself. 
A sufficient condition for a finite-dimensional vector-valued random 
variable to have an infinitely divisible probability distribution is that 
for all E > 0 it be a constant plus a finite sum of random vectors Y 
with P(I Y / > E) < E. (See [2], p. 550.) We wish to show that a 
continuous Wiener process has values with infinitely divisible 
probability distributions. However, we formulate the following lemma 
a little more generally than is necessary for this in order to handle 
related cases of interest. 

LEMMA 2. Let V be the set of all random variables on a probability 
space with values in a real vector space of finite dimension. Denote by C 
the set of all constants in V, and form V/C topologized by convergence 
in measure. Let # be a countably additive map from a complete Boolean 
algebra b to V/C such that # has independent values on disjoint elements 
of 23. If b has no atoms, then the values of +b consist of random vectors 
with infkitely divisible distributions. 

Proof. First we observe that 4 is actually completely additive. 
The reason for this is the fact if 9 is a disjoint family of elements of d, 
then, for all but countably many p in 9, #(/3) is the 0 element of V/C 
(i.e. the coset of constants). This fact almost follows directly from 
Lemma 1. The thing that makes lemma 1 rigorously applicable is a 
standard result about the existence of absolute centering constants 
(see [I], p. 112). This result implies that one may select from each 
coset u in V/C a representative random vector ~(0) such that if a 
series Zs, of independent elements of V/C converges V/C, then ~(a,) 
converges in measure. 

Denote the minimum and maximum of B by 0 and 1 respectively. 
It will be sufficient to establish that #(l) is infinitely divisible. Let 
9 be a maximal chain in 8. Then 9’ must contain 0 and 1 also the 
supremum and infimum of any nonempty subset of 9. Consequently 
9 is a complete chain, and $ is continuous on 9 in the order topology 
of 9. But 9, being complete, is compact; and, therefore, 2 has a 
unique uniform structure that induces its topology; viz., the family 
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of all neighborhoods of the diagonal in 5? x 9. For any neighborhood 
!lI of 0 in V/C, because of the uniform continuity of 4, we can find 
a neighborhood U of the diagonal in 3’ x 9 such that (#)y - +(y’) 
is in % whenever (y, y’) is in U. Since the chain 3 has no gaps because 
23 has no atoms, it is an exercise to produce a finite number 

0 = Yo <Yl< a.. < yn = 1 of points in 9 such that (y. , yr), 

bl T YdY.~ (Yn-1 7 m) are all in U. Then the equation #(l) = 
Z[#(yi) - #($~~-r)] establishes the infinite divisibility of #( 1) according 
to the sufficient condition for infinite divisibility given above. 

By applying this lemma to the measure ring of a Wiener process 
we get the following corollary. 

COROLLARY 1. The values of a continuous Wiener process have 
infinitely divisible distributions. 

Lemma 2 is also applicable to continuously splittable distributions 
on a real Hilbert space H (see [5]). A distribution on H is a linear map 
to random variables from a linear manifold of continuous linear 
functionals on H that is dense in the dual H* of H. With each 
projection P on H there is associated a Boolean u-algebra Y(P) of sets; 
namely, Y(P) is the smallest Boolean u-algebra with respect to which 
all the random variables corresponding to linear functionals of the 
form [ o P with 4 in H* are measurable. We say that P splits the 
distribution if the domain of the distribution is invariant under P and 
the Boolean u-algebras 9(P) and sP(I - P) are stochastically 
independent. 

DEFINITION. A distribution on His said to be continuously splittable 
if there exists a complete non-atomic Boolean algebra ‘$3 of projections 
on H satisfying the following conditions: 

(1) Every projection in ‘1) splits the distribution. 

(2) For every linear functional 5 in the domain of the distri- 
bution, the map that sends P into the random variable associated with 
5 o P is countably additive on ?X3. 

We may apply Lemma 2 to the map in (2) above the get the following 
corollary. 

COROLLARY 2. The random variable associated with a continuous 
linear functional by a continuously splittable distribution on a real 
Hilbert space is infinitely divisible. 
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The random variable of Corollary 2 is simply a special case of a 
splittable random variable, which we define as follows. Suppose we 
have a continuously splittable distribution on a real Hilbert space, 
B being the relevant complete nonatomic Boolean algebra of pro- 
jections; in this context, we term a random variable X splittable if, 
for each P in 8, we can write X as X, + X1-, where X, is Y(P)- 
measurable and X1-, is sP(I - P)-measurable. So the following 
corollary, in fact, includes corollary 2. 

COROLLARY 3. In the context of a continuously splittable distribution 
on a real Hilbert space, every splittable random variable is infinitely 
divisible. 

Proof. Let ?ZJ be the relevant complete nonatomic Boolean algebra 
of projections, and let X be the splittable random variable. For P in 8, 
in the decomposition X = X, + X1-, given above, the random 
variable X, is actually uniquely determined up to an additive constant; 
for the difference of two versions of X, would be both Y(P)- 
measurable and 9(1- P)-measurable and, therefore, constant. 
Consequently, we get a well-defined map # on b by taking #(P) to 
be X, modulo constants. Lemma 2 can be applied to the map # to 
yield the present corollary as soon as we have verified that I,!J is 
countably additive. Suppose that (P,} is a disjoint sequence of 
elements of B with P = L’P% . We wish to show that #(P) = L’#(P,). 
Actually L’#(P,) converges as we shall demonstrate below by Lemma 3. 
Consider d = #(P) - L’z/(P,); it is stochastically independent of 
all Y(PJ. But for every linear functional t in the domain of the 
distribution, item (2) in the definition of “continuously splittable” 
says that the random variable associated with t o P is the sum of 
the series of random variables associated with 5 o P, . It follows that 
Y(P) is the smallest Boolean a-algebra containing all the 9’(P,). 
Hence d is independent of Y(P), Being also independent of 9(1- P), 
d must be the coset of constants. 

By exploiting the vector-valued feature of the statement of Lemma 2, 
we can extend corollary 3 to finite sets of spliitable random variables. 

COROLLARY 4. In the context of a continuously splittable distribution 
on a real Hilbert space, any finite number of splittable random variables 
have an infinitely divisible joint probability distribution. 

The following lemma was used above to help verify the hypothesis 
of countable additivity in an application of Lemma 2. 
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LEMMA 3. Let V be the set of all real random variables on a 
probability space. Denote by C the set of all constants in V, and form 
V/C topologixed by convergence in measure. Suppose # is a finitely 
additive map from a Boolean algebra B to V/C such that z,4 has independ- 
ent values on disjoint elements of 23. If {pn} is any disjoint sequence of 
elements of 8, then Z#,) converges in V/C. 

Proof. Suppose that (X,} is a sequence of independent random 
variables. A sufficient condition for there to exist a sequence (cn} of 
constants such that Z(X, - c,) converges in measure is that there 
exist a random variable X such that X - cT+“,,X+ is independent of 

X, for all n (see [I], pp. 119, 120). If we take X, to be a 
?p;e?nZiYive of z/$3 ) and X to be a representative of the value of IJ 
on the maximum ofnj;, the Lemma follows. 

3. INFINITESIMAL STRUCTURE 

Let %TI be a o-algebra of subsets of a space M and let $ be a con- 
tinuous Wiener process on m. For each set A in W, let +(A, t) be the 
logarithm of the characteristic function of #(A). That is, 

WC 4 = kwexPww)) 

Since #(A) is infinitely divisible we may apply the Levy-Khintchine 
decomposition to it. (See for example [I] p. 130.) We obtain 4(A, t) = 

ir(A)t + J Wh t) 44% A) where K(h, t) is the kernal function 
{exp(iht) - 1 - iht/(l + Xz)}( 1 + h2)/X2 if h # 0 and - Bt2 if h = 0, 
p(A, *) is a finite Bore1 measure on R, r(A) is a real number and the 
integral is taken over R. On taking p to be a fixed Bore1 set in R and 
applying the uniqueness of the Levy-Khintchine decomposition 
together with the countable additivity of the process # we see that 
p(*, /I) is a totally finite measure on !lJ& and that y is a countably 
additive signed measure on ‘!lJJ. 

If x is a rational number or infinity, let /3, denote the interval 
(- co, x]. Now choose a totally finite measure p on YJ so that ( y 1, 
(the toal variation of r), and all the measures p(*, &) are absolutely 
continuous with regard to it. Let f(a, x) and ~(01) denote the Radon- 
Nikodym derivatives of p(*, 8,) and y repsectively with regard to p. 
Since for x and x’ rational with x < x’, and any set A in %U we have 
0 < p(A, 8,) < p(A, flz,) < p(A, &), it follows after changing the 
f(w, x) on a null set of m that for each 01, f(cll, x) is nonnegative, 
monotone increasing and bounded as a function of x. For each a in M 



384 SHALE AND STINESPRING 

we may therefore use f(ar, X) to construct a Bore1 measure V(OL, a) on 
R so that f(a, X) = v(o1, &J f or x rational or infinite. Finally let 
F(ar, t) be the function defined by: 

F(ol, t) = irl(a)t + j K(h, t) dv(a, A). 
R 

We can now state: 

PROPOSITION 1. Let !Bl be a u-algebra of subsets of a space M. 
Let $ be a continuous Wiener process on ‘9l. If +(A, t) is the logarithm of 
the characteristic function of # and F(a, t) and p are as described above 
then for each 01 in M, exp(F(ol, t)) is the characteristic function of an 
infinitely divisible distribution on R and 

4(A t) = jAwT 4 444 

To prove the proposition it remains only establish the last equation 
above. This amounts to showing that 

j, ( jRm 4% 4) 444 = j, d4 4-M 4 

whenever A is a set in 9.N and g(h) = K(h, t) for any t. Consequently, 
it is enough to show that the equation holds wheng(h) is any bounded 
Baire function. It certainly holds if g(h) is the characteristic function 
of the interval (- co, X] with x rational and hence when g(h) is in the 
linear span V of these characteristic functions. However, the set of 
bounded Baire functions is the smallest set containing V and closed 
under bounded pointwise limits. Our result now follows on applying 
the Lebesgue-dominated convergence theorem. 

In a formal way proposition 1 may be thought of as decompositing 
the probability measure space associated with the random variables 
{#(A)) into a continuous direct product with one factor for each 01 in M, 
so that any $(A) is a continuous direct sum of stochasticly independent 
random variables with one for each 01 in A. It is important to notice 
that the random variable over cy does not appear and probably does not 
exist. The corresponding characteristic function exp(F(a, t)) does 
exist however and our proposition says that the characteristic function 
of #(A) is just a continuous product of these functions as 01 ranges 
over A. 
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Below we shall need an estimate ofF(ol, t). Since 

I w, q < At2 + B, 

it may be seen from the definition of F(a, t) that / F(cr, t)\ < Q(I t I) 
where Q(t) is a quadratic polynomeal in t whose coefficients are 
nonnegative functions on M which are integrable with regard to p. 

4. STOCHASTIC INTEGRALS 

The structure described above lets us discuss stochastic integrals 
for continuous Wiener processes in a relatively closed form. To this 
end let ‘9JI be a u-algebra of subsets of a space M and let $I be a con- 
tinuous Wiener process on 9II. Let f denote a function on M which is 
measurable with regard to 1132. When the stochastic integral off with 
regard to d# exists, we shall write it as Jf&. The function +(f, t) 
will denote the logarithm of the corresponding characteristic function. 
That is +(f, t) = log(E(exp(itJ$.@))). 

First let f be a step function h,S, + *.a + ,S, where S, ,..., S, are 
the characteristic functions of disjoint sets A, ,,.., A, in ‘$I. Then 
Jf& = h,t,h(A,) + a** + h,#(A,). A computation shows that 

dJ(f, 4 = SwGf(4 4 dP(4 w ere F(ol, t) and p are described in h 
Proposition 1. 

Next suppose that f is bounded. Let fi , fi ,..., be a uniformly 
bounded sequence of step functions converging to f pointwise. Let 
X, = Jf,da,b. Then X, , X, ,..., converges in measure to a limit 
independent of the particular choice of fi , fi ,..., so that we can 
write the limit as Jfd#. T o show the convergence of the X, it is 
sufficient to show that as n and m go to infinity, the characteristic 
function of X, - X, converges to 1 pointwise in t. This amounts 
to showing that JF(ol, ( fn(ol) - fJa)t) dp(a) converges to zero as m 
and n go to infinity; which in turn follows from the Lebesgue- 
dominated convergence theorem using the estimate at the end of 
Section 3. 

The independence of J f& f rom the particular sequence {f,} used in 
its definition is clear. Finally we observe that $( f, t) = lim 4( fn , t) = 
J-m% f (4t) dP(4 

Now suppose that f is any measurable function on M. For 
n = 1, 2, 3 ,..., let g,(a) = f(a) if n - 1 < 1 f(a) ) < n and letg,(ru) = 0 
otherwise. Let fn = g, + .** + g, . We will call f integrable with 
regard to da,h if for each set A in ‘IDI, the elements JA fn d# con- 
verge in measure as 12 goes to infinity. Since the terms of the 
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sequence SA gl 44 JR g2 44. -. are stochasticly independent random 
variables, a necessary and sufficient condition for convergence, is the 
convergence of infinite product of the corresponding characteristic 
functions. (See [I], p. 115.) Th is, in turn, amounts to the convergence 

for each t of S,F(a,.L(4 4 44 > 01 as n goes to infinity. Hence in terms 
of our defimtion, f is integrable with regard to d# if and only if 
F(ol,f(a) t) is integrable with regard to p for each t. Then we have 

4(f, 4 = SF(db) t> 4(a). 
Let # be a continuous Wiener process on the Boolean o-algebra ‘9JI 

of subsets of a space 44. There are three very striking illustrations of 
the foregoing theory of stochastic integrals. We shall say that the 
Wiener process is: 

or 

(N) centered normal, 

(P) Poisson, 

(C) Cauchy, 

respectively, provided the probability distributions of all the values 
of # are as described. To be specific for A in W, #(A) is distributed, 
in each case respectively, as follows: 

(N) with density [27&A)]-’ exp[-xZ/2p(A)]; 

(P) concentrated on the nonnegative integers with n receiving 
probability exp(-p(A))[p(A)ln/n!; 

(C) with density {~&4)[1 + (x/p(A))“]}-i. 

In each case, p is a finite measure on M; in case N, p(A) = variance 
of +(A); in case P, p(A) = E(#(A)) = variance of #(A). Then 
$(A, t) the logarithm of the characteristic function of $(A) is given, 
in each case respectively, by: 

W) W, t> = --B&W; 
(P) $(A, t) = p(A)(eit - 1); 
(Cl mb t) = -fWI t I* 

Taking p to be nonatomic makes $ continuous. On taking p to be the 
measure described in proposition 1 we get the structure function 
F(a, t) to be. (N): -l/2t2; (P): eif - 1; (C): - 1 t /. Since the variable 
01 over M does not appear explicitly we refer to these processes as 
homogeneous. 
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Consequently, a necessary and sufficient condition for f to be 
stochasticly integrable with respect to &I is, in each case, respectively: 

(N) that f be in L,(M, 93, p); 

(P) that f be u-measurable; 

(C) that f be in L,(M, !D, p). 

If # is the Poisson process (P) and Q!J’ is the translate defined by 

#‘(A) = #(A) + P(A)* Th en the structure function F(ol, t) for z/Y is 
just exp(it) - 1 - it. Hence a necessary and sufficient condition that 
f be integrable with regard to d$’ is that f be in L,(M, m, p) which is 
quite different from what we get for d# itself. 

This suggests defining stochastic integrals only up to additive 
constants. Consequently, returning to the notation of the first part 
of this section, if $ is any Wiener process we will say that f has a 
renormalized stochastic integral if there exists constants c, so that 
Jfn d# - c, converges in measure. We will write the limit class of 
random variables as J’fd$. A 
the existance of J’fd# 

necessary and sufficient condition for 
is the convergence of the product of absolute 

values of the characteristic functions of J,g, d#. (See [I], p. 115.) 
It is straightforward that this happens if and only if Re(F(ol,f(or) t) 
is integrable with regard to p for all t and then settingRe+( f, t) = 

Re(log(E(exp(it S’f44))) we have Re $( f, t) = S ReF(ol, f(a)t) dp(ol). 

5. STOCHASTIC INTEGRALS AND SPLITTABILITY 

Let # be a continuous Wiener process on the Boolean u-algebra ‘23 
of subsets of the space M. For each A in ‘93, let Y(A) be the smallest 
Boolean o-algebra of sets with respect to which all values of # on 
subsets of A are measurable, In this context a random variable X will 
be called splittable if for each A in93 we can write X = X, + X,-, , 
where X, is Y(A)-measurable, and X,, is Y(M - A)-measurable. 
Any stochastic integral or, indeed, any renormalized stochastic 
integral is splittable. It might be conjectured that every splittable 
random variable is a renormalized stochastic integral. This conjecture 
is false in general as the counterexample at the end of this section 
shows. However, in certain special cases, the conjecture is true. The 
case OS a centered normal Wiener process is dealt with in the next 
section. The case of a Poisson Wiener process is covered in the 
following proposition. In proving the proposition it is convenient to 
have the following trivial probabalistic lemma. 

SsO/2/4-2 
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LEMMA 4. Let Y be a Boolean a-algebra of events of a probability 
space, and let S be an event in 9’. Suppose that T is an event of positive 
probability that is independent of Y. If X is an Y-measurable random 
variable, then its restriction to 5’ is determined by its restriction to S n T. 

Proof. Suppose X, and X, are two Y-measurable random 
variables that coincide on S n T. Let U be the event that X, = Xs . 
Then P(S)P(T)= P(SnT)= P(UnSnT)=P(UnS)P(T). 
Since P(T) # 0, it follows that P(S) = P( U n S). In other words, 
X, coincides with Xs on S. 

PROPOSITION 2. Consider a continuous Poisson Wiener process. 
In this context every splittable random variable is a constant plus a 
stochastic integral. 

Proof. Let 16 be a continuous Poisson Wiener process on the 
Boolean u-algebra !JJI of subsets of the space M. Let p(A) = E(#(A)) 
for all A in llJz. We shall need to form a sequence of partititions of the 
measure space (M, 93, p) as follows. For n = 1, 2,... choose disjoint 
sets M(n, 1), M(n, 2) ,..., M(n, 2n) in?UI such that p(M(n. i)) = 2-%(M) 
for i = l,..., 2”. Do this in such a way that the partition 

{M(n + 1, 1) . . . . M(n + 1, 2n+1)} 

is a refinement of the partion (M(n, I),..., M(n, 2”)) for all n. 
Suppose X is a splittable random variable. Consider the event 

that #(&I) = 0. On this event $(A) = 0 for all A in !JJi. Hence every 
Y(M)-measurable function is constant where #(M) = 0. We may 
assume without loss of generality that X vanishes when #(M) = 0. 
We are about to demonstrate that any splittable random variable X 
that vanishes when I/J(M) = 0 is determined by its restriction to the 
event #(AI’) = 1. Let Qn be the event that #(M(n, i) ,< 1 for i = 1, 
=,..., 2”. To show that X is determined on Q, , we write 

x = X(1) + X(2) + *** + X(2”) 

where X(i) is Y(M(n, i))- measurable. We may and shall take X(i) to be 
0 when $(M) = 0. N ow X(i) vanishes when $(&I(%, i)) = 0 and 
a,h(M - M(n, i)) = 0. H ence, by the lemma, X(i) vanishes whenever 
$(M(n, i)) = 0. So X(1) coincides with X on the event T that: 

#(M(n, 2)) = #(M(n, 3)) = ..a = #(M(n, 2”)) = 0. 

Hence X(1) is determined, when z/(M(n, 1)) ,< 1 and the event T 
obtains, by the restriction of X to the event $(&I) < 1. By the lemma, 
therefore, X(1) is determined when $(M(n, 1)) < 1 by the restriction 
of X to the event $(&I) < 1. A similar thing holds for X(2),..., X(212). 
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Hence X = L’X(i) is determined on Q, by the restriction of X to the 
event #(M) < 1 or, equally well, by its restriction to the event 
$(M) = 1, since X vanishes when 4(M) = 0. Our assertion now 
follows because the union of all the Q,, is the whole probability space. 

In view of what we have just observed, to prove the proposition it 
suffices to find a measurable function f on M such that Jfd# coincides 
with X when a,h(M) = 1. A convenient way to do this is by means of a 
specific realization of the process +. Our choice of realization is the 
one given by Wiener and Wintner in [7]. It also resembles the immage 
of the duality transform given in [3]. For n = 0, 1, 2,..., take the 
measure space (Mm, !l%, p”) to be the n-fold Cartesian product of the 
measure space (M, !U2, p) with itself with the understanding that MO 
consists of a single O-triple of p” measure 1. Form a probability space 
9 by taking D = (Jz,o Mn, declaring a subset 5’ of Sz to be measurable 
if each S n M” is in ‘%RJZn, and defining probabilities by 

P(S) = exp(--p(M)) f pn(S n Mn)/n!. 
?Z=O 

If we take, for each A in m and o in Sz, [#(A)](w) = (number of 
coordinates of w in A), then this 1,5 is equivalent to the process we 
started with. The subset Mn of has become the event that 4(M) = n. 
If f is a measurable function on M, what is the restriction of Jfd# to 
the event #(M) = 1, i.e., to the set M’ = M? The answer is that 
this restriction is just f itself, because this is obviously so when f has 
has only values 0 and I. To make X = f fdtj, therefore, it suffices to 
let f be the restriction of X to Ml = M. 

COUNTEREXAMPLE. Let (M, $232, p) be a nonatomic measure space 
with p(M) finite. Let 1,4i and I,& be independent Poisson Wiener 
processes on mZ such that 

p(A) = E(#,(A)) = E(#,(A)) for all A in !R 

Let h, and h, be distinct nonzero real numbers. Set 1,4 = X& + h&a . 
Then the random variable #,(M) is splittable relative to the Wiener 
process #, but it is not a constant plus a stochastic integral with 
respect to d#. 

Proof. First, suppose $,(M) = c + J fd$. By setting II, = 
+A + &?~a and sorting z,& from #a, we get the equation: 
S (1 - hf) 4b = c + Aa Sfdh . S ince the left- and right sides are 
independent, they are both constant. Hence Jfd& is constant. 
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Therefore, sf&!~, is constant also. That implies the absurd claim that 
#,(M) is constant. 

Next, to show #i(M) is splittable relative to #, it is enough to show 
that #,(A) is Y(A)- measurable for all A in ‘23. For this it is sufficient 
to establish that #i(M) is Y(M)-measurable. This is especially 
obvious if hi and X, are linearly independent over the rational numbers, 
because #i(M) and #a(M) have only integer values, and so #(M) 
determines h(M). But it is true in general. To express #i(M) in terms 
of #, we resort to the partitions of the measure space (M, 2X, p) 
described in the first part of the proof of the preceding proposition. 
Let $(A,) = 1 and &x) = 0 when x # h, . Then 

The intuitive meaning of this equation is so simple that it ought 
to be mentioned. An ordinary Poisson stochastic process on an 
interval (see [I], Chapter VIII, Section 4) has paths that are step 
functions with jumps of amount 1. If one takes two independent such 
processes and forms h, times the first plus h, times the second, the 
resulting process has paths that are step functions with jumps of 
h, or A2 . From such a path one can determine how many times the 
first process has jumped by counting the number of jumps of h, . 

The idea of considering the jumps in a stochastic process can be 
used to give counterexamples very generally. We shall give a brief 
indication of this use. Let # be a continuous Wiener process on the 
Bore1 subsets of the unit interval [0, I]. The stochastic process 
t--f Q&O, t]) has paths with at worst jump discontinuities (see [I], 
Chapter VIII). If $ is not normal, then for some E > 0, the number 
of jumps of absolute value >E is not the zero random variable. In fact, 
it has a Poisson distribution. Intuitively, it is clear that this random 
variable is splittable. However, in most situations, a renormalized 
stochastic integral could not have a Poisson distribution. 

6. APPLICATION TO THE NORMAL DISTRIBUTION 

In [5] we studied splittable random variables in the context of the 
normal distribution on a real Hilbert space and achieved a partial 
result. We can now strengthen that result by applying Corollary 4 
together with the known structure of infinitely divisible probability 
distributions. 
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A normal distribution on a real Hilbert space is a distribution that 
associates a normally distributed random variable (constants per- 
mitted) with every linear functional in its domain. The standard normal 
distribution on a real Hilbert space is the distribution with all con- 
tinuous linear functional in its domain that associates with any linear 
functional a normally distributed random variable with mean 0 and 
standard deviation equal to the norm of the linear functional. Since 
the standard normal distribution has independent values on orthogonal 
linear functionals, it is continuously splittable relative to any non- 
atomic complete Boolean algebra of projections. 

We shall use the following simple consequence of the LCvy- 
Khintchine decomposition theory of infinitely divisible probability 
distributions on Euclidean spaces (see [2], Chapter XVII, especially 
Section 11). 

LEMMA 5. Suppose X,, , Xl ,..., X, are random variables whose 
joint distribution is infinitely divisible. Suppose XI ,..., X, are jointly 
normally distributed. Then there exists a random variable W equal to a 
linear combination of Xl ,..., X, such that X0 - W is independent 

of X, ,***, X, . Furthermore, the variance of W is dominated by a number 
depending only on the distribution of X0 . 

Proof. Let M be the joint distribution of X0, X1 ,..., X, on a 
Euclidean (n + 1)-space with coordinates x,, , xi ,..., x, . It results 
from the Levy-Khintchine theory that M can be written as a 
convolution N * P where N is a normal distribution and P is so far 
from being normal that any coordinate normally distributed with 
respect to P must be constant. In our case, since N is normal and 
X 1 ,*a*, X, are jointly normally distributed, P must be concentrated 
on a line parallel to the x,-axis. Let us rephrase this in terms of 
random variables Y, ,..., Y, , 2, ,..., 2, on a new probability space 
whose joint distribution is the Cartesian product N x P. Then 
X 0 ,.a*> X, have the same joint distribution as Y, + 2, , Yi + 2, ,..., 
Y, + Z, , and Z, ,..., Z,, are constants. Since Y, ,..., Y, are jointly 
normally distributed there exists constants c0 , ci ,..., c, such that the 
conditional expectation 

qyo I r/, I y, >**-7 Yn) = ql + ClYl + CJZ + ..* + c,y, * 

Take W = cIXI + c2X, + *.* + cnXn . Now the joint distribution of 
x0- w, x1 )...) X, is the same as the joint distribution of et, , .$I ,..., t, , 
where &, = Y, + 2, - E(Y, ] Y1 ,..., Y,) + c,, - ciZ, **. - c,Z, , 

El = Yl + Zl ,-mm, & = Y, + 2, . Hence to show that X,, - W is 
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independent of X1 ,..., X, , it is sufficient to observe that 

yo - qy, I y, ,‘a-, Y,) is independent of Yr ,..., Y, , an observation 
that follows from the joint normality of Y, , Yi ,..., Y, . 

To establish a bound for the variance of W we appeal to the LCvy- 
Khintchine decomposition of the distribution of X,, . The canonical 
normal part of the distribution of X0 , unique up to translation, 
has a variance that dominates the variance of W. For, since 
X0= W+(X,- W) h w ere W is normal, X0 - W is infinitely 
divisble, and W and X0 - W are independent, it follows that the 
normal part of the distribution of X0 must be the convolution of the 
distribution of W with another probability measure. 

It is handy to introduce a couple of notations in connection with 
the last lemma. If one consider two versions of the W above, their 
difference is both a function of and independent of Xi ,..., X, . 
Consequently, W - E( IV) is uniquely determined by X,, ,..., X, , 
and we shall denote it by P(X, 1 X, ,..., X,). Intuitively, it is a sort 
of conditional expectation altered by a possibly infinite constant. The 
number depending only on the distribution of X0 , that is, the variance 
of the normal part of X,, , we shall denote by WZ(X,). 

THEOREM. Consider a continuously splittable normal distribution on 
a real Hilbert space. In this context every splittable random variable is a 
constant plus an L, limit of random variables associated with linear 
functionals by the distribution. 

Proof. Let X be the splittable random variable, and let 4 be the 
variable associated with the linear functional t by the distribution. 
For every finite subset F = {[r , [a ,..., c,} of the domain of the 
distribution, the joint distribution of X, [r , [a ,..., [% is infinitely 
divisible according to corollary 4. Hence we may form X, = 

P(X I & ,..., &J. Along with X, we shall consider the smallest 
Boolean u-algebra 9, with respect to which 5, ,..., [,, are measurable. 
The net {XF) is a martingale relative to the Boolean u-algebras {y=}. 
Such a martingale converges in L, if and only if its random variables 
are bounded in L,(cf. [I], p. 319 or [2], p. 236; the fact that our 
indices are a directed set rather than the positive integers makes no 
difference). But for all F, I/ X, 11: = variance X, < vn(X). Therefore, 
lim, X, exists in L, , and X - lim, X, , being independent of all [, 
is constant. 

Since the standard normal distribution produces an isometry from 
continuous linear functionals to random variables in their L, norm, 
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in this case the theorem becomes the following especially simple 
corollary. 

COROLLARY 5. Consider the standard normal distribution on a real 
Hilbert space together with a complete non-atomic Boolean algebra of 
projections. In this context every splittable random variable is a constant 
plus a random variable associated with a linear functional by the 
distribution. 

This corollary can be applied to normal Wiener processes to yield 
a result that contrasts spharply with the counterexample in Section 5. 

COROLLARY 6. Consider a continuous Wiener process whose values 
are normally distributed with mean 0. Any random variable that is 
splittable relative to such a process is a constant plus a stochastic integral. 

Proof. Suppose # is the Wiener process on the Boolean u-algebra 
m of subsets of the space M. We get a measure p by letting p(A) be the 
variance of $(A) f or each A in ‘%X. Let H be the Hilbert space of all 
real square-integrable functions on M. The map that sends f in H 
into the stochastic integral Jfdt,b g ives the standard normal distribution 
on the dual of H. According to the last corollary, any splittable random 
variable is a constant plus such a stochastic integral. 

In [5], a weaker version of Corollary 5 was used to discuss trans- 
formations of the standard normal distribution on Hilbert space. 
Let N be the standard normal distribution on a real Hilbert space H. 
If T is a continuous homogeneous linear transformation on H, the 
transform N’ of N by T is the distribution given by N’(f) = N([ o T) 
for all .$ in the dual H* of H. If T is a continuous affine transformation, 
say TX = Lx + a where L is homogeneous linear and a is in H, then 
&? o T is not homogeneous linear since &TX) = ((Lx) + t(a). 
Nevertheless, it makes sense to define the transform N’ of N by T as 
N’(S) = N(( oL) + [(a). If T is non-linear, it gets hard to give a 
direct interpretation to N(e o T). What might we mean by saying 
that N’ comes from N via a splittable transformation relative to a 
complete nonatomic Boolean algebra % of projections in H? We are 
interested in assuming, in addition that N’ is equivalent to N in the 
sense of mutual absolute continuity [4]. Whatever all this may mean, 
it must imply the following two things: 

(1) the logarithm of the Radon-Nikodym derivative dN’/dN is 
a splittable random variable. 

(2) each N’(f) with 4 in H* is a splittable random variable. 
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If we apply corollary 5 to (l), we find that log(dN’/dN) is a constant 
plus N(a) for some 01 in H *. Let a be the vector corresponding to the 
linear functional 01 under the canonical correspondence between H 
and H*, and let N, be the transform of N under the translation: x 
x + a. What we have seen is that dN’/dN = dN,/dN. This implies 
that N’ and N, are essentially the same distribution in the sense that 

NY0 and N,(t) h ave the same probability distribution for all 5 in H*. 
It was wrongly stated in the introduction to [5] that N’ must come 
from N via a translation, whereas any Euclidean transformation of H 
whose orthogonal part commutes with 23 will do. That these are the 
only possibilities is not hard to see from (2). Applying Corollary 5 
to N’(f) we find that N’(t) must be a constant plus N(S[). The 
constant is E(N’(&) = E(N,([)) = f(a). Since N(S.$) and N,(t) have 
the same variance it follows that 11 St 11 = 11 g 11; in other words S is 
an isometry of H* into itself. It is not hard to see from (2) that the 
adjoint T of S on H commutes with 23. Hence N’(t) = N([ o T)+ ((a) 
where T is an orthogonal transformation that commutes with 8 and 
a is in H. In case 8 is a maximal Boolean algebra of projections, then 
T= 2P-IforsomePinS. 
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