
Theoretical Computer Science 450 (2012) 22–30

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Categorial grammars with iterated types form a strict hierarchy of
k-valued languages
Denis Béchet a,∗, Alexandre Dikovsky a, Annie Foret b
a LINA UMR CNRS 6241, Université de Nantes, France
b IRISA – Université de Rennes1, Campus Universitaire de Beaulieu, Avenue du Général Leclerc, 35042 Rennes Cedex, France

a r t i c l e i n f o

Keywords:
Formal grammars
Categorial grammars
Language hierarchy
Iterated types

a b s t r a c t

The notion of k-valued categorial grammars in which every word is associated to at most
k types is often used in the field of lexicalized grammars as a fruitful constraint for
obtaining interesting properties like the existence of learning algorithms. This constraint
is reasonable only when the classes of k-valued grammars correspond to a real hierarchy
of generated languages. Such a hierarchy has been established earlier for the classical
categorial grammars.

In this paper the hierarchy by the k-valued constraint is established in the class
of categorial grammars extended with iterated types adapted to express the so called
projective dependency structures.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The field of natural language processing includes lexicalized grammars such as classical categorial grammars
(AB grammars) [1], the different variants of Lambek calculus [2], lexicalized tree adjoining grammars [3], etc. In these
lexicalized formalisms, a k-valued grammar associates at most k categories to each word of the lexicon. For every class
of lexicalized grammars this constraint induces the strict hierarchy of grammars for different values of k. As to the hierarchy
of the corresponding languages, it might collapse.

In fact, in the field of lexicalized grammars, the concept of k-valued grammars is often used to obtain sub-classes of
grammars and languages satisfying an important property which does not hold in the whole class. In particular, this is the
waymany Gold’s model learnability [4] results are obtained. At the same time, this method applies only when the hierarchy
of languages is strict. For instance, the strict hierarchy of CF-languages generated by k-valued classical categorial grammars
was shown in [5]. In this paper, we prove that the class ∗AB of categorial grammars extended by iterated types also induces
a strict hierarchy of languages on k-valued constraints.

In the frame of logical type grammars the iterated types were first introduced in the Categorial Dependency Grammars
(CDGs) [6–8] in order to express the optional repeatable dependencies whose existence is postulated as one of the basic
principles of dependency syntax (see [9]). For instance, the optional repeatable dependencies of modifiers (adjectives,
attributes) on their noun heads and those of adjuncts on their verb heads are common to all languages. Later the iterated
types were integrated into pregroup grammars [10]. The grammars in ∗AB considered in this paper are in a sense
incomparable with the CDGs because the CDGs do not use the higher order types available in ∗AB, instead they use
polarized valencies of first order types,which cannot be expressed in ∗AB and permit to express discontinuous dependencies
between the heads and their displaced subordinates (such as fronted WH-junctions or parts of discontinuous comparative

∗ Corresponding author.
E-mail addresses: Denis.Bechet@univ-nantes.fr (D. Béchet), Alexandre.Dikovsky@univ-nantes.fr (A. Dikovsky), Annie.Foret@irisa.fr (A. Foret).

0304-3975/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2012.04.024

http://dx.doi.org/10.1016/j.tcs.2012.04.024
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:Denis.Bechet@univ-nantes.fr
mailto:Alexandre.Dikovsky@univ-nantes.fr
mailto:Annie.Foret@irisa.fr
http://dx.doi.org/10.1016/j.tcs.2012.04.024

D. Béchet et al. / Theoretical Computer Science 450 (2012) 22–30 23

more . . . than constructions in English). The grammars in ∗AB limited to first order types extended by the iteration constitute
a subclass of CDGs in which may be expressed continuous (i.e. projective) dependency structures (cf. Example 4 below). At
the same time, the repeatable dependencies are a challenge for grammatical inference [11]. For instance, the repeatable
circumstantial dependencies A in Example 4 is determined by the unique type [N\S/A∗

] assigned to an intransitive verb,
and not through consecutive subtypes of iteration-less types [N\S], [N\S/A], [N\S/A/A]

The main result of this paper shows that the languages generated by k-valued grammars in ∗AB for different k form a
strict hierarchy.

The paper is organized as follows. Section 2 gives some background knowledge on categorial grammars and on iterated
types. Section 3 focuses on parsing or deduction structures (the two notions are closely related for type-logical or categorial
grammars). Section 4 presents the proof that the class of k-valued categorial grammarswith iteration form a strict hierarchy.
Section 5 concludes.

2. Background

2.1. Categorial grammars

The classical categorial grammars is the simplest class of logical type grammars. The basic idea behind their types is that,
when a phrase w has a type of the form B \ A, this means that w can be concatenated on its left with a phrase w0 of type
B, so as to obtain the phrase w0w of type A (similar for A / B for the right concatenation). Example 1 below illustrates this
principle.

Definition 1 (Types). The types Tp, or formulae, are generated from a set of primitive types Pr , or atomic formulae, by two
binary connectives1 ‘‘ / ’’ (over) and ‘‘ \ ’’ (under):

Tp ::= Pr | Tp \ Tp | Tp / Tp.

Definition 2 (Rigid and k-valued Categorial Grammars). A categorial grammar is a structure G = (Σ, λ, S) where:

• Σ is a finite alphabet (a set of words);
• λ : Σ → P f (Tp) is a function (called lexicon) that associates finite subsets of Tpwith thewords inΣ .WewriteG : a → X

(or just a → X when G is implied) if X ∈ λ(a). This means that X is a possible category of a);
• S ∈ Pr is the main type associated with correct sentences.

A k-valued categorial grammar is a categorial grammar where, for every word a ∈ Σ , λ(a) has at most k elements. A rigid
categorial grammar is a 1-valued categorial grammar.

Definition 3 (Language). The language L(G) generated by a categorial grammar G in a class C is defined through a binary
derivation relation⊢C on strings of types (i.e. on Tp∗). Traditionally, the derivation relations are defined through type calculi.
Given a type calculus for C and the corresponding derivation relation ⊢C , a sentence a1 . . . an belongs to L(G), the language
of G, if there are associations a1 → X1, . . . , an → Xn such that X1 . . . Xn ⊢C S (C will be omitted when implied by the
context).

LC(G) will denote the language of G according to ⊢C .

2.2. ∗AB calculus

Categorial grammars usually express optional and repeatable arguments through recursion. Here, we present a different
approach originating from the dependency syntax and formalized through an extended type calculus∗AB inwhich an atomic
formula can be either a primitive type x ∈ Pr or the iteration of a primitive type written x∗, x ∈ Pr . This extension naturally
expresses the optional repeatable dependencies mentioned in the Introduction.

Definition 4 (Types). The types Tp, or formulae, are generated from a set of primitive types Pr , or iteration of primitive types
Pr∗

= {x∗, x ∈ Pr} by two binary connectives ‘‘ / ’’ (over) and ‘‘ \ ’’ (under):

Tp ::= Pr | Pr∗
| Tp \ Tp | Tp / Tp.

The elimination rules are as follows:

X / Y , Y ⊢ X (Lr)
X / y∗, y ⊢ X / y∗ (Lr∗)
X / y∗

⊢ X (Ωr)

Y , Y \ X ⊢ X (Ll)
y, y∗

\ X ⊢ y∗
\ X (Ll∗)

y∗
\ X ⊢ X (Ω l)

The classical AB Calculus consists of the first two elimination rules Lr and Ll. The corresponding derivation relation is
denoted by ⊢AB. The AB-grammars are weakly equivalent to the ϵ-free CF-grammars. Indeed, to each ϵ-free Context-Free

1 No product connective is used in the paper.

24 D. Béchet et al. / Theoretical Computer Science 450 (2012) 22–30

GrammarG inGreibachNormal Form, one can associate theAB-grammar cgAB(G)with the alphabet consisting of the terminals
of G, with the primitive types which are the nonterminals of G, and with the following lexicon:
a → ((. . . (X/Xn)/Xn−1 . . .)/X1) for each rule X → aX1 . . . Xn−1Xn in G.

On the other hand, to each AB grammar G, one can associate the following equivalent CF-grammar cf (G). It has the
alphabet of G as terminals, the set Tp(G) of subformulas of types of G as non-terminals, and the rules {B → A A\B | A\B ∈

Tp(G)}∪ {B → B/A A | B/A∈Tp(G)}∪ {A → c | c → A∈G}.
The equivalence between the two grammars is weak, because it concerns only the string languages, not structures.

Example 1. Let λ(John)=λ(Mary)=N and λ(loves)=[N\S/N]. Then the sentence John loves Mary is generated by both,
AB- and ∗AB-grammars. See also Example 4 below, where the iteration rules are involved.

Definition 5 (Head and Arguments). Any type X can be written in the following form: ((p|A1)| . . . |An) where A|B stands for
A/B or B\A and p is primitive. p is the head of X , each subtype ((p|A1)| . . . Ak) is a head subtype of X , n is the arity of X , and
each Ai is said an argument subtype of X .

2.3. Categorial Dependency Grammars

As it is mentioned in the Introduction, the Categorial Dependency Grammars (CDGs) [6–8] is an extension of the
first-order2 type subset of ∗AB using so called polarized valencies in order to express discontinuous (non-projective)
dependencies. For instance, in Example 2 one can see the discontinuous comparative dependency comp−conj cut by the
projective dependency dobj between the main verb and its direct object. To establish this dependency the CDG type ofmore
has the positive right valency ↗comp−conj and the type of than has the dual right negative valency ↘comp−conj. The
CDG-calculus has the rules of ∗AB applied to the first order types with the polarized valencies. The ∗AB rules do not affect
the valencies. Besides them CDG-calculus has the following special rule for pairing of dual left polarized valencies (another
similar rule pairs the right valencies):

Dl. αP1(↙C)P(↖C)P2 ⊢ αP1PP2 ,
if in the sequence of valencies (↙C)P(↖C) is satisfied the condition:
FA : P has no occurrences of ↙C, ↖C (i.e. ↙C is the first available valency dual to ↖C).

Example 2.

CDGs aremore expressive than AB-grammars because they generate non-CF-languages (e.g.MIX , the language consisting
of the strings over {a, b, c} in which these symbols have the same number of occurrences). In this paper, the CDGs serve only
as a background notion. Their strong definition as well as their mathematical properties may be found for instance in [8].
Here we only cite an equivalent definition of CDGs in terms of counter automata.

2.4. Abstract automata equivalent to CDGs

The automata equivalent to CDGs were defined by Karlov [12]. They have one stack and several completely independent
counters (in fact, each pair of dual polarized CDG valencies corresponds to a unique counter).

Definition 6. A real-time pushdown independent counters automaton (RtPiCA(k), k ≥ 0) is a system A =

(W , Γ ,Q , q0, k, I), where:W is the set of input symbols (words), Γ is the set of stack symbols containing a special symbol
⊥ ∈ Γ (bottom), Q is a set of states, q0 ∈ Q is the start state, k ≥ 0, and I is a set of instructions of the form

i = (aqz → q′αv)
in which: a ∈ W , q, q′

∈ Q , z ∈ Γ , α ∈ Γ ∗ and v is an integer vector of length k (empty if k = 0), i.e. v ∈ Zk (positive, null
or negative integers) if k > 0. k is the number of counters.

Computations ofRtPiCA(k) are defined in terms of the following transition systemover configurations. Aconfiguration
is a tuple (q, w, γ , V), where w ∈ W ∗ (non read part of input string), q ∈ Q (current state), γ ∈ Γ ∗ (stack contents) and
V ∈ Nk (current counters’ values are positive or null integers).

A computation step is the following transition relation:

⟨q, s, γ , V ⟩ ⊢
i
A ⟨q′, s′, γ ′, V ′

⟩,

2 The order o is null on primitive types s.t. o(X /Y)=o(Y \X)=max(o(X), 1 + o(Y)).

D. Béchet et al. / Theoretical Computer Science 450 (2012) 22–30 25

where:
(1) s = as′;
(2) γ = zγ ′′, γ ′

= αγ ′′ ;
(3) V ′

= V + v for the instruction i = (aqz → q′αv) ∈ I (V + v must have non-negative components).
⊢

∗

A is the reflexive–transitive closure of ⊢i
A.

A string s ∈ W ∗ is recognized by the automaton A if ⟨q0, s, ⊥, (0, . . . , 0)⟩ ⊢
∗

A ⟨q, ε, ε, (0, . . . , 0)⟩ for some q. L(A)
(the language recognized by A) is the set of all strings recognized by A.

Example 3. The language L = { wn
1w

n
2w

n
3 | n = 0, 1, . . . } is recognized by the automaton A = (W , Γ ,Q , q0, k, I) in which:

W = {w1, w2, w3 }, Q = { q0, q1, q2 }, Γ = { z0, w1, w2, w3 }, k = 1 and the set of instructions I is as follows:

w1 q0 ⊥ → q0 w1⊥ 1 w1 q0 w1 → q0 w1w1 1
w2 q0 w1 → q1 ε 0 w2 q1 w1 → q1 ε 0
w3 q1 ⊥ → q2 ⊥ − 1 w3 q2 ⊥ → q2 ⊥ − 1
w3 q2 ⊥ → q2 ε − 1.

The equivalence of RtPiCA(k) and CDGs is proved in [12].

Theorem 7. A language L is recognized by a RtPiCA(k) A for some k if and only if it is generated by a CDG.

3. Deduction structures

In this sectionwe focus on structures for the calculus∗AB (andCDGs); in fact, these rules are extensions of the cancellation
rules of classical categorial grammars that lead to the generalization of FA-structures used here.

3.1. Classical FA structures over a set E

We give a general definition of FA structures over a set E , whereas in practice E is either an alphabet Σ or a set of types
such as Tp.

Definition 8 (FA Structures). Let E be a set, a FA structure over E is a binary tree where each leaf is labelled by an element
of E and each internal node is labelled by Lr (forward application) or Ll (backward application):

F AE ::= E | Lr(F AE , F AE) | Ll(F AE , F AE).

3.2. Functor-argument structures with iterated subtypes

The functor-argument structure and labelled functor-argument structure associated to a (dependency) structure
proof in ∗AB (or in CDGs), are obtained as follows.

Definition 9. Let ρ be a structure proof, ending in a type t . The labelled functor-argument structure associated to ρ,
denoted lfaiter(ρ), is defined by induction on the length of the proof ρ considering the last rule in ρ:

– if ρ has no rule, then it is reduced to a type t assigned to a word w, let then lfaiter(ρ) = w;
– if the last rule is Ll cP1 [c \ β]

P2 ⊢ [β]
P1P2 , by induction let ρ1 be a structure proof for cP1 and T1 = lfaiter(ρ1); and let ρ2 be

a structure proof for [c \ β]
P2 and T2 = lfaiter(ρ2): then lfaiter(ρ) is the tree with root labelled by Ll[c] and subtrees T1, T2;

– if the last rule is Ω l
∗ [c∗

\ β]
P2 ⊢ [β]

P2 , by induction let ρ2 be a structure proof for [c∗
\ β]

P2 and T2 = lfaiter(ρ2): then
lfaiter(ρ) is T2;

– if the last rule is Ll∗ cP1 [c∗
\ β]

P2 ⊢ [c∗
\ β]

P1P2 , by induction let ρ1 be a structure proof for cP1 and T1 = lfaiter(ρ1) and
let ρ2 be a structure proof for [c∗

\ β]
P2 and T2 = lfaiter(ρ2): lfaiter(ρ) is the tree with root labelled by Ll[c] and subtrees T1, T2;

– we define similarly the function lfaiter when the last rule is on the right, using / and Lr instead of \ and Ll;
– (in the CDG case) if the last rule is Dl, then lfaiter(ρ) is taken as the image of the proof above.

The functor-argument structure faiter(ρ) is obtained from lfaiter(ρ) (the labelled one) by erasing the labels [c].

Example 4. Let λ(John) = N , λ(ran) = [N\S/A∗
], λ(yesterday) = λ(fast)= A, then s′3 = Ll[N](John, Lr[A](Lr[A](ran, fast),

yesterday) (labelled structure) and s3 = Ll(John, Lr(Lr(ran, fast), yesterday) are associated to ρ1 below :

ρ1 :

N

[N \ S / A∗
] A

Ir

[N \ S / A∗
] A

Ir

[N \ S / A∗
]

Ωr
∗

[N \ S]
Ll

S

26 D. Béchet et al. / Theoretical Computer Science 450 (2012) 22–30

3.3. Binary structures in ∗AB.

We introduce the definition of *-context, for a description of binary structures in ∗AB.

Definition 10. Wesay thatB is an *-context ofA, whenB = (G∗

i,p′
i
\ . . .G∗

i,1\A/D∗

i,1 . . . /D∗

i,pi
)where the sequences of iterated

types (on the left, or on the right of A) are possibly empty. B =⋆ (A)⋆ will mean that B is some *-context of A.

*-Context Rules. To simplify the presentation, we will also use elimination rules for *-contexts. The new rules will in a way
incorporate the Ωr and Ω l rules.

The *-context elimination rules are as follows :

⋆(X / Y)⋆ , ⋆(Y)⋆ ⊢ X (⋆(Lr)⋆)
⋆(X / y∗)⋆ , ⋆(y)⋆ ⊢ X / y∗ (⋆(Lr∗)⋆)
⋆(X / y∗)⋆ ⊢ X (⋆(Ωr)⋆)

⋆(Y)⋆ , ⋆(Y \ X)⋆ ⊢ X (⋆(Ll)⋆)
⋆(y)⋆ , ⋆(y∗

\ X)⋆ ⊢ y∗
\ X (⋆(Ll

∗
)⋆)

⋆(y∗
\ X)⋆ ⊢ X (⋆(Ω l)⋆)

System equivalence. Each rule above ⋆(R)⋆ with antecedents ⋆(Ci)⋆ is derivable from the original system, first applying several
times Ωr, Ω l according to the *-context and producing Ci, then applying rule R to Ci. Conversely, each elimination rule R is
a case of ⋆(R)⋆ with empty *-part in contexts. Therefore the two systems are equivalent.

Variant. The system consisting of ⋆(Lr)⋆,⋆(Lr∗)⋆,⋆(Ωr)⋆,⋆(Ll)⋆,⋆(Ll
∗
)⋆,⋆(Ω

l)⋆ is also equivalent to ⋆(Lr)⋆,⋆(Lr∗)⋆,⋆(Ll)⋆,⋆(Ll
∗
)⋆,

⋆(Ω)⋆, where ⋆(Ω)⋆ is:

⋆(X)⋆ ⊢ X (⋆(Ω)⋆)

this last version amounts to a simplification of ⋆(Ω
r)⋆ and ⋆(Ω

l)⋆.

Properties. if ∆, A, Γ ⊢ X then ∆,⋆(A)⋆, Γ ⊢ X as well (using Ωr
∗ and Ω l

∗).

Binary deduction trees. Eachderivation tree in the original calculus can be transformed into a binary derivation tree involving
only ⋆(Lr)⋆,⋆(Lr∗)⋆,⋆(Ll)⋆,⋆(Ll

∗
)⋆, where the root is an *-context of S (written ⋆(S)⋆).

We iteratively replace parts of the tree as follows:

• If the derivation tree has no binary rule, the succession of Ωr and Ω l is replaced by one application of ⋆(X)⋆ ⊢ X (where
in fact X = S).

• If Ωr occurs before a binary rule R, we do the following replacements:
...δ1

(X1 / Y1) / y∗

Ωr

(X1 / Y1)
...δ2
Y1 Lr

X1

→

...δ1
(X1 / Y1) / y∗

...δ2
Y1

⋆(Lr)⋆
X1

...δ1
Z1 / y∗

=⋆ ((X1 / Y1))⋆ / y∗

Ωr

Z1 =⋆ ((X1 / Y1))⋆

...δ2
Z2 =⋆ (Y1)⋆

⋆(Lr)⋆
X1

→

...δ1
Z1 / y∗

= ⋆((X1 / Y1))⋆ / y∗

...δ2
Z2 =⋆ (Y1)⋆

⋆(Lr)⋆
X1

The transformations are similar for left elimination rules : Ll,⋆(Ll
∗
)⋆

• Ω l occurring before a binary rule is replaced similarly.

Remark. Using one of the system variants, we can eliminate the ⋆(Ω
r)⋆ and ⋆(Ω

l)⋆ in a way similar to Ωr and Ω l.

4. A strict hierarchy

For each k ∈ N, we are interested in classes Ck
⟨constraint⟩ of languages corresponding to k-valued grammars satisfying some

⟨constraint⟩. In this sectionwe prove for some ⟨constraint⟩ (and for lexiconswith at least 2 elements) that such families form
strict hierarchies.

For instance, the first very easy observation considering the ∗AB calculus (denoted by * as class constraint) consists in
that C0

∗
(C1

∗
. Indeed, C0

∗
= ∅ and C1

∗
contains the (finite) language {a} = L∗AB(G) for the rigid grammar G : a → S.

Note that the class of languages corresponding to rigid AB-grammars is a proper subset of the languages of rigid
∗AB-grammars: considerL = {a+

} generated by G = {a → S / S∗
}, which cannot be generated by a rigid AB-grammar.

D. Béchet et al. / Theoretical Computer Science 450 (2012) 22–30 27

4.1. Overview

We first sum up some previous work for classical categorial grammars (AB) and non-associative Lambek grammars (NL).
AB. A similar problem was solved by Kanazawa in [5] for the classes of k-valued classical categorial grammars. The proof
scheme was as follows:

– Languages: for k > 0, LAB,k =def {aibaibai | 1 ≤ i ≤ 2k}.
– Grammars:3 for k > 0,

Gk =

a → x, (· · · (S /x) · · · /x)

i

/y) /x) · · · /x)
i

/y) /x) · · · /x)
i−1

(1 ≤ i ≤ k)

b → y, (x\(· · · \(x\
i

(· · · (S /x) · · · /x)
i

/y) /x) · · · /x)
i

· · ·) (k+1≤ i≤2k).

– The language (for AB) of Gk is LAB,k.
– Property: for k > 0, LAB,k is a (k + 1)-valued language but is not a k-valued language for classical categorial grammars.

NL. For Lambek non-associative calculus the proof scheme [13] is based on the previous one (for AB), but using grammars
beyond order 1, 2k + 1 words and generalized AB-deductions. The proof scheme is as follows:

– Languages: for k > 0, Lho,k =def {abb} ∪ {aibaibai | 1 ≤ i ≤ 2k}.
– Grammars: k + 1-valued grammar G′

k = σ(Gk) where Gk is as above, with substitution σ = x := (S / y) / y.
– The language (for NL) of G′

k is Lho,k.
– Property: for k > 0, Lho,k is a (k + 1)-valued language but is not a k-valued language for NL.

Towards iteration. We can easily show that the languages of grammars Gk is the same when we consider the ∗AB calculus
instead of the AB rules (because Gk has not iteration). The same remark holds for grammar G′

k.
This shows that the languages LAB,k are also (k+1)-valued languages for the ∗AB calculus. It is thus natural to askwhether

they are k-valued for the ∗AB calculus as well. This is the purpose of next section.
Remark. One key point in the adaptation is that, when the language is finite (LAB,k is finite), an iterated argument subtype
cannot be used in a proof tree for application of Ll∗ or Lr∗.

4.2. Order 1 and iteration

For each k ∈ N, we can consider the class Ck
∗,flat of languages corresponding to k-valued ∗-AB grammars with types of

order at most 1. This section proves that this family forms a strict hierarchy (if the lexicon has at least 2 elements):

Theorem 11. ∀k ∈ N Ck
∗,flat (Ck+1

∗,flat .

The detailed proof of this theorem needs some definitions and remarks.
In this section, we consider the binary deduction trees obtained by omitting the Ω unary steps and where each node is

decorated with the type that is obtained by application of the elimination rule on the immediate subtrees. These trees also
correspond to the previously described functor-argument structures.

Steps of proof.

1. Obviously, we have ∀k ∈ N Ck
∗ ⊆ Ck+1

∗ .
2. For k > 0, we consider L∗,k =def {aibaibai | 1 ≤ i ≤ 2k}.
3. We see that L∗,k is a (k + 1)-valued language : because Gk is (k + 1)-valued, without ∗ in its types, its language is as in

the AB case, which is {aibaibai | 1 ≤ i ≤ 2k} as shown in [5].
4. We prove that L∗,k is not a k-valued language for ∗AB languages.

Proof: suppose G is a k-valued grammar with ∗AB language L∗,k.
(a) For each element of L∗,k, there exists a binary deduction tree : Ti for aibaibai (1 ≤ i ≤ 2k).
(b) For 0<i≤2k let Ai denote the root type of the smallest subtree in Ti whose yield includes both b. This gives two

subtrees with one bwith yields ai0bai1 and ai2bai3 (i1 + i2 = i). Then, we consider the antecedents of Ai in Ti : C ′

i and
Bi such that :
Bi =⋆ (Ai/Cδ

i)⋆ (or Bi =⋆ (Cδ
i \Ai)⋆) where δ is either ∗ or empty, and such that C ′

i is a ∗context of Ci.

3 In fact, the second type of a can be abbreviated as S / xiyxiyi−1 and the second type of b can be abbreviated as xi \ (S / xiyxi).

28 D. Béchet et al. / Theoretical Computer Science 450 (2012) 22–30

In fact, δ cannot denote ∗, otherwise, we
would get deductions involving iterations of
Ci (replacing one Ci) for words with more
than two b. Each Bi is thus an *-context of
Ai/Ci or of Ci\Ai.
We define Bi as the type in G ‘‘providing’’ Bi
(following functors) in Ti.
We define C ′

i as the type in G ‘‘providing’’ C ′

i
(following functors) in Ti.

(c) We remark that ∀i : Bi ≠ Ai and C ′

i ≠ Ai.
Otherwise, if Bi = Ai by replacing the subtree ending in Bi (or C ′

i if C
′

i = Ai) by the subtree ending in Ai, we would get
a derivation of a word with three b instead of two.

(d) More generally : ∀i, j : Aj cannot have Bi or Ci as head subtype.
Otherwise, a subtree ending in Bi (or a ∗context of Ci) would contain the subtree ending with Aj that has two b.

(e) We prove that: ∀i ≠ j : Bi ≠ Bj.
Let yice(Xi) denote the centre part of the yield with root Xi in Ti. (this is i1 for the left subtree with yield ai0bai1 and i2
for the right subtree with yield ai2bai3), we have ∀i : yice(Bi) + yice(C

′

i) = i.
- Suppose (from the contrary) (i) Bi = Bj, for some i ≠ j ;
Since i ≠ j, either yice(Bi) ≠ yjce(Bj) or yice(C

′

i) ≠ yjce(C ′

j).
- - Suppose first (ii) yice(Bi) ≠ yjce(Bj) ; from (ii) replacing in Tj, (j ≠ 0), Bj by Bi is a derivation of a word
w = . . . baj

′

baj orw = ajbaj
′

b . . ., where j′ = yice(Bi)+yjce(C ′

j) this wordw is not in L∗,k since j′ = yice(Bi) + yjce(C ′

j) ≠

yjce(Bj) + yjce(C ′

j) = j ; this contradicts the assumption that G has L∗,k as language (for ∗AB).
- - Suppose instead (ii)′ yice(C

′

i) ≠ yjce(C ′

j) ;
- - - if (iii) Ci = Cj : replacing in Tj, C ′

j by C ′

i yields a similar word w not in L∗,k with j′ = yjce(Bj) + yice(C
′

i) occurrences
of a between the b and j′ ≠ j, (ii)′ also leads to a contradiction.
- - - otherwise (iii) Ci = Di,k for some D∗

i,k of Bi =⋆ (Ai/Ci)⋆ Bi = (G∗

i,p′
i
\ . . .G∗

i,1\Ai/Ci/D∗

i,1 . . . /D∗

i,pi
) (in the right

case) ; however in such a case, we could replace C ′

i by a succession of C ′

i , using the iteration rule, producing a word
with more than two b. Therefore (i) is not possible : this means that all Bi are distinct.

(f) We prove that: ∀i, j : Bi ≠ Bj .
We write X |Y as an abbreviation for X / Y or for Y \ X (functor first).
- Suppose Bi = Bj. One (say Bi) is a head subtype of the other (Bj), that is in the form: Bj = . . . (Bi|D′

1 . . .)|D′
n

with Bj =⋆ (Aj/Cj)⋆ (in the right case) ;
- - if Bi is a strict 4 head subtype of Aj/Cj, we then get Aj in a subtree ending in Bi , which is impossible since the yield
would then have three b instead of two.
- - otherwise, Bi is a *context5 of Aj/Cj (in the right case), which entails that Ci = Cj ; then, replacing Bj by Bi in Tj or
C ′

i by C ′

j in Ti gives deduction trees: which leads to a contradiction using a reasoning similar to that of Bi ≠ Bj.
(g) As a consequence, we get a contradiction as follows.

Let f (i) denote the index s.t. C ′

i = Bf (i). By definition Ci is a head subtype of C ′

i and Bf (i) is a head subtype of Bf (i), that is
the same type. Therefore, one of Ci and Bf (i) is a head subtype of the other ; because Ci is primitive and Bf (i) is not, Ci is
a head subtype of Bf (i). This entails that Ci is a head subtype of Af (i) as well, which is impossible as shown previously.

(e) Thus ∀k > 0 Ck
∗,flat ≠ Ck+1

∗,flat (we have also seen in the introduction to the section that the property is also true for
k = 0).

4.3. Order >1 and iteration

The previous reasoning can be adapted to the *AB calculuswhere types are not necessarily flat (order>1), using the same
deduction rules and structures.

4 (Not equal to).
5 Possibly equal to.

D. Béchet et al. / Theoretical Computer Science 450 (2012) 22–30 29

Theorem 12. ∀k ∈ N Ck
∗

(Ck+1
∗

.

Sketch of proof. To this end, we use in this section the languages Lho,k = {abb}∪ {aibaibai | 1 ≤ i ≤ 2k} and consider 2k+1
proof trees instead of 2k in the previous section.

– Languages: for k > 0, Lho,k =def {abb} ∪ {aibaibai | 1 ≤ i ≤ 2k}.
– Grammars: k + 1-valued grammar G′

k = σ(Gk) where Gk is as above, with substitution σ = x := (S / y) / y (replacing x
by the type). We can show L∗AB(σ (Gk)) = Lho,k as in [13] (see Annex).

– Property: for k > 0, Lho,k is a (k + 1)-valued language (using G′

k) but is not a k-valued language (see details below) for
the *AB calculus.

Details of proof. To prove that Lho,k is not a k valued language, we proceed as in the previous section: we suppose the
existence of a k-valued grammar G′, with language Lho,k and we consider a deduction tree Ti for aibaibai (1 ≤ i ≤ 2k) and T0
for abb. For 0 ≤ i ≤ 2k, we define Ai as the root type of the smallest subtree in Ti with a yield including both b.

• We prove that: ∀i ≠ j : Bi ≠ Bj (similarly to the previous subsection).
• ∀i ≠ j : Bi ≠ Bj (details are similar to the previous subsection).
• As a consequence, we need 2k + 1 distinct Bi.
• Contradiction: 2k + 1 distinct Bi are needed with a k-valued grammar with a useful lexicon of 2 words (a and b).

The advantage of this construction is to handle directly 2k+1 types (2k in the previous one). However, a main difference
is the presence of types of order 2 in the grammar.

5. Conclusion

∗AB. In this paper are studied two type calculi for categorial grammars using iterated types: one involving only flat
types (i.e. the types of order 1) and the other using higher order types. We prove that for both the classes of k-valued
categorial grammars induce strict hierarchies of classes of languages. Thus, the notion of k-valued grammars is relevant for
both systems: each k ∈ N defines a particular class of languages. The proof relies on generalized AB deductions and their
corresponding functor-argument structures that enables us to define languages of structured sentences in the way similar
to that of the classical categorial grammars.

CDGs. In fact, our strict hierarchy theorem also extends to the CDGs with empty potentials, because every CDG with
empty potentials may also be seen as a ∗AB grammar (of order 1). Therefore the hierarchy for CDGs with empty potentials
does not collapse. The strict hierarchy problem for the unlimited CDGs is open.

Future work will concern iterated types extensions of other type logical grammars, e.g. the pregroup grammars.

Appendix. Semantic reasoning about language hierarchies

Useful models

Powerset residuated groupoids [14]. Let (M, .) be a groupoid. Let P (M) denote the powerset of M . A powerset residuated
groupoid over (M, .) is the structure (P (M), ◦, ⇒, ⇐, ⊆) such that for X, Y ⊆ M:

X ◦ Y = {x.y : x ∈ X, y ∈ Y }

X ⇒ Y = {y ∈ M : (∀x ∈ X) x.y ∈ Y }

Y ⇐ X = {y ∈ M : (∀x ∈ X) y.x ∈ Y }.

Interpretation.Given a powerset residuated groupoid (P (M), ◦, ⇒, ⇐, ⊆), an interpretation is amap from primitive types
p to elements [[p]] in P (M) that is extended to types and sequences in the natural way :

[[C1 \ C2]] = [[C1]] ⇒ [[C2]] ; [[C1 / C2]] = [[C1]] ⇐ [[C2]] ; [[(C1, C2)]] = ([[C1]] ◦ [[C2]]).

By a model property for NL : If Γ ⊢NL C then [[Γ]] ⊆ [[C]].

Description of L(σ (Gk)) using models, (following [13])

For the language description (L∗(σ (Gk)) = LAB(σ (Gk)), case order>1), we consider the k + 1-valued grammar σ(Gk)
where Gk is as above, with substitution σ = x := (S / y) / y, and we show LNL(σ (Gk)) = Lho,k.

30 D. Béchet et al. / Theoretical Computer Science 450 (2012) 22–30

• We show that Lho,k ⊆ L(NL(σ (Gk))) by:
For (i = 0, abb) : ((((S / y) / y), y), y) ⊢ S we write F0 = ((S / y) / y).
For (i ≤ k, aibaibai):(. . .(S / xiyxiyxi−1, x). . ., x)

i−1

, y), x) . . . , x)
i

, y), x) . . . , x)
i

⊢ S and let Fi = S / xiyxiyxi−1 denote the

corresponding type of a.
For (i > k, aibaibai) : (x, . . . , (x

i

, xi \ S / xiyxi, x) . . . , x)
i

, y, x) . . . , x)
i

⊢ S

and let Fi = xi \ S / xiyxi denote the corresponding type of b.
• To show that LNL(σ (Gk)) ⊆ LNL,k we consider the following powerset residuated groupoid on V ∗ (also with unit):

[[S]] = Lho,k, [[y]] = {b} ;
we then calculate the type images of σ(Fi) (see above) :
[[σ(F0)]] = {a} (with [[(S / y)]] = {ab})
if (i ≤ k) then [[σ(Fi)]] = {a},
if (i′ > k) then [[σ(Fi′)]] = {b}
hence the language inclusion (Γ ⊢ S implies [[Γ]] ⊆ [[S]] = Lho,k).

• LAB(σ (Gk)) = LNL(σ (Gk)) is already established in [13]. This can obtained from (a) Lho,k ⊆ LAB(σ (Gk)) ⊆ LNL(σ (Gk))
(same parses as above, and AB proofs hold in NL) and (b) Lho,k = LNL(σ (Gk)) as recalled above.

References

[1] Y. Bar-Hillel, A quasi arithmetical notation for syntactic description, Language 29 (1953) 47–58.
[2] J. Lambek, The mathematics of sentence structure, American mathematical monthly 65.
[3] A.K. Joshi, Y. Shabes, Tree-adjoining grammars and lexicalized grammars, in: Tree Automata and LGS, Elsevier Science, Amsterdam, 1992.
[4] E. Gold, Language identification in the limit, Information and control 10 (1967) 447–474.
[5] M. Kanazawa, Learnable Classes of Categorial Grammars, Studies in Logic, Language and Information, Center for the Study of Language and Information

(CSLI) and The European association for Logic, Language and Information (FOLLI), Stanford, California, 1998.
[6] A. Dikovsky, Dependencies as categories, in: Recent Advances in Dependency Grammars, COLING’04 Workshop, 2004, pp. 90–97.
[7] D. Béchet, A. Dikovsky, A. Foret, E. Moreau, On learning discontinuous dependencies from positive data, in: P. Monachesi (Ed.), Proc. of the 9th Intern.

Conf. Formal Grammar 2004, FG 2004, 2004, pp. 1–16.
[8] M. Dekhtyar, A. Dikovsky, Generalized categorial dependency grammars, in: Trakhtenbrot/Festschrift, in: LNCS, vol. 4800, Springer, 2008, pp. 230–255.
[9] I. Mel’čuk, Dependency Syntax, SUNY Press, Albany, NY, 1988.

[10] D. Béchet, A. Dikovsky, A. Foret, E. Garel, Introduction of option and iteration into pregroup grammars, in: C. Casadio, J. Lambek (Eds.), Computational
Algebric Approaches to Morphology and Syntax, Polimetrica, Monza (Milan), Italy, 2008, pp. 85–107.

[11] D. Béchet, A. Dikovsky, A. Foret, Twomodels of learning iterated dependencies, in:M. Egg, P. de Groote, L. Kallmeyer,M.-J. Nederhof (Eds.), Proceedings
of the 15th International Conference on Formal Grammar (FG10), Copenhagen, Denmark, 2010, pp. 1–16.

[12] B. Karlov, Abstract automata and a normal form for categorial dependency grammars, in: Proceedings of LACL 2012, in: LNCS, vol. 7351, Springer,
Nantes, France, 2012.

[13] D. Bechet, A. Foret, k-valued non-associative Lambek grammars (without product) form a strict hierarchy of languages, in: Proceedings of LACL 2005,
in: LNCS (LNAI), vol. 3492, Springer, 2005, pp. 1–17.

[14] W. Buszkowski, Mathematical linguistics and proof theory, in: J. van Benthem, A. ter Meulen (Eds.), Handbook of Logic and Language, North-Holland,
Elsevier, Amsterdam, 1997, pp. 683–736. Ch. 12.

	Categorial grammars with iterated types form a strict hierarchy of k -valued languages
	Introduction
	Background
	Categorial grammars
	*AB calculus
	Categorial Dependency Grammars
	Abstract automata equivalent to CDGs

	Deduction structures
	Classical FA structures over a set E
	Functor-argument structures with iterated subtypes
	Binary structures in *AB.

	A strict hierarchy
	Overview
	Order 1 and iteration
	Order >1 and iteration

	Conclusion
	Semantic reasoning about language hierarchies
	References

