
Adaptivity & Control of
Resources in Embedded Systems

D1f

Interface Specification

Responsible: TU Kaiserslautern (TUKL)

Karl-Erik Årzén (ULUND), Pascal Faure (AKA), Gerhard Fohler (TUKL),
Marco Mattavelli (EPFL), Alexander Neundorf (TUKL),

Vanessa Romero (ULUND), Stefan Schorr (TUKL)

Project Acronym: ACTORS
Project full title: Adaptivity and Control of Resources in Embedded Systems
Proposal/Contract no: ICT-216586
Project Document Number: D1f 2.0 (Final Release)
Project Document Date: 2011-01-29
Workpackage Contributing to the Project Document: WP1
Deliverable Type and Security: R-PU

Contents

Contents 3

1 Introduction 5

2 The Application Interface of the Resource Manager 7
2.1 Overview . 7
2.2 D-Bus . 7

3 Updated Interface 11
3.1 Interface Specification Format . 11
3.2 Formal Resource Manager Interface Specification 11
3.3 Documentation of the Interface eu.actorsproject.ResourceManagerInterface 14
3.4 Information Flow . 17
3.5 Example Session with the Resource Manager 18

4 Example Application: An Adaptive MPEG-4 RVC Simple Profile Decoder 21
4.1 Overview . 21
4.2 The Service Levels of the Adaptive MPEG4 RVC SP Decoder 23

5 Example Application: A Feedback Controller 25
5.1 Introduction . 25
5.2 Basic CAL Model . 28
5.3 The Quality Function . 29
5.4 Extended CAL model . 30

6 Conclusion 33

Bibliography 35

A The Extended D-Bus Introspection Format 37
A.1 The D-BUS Introspection DTD . 37
A.2 The Extended D-Bus introspection format 37

B The Kst Real-Time Plotting and Data Viewing Interface 41
B.1 Overview . 41
B.2 Description . 41

3

Chapter 1

Introduction

This is the final version of deliverable D1f; it is based on the updated in-
termediate release. It contains the updated details of the Resource Manager’s
interface and also all other parts have been updated to reflect the final status.

For detailed description of the internals of the Resource Manager refer to de-
liverable D3b. The instructions on how to compile, install and run the Resource
Manager can be found in deliverable D3c.

This deliverable is the result of task 1.5 “Requirements/QoS Interface”, which
is part of work package 1 “Specification and design of actor components and net-
works of actors” of the ACTORS project.

The deliverable presents the interface of the ACTORS resource manager from
the point of view of the applications using it. The resource manager is introduced in
deliverable D3a “State Abstractions”, which is also available as a final version now.
The purpose of the resource manager is to distribute available resources in such a
way among applications that an overall maximum service quality of the system is
achieved. In order to have flexibility in assigning different amounts of resources
to applications, the application must be flexible, i.e. they must be able to adapt
to different availability of resources. This deliverable shows how applications can
support different service levels, and how this can be represented using the appli-
cation interface of the resource manager. Deliverable D4b “RBS Specification” on
the other hand presents the interface of the resource manager to the other side, the
operating system. The results of this deliverable are necessary for all tasks of work
package 3 since they are all closely related to the resource manager, and for task 2.2.
In task 2.2 a run time system for CAL applications has been developed. This run
time system has to provide the possibility to run system actors. System actors are
the components which will actually implement the interface from the application
side, i.e. they will be the ones who connect to the resource manager.

We also present the implementation of the application interface of the resource
manager here in Chapters two and three. Chapter four gives an introduction into
our Adaptive MPEG-4 RVC Simple Profile Decoder. It is a server based application
that supports the application interface of the resource manager by offering multiple
service levels.

We chose MPEG4 Simple Profile instead of SVC here for two reasons: even
if Simple Profile MPEG streams don’t have built-in scalability features it can still
be useful to provide different service levels, i.e. reduced CPU requirements when
decoding them, and right now we actually have a Simple Profile decoder written
in CAL available.

The fifth chapter shows how a different kind of application, a control appli-
cation can support the application interface of the resource manager, and by that

5

shows that the proposed interface should be flexible and powerful enough for very
different types of applications.

This is followed by Chapter six which concludes this deliverable with a brief
summary.

Appendix A describes the extended D-Bus introspection format. Finally, Ap-
pendix B presents the Kst interface which allows to monitor the exact properties of
each virtual processor in real-time.

6

Chapter 2

The Application Interface of the
Resource Manager

2.1 Overview

The description of the DBus interface of the resource manager in this deliverable
updates the documentation in the final version of the deliverable D3a.

In an ACTORS system there will be an operating system with support for re-
source reservations, one global resource manager running in user-space, and a
number of applications. Applications participating in the resource management
provided by ACTORS register with the resource manager and publish their ser-
vice levels and associated resource requirements. It is then the task of the resource
manager to determine the service levels for the applications and a distribution of
resources, mainly CPU time among the applications which leads to a satisfying be-
haviour of all applications in the system. In general we expect that applications
providing more detailed information about their behaviour will get a reservation
which fits their needs more closely than applications providing less detailed infor-
mation, which includes applications not participating in the resource management
at all. The interface shall be generic enough to support not only applications writ-
ten using CAL, but also in any other language.

Applications are assumed to have discrete service levels as explained in e.g.
D3a. The resource requirements published by the applications can e.g. specify a
CPU bandwidth requirement as a percentage of the total available CPU bandwidth.

2.2 D-Bus

The resource manager is an application running in user-space on a Linux system.
It communicates with the set of running ACTORS-aware applications. There are
different options for implementing the communication that could have been used,
such as shared memory, pipes, or local sockets, remote procedure call methods like
ONC RPC [1], Java RMI [2] or CORBA [3], but we decided to use D-Bus [4] instead.
D-Bus is a message bus system, which enables applications on one computer to talk
to each other. It uses a star topology with a central D-Bus daemon to which all ap-
plications connect. To talk to another application they send a message to the D-Bus
daemon which forwards it to the receiver application, this constitutes the so-called
bus. There can be multiple of those buses running on a system, both system-wide
buses, i.e. for all users, and “local” buses for users or specific uses. In the last
few years D-Bus has established itself as the standard way for communicating be-
tween applications on Linux systems. On all recent Linux distributions by default

7

<<component>>
Cal Application

<<component>>
ResourceManager

<<component>>
FeedbackController

<<component>>
ApplicationActors

QualityMeasurementQualitySettings

Figure 2.1: Resource Manager Applications Interface

a system bus and a per-user session bus are running. The system bus is used for
system wide events, which can e.g. originate from the kernel and in this way be
sent to any user application. The per-session bus is used e.g. as the main com-
munication medium of the two major desktop environments for Linux, KDE 4 [5]
and GNOME [6]. This widespread deployment and the availability of bindings for
many programming languages make it the obvious candidate for implementing
the interface for ACTORS. The D-Bus library is dual licensed under GPL version
2 [7] and the Academic Free License 2.1 [8], so it can be used freely both for free
software projects as well as for closed software projects.

Compared to shared memory it has a higher overhead since the messages are
serialized, read and written multiple times until they are available in the receiver.
Since we expect that changes of the resource reservations and service levels of the
application will happen infrequently, this shouldn’t be a problem.

Using D-Bus cannot really be compared to using pipes or local sockets, since
it is actually the same. Internally D-Bus uses local sockets for communication. So
using pipes or local sockets directly for the interface would have meant that we
would have to create an ACTORS-specific protocol to use on top of these sockets,
and in the end we would probably end up with something like a reduced version
of D-Bus, but with less features, less testing and therewith more bugs.

Compared to CORBA, D-Bus is easier to work with and it is much less complex,
and it comes already with every Linux installation. Java RMI is not a candidate
because it is bound to Java as implementation language. ONC RPC is network-
centric and less flexible, e.g. it doesn’t support sending signals as D-Bus does.

In ACTORS we use a system-wide bus (the default D-Bus system bus), since this
is the straight forward way to get the communication between the clients and the
resource manager working. A possible DBUS scenario for the ACTORS resource
manager can be seen in Fig. 2.2.

8

System bus
daemon

Network Manager HAL
ACTORS

Resource Manager
App3App2App1

Figure 2.2: D-Bus bus setup in ACTORS

9

Chapter 3

Updated Interface

3.1 Interface Specification Format

The resource manager provides the application interface via D-Bus. D-Bus pro-
vides introspection functionality so that the interface of D-Bus service providers
can be discovered at run-time. Introspection is provided by D-Bus objects by imple-
menting the standard interface org.freedesktop.DBus.Introspectable. This in-
terface has just one method, org.freedesktop.DBus.Introspectable.Introspect
(out STRING xml_data). This method returns the string xml_data, which contains
the description of the interfaces of this object. The XML format is documented
in [4] and there is a formal DTD1 [9] for it, so the XML interface description can be
verified for correctness.

Using this DTD it is possible to describe which methods are available and which
arguments they support. This is enough information to document the “wire-format”,
but it is not expressive enough to be able to understand the semantics of the inter-
face, e.g. composite type arguments are anonymous and this is not sufficient for
code generators, so more information has to be added. The Telepathy project [10]
extended the XML format to allow for more information in the interface specifi-
cation [11]. This extended D-Bus introspection format will be used to specify the
resource manager interface. Details about it can be found in the appendix.

3.2 Formal Resource Manager Interface Specification

Here follows the specification of the D-Bus interface of the ACTORS resource man-
ager using the extended D-Bus introspection format. It should meet the require-
ments described above and in D3a.� �
<?xml version=" 1 . 0 " ?>
< !−− DOCTYPE node PUBLIC

"−//freedesktop//DTD D−BUS Object I n t r o s p e c t i o n 1.0//EN"
" h t t p : //www. freedesktop . org/standards/dbus /1.0/ i n t r o s p e c t . dtd " −−>

<node xmlns:tp=" h t t p : //t e l e p a t h y . f reedesktop . org/wiki/DbusSpec# extensions−v0 ">
∗∗ < i n t e r f a c e name=" eu . a c t o r s p r o j e c t . ResourceManagerInterface ">

<tp:mapping name=" BandwidthDistributionMap ">
<tp:member type="u" name="Key"/>
<tp:member type="u" name=" Value "/>

</tp:mapping>

< t p : s t r u c t name=" Serv iceLeve l " array−name=" S e r v i c e L e v e l L i s t ">
<tp:member type="u" name=" q u a l i t y O f S e r v i c e ">
<tp:member type="u" name=" totalBandwidth ">

1Document Type Definition, see e.g. http://www.w3schools.com/DTD/dtd_intro.asp

11

<tp:member type="u" name=" g r a n u l a r i t y ">
<tp:member type="u" name=" bWDistr ibut ionDataSpec i f ier ">
<tp:member type="u" name=" bWDistributionsCount ">
<tp:member type=" a { uu } " prevtype=" BandwidthDistributionMap "

name=" bWDistribution ">
</ t p : s t r u c t >

< s i g n a l name=" changeServiceLevel ">
<arg name=" connect ionId " type=" s " d i r e c t i o n =" in ">
<arg name=" newLevel " type=" i " d i r e c t i o n =" in ">

</ s i g n a l >

<method name=" reportHappiness " tp:name−for−bindings =" reportHappiness ">
<arg name=" happiness " type="u" d i r e c t i o n =" in ">

</method>

<method name=" registerApp ">
<arg type=" i " d i r e c t i o n =" out ">
<arg name=" a p p l i c a t i o n I d " type=" s " d i r e c t i o n =" in ">

</method>

<method name=" u n r e g i s t e r ">
</method>

<method name=" createThreadGroup ">
<arg type=" i " d i r e c t i o n =" out ">
<arg name=" groupId " type="u" d i r e c t i o n =" in " >

</method>

<method name=" addThreadsToGroup ">
<arg type=" i " d i r e c t i o n =" out ">
<arg name=" groupId " type="u" d i r e c t i o n =" in " >
<arg name=" threadIdCount " type="u" d i r e c t i o n =" in " >
<arg name=" threadIds " type=" au " d i r e c t i o n =" in " >

</method>

<method name=" announceServiceLevels ">
<arg type=" i " d i r e c t i o n =" out ">
<arg name=" i n i t i a l S e r v i c e L e v e l " type="u" d i r e c t i o n =" in " >
<arg name=" serviceLevelCount " type="u" d i r e c t i o n =" in " >
<arg name=" s e r v i c e L e v e l s " type=" a (uua { uu }) " prevtype=" Serv iceLeve l [] "

d i r e c t i o n =" in ">
</method>

<method name=" commit ">
<arg type=" i " d i r e c t i o n =" out ">

</method>

</ i n t e r f a c e >
</node>� �

12

Since the XML specification is quite verbose, below the interface can be found trans-
lated to a pseudo-C++-like language, which is more concise (but doesn’t compile).
We use an interface similar to this automatically generated from a code generator
in the resource manager and potentially also in the client applications.

� �
s t r u c t Serv iceLeve l
{

unsigned i n t q u a l i t y O f S e r v i c e ;
unsigned i n t totalBandwidth ;
unsigned i n t g r a n u l a r i t y ;
unsigned i n t bWDistr ibut ionDataSpec i f ier ;
unsigned i n t bWDistributionsCount ;
map<unsigned int , unsigned int > bWDistribution ;

} ;

c l a s s eu . a c t o r s p r o j e c t . ResourceManagerInterface
{

public :
i n t registerApp (s t r i n g a p p l i c a t i o n I d) ;
void u n r e g i s t e r () ;
i n t commit () ;
i n t createThreadGroup (unsigned i n t groupId) ;
i n t addThreadsToGroup (unsigned i n t groupId ,

unsigned i n t threadIdCount ,
l i s t <unsigned int > threadIds) ;

i n t announceServiceLevels (s t r i n g ap pl i c a t io nId ,
l i s t <ServiceLevel > s e r v i c e L e v e l s) ;

void reportHappiness (s t r i n g ap pl i c a t i onId , unsigned i n t happiness) ;
s i g n a l s :

void changeServiceLevel (s t r i n g a ppl i ca t ionI d , unsigned i n t newLevel) ;
} ;� �

13

3.3 Documentation of the Interface
eu.actorsproject.ResourceManagerInterface

This section contains the description of the interface methods of the resource man-
ager. They are designed in such a way that the clients are purely passive, they don’t
have to provide any interface. They can make use of the resource manager, but they
don’t have to. It is also completely agnostic to whether the client applications are
CAL applications or applications written in any other language.

The documentation uses the format shown below:

Method <method_name>(<parameter_name>: <type>)→ <return_type>

The types are either standard D-Bus types, as presented in deliverable D1f in the
appendix, or custom project-defined types. These custom types are composed also
of the standard D-Bus types and documented after the methods. This is done in a
similar way for the documentation of the method parameters. Here, if a parameter
is a custom type, also its D-Bus type signature is shown:

<parameter_name>: <custom_type><type> <documentation>

Method registerApp (applicationId: s)→ i

Each application which participates in the resource management has to register
with the resource manager. The applicationId used here will be used later on by
the resource manager to determine the importance value of this application.

Parameters

applicationId:s This string is the name of the application. It is used by the re-
source manager to map that client to the known applications with given im-
portances.

Returns

i Integer return value, 0 on success, an error code otherwise.

Method unregister ()→ nothing

This can be used by applications which have registered with the resource manager
to close their connection with it again. It always succeeds.

Method announceServiceLevels (serviceLevels: ServiceLevel[])→ i

Called by client applications to make their supported service levels known to the
resource manager. This information becomes active with a successfull call of the
commit() method. Any previously announced service levels for this client are dis-
carded then.

14

Parameters

currentServiceLevel:u The index into the following serviceLevels array of the
service level, at which the application is running initially.

serviceLevelCount:u The number of elements in the following serviceLevels ar-
ray.

serviceLevels:ServiceLevel[](a(ua{uu})) This is one of the most important
data structures of the interface. This is the list of the service levels supported
by the application. Each service level has an associated service indicator and
the set of resource requirements for this level, e.g. the time granularity. All
resource requirements should be hardware/platform independent.

Returns

i Integer return value, 0 on success, an error code otherwise.

Method createThreadGroup (groupId: u)→ i

Applications can consist of multiple threads. The applications have to tell the re-
source manager which threads they consist of by sending their thread ids to the
resource manager. Additionally these threads can be bundled to groups. This
method has to be invoked in order to create a thread group.

Parameters

groupId:u The groupId is an integer id starting from zero to identify a group of
threads. GroupIds have to be “dense”, i.e., they must be a set of continuous
numbers. These group ids must be unique only per application.

Returns

i Integer return value, 0 on success, an error code otherwise.

Method addThreadsToGroup (groupId: u, threadIdCount: u, threadIds:
au)→ i

This method adds a set of threads to ThreadGroup object. Each group of threads
will be assigned to its own dedicated reservation. Of course it is also possible to
have only one group of threads. This would also mean that these threads will not
run concurrently on different cores. On the other hand it is also possible to have
an own group for each thread, so in theory all threads could run in parallel given
enough cores.

Parameters

groupId:u The groupId is an integer id starting from zero to identify a group of
threads. GroupIds have to be “dense”, i.e., they must be a set of continuous
numbers. These group ids must be unique only per application.

threadIdCount:u The number of thread Ids in the array threadIds.

threadIds:ua The list of thread ids which should be added to this group. If the
group doesn’t exist yet it is created.

15

Returns

i Integer return value, 0 on success, an error code otherwise.

Method commit ()→ i

Called by client applications after the client has announced all its information to the
resource manager. The resource manager will then decide whether to accept that
client or not. If it does, it will set up reservations etc. for it and move the application
into this reservation. If it doesn’t, the application should exit, or it is allowed to
continue to run as a normal application without any guaranteed resources.

Returns

i Integer return value, 0 on success, which means the application has been ac-
cepted, an error code otherwise, with means the application has been rejected
and should terminate.

Method reportHappiness (happiness: u)→ nothing

This function is called by the client to report how well it is currently achieving the
assigned quality.

Parameters

happiness:u An integer value between 0 and 100 expressing how well the as-
signed quality is actually achieved. So if the application is told to run at the
lowest level and is able to do this perfectly, it should report 100, if it is told to
run at the highest level but can do only 50 % of that it should report a lower
value, e.g. 50.

Signal changeServiceLevel (connectionId: s, newLevel: u)

This signal is emitted to notify an application about the service level it should run
on.

Parameters

connectionId:s This is the connection identifier, for DBus usually something like
":1.51" (i.e. it is NOT the unambiguous name under which the application reg-
istered with registerApp()). This id can be retrieved e.g. using dbus_bus_get_unique_name().

newLevel:u The index of the service level at which the application should run on.

Struct ServiceLevel - (uuuuua{uu})

A struct representing one service level of an application, i.e. the quality and the
required resources. It is used in announceServiceLevels(). In bindings that need a
separate name, arrays of ServiceLevel should be called ServiceLevelList. The ser-
vice level with the number zero refers to the service level providing the highest
quality of service; applications running in service levels with larger numbers usu-
ally provide less quality.

16

Members

qualityOfService:u This one indicates the quality of this level. It is an integer
value ranging from 0 (worst) to 100 (best).

totalBandwidth:u The total bandwidth the client will consume when running in
this service level, e.g., 200 to indicate two complete CPUs.

granularity:u granularity contains the period in microseconds at which this client
will have to be sampled on this service level.

bWDistributionDataSpecifier:u The bWDistributionDataSpecifier specifies how
to treat the values stored in bwDistribution: 0: there is no data specified by
the application, 1: the values should be treated as absolute values, 2: the
values should be treated as relative values.

bWDistributionsCount:u bWDistributionsCount contains the number of items con-
tained in the following map bWDistribution.

bWDistribution:BandwidthDistributionMap[] (a{uu}) This is the map of band-
width mappings for the individual virtual processors. Values have to fulfill 0
< x <= 100;

3.4 Information Flow

The overall flow of information from and to the resource manager is depicted in
Fig. 3.1.

In the center the resource manager is located. An application which wants to
have its resources managed by ACTORS has to actively register itself with the re-
source manager. This is done by connecting to the respective D-Bus bus and calling
the registerApp() method of the resource manager. The next step is to announce
its supported service levels by calling the method announceServiceLevels(). Each
service level consists of a numerical value which gives an indication for the quality
of this level, ServiceLevel::QoS, together with a set of resource requirements for
each ThreadGroup in this level stored in the map ServiceLevel::bwDistribution.

When multiple applications have registered in this way with the resource man-
ager, the resource manager will determine a distribution of resources which leads
to the desired overall system behaviour. This includes determining the service level
and the parameters of the reservation for each application. The applications will be
notified via the changeServiceLevel() D-Bus signals about their assigned service
levels. Here signals are used because otherwise the applications would have to
provide a D-Bus interface themselves, which would increase the amount of modi-
fications required to add support for the resource manager to applications.

When the application receives this notification, it shall adapt its inner algo-
rithms in some way, so that it uses the specified resources while producing the
promised quality. This may not always be successful, for instance due to varying
computational demands from the work load, e.g. in an MPEG stream [12]. It is an
important information for the resource manager whether the application is able to
achieve the promised quality of the assigned service level. It is up to the applica-
tions to determine an integer value between 0 and 100 which expresses how well it
currently achieves the designated service level, we’ll call this number the Happiness
of an application. Each application will periodically inform the resource manager
by calling the reportHappiness() method about its current Happiness.

17

Resource Manager

Applications

OS with reservations

Application Importances

HappinessService Level

Resource UsageReservation Setup

Figure 3.1: Information flow from and to the resource manager

Additionally to these Happiness numbers the resource manager will be pro-
vided with importance values for the applications. They are defined by the user
or system integrator, and serve as hint to the resource manager which applications
it should prefer and which can degrade first. Primary functions of the system like
e.g. phone calls for a mobile phone should be assigned a higher importance than
add-on functionality like e.g. an animated effects in the user interface. Practically
the importance values could be provided using an XML-file which is read by the
resource manager.

When the resource manager has determined a distribution of resources, it will
set up the reservations accordingly. This will be done by specifying bandwidth and
period or equivalent parameters as e.g. (α, ∆) as introduced in deliverable D3a, for
the reservations and sending them to the operating system. Then the applications
can run within these reservation. The operating system should also report back
some resource usage information, i.e. whether deadlines are missed or to which
percentage the reservations are used by the applications.

The resource manager will take its decisions based on this information together
with the resource usage information from the operating system.

3.5 Example Session with the Resource Manager

Fig. 3.2 shows the communication between two applications App1 and App2 with
the resource manager as a sequence diagram. At the beginning the resource man-
ager is already running. Then App1 starts and connects to the resource manager,
this is done in steps 1 to 7. After that the resource manager determines the distri-
bution of resources, which should be easy since there is only one application. Then
a second application starts and registers with the resource manager (step 8 to 12).

18

Therefore, in step 13 the resource manager notifies App1 by sending a D-Bus sig-
nal about a service level change since App2 got assigned some resources. At some
point App1 reports its happiness back to the resource manager, as can be seen in
step 14. This can happen once or multiple times as in the example. Then App1 and
App2 run for some time without significant events happening, but informing the
resource manager from time to time about their happiness. Then App1 creates new
threads and adds them to an already existing ThreadGroup (step 19 and 20). After
some time App1 terminates. The resource manager detects this (step 21) shortly
before App2 also terminates (step 22).

19

App1 App2Resource Manager

1: registerApp()

2: announceServiceLevels()

3: createThreadGroup()

4: addThreadsToGroup()

5: addThreadsToGroup()

6: addThreadsToGroup()

7: commit()

13: changeServiceLevel()

14: reportHappiness()

15: changeServiceLevel()

16: reportHappiness()

19: addThreadsToGroup()

20: commit()

App1 starts now

App1 terminates 21: unregister()

8: registerApp()

9: announceServiceLevels()

10: createThreadGroup()

11: addThreadsToGroup()

12: commit()

App2 starts now

17: changeServiceLevel()

18: reportHappiness()

22: unregister() App2 terminates

Figure 3.2: Example communication sequence between the ACTORS resource man-
ager and two applications

20

Chapter 4

Example Application: An
Adaptive MPEG-4 RVC Simple
Profile Decoder

4.1 Overview

An example application which can have multiple service levels is a MPEG video
decoder. Different service levels of a video decoder can e.g. concern the frame rate,
the resolution of the decoded image or the number of skipped frames.

We added support for multiple service levels to a Simple Profile MPEG-4 de-
coder. Our decoder is a served based implementation, as shown in Figure 4.1. The
video decoder is a client application registered with the ACTORS Resource Man-
ager running on SCHED_EDF. It is a CAL based program, in charge of decoding
and displaying the MPEG-4 video stream. The video itself originates from a web
cam which is connected to the server. This web cam sends its video stream to the
server application which handles the TCP/IP streaming to the client application.

The Simple Profile of MPEG-4 doesn’t include the features supporting adaptiv-
ity present in higher MPEG-4 profiles, e.g. it doesn’t support B-, SP- and SI-frames,
streams in multiple solutions, feedback to the encoder or other advanced features
of higher profiles [13].

Nevertheless we investigated options on how to make also a Simple Profile
MPEG-4 decoder adaptive. There are multiple options, they are introduced in the
following sections. To implement these or one of these options, we implemented
a system actor, which announces the service levels to the resource manager. The

MPEG Client Stream
Adaptation

TCP Video Stream

UDP Service Level
Information

Network

Figure 4.1: Overview of the Adaptive Simple Profile MPEG4 decoder

21

same actor also receives the decisions from the resource manager on which service
level to run and ”translates“ this to tokens which are sent to the appropriate actors.
Additionally, we implemented a small UDP protocol that allows the client applica-
tion to inform the streaming server about its current service level. This allows the
server to react to the changing resource availability on the client side. There exist
different configuration files for the decoder to adjust for usage on e.g. quad-core
and dual-core devices.

Frame Skipping

Quality Aware Frame Skipping (QAFS) [14] is a technique focused on MPEG2
video streams. The main idea is to extract meta data from the video stream and use
this information to take sensible decision about which frames to skip in the case
that not enough CPU time is available to decode all frames. This method requires
gathering information from multiple frames, in order to be able to select one or
more of those for skipping. In short, a Group Of Pictures (GOP) is considered, and
then frames which contribute the least to the video quality are discarded first. This
means B-frames are the first “victims” of this algorithm, and just after all B-frames
in a GOP are discarded, P-frames are considered.

The MPEG decoder – since it is a Simple Profile decoder – doesn’t support B-
frames. This means that the QAFS algorithm cannot simply be applied to this de-
coder.

Macro Block Skipping

Alternatively to skipping whole frames, we considered skipping the decoding of
macro blocks within a frame. An advantage compared to skipping whole frames is
that it is not necessary to buffer multiple frames, introduced by the need to buffer
a whole GOP in QAFS. If a macro block is skipped, the content from the previous
frame will be displayed in the area this macro block encoded.

However, our approaches revealed that while an implementation of a macro
block skipping algorithm is quite straight forward, the resulting MPEG-4 video
quality is unacceptable, as can be seen in Figure 4.2. Removing whole macro blocks
immediately results in nasty block artifacts that annoy the audience and finally lead
to completely destroyed pictures.

(a) Original scene. (b) After applying macro block skipping.

Figure 4.2: Macro block skipping resulting in poor video quality.

22

DCT Coefficient Skipping

Another alternative is to decode only the lower frequency DCT coefficients and
skip the higher frequency ones. Different service levels are achieved by adjusting
the number of DCT coefficients to skip. This way quite fine grained service levels
are achievable. This results in saving of the decoding time on the client side but
produce an image which is less sharp or has minimally visible square artifacts, but
is still much better than with macro block skipping see 4.3.

That is why we have chosen the DCT coefficient skipping algorithm for our
final implementation. The next section will explain the different service levels that
our decoder offers.

(a) Original scene. (b) After applying DCT coefficient skipping.

Figure 4.3: DCT coefficient skipping resulting in reduced video quality.

4.2 The Service Levels of the Adaptive MPEG4 RVC SP
Decoder

We defined the following three service levels for our adaptive MPEG4 RVC SP
decoder:

Service Level 0

The decoder works with maximum quality, nothing is skipped and the original
video is untouched and send to the client. It has maximum CPU bandwidth de-
mands, i.e. the application cannot consume more CPU time than in this mode.

Service Level 1

This service level consumes a bit less CPU than the service level 0. and still pro-
duces acceptable quality. The original video stream is modified like this: the algo-
rithm tries not to touch the I frames. Only in P frames, starting from the ending of
a GOP, some macro blocks are skipped.

With a modified algorithm like this the quality of the produced video frames
will be lower than at level 0. We assume that the quality at this level will be 60 to
80 % of the maximum quality, depending on the original video streams properties.

Service Level 2

Running at this level the decoder should consume significantly less CPU but result
in a significantly reduced video quality. The output stream bandwidth is set to a

23

minimum to allow for video playback even under severely constrained resource
availability. One interesting feature of this “mode of operation” is that it allows to
keep a video stream alive and still provide a basic video playback when a normal
best effort approach would fail to deliver any video information.

24

Chapter 5

Example Application: A Feedback
Controller

5.1 Introduction

As another example of how a CAL application of a completely different type, but
still with multiple quality levels can interact with the resource manager a feedback
controller is used. The example is intentionally kept very simple in order to em-
phasize the interaction with the resource manager.

The aim of the control system is to control the position of a rolling ball on a
beam. The so called ball and beam process, hence, consists of a horizontal beam
and a motor that controls the beam angle. The measured signals from the process
are the beam angle relative to the horizontal plane and the position of the ball. The
process is shown in Fig. 5.1.

Figure 5.1: The Ball and Beam process

The dynamic model from the motor to the ball position consists of two trans-
fer function blocks connected in series, in which the beam angle appears as an
intermediate output signal, see Fig. 5.2. Processes of this type are often controlled
by cascade controllers where an inner controller controls the dynamics of the first
block and an outer controller controls the overall dynamics. Often PID controllers
are used both for the inner and outer controllers. The cascade control structure
is shown in Fig. 5.3. In cascade structures the output (i.e. control signal) of the
outer control loop is used as the reference signal for the inner controller. Cascade
control structures, often with more than two layers, are very common in industrial
practice, e.g., in automotive combustion engine control.

25

Figure 5.2: Ball and Beam Model Structure

Figure 5.3: Cascade control structure for the Ball and Beam process

The PID controller is the most common controller type in industry. The “text-
book” version of the PID-controller can be described by the equation

u(t) = K
(

e(t) +
1
Ti

∫ t
e(s) ds + Td

de(t)
dt

)
where the error e is the difference between the reference signal r (the set point) and
the process output y (the measured variable). K is the gain or proportional gain, Ti
the integration time, and Td the derivative time of the controller.

However, some modifications are necessary in order to get good control perfor-
mance. A pure derivative cannot, and should not be, implemented, because it will
give a very large amplification of measurement noise. The gain of the derivative
must thus be limited. This can be done by approximating the transfer function sTd
as follows:

sTd ≈
sTd

1 + sTd/N

The transfer function on the right approximates the derivative well at low frequen-
cies but the gain is limited to N at high frequencies.

It is also advantageous not to let the derivative act on the reference signal and
to let only a fraction b of the reference signal participate in the proportional part.
The PID-algorithm then becomes

U(s) = K
(

bR(s)−Y(s) +
1

sTi

(
R(s)−Y(s)

)
− sTd

1 + sTd/N
Y(s)

)
(5.1)

where U, R, and Y denote the Laplace transforms of u, r, and y.
A controller with integral action combined with an actuator that saturates can

give some undesirable effects. If the control error is so large that the integrator
saturates the actuator, the feedback path will be broken, because the actuator will
remain saturated even if the process output changes. The integrator, being an un-
stable system, may then integrate up to a very large value. When the error is finally

26

reduced, the integral may be so large that it takes considerable time until the inte-
gral assumes a normal value again. This effect is called integrator windup.

There are several ways to avoid integrator windup. A common method for
antiwindup is illustrated by the block diagram in Figure 5.4. In this system an extra
feedback path is provided by using the output of the actuator model and forming
an error signal es as the difference between the estimated actuator output u and
the controller output v and feeding this error back to the integrator through the
gain 1/Tt. The error signal es is zero when the actuator is not saturated. When the
actuator is saturated the extra feedback path tries to make the error signal es equal
to zero. This means that the integrator is reset, so that the controller output is at
the saturation limit. The integrator is reset to an appropriate value with the time
constant Tt, which is called the tracking-time constant.

Figure 5.4: PID controller with anti-windup. The actuator output is estimated from
a mathematical model of the actuator.

In order to implement a digital PID controller the PID algorithm must be dis-
cretized. This can be done in several ways. The following is one common way of
doing this. The proportional part

P(t) = K
(

br(t)− y(t)
)

requires no approximation because it is a purely static part. The integral term

I(t) =
K
Ti

∫ t
e(s) ds

is approximated by a forward difference approximation, that is,

I(kh + h) = I(kh) +
Kh
Ti

e(kh)

where h is the sampling period. The derivative part given by

Td

N
dD
dt

+ D = −KTd
dy
dt

is approximated by taking backward differences. This gives

D(kh) =
Td

Td + Nh
D(kh− h)− KTdN

Td + Nh

(
y(kh)− y(kh− h)

)
27

The control signal is given as

u(kh) = P(kh) + I(kh) + D(kh) (5.2)

In order to implement tracking anti-windup the update equation for the integral
part is modified slightly. The resulting pseudo-code for a PID controller looks as
follows:

y = yIn.get();
e = r - y;
D = ad * D - bd * (y - yold);
v = K*(b*r - y) + I + D;
u = sat(v,umax,umin)}
uOut.set(u);
I = I + (K*h/Ti)*e + (h/Tt)*(u - v);
yold = y

Here ad and bd are pre-calculated parameters representing the parameters in the
discretization of the derivative part. The saturation function, sat, limits v between
the end values, i.e. it corresponds to the internal actuator model.

A too long delay between the input and the output has a negative effect on con-
trol performance. The code above is therefore structured so that the computational
delay between the input of the measurement signal (the sampling) and output of
the control signal (the actuation) is as small as possible. Therefore, the update of
the state variables I and yold are performed after the actuation. To split the code in
two parts, commonly called CalculateOutput and UpdateState is very common in
control implementation. It also influences the execution order in cascade controller
structures. In order to minimize the input-output latency for a cascade controller it
is important to execute the parts of the algorithm in the following order:

Sampling
Outer.CalculateOutput
Inner.CalculateOutput
Actuation
Inner.UpdateState
Outer.UpdateState

5.2 Basic CAL Model

A first CAL model of the cascade controller for the Ball and Beam process is shown
in Fig. 5.5. The model contains two instances of a PID CAL actor, one clock system
actor, two input system actors, and one output system actor. The PID actor contains
two actions, one in which the CalculateOutput part of the algorithm is performed
and one in which the UpdateState part is performed. The state variables in the con-
troller and the variables that have to be saved between the invocations of the two
actions are represented as state variables in the actor. In the example we assume
that the reference value for the outer controller is constant and contained within
the corresponding actor.

The clock actor periodically generates a trigger token. The input and output
actors are the interface between the CAL application and the external IO. This in-
terface can be implemented in a variety of ways. The semantics is, however, that,
an input actor should produce a current sample each time it receives an input trig-
ger token and that the output actor should send the value contained in the input
token to the actuator.

28

Figure 5.5: CAL Model of the cascade controller.

5.3 The Quality Function

As described in Deliverable D3a control applications naturally have a mapping
from resource usage to quality. A controller is typically designed for a nominal
desired sampling period. By increasing the sampling period the consumed com-
puting resources decrease and also the control performance. This relationship be-
tween sampling period and performance is often linear or quadratic. If, in addi-
tion to changing the sampling period, also the controller parameters are updated
in accordance with the new sampling period, the performance decrease becomes
smaller.

A natural candidate as a performance measure is a continuous-time quadratic
cost function defined as

J = lim
T→∞

1
T

∫ T

0

[
x(t)
u(t)

]T

Q
[

x(t)
u(t)

]
dt

where Q is a positive semi-definite matrix, x(t) is the state variable vector, and
u(t) is the control signal vector. An advantage with the quadratic cost function
definition of control performance is that for a large class of systems it is possible
to calculate the expected value of the cost function analytically off-line using, e.g.,
the Jitterbug tool [15]. The output of this tool would then typically be a graph that
relates the control cost (the inverse of the performance) with the sampling period.

The cost could be expressed as a function of the sampling period, h either as

J(h) = α + βh2

or as

J(h) = α + γh

One could combine this with a maximum value of h for which the achieved perfor-
mance is considered acceptable, i.e., the resource manager should ensure that the
control application always receives at least the corresponding amount of resources.

The cost function can be used as a quality sensor. In this case the cost is calcu-
lated on-line by the control application and compared to the nominal value for the
current service level. The difference between the nominal cost at the current service
level and the measured cost can then be used as a basis for calculating a happiness
value that is periodically sent back to the resource manager.

29

5.4 Extended CAL model

In order to be practically useful the simple model in Fig. 5.5 has to be extended. For
example, it should be possible on-line to change the controller parameters from,
e.g., some user interface. This requires that the PID actors are extended with ex-
tra inports and actions through which new controller parameters can be sent. To
simplify the presentation we will assume that CAL supports structured tokens,
i.e. a new set of controller parameters are sent as a single token to the PID actor.
When a parameter token is available a separate action, UpdatePars, is triggered
that updates the controller parameters. The situation is shown in Fig. 5.6. The

Figure 5.6: PID actor with parameter update action.

same approach could be used to handle on-line changes of the reference signal.
The service level information of the applications would be registered with the

resource manager at the initialization of the application by executing a special sys-
tem actor. This system actor would call the interface methods registerApp() and
announceServiceLevels() with the associated parameters as arguments. An ex-
ample of where it is included in the CAL model is shown in Fig. 5.7. The One-Shot

Figure 5.7: System actor for announcing the service level information.

actor is an ordinary CAL actor that only emits an output trigger token the first time
it receives an input token. The Register System Actor (also referred to as the DBus

30

actor in Deliverable D5b) contains a call to the Resource Manager interface. The
service level information that would be transferred to the resource manager for a
typical control application are shown in Chapter 5 in D3a.

Once the Resource Manager has distributed the resources it reports back to
the application which service level it has been assigned. This is done through the
changeServiceLevel() signal. This signal is catched by a special system actor that
listens for this particular signal and when it arrives sends the amount of resources
to an ordinary CAL actor that translates the service level to the corresponding sam-
pling period and recalculates the controller parameters. The new sampling period
is sent to the clock actor and the new parameters are sent to the two PID actors., see
Fig. 5.8. Alternatively a single system actor could be used as the single interface

Figure 5.8: Receiving the new service level. The Signal actor is a system actor that
receives the new service level. This is forwarded to the Update actor where the
new controller parameters are computed. The new parameter sets are forwarded
to the PID actors and the new sampling period is forwarded to the clock actor.

to the resource manager via the DBus interface. This is the solution used in the
ACTORS demonstrators and in Deliverable D5d.

The quality measurement could be implemented by an ordinary CAL actor that
based on the control signal and the measurement signal updates the cost function
and every n’th time sends the value to another actor where the happiness value is
calculated and finally sent over to the resource manager by a special system actor
that internally calls the reportHappiness() method in the interface. The approach
is illustrated in Fig. 5.9. Not shown in the figure is the connection between the
Update Actor and the Cost Function Actor where the current sampling interval
is propagated. This is necessary in order to be able to compute the cost function
correctly. Also here an alternative solution is to use a single system actor as the
interface to the resource manager. This is what has been used in the demonstrators.

31

Figure 5.9: Calculation of obtained quality. A cost function actor updates the cost
function. In the happy actor this value is converted to a happiness value that is sent
to the resource manager in the system actor Send Actor.

32

Chapter 6

Conclusion

The focus of this deliverable is to explain and specify the details of the DBus in-
terface between the Resource Manager and its client applications. For detailed de-
scription of the internals of the Resource Manager refer to deliverable D3b. The
instructions on how to compile, install and run the Resource Manager can be found
in deliverable D3c.

Chapter 2 gave a a general summary of the idea of the DBus interface. This was
followed by Chapter 3 which presented a comprehensive overview of all available
DBus method and their parameters. This included a description of the methods
as well as an example communication sequence between the Resource Manager
and two client applications. Chapter 4 presented our Adaptive MPEG-4 RVC Sim-
ple Profile Decoder and discussed the pros and cons of different ways to achieve
adaptivity. The following chapter showed a totally different application scenario:
a control application offering different service levels.

Finally, this deliverable is concluded by an Appendix that presents the extended
DBus introspection format and the Kst Real-Time Plotting and Data Viewing Inter-
face.

33

Bibliography

[1] Sun Microsystems, Inc., “RFC 1057, RPC: Remote Procedure Call Protocol
Specification, Version 2.” http://www.ietf.org/rfc/rfc1057.txt, 1988.

[2] Sun Microsystems, Inc., “Java Remote Method Invocation.”
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp.

[3] Object Management Group, Inc., “Common Object Request
Broker Architecture (CORBA) Specification, Version 3.1.”
http://www.omg.org/technology/documents/corba_spec_catalog.htm.

[4] H. Pennington, A. Carlsson, and A. Larsson, “D-Bus Specification.”
http://dbus.freedesktop.org/doc/dbus-specification.html.

[5] “The K Desktop Environment.” http://www.kde.org.

[6] “GNOME: The Free Software Desktop Project.” http://www.gnome.org.

[7] Free Software Foundation, Inc., “GNU General Public License, version 2.”
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html.

[8] “The Academic Free License 2.1.” http://open2.mirrors-r-us.net/licenses/afl-
2.1.php.

[9] D. A. Wheeler, “DTD for D-Bus Introspection data.”
http://www.freedesktop.org/standards/dbus/1.0/introspect.dtd, 2005.

[10] “Telepathy: Flexible communications framework.”
http://telepathy.freedesktop.org.

[11] “Specification D-Bus introspect format extensions, Version 0.”
http://telepathy.freedesktop.org/wiki/DbusSpec#extensions-v0.

[12] D. Isovic, G. Fohler, and L. Steffens, “Some misconceptions about temporal
constraints of mpeg-2 video decoding,” in 23rd IEEE Real-Time Systems Sympo-
sium, 2003.

[13] I. E. Richardson, H.264 and MPEG-4 Video Compression: Video Coding for Next
Generation Multimedia. Wiley, 1 ed., August 2003.

[14] D. Isovic and G. Fohler, “Quality aware MPEG-2 stream adaptation in re-
source constrained systems,” in 16th Euromicro Conference on Real-time Systems
(ECRTS 04), (Catania, Sicily, Italy), 2004.

[15] A. Cervin and B. Lincoln, “Jitterbug 1.1—Reference manual,” Tech. Rep. ISRN
LUTFD2/TFRT--7604--SE, Department of Automatic Control, Lund Institute
of Technology, Sweden, Jan. 2003.

35

Appendix A

The Extended D-Bus Introspection
Format

A.1 The D-BUS Introspection DTD

Below you can find the current DTD for the D-Bus introspection format. It defines
the basic XML format used for D-Bus interfaces.� �
< !−− DTD f o r D−BUS I n t r o s p e c t i o n d a t a −−>
< !−− (C) 2005−02−02 David A. Whee l e r ; r e l e a s e d under t h e D−BUS l i c e n s e s ,

GNU GPL version 2 (o r g r e a t e r) and AFL 1 . 1 (o r g r e a t e r) −−>

< !−− s e e D−BUS s p e c i f i c a t i o n f o r d o c u m e n t a t i o n −−>

< !ELEMENT node (i n t e r f a c e ∗ , node∗)>
< ! ATTLIST node name CDATA #REQUIRED>

< !ELEMENT i n t e r f a c e (annotat ion ∗ , method∗ , s i g n a l ∗ , property ∗)>
< ! ATTLIST i n t e r f a c e name CDATA #REQUIRED>

< !ELEMENT method (annotat ion ∗ , arg ∗)>
< ! ATTLIST method name CDATA #REQUIRED>

< !ELEMENT arg EMPTY>
< ! ATTLIST arg name CDATA #IMPLIED>
< ! ATTLIST arg type CDATA #REQUIRED>
< !−− Method arguments SHOULD i n c l u d e " d i r e c t i o n " ,

w h i l e s i g n a l and e r r o r arguments SHOULD not (s i n c e t h e r e ’ s no point) .
The DTD format can ’ t e x p r e s s t h a t s u b t l e t y . −−>

< ! ATTLIST arg d i r e c t i o n (in|out) " in ">

< !ELEMENT s i g n a l (arg , annotat ion) >
< ! ATTLIST s i g n a l name CDATA #REQUIRED>

< !ELEMENT property (annotat ion) > < !−− AKA " a t t r i b u t e " −−>
< ! ATTLIST property name CDATA #REQUIRED>
< ! ATTLIST property type CDATA #REQUIRED>
< ! ATTLIST property a c c e s s (read|wri te|readwrite) #REQUIRED>

< !ELEMENT annotat ion EMPTY> < !−− G e n e r i c m e t a d a t a −−>
< ! ATTLIST annotat ion name CDATA #REQUIRED>
< ! ATTLIST annotat ion value CDATA #REQUIRED>
% \end { verbatim }� �
A.2 The Extended D-Bus introspection format

Using the D-Bus DTD it is possible to describe which methods are available and
which arguments they support. This is not expressive enough to be able to extract
semantics from it, since e.g. the composite type arguments are still anonymous.

37

E.g. for code generators more information has to be added. The Telepathy [10]
project extended the XML format to allow for more information in the interface
specification. The basic and extended elements are documented below.

<node name="/org/freedesktop/sample_object"> A node describes a D-Bus ob-
ject. A D-Bus object has a name and it can support multiple D-Bus interfaces.

<interface name="org.freedesktop.SampleInterface"> A D-Bus interface is simi-
lar to a class in C++ or Java. It can contain methods, signals and properties.

<method name="Frobate"> A method is a member function of an interface which
can be called by other D-Bus clients. It can take input and output arguments.

<arg name="foo" type="i" direction="in"/> <arg> is a method argument. The at-
tribute direction specifies whether it is an input or output argument. The type
attribute specifies the type of the argument. D-Bus supports basic types as int
or string and also composite types as struct, array and map. The complete list
of types is in Table A.1.

<signal name="changeContinuous"> A <signal> is a message which is sent out
by an interface and which can be received by interested other objects on the
bus. It can have arguments the same way as methods.

<property name="Bar" type="y" access="readwrite"/> Properties are basically pub-
lic member data, which can be read and modified.

<tp:docstring> Encloses HTML-formatted documentation for the parent tag.

<tp:enum name="ResourceId" value-prefix="Resource" type="u"> Allows defini-
tion of an enum type, i.e. an integer type with a restricted set of values, which
are also named. This is then typically mapped to an unsigned integer type,
e.g. UINT32. The attribute value-prefix should be used by code generators as
a prefix for all values of this enum.

<tp:enumvalue suffix="None" value="0" /> <tp:enumvalue> is only valid inside
enclosing <tp:enum> tags. It defines one of the valid values for this enum
type. The attribute suffix will be appended to the value-prefix from the en-
closing <tp:enum>.

<tp:mapping name="ResourceDemand"> This defines the name of a map from
one type to another type. Used together with <tp:member>

<tp:struct name="QualityLevel" array-name="QualityLevelList"> This gives an
struct defined using (...) a name. A separate name for an array of these structs
can be specified. It is used together with <tp:member>

<tp:member type="u" tp:type="ResourceId" name="Key"/> When used inside <tp:mapping>,
there should be always exactly two, one for the key and one for the value of
the map. The names don’t matter much then.

When used inside <tp:struct>, they define an individual member of that struct.

The tp:type attribute This attribute can be used everywhere additionally to the
type attribute. It allows to define the type in more detail, e.g. to restrict the
possible values of an integer to those of an enum, or to give members of a
struct names.

38

Conventional Name Code Description
INVALID NULL Not a valid type
BYTE ’y’ 8 bit unsigned integer
BOOLEAN ’b’ Boolean, 0 is FALSE, 1 is TRUE
INT16 ’n’ 16 bit signed integer
UINT16 ’q’ 16 bit unsigned integer
INT32 ’i’ 32 bit signed integer
UINT32 ’u’ 32 bit unsigned integer
INT64 ’x’ 64 bit signed integer
UINT64 ’t’ 64 bit unsigned integer
DOUBLE ’d’ IEEE 754 double
STRING ’s’ null-terminated UTF-8 string
OBJECT_PATH ’o’ Name of an object instance
SIGNATTURE ’g’ A type signature
ARRAY ’a’ An array of the type which follows
STRUCT ’(...)’ A struct consisting of the enclosed types
VARIANT ’v’ A variant type, the type is part of the value itself
DICT_ENTRY ’{...}’ A map or dictionary mapping from the first enclosed type

to the second

Table A.1: D-Bus Type Signatures

There is no “official“ formal specification of these extensions yet, so documents
cannot formally be verified for correctness. Due to the deficiencies of the DTD
language producing a formal specification for the format of D-Bus interfaces using
XML Schema or RelaxNG would help in this regard.

39

Appendix B

The Kst Real-Time Plotting and
Data Viewing Interface

B.1 Overview

During the development of the ACTORS resource manager we had the need to
monitor the resource managers decisions and their influence on the client applica-
tions behavior. Especially the development and integration of the resource man-
agers different logic types greatly benefited from this real-time interface. Inside the
resource managers feedback algorithms, we integrated a small interface to follow
the essential decisions the resource manager makes.

The data format this interface uses is directly compatible to the Kst data format.
Kst is a freely available open source application under the terms of the GPL. It is
the fastest real-time large-dataset viewing and plotting tool available and provides
basic data analysis functionality.

B.2 Description

Whenever a client successfully registers with the resource manager, a new file
called kstfile<id>.kst is created in the folder /tmp/Actors (where id is a consecutive
number). At run-time, these files are filled with the properties of the clients. Each
column in the file stands for a unique property, in total 7 properties are measured:
It is the VP index, the average used budget, the hard reservations, the assigned
budget, the average used bandwidth, the assigned bandwidth and the assigned
period that are being monitored.

In order to separate the contents of the file, a small python script
(/trunk/resourcemanager/kst/split7.py) can be used like this:� �

>. ./ resourcemanager/ks t/ s p l i t 7 . py p r e f i x k s t f i l e 0 . ks t k s t f i l e 1 . ks t� �
This script will then create the following files, each only containing information

about a single virtual processor:

• prefix_0_vp_1

• prefix_0_vp_2

• prefix_0_vp_3

• prefix_0_vp_4

• prefix_1_vp_1

41

• prefix_1_vp_2

• prefix_1_vp_3

• prefix_1_vp_4

These files can directly be read by Kst. Figure B.1 shows such an example real-time
measurement of 2 virtual processors using Kst.

Figure B.1: Example real-time measurement of 2 virtual processors using Kst.

42

	Contents
	Introduction
	The Application Interface of the Resource Manager
	Overview
	D-Bus

	Updated Interface
	Interface Specification Format
	Formal Resource Manager Interface Specification
	Documentation of the Interface eu.actorsproject.ResourceManagerInterface
	Information Flow
	Example Session with the Resource Manager

	Example Application: An Adaptive MPEG-4 RVC Simple Profile Decoder
	Overview
	The Service Levels of the Adaptive MPEG4 RVC SP Decoder

	Example Application: A Feedback Controller
	Introduction
	Basic CAL Model
	The Quality Function
	Extended CAL model

	Conclusion
	Bibliography
	The Extended D-Bus Introspection Format
	The D-BUS Introspection DTD
	The Extended D-Bus introspection format

	The Kst Real-Time Plotting and Data Viewing Interface
	Overview
	Description

