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Abstract 

Uncertainty quantification techniques are increasingly important in the interpretation of data and numerical simulations. Such 
techniques are typically employed either on data with poorly characterized underlying dynamics or on values from highly 
idealized model evaluations. We examine the application of these techniques to an intermediate case, in which data are generated 
from coupled, nonlinear partial differential equations—conservation laws—that admit discontinuous solutions. The values we 
analyze are generated from the numerical solution of the PDEs, in which we systematically vary both (i) fundamental modeling 
parameters and (ii) the underlying numerical algorithms. A number of sensitivity tests will be performed in order to assess the 
relative importance of such different types of uncertainty and we draw preliminary conclusions and speculate on the implications 
for more complex simulations.   
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1. Main text  

We examine the application of sensitivity analysis and uncertainty quantification techniques to study the behavior 
underlying the set of coupled, nonlinear partial differential equations (PDEs) that govern compressible flow.  In 
particular, we examine the sensitivity of the computed solution output to the structural parameters involved in 
determining the equations, to the parameters associated with the algorithms used to integrate the equations, and to 
the choice of the algorithms themselves.  The approach we take examines different parameter sampling schemes 
(full factorial, quasi Monte Carlo, Latin Hypercube) and different tools with which to quantify the system’s 
sensitivities, from screening to Sobol’ method to emulation-based analysis.  

 
The conservation laws of one-dimensional, inviscid, non-heat-conducting compressible flow can be written as 

 ut fx(u) 0   (1) 

where subscripts denote partial derivatives, u is the array of conserved variables (mass, momentum, and energy) 
u = [ , v, E]T, with  the mass density, v the velocity, E= e+(1/2) v2 is the total energy, with e the specific 
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internal energy, and f(u) is the flux function f = [ v, v2+p, (E+p)u]T, with p the pressure. Augmenting these PDEs 
are an equation of state, p = p( ,e), which characterizes the material response, and initial and boundary conditions.   
The proper solutions to these conservation laws are weak solutions that are chosen by the application of vanishing 
viscosity.  These equations have extremely broad application; there are many references on numerical integration 
schemes for them, e.g., the monograph by LeVeque (2002).  Notably, these PDEs admit discontinuous solutions 
(e.g., shock waves) and complex wave dynamics.   
 
We consider problems that correspond to an idealized shock-tube configuration, described by Sod (1978), in which 
two constant but different initial states are allowed to interact under the dynamics of (1):  u(t=0) = u1 for x < xI and 
u(t=0) = u2 (≠ u1) for x > xI . Only the stiffened gas equation of state is considered: p = (

( )
)
))

e + p , with free 
parameters 

((
and p . 

 
To solve the PDE system, the equations are discretized. The numerical solution of this discrete system provides an 
approximate solution to the PDE system. The computational algorithm that defines the discretization in space and 
time, for which there are several choices, can be viewed as a model in the uncertainty quantification context, and, 
thus, introduces many more parameters. For example, the computational mesh over which the solutions are obtained 
is apportioned into N cells, onto which (1) is discretized. Output values are generated as functions of the numerical 
solution and are smooth in nature. These shock physics simulations will be performed in ALEGRA, described by 
Robinson et al. (2008). 
 
In addition to a large set of continuous and discrete parameters, there are model structure choices associated with the 
numerical solution of these equations. We consider full factorial design Latin Hypercube Sampling (LHS) and quasi 
Monte Carlo (QMC) sampling to sample the parameter/model space: in particular, it will be interesting to evaluate 
the effectiveness of QMC versus the other methods. We use a variety of techniques to characterize the sensitivity of 
the computed results to the parameters tested: (i) screening methods are very interesting, especially in view of 
extending the application for more complex simulation contexts; (ii) Sobol’ method will provide easy and accurate 
computation of variance based measures, provided a sufficient number of model evaluations is affordable; 
(iii) testing and checking the effectiveness and performance of emulation based analysis, in combination with 
screening, is a very useful test per se and especially for any application where the Sobol’ approach is not affordable. 
We will compare the results of the analysis produced by each method and the computational burden associated with 
their application.  We expect that the results will depend most sensitively on the equation of state, the number of 
mesh cells used, and the finite difference approximation used for the first derivative in Equation (1).  
 
We also anticipate that this work will be a useful guide and benchmark for more complex simulation studies. 
 

2. References  

LeVeque R., 2002: Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, Cambridge, 
UK. 

Robinson, A. et al., 2008: “ALEGRA: An Arbitrary Lagrangian-Eulerian Multimaterial, Multiphysics Code”, 
AIAA-2008-1235, Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit, 7–10 January 2008. 

Sod G., 1978: “A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic 
Conservation Laws”, Journal of Computational Physics, 27 (1), pp. 1–31. 

 
 


