
 Procedia Computer Science   48  ( 2015 )  288 – 297 

1877-0509 © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of scientific committee of International Conference on Computer, Communication and Convergence (ICCC 2015)
doi: 10.1016/j.procs.2015.04.184 

ScienceDirect
Available online at www.sciencedirect.com

International Conference on Intelligent Computing, Communication & Convergence 

 (ICCC-2014) 

Conference Organized by Interscience Institute of Management and Technology, 

Bhubaneswar, Odisha, India 

 

Recent Developments in the Field Of Bug Fixing 

Varun Mittala , Shivam Adityab ,* 
aDepartment of Computer Science and Engineering, VIT University, Vellore, India 
bDepartment of Computer Science and Engineering, VIT University, Vellore, India 

Abstract 

In recent times, there have been lot of work done in the field of bug fixing in the software development process. We hereby have 
conducted a review of the seven recent techniques in the field of bug fixing and have made a report on it. 

Keywords: Bug fixing; errors; recent; software; developement 

 

 
   *Corresponding author. Tel.: +91-9600703668; 
    E-mail address: varun.mittal2011@vit.ac.in 
 
    *Corresponding author. Tel.: +91-9597361736; 

 E-mail address:sa.shivam.aditya@gmail.com 

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of scientific committee of International Conference on Computer, Communication 
and Convergence (ICCC 2015)

(ICCC-2015)

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2015.04.184&domain=pdf


289 Varun Mittal and Shivam Aditya  /  Procedia Computer Science   48  ( 2015 )  288 – 297 

 

1. Introduction 

Debugging is one of the most time-consuming activities that software developers engage in. programmers may 
need to intensively inspect code, employ a debugger, communicate with fellow programmers, write test cases, apply 
possible fixes, and do regression tests in order to identify the presence of the bugs in the program. A NIST report 
estimated that debugging costs industry billions of dollars each year. Given the cost of finding a fix to an existing 
bug, it is desirable that the fix be applied in all the places where the bug actually occurs. Nevertheless, programmers 
often fail to do so. 

 

2. Recent Papers in the Field 

2.1. Generating Fixes from Object Behavior Anomalies 

The paper was made by Valentin Dallmeier, Andreas Zeller of Dept. of Computer Science, Saarland University, 
Germany and Bertrand Meyer, Chair of Software Engineering, ETH Zürich Switzerland [1]. 

This paper is about the process of debugging. So, when a program fails, debugging starts i.e. the process of 
locating and fixing the bug that causes the failure. Recent years have seen considerable advances in automated 
debugging. 

Even with automated bug localization, the programmer must still assess these locations to choose where and how 
to fix the program. The goal of this work was to effectively automate the entire debugging process for a significant 
subset of programming errors. 

It also tells us about the advances in recent years that have made it possible in some cases to locate bugs 
automatically. But debugging is also about correcting bugs. The results reported in this paper, from the new 
PACHIKA tool, suggested that such a goal may be reachable. 

PACHIKA leverages differences in program behavior to generate program fixes directly. It does so by 
automatically inferring object behavior models from executions, determining differences between passing and 
failing runs, generating possible fixes, and assessing them via the regression test suite. Evaluated on the ASPECTJ 
bug history, PACHIKA generates a valid fix for 3 out of 18 crashing bugs; every fix pinpoints the bug location and 
passes the ASPECTJ test suite.  

 
 
 
 
 
 
 
 
 
 

 
Fig 1.  PACHIKA tool process 

 
 
PACHIKA takes a Java program and out of its passing and failing runs, it mines object behavior models. From 

differences between the models , it derives fix candidates which it then validates against the regression test suite. 
Only validated fixes are preserved. 

It concludes that the future of automated debugging lies in the automatic generation of fixes. Applied to real-life 
Java programs, our PACHIKA tool can generate fixes for 3 out of the 18 post-release bugs that crash ASPECTJ. By 



290   Varun Mittal and Shivam Aditya  /  Procedia Computer Science   48  ( 2015 )  288 – 297 

 

leveraging the difference between normal and abnormal behavior, we successfully constrain the search space to 
quickly generate potential fixes that not only remove the problem at hand, but also have a high diagnostic quality. 
Starting with behavioral differences, coupled with strict filtering via the test suite ensures a zero rate of false 
positives, ensuring that PACHIKA increases productivity. The approach can easily be extended to quality assurance 
beyond testing: As soon as a specification can be automatically validated, PACHIKA can leverage it to filter fix 
candidates—such that only true corrections remain. 

2.2. Propagating Bug Fixes with Fast Subgraph Matching 

The paper was made by Boya Sun, Gang Shu, Andy Podgurski, Shirong Li, Shijie Zhang, Jiong Yang of 
Department of Electrical Engineering and Computer Science, Case Western Reserve University [2]. 

In this research paper, they presented a powerful and efficient approach to the problem of propagating a bug fix 
to all the locations in a code base to which it applies. Their approach represented bug and fix patterns as subgraphs 
of a system dependence graph, and it employed a fast, index-based subgraph matching algorithm to discover unfixed 
bug-pattern instances remaining in a code base. They also developed a graphical tool to help programmers specify 
bug patterns and fix patterns easily. They evaluated their approach by applying it to bug fixes in four large open-
source projects. The results indicated that the approach exhibits good recall and precision and excellent efficiency. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 2. The GADDI Process 

 
They have presented an efficient and effective approach to solve the bug fix propagation problem by finding 

matches of a query graph representing a bug pattern. An easy-to-use graphical tool PatternBuild is used for 
specifying bug and fix patterns, and fast subgraph matching based on graph indexing is used to find bug instances in 
a code base. 

Empirical evaluation on large open source projects indicated that the subgraph matching algorithm used for 
detecting potential bugs achieved very high recall, which indicates that this approach is able to propagate bug fixes 
nearly completely. The GADDI algorithm was shown to be very efficient when used in our approach. 

The precision of the proposed approach averaged a little more than 50%. Although this is acceptable, better 
precision is required. Improper node labeling is the main cause of false positives. In order to help ensure that the 
same label is assigned to all semantically equivalent nodes supervised learning approaches seem to be appropriate. 
Features can be selected to characterize all the factors that can affect labeling:  surrounding dependences, ASTs 
(abstract syntax tree) text of source code, etc. Another cause of false positives is that some bug and fix patterns are 
not universally applicable. To solve this problem  and also to prune results, functionality was provided to let 
programmers define more constraints on the bug and fix patterns.  



291 Varun Mittal and Shivam Aditya  /  Procedia Computer Science   48  ( 2015 )  288 – 297 

 

They also hoped to add functionality to support semiautomatic correction of buggy code. This seems to be 
plausible since they highlight code changes according to the graph edit distance algorithm, so we can get an edit 
script relating the bug pattern and the fix pattern, which might be used to change a potential bug instance into a fix 
instance. 

 
 

2.3. Debugging in the Large via Mining Millions of Stack Traces 

The paper was made by Shi Han, Yingnong Dang, Song Ge, Dongmei Zhang, Microsoft Research Asia and Tao 
Xie, North Carolina State University [3]. 

The paper tells us about how given limited resource and time before development-site testing, software release, 
and debugging become more and more insufficient to ensure satisfactory software performance. The counterpart for 
debugging in the large pioneered by the Microsoft Windows Error Reporting (WER) system focusing on 
crashing/hanging bugs, the emergence of the performance debugging in the large  has been possible due to the 
available infrastructure support to collect execution traces with performance issues from a huge number of users at 
the deployment sites. Performance analysts face a serious challenge in the form of performance debugging the 
numerous and complex traces at various deployment sites. An innovative approach to enable performance 
debugging in the large called StackMine has been proposed in this paper that mines callstack traces to help 
performance analysts effectively discover highly impactful performance bugs (e.g., bugs impacting many users with 
long response delay). As of now StackMine has been applied in performance-debugging activities at a Microsoft 
team for performance analysis that has been used for a large no. of execution traces which is a clear indication of a 
successful technology-transfer effort since December 2010, The example of performance analysts conducting an 
evaluation of StackMine on performance debugging in the large for Microsoft Windows 7 is an example of real-time 
usage of StackMine. The results of the evaluation on a third-party application by performance analysts highlighted 
substantial benefits offered by StackMine in performance debugging in the large for large-scale software systems. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig 3. Performance Chart 
 

The evaluations on two large-scale real-world software products (Microsoft Windows 7 and a third-party 
application) demonstrated StackMine’s substantial benefits in performance debugging in the large. Exemplified by 
WER and StackMine, we envision and advocate a game-changing paradigm for software quality assurance in the 



292   Varun Mittal and Shivam Aditya  /  Procedia Computer Science   48  ( 2015 )  288 – 297 

 

large based on usage data collected from the real world, in order to cope with increasingly large and complex 
modern software systems, like ultra-large-scale systems. 

2.4. Where Should the Bugs Be Fixed?   

The paper was made by Jian Zhou, Hongyu Zhang, and David Lo, School of Software, Tsinghua University, 
Beijing 100084, China [4]. 

 Software quality is vital for the success of a software project. Although many software quality assurance 
activities (such as testing, inspection, static checking, etc) have been proposed to improve software quality, in reality 
software systems are often shipped with defects (bugs). For a large and evolving software system the project team 
could receive a large number of bug reports over a long period of time. For example, around 4414 bugs were 
reported for the Eclipse project in 2009.  

Once a bug report is received and confirmed, the project team should locate the source code files that need to be 
changed in order to fix the bug. However, it is often costly to manually locate the files to be changed based on the 
initial bug reports, especially when the numbers of files and reports are large. For a large project consisting of 
hundreds or even thousands of files, manual bug localization is a painstaking and time-consuming activity. As a 
result, the bug fix time is often prolonged, maintenance cost is increased and customer satisfaction rate is hampered. 

In recent years, some researchers have applied information retrieval techniques to automatically search for 
relevant files based on bug reports [16, 25, 31, 32]. They treat an initial bug report as a query and rank the source 
code files by their relevance to the query. The developers can then examine the returned files and fix the bug. These 
methods are information retrieval based bug localization methods.  

Unlike spectrum-based fault localization techniques [1, 18, 19, 22, 23], information retrieval (IR) based bug 
localization does not require program execution information (such as passing and failing traces). They locate the 
bug-relevant files based on initial bug reports. 

Many of the existing IR-based bug localization methods are proposed in the context of feature/concept location, 
using a small number of selected bug reports. 

Thus, the project team could receive a large number of bug reports for a large and evolving software system . A 
daunting task is to find the source code files that need to be altered in order to fix the bugs.  When a bug report is 
received by the developers it is quite desirable that they have all the information about the files that are to be 
changed  in order  to  fix  the bugs.  In this paper, they have proposed BugLocator, an information retrieval based 
method for locating the relevant files for fixing a bug.  

BugLocator ranks all files based on the textual similarity between the initial bug report and the source code using 
a revised Vector Space Model (rVSM), taking into consideration information about similar bugs that have been 
fixed before.  

More than 3,000 bugs were localized and reported when large-scale experiments were performed on four open 
source projects which was a clear indication that files containing bugs can be effectively and efficiently be located 
by BugLocator For example, buggy files of Eclipse 3.1 containing 62.60% bugs are ranked in the top ten among 
12,863 files.  Their experiments also show that BugLocator outperforms existing state-of-the-art bug localization 
methods.   

      
 
 
 
 
                             
 

 
 
 



293 Varun Mittal and Shivam Aditya  /  Procedia Computer Science   48  ( 2015 )  288 – 297 

6 Varun Mittal, Shivam Aditya / Procedia Computer Science00 (2014) 000–000 

 

 
 

   

 

Fig  4.  Structure of Bug Locator 
 

 

2.5. A Systematic Study of Automated Program Repair: Fixing 55 out of 105 Bugs for $8 Each 

The paper was made by Claire Le Goues Michael Dewey-Vogt (Computer Science Department, University of 
Virginia, Charlottesville, VA), Stephanie Forrest (Computer Science Department, University of New Mexico, 
Albuquerque, NM) and Westley Weimer (Computer Science Department, University of Virginia, Charlottesville, 
VA.) [5] 

 The paper tells us that program evolution and repair are major components of software maintenance, which 
accounts for a sizable portion of the total cost of software production. Automated techniques to reduce their costs are 
therefore especially beneficial. Developers for large software projects must confirm, triage, and localize defects 
before fixing them and validating the fixes. Although there are a number of tools available to help with triage, 
localization, validation and even confirmation, generating repairs remains a predominantly manual, and thus 
expensive, process. At the same time, cloud computing, in which virtualized processing power is purchased cheaply 
and on-demand, is becoming commonplace. 

Research in automated program repair has focused on reducing defect repair costs by producing candidate 
patches for validation and deployment. Recent repair projects include ClearView, which dynamically enforces 
invariants to patch overflow and illegal control-flow transfer vulnerabilities; AutoFix-E, which can repair programs 
annotated with design-by-contract pre- and post-conditions; and AFix, which can repair single-variable atomicity 
violations. 

In their previous work, they introduced GenProg, a general method that uses genetic programming (GP) to repair 
a wide range of defect types in legacy software (e.g., infinite loops, buffer overruns, segfaults, integer overflows, 
incorrect output, format string attacks) without requiring a priori knowledge, specialization, or specifications. 
GenProg searches for a repair that retains required functionality by constructing variant programs through 
computational analogs of biological processes.  

The goal of this paper is to evaluate dual research questions: “GenProg can repair what fraction of bugs existing 
in the given process ?” and “What is the cost of repairing a bug with GenProg?” Three important insights were 
combined together to answer these questions. Their key algorithmic insight is to represent candidate repairs as 
patches, rather than as abstract syntax trees. These changes were critical to GenProg’s scalability to millions of lines 
of code which was a crucial component of our evaluation. They introduced new search operators that dovetail with 
this representation to reduce the number of ill-formed variants and improve performance. Their key performance 
insight is to use off-the-shelf cloud computing as a framework for exploiting search-space parallelism as well as a 
source of grounded cost measurements. Their key experimental insight is to search version control histories 
exhaustively, focusing on open-source C programs, to identify revisions that correspond to human bug fixes as 
defined by the program’s most current test suite.  

They combined these insights and presented a novel, scalable approach to automated program repair based on 
GP, and then evaluated it on 105 real-world defects taken from open-source projects totaling 5.1 MLOC and 
including 10,193 test cases. 

Thus, we can tell that there are more bugs in real-world programs than human programmers can realistically 
address. This paper evaluated two research questions: “What fraction of bugs can be repaired automatically?” and 
“What is the cost of repairing a bug automatically?” As said earlier, in previous work, they presented GenProg, 



294   Varun Mittal and Shivam Aditya  /  Procedia Computer Science   48  ( 2015 )  288 – 297 

 

which uses genetic programming to repair defects in off-the-shelf C programs. To answer these questions they: (1) 
proposed novel algorithmic improvements to GenProg that allow it to scale to large programs and find repairs 68% 
more often, (2) exploited GenProg’s inherent parallelism using cloud computing resources to provide human 
competitive cost measurements, and (3) generated a large, indicative benchmark which was used for systematic 
evaluations. They evaluated GenProg on 105 defects from 8 open-source programs totaling 5.1 million lines of code 
and involving 10,193 test cases. 

GenProg automatically repairs 55 of those 105 defects. This kind of evaluation is the largest available of its kind, 
and is often two orders of magnitude larger than previous work in terms of code or test suite size or defect count. 
Public cloud computing prices allow our 105 runs to be reproduced for $403; a successful repair completes in 96 
minutes and costs $7.32, on average. 

 Concluding, their overall goal was to reduce the costs associated with defect repair in software maintenance. 
GenProg requires test cases and developer validation of candidate repairs, but reduces the cost of actually generating 
a code patch. While these results are only a first step, they have implications for the future of automated program 
repair. For example, part of the high cost of developer turnover may be mitigated by using the time saved by this 
technique to write additional tests, which remain even after developer’s leave, to guide future repairs. GenProg 
could also be used to generate fast, cheap repairs that serve as temporary bandages and provide time and direction 
for developers to find longer-term fixes.  

They directly measured the time and monetary cost of their technique by using public cloud computing resources. 
Their 105 runs can be reproduced for $403: this can be viewed as $7.32, and 96 minutes, for each of 55 bug repairs. 
While we do not have a quantitative theory that fully explains how GenProg works, the results of the systematic 
benchmark suite will allow us to investigate such issues in the future. 

We consider our results to be strongly competitive, and hope that they will increase interest in this research area. 
             

            
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig 5. Weak recompilation versus strong compilation 

2.6. Making Automatic Repair for Large-scale Programs More Efficient Using Weak Recompilation 

This paper was made by Yuhua Qi, Xiaoguang Mao and Yan Lei Department of Computer Science and 
Technology National University of Defense Technology, Changsha, China [6]. 

 The paper tells us about how program repair is a tedious and difficult activity that requires lots of resources 
spent on locating and fixing program bugs. And recently there is some promising work, on automated program 
repair, reducing the cost of software maintenance. In general, the repair process can be divided into three phases: 
locate the program bug; generate the candidate patches in light of some specified rules; validate these patches 



295 Varun Mittal and Shivam Aditya  /  Procedia Computer Science   48  ( 2015 )  288 – 297 

 

through some test cases again and again until a valid patch is found. To the best of our knowledge, current works 
mainly focus on the second phase: how to generate the candidate patches. However, cost reduction techniques in the 
process of program repair are rarely considered. This paper seeked to reduce the computational cost by optimizing 
the program recompilation process. 

In large-scale programs, it consumes a lot of time for recompiling and reinstalling the modified (patched) 
program which is the result of automatically repairing a bug by modifying the program source code. Thus, a 
recompilation technique called weak recompilation was described in this paper which was used for suppressing the 
above time cost and to make the repair process more efficient.  

The assumption of weak recompilation is that a program is assumed to be constructed from a set of components, 
and for each candidate patch only the changed code fragment in term of one component is recompiled to a shared 
library; the behaviors of patched program are observed by executing the original program with an instrumentation 
tool which can wrap specified function. 

The advantage of weak recompilation is that reinstallation cost will be cut down completely. And redundant 
recompilation cost can be also suppressed, They also built WAutoRepair, a system which enables scalability to fix 
bugs in large-scale C programs with high efficiency. The results of the experiments confirmed that their repair 
system significantly outperforms Genprog which was a famous approach for automatic program repair. For the 
wireshark program containing over 2 million lines of code, WAutoRepair spent only 0.222 seconds in recompiling 
one candidate patch and 8.035 seconds in totally repairing the bug, compared to Genprog separately taking about 
20.484 and 75.493 seconds, on average. 

Concluding, for automated program repair they were the first to present and try to address the problem of 
expensive recompilation cost for large-scale programs. 

Due to relatively high efficiency by applying weak recompilation, WAutoRepair spends less time on validating a 
candidate patch. That is, more candidate patches can be validated within a limited time bound; and thus it is possible 
that more complex modification rules (meaning that more trials) can be adopted to repair defective programs with 
large scales by WAutoRepair. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 6.The Framework of WAutoRepair 

 

2.7. R2Fix: Automatically Generating Bug Fixes from Bug Reports 

This paper was made by Chen Liu, Jinqiu Yang and Lin Tan (University of Waterloo, ON, Canada) and 
Munawar Hafiz (Auburn University, AL, USA) [7]. 

In this paper, the authors told about how every day, an overwhelming number of bugs are reported. 



296   Varun Mittal and Shivam Aditya  /  Procedia Computer Science   48  ( 2015 )  288 – 297 

 

For example, the Mozilla bug database, with a total of 670,359 bug reports, receives an average of 135 new bug 
reports daily. The corresponding bugs hurt security and software reliability which are not improved until the bugs 
are repaired. 

Upon receiving a bug report, developers diagnose the root cause of the bug, generate a patch that can repair the 
bug, and commit the patch to the source code repository. They combined the first two steps (diagnosis and patch 
generation) under the label of repairing a bug, which is the emphasis of this paper. Developers’ bug-fixing process is 
primarily manual; therefore the time required for producing a fix and its accuracy depend on the skill and experience 
of individuals. 

Furthermore, Developers often need to fix more bugs than their time and resources allow. Although developers 
spend almost half of their time fixing bugs, bugs take years to be fixed on average. 

Therefore, support to make it easier and faster for developers to fix bugs is in high demand. The capability to 
automatically generate patches from bug reports could: (1) save programmers’ time and effort in diagnosing bugs 
and generating patches, allowing developers to fix more bugs or focus on other development tasks; and (2) improve 
software reliability and security by shortening the bug-fixing time.  

In short, many bugs, even those that are known and documented in bug reports, remain in mature software for a 
long time due to the lack of the development resources to fix them. The authors proposed a general approach, R2Fix, 
which was used free-form bug reports to automatically generate bug-fixing patches. R2Fix combines machine 
learning techniques, past fix patterns and semantic patch generation techniques to fix bugs automatically. They 
evaluated R2Fix on three projects, i.e. Mozilla, Linux kernel and Apache, for three important types of bugs: null 
pointer bugs, buffer overflows, and memory leaks. R2Fix generates 57 patches correctly, 5 of which are new patches 
for bugs that have not been fixed by developers yet. They reported all 5 new patches to the developers; 4 have 
already been accepted and committed to the code repositories. The 57 correct patches generated by R2Fix could 
have shortened and saved up to an average of 63 days of bug diagnosis and patch generation time. 

 
 
 
 
 
 
 
 
 
 

 
 

Fig 7. The Architecture of R2Fix 
 

3. Conclusion 

This research paper describes a review of the latest technologies in the field of Bug Fixing. Seven research papers 
have been studied and reviews about them have been given accompanied by diagrams. These reviews can help 
people and companies identify the appropriate bug fixing mechanisms needed for them saving themselves both time 
and money. 

References 

1. Generating Fixes from Object Behavior Anomalies by Valentin Dallmeier, Andreas Zeller and Bertrand Meyer, 2009 IEEE/ACM International 
Conference on Automated Software Engineering, 1527-1366/09 $29.00 © 2009 IEEE  DOI 10.1109/ASE.2009.15. 



297 Varun Mittal and Shivam Aditya  /  Procedia Computer Science   48  ( 2015 )  288 – 297 

 

2. Propagating Bug Fixes with Fast Subgraph Matching by Boya Sun, Gang Shu, Andy Podgurski, Shirong Li, Shijie Zhang and Jiong Yang, 
21st International Symposium on Software Reliability Engineering 1071-9458/10 $26.00 © 2010 IEEE DOI 10.1109/ISSRE.2010.36, 2010 
IEEE 21st International Symposium on Software Reliability Engineering 

3. Performance Debugging in the Large via Mining Millions of Stack Traces by Shi Han, Yingnong Dang, Song Ge, Dongmei Zhang and Tao 
Xie, ICSE 2012, 978-1-4673-1067-3/12/$31.00, 2012 IEEE 145 

4. Where the Bugs Should Be Fixed? by Jian Zhou, Hongyu Zhang and David Lo, ICSE 2012, 978-1-4673-1067-3/12/$31.00, 2012 IEEE 
5. A Systematic Study of Automated Program Repair:Fixing 55 out of 105 Bugs for $8 Each by Claire Le Goues, Michael Dewey-Vogt, 

Stephanie Forrest and Westley Weimer, ICSE 2012, 978-1-4673-1067-3/12/$31.00, 2012 IEEE 
6. Making Automatic Repair for Large-scale Programs More Efficient Using Weak Recompilation by Yuhua Qi, Xiaoguang Mao and Yan Lei, 

28th IEEE International Conference on Software Maintenance (ICSM), 2012, 978-1-4673-2312-3/12/$31.00 "c 2012 IEEE 
7.   R2Fix: Automatically Generating Bug Fixes from Bug Reports by Chen Liu, Jinqiu Yang and Lin Tan and Munawar Hafiz, 2013 IEEE Sixth 

International Conference on Software Testing, Verification and Validation, 978-0-7695-4968-2/13 $26.00 © 2013 IEEE DOI 
10.1109/ICST.2013.24 

 


