
Electronic Notes in Theoretical Computer Science � ������

A Formal Approach to
Object�Oriented Software Engineering

Martin Wirsing and Alexander Knapp �

Ludwig�Maximilians�Universit�at M�unchen

Institut f�ur Informatik

Oettingenstra�e ��� D����	� M�unchen� Germany

e
mail� fwirsing�knappg�informatik�uni�muenchen�de

Abstract

The goal of this paper is to show how formal speci�cations can be integrated into one

of the current pragmatic object�oriented software development methods� Jacobson�s

method OOSE ��Object�Oriented Software�Engineering�� is combined with object�

oriented algebraic speci�cations by extending object and interaction diagrams with

formal annotations� The speci�cations are based on Meseguer�s Rewriting Logic

and are written in an extension of the language Maude by process expressions� As a

result any such diagram can be associated with a formal speci�cation� proof obliga�

tions ensuring invariant properties can be automatically generated� and the re�ne�

ment relations between documents on di	erent abstraction levels can be formally

stated and proved� Finally� we provide a schematic translation of the speci�cation

to Java and thus an automatic generation of an object�oriented implementation�

� Introduction

Current object�oriented design methods� such as those of Rumbaugh� Shlaer�

Mellor� Jacobson and Booch use a combination of diagrammatic notations

including object and class diagrams� state transition diagrams and scenar�

ios� Other� academic approaches� such as Reggio�s entity algebras� Meseguer�s

Maude and Ehrich�Sernadas� Troll propose fully formal descriptions for design

speci�cations� Both approaches have their advantages and disadvantages� the

informal diagrammatic methods are easier to understand and to apply but

they can be ambiguous� Due to the di�erent nature of the employed diagrams

and descriptions it is often di	cult to get a comprehensive view of all func�

tional and dynamic properties� On the other hand� the formal approaches are

more di	cult to learn and require mathematical training� But they provide

mathematical rigour for analysis and prototyping of designs�

� This research has been sponsored by the DFG�project OSIDRIS and the ESPRIT HCM�

project MEDICIS�

c� ���� Elsevier Science B� V�Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

Wirsing and Knapp

To close partly this gap we propose a combination of formal speci�ca�

tion techniques with pragmatic software engineering methods� Our speci�ca�

tion techniques are well�suited to describe distributed object�oriented systems�

They are based on Meseguer�s Rewriting Logic and are written in an extension

of the language Maude� The static and functional part of a software system is

described by classical algebraic speci�cations whereas the dynamic behaviour

is modeled by nondeterministic rewriting� The
ow of messages is controlled

by process expressions�

Jacobson�s method OOSE ��Object�Oriented Software�Engineering
� is

combined with these object�oriented algebraic speci�cations in such a way

that the basic method of Jacobson remains unchanged� As in OOSE the de�

velopment process of our enhanced fOOSE method consists of �ve phases� use

case analysis� robustness analysis� design� implementation and test� The only

di�erence is that the OOSE diagrams can optionally be re�ned and annotated

by formal text� Any annotated diagram can be semi�automatically translated

into a formal speci�cation� i�e� the diagram is automatically translated into

an incomplete formal speci�cation which then has to be completed by hand

to a formal one�

Thus any fOOSE diagram is accompagnied by a formal speci�cation so that

every document has a formal meaning� In many cases the formal speci�cation

generates proof obligations which give additional means for validation of the

current document� Further proof obligations are generated for the re�nement

of descriptions� e�g� from analysis to design� These proof obligations can serve

as the basis for veri�cation� Finally� due to the choice of the executable

speci�cation language Maude early prototyping is possible during analysis

and design� Moreover� in many situations we are able to provide a schematic

translation of the speci�cation to Java and thus an automatic generation of

an object�oriented implementation�

Therefore the combination of algebraic speci�cation with rewriting gives a

coherent view of object�oriented design and implementation� Formal speci�ca�

tion techniques are complementary to diagrammatic ones� The integration of

both leads to an improved design and provides new techniques for prototyping

and testing�

Several related approaches are known in the literature concerning the cho�

sen speci�cation formalism and also the integration of pragmatic software

engineering methods with formal techniques� First� there is a large body of

formal approaches for describing design and requirements of object�oriented

systems �for an overview see ����� Our approach is based on Meseguer�s rewrit�

ing logic and Maude �cf� e�g� ����� and was inspired by Astesiano�s SMoLCS

approach ����� ����� which can be characterized as a combination of algebraic

speci�cations with transition systems instead of rewriting� Astesiano was the

�rst integrating also process expressions in his framework� PCF ���� and LO�

TOS ��� also combine process expressions with algebraic speci�cations� A

process algebra for controlling the
ow of messages was introduced in a di�er�

ent way in Maude by ����� By using an appropriate extension of the ��calculus

Lechner ���� presents a more abstract approach for describing object oriented

�

Wirsing and Knapp

requirements and designs on top of Maude� The use of strategies together

with rewriting logic was introduced by Vittek et al� ����

There are also several approaches for integrating pragmatic software engi�

neering methods with formal techniques� Hu�mann ���� gives a formal founda�

tion of SSADM� the Syntropy method is based on Z and state charts� Dodani

and Rupp ��� enhance the Fusion method by formal speci�cations written in

COLD ����� Lano ���� presents a formal approach to object�oriented software

development based on Z�� and VDM��� Very similar to our approach is the

one of Futatsugi and Nakajima ���� who use OBJ for giving a formal semantics

to interaction diagrams�

The paper is organized as follows� Section � gives a short introduction

to our chosen speci�cation language Maude and its extension with means

for controlling the
ow of messages� In section � an overview of our enhanced

development method fOOSE is presented� Section � explains the details of our

method for developing a formal speci�cation out of an informal description of

a use case and illustrates it by the example of a recycling machine which is

the running example of Jacobson�s book on OOSE �Object�Oriented Software

Engineering� ������ Section � ends with some concluding remarks�

� Maude

This section gives a short introduction to our chosen speci�cation language

Maude �for more details see ������

Maude consists of two parts� a purely functional part and an object�

oriented part� The functional part is the algebraic speci�cation language

OBJ� ����� it serves for specifying data types in an algebraic way by equa�

tions� The object�oriented part extends OBJ� by notions of object� message

and state� and allows one to describe the dynamic behaviour of objects in an

operational style by rewrite rules�

��� Functional Part

Maude has two kinds of functional speci�cations� �modules
 and �theories
�

A module �keyword fmod � � � endfm� contains an import list �protecting�

extending� or using�� sorts �sort�� subsorts ���� function �op� and variable

declarations �var�� and equations �eq� which provide the actual �code
 of

the module� Theories have di�erent keywords �viz� fth � � � endft� but have

otherwise the same syntax� The real di�erence is a semantic one� the semantics

of a module is the �isomorphism class of the� initial order�sorted algebra ����

whereas a theory is �loose
� i�e� it denotes a class of �possibly non�isomorphic�

algebras� A module is executable� a theory is not executable� it gives only a

few characteristic properties ��requirements
� the speci�ed data type has to

ful�ll�

The following example speci�es a trivial theory TRIV which introduces one

sort Elt� and a module LIST for the data structure of lists with elements of

sort Elt� LIST is parameterized by TRIV�

�

Wirsing and Knapp

fth TRIV is
sort Elt �

endft

fmod LIST�X��TRIV� is
protecting NAT BOOL �

sort List �

subsort Elt � List �
op � List List �� List �assoc id� nil� �

op length� List �� Nat �

op in � Elt List �� Bool �
op � � List List �� Bool �

var E E	� Elt �
var L L	� List �

eq length
nil� �
 �

eq length
E L� �
s
� � length
L� �
eq E in nil � false �

eq E in
E	 L� �
E �� E	� or
E in L� �

eq
nil � L� � true �
eq
E L� �
E	 L	� �
E in
E	 L	�� and
L �
E	 L	�� �

endfm

For some of the explanations in the following we assume that the reader

is familiar with the basic notions of algebraic speci�cations such as signature�

term and algebra �for details see e�g� ������

��� Object�Oriented Speci�cations

The object�oriented concept in Maude is the object module� The declaration
of an object module �omod � � � endom� consists� additionally to functional
modules� of a number of class declarations �class�� message declarations �msg�
and rewrite rules �rl��

omod BUFFER�X��TRIV� is

protecting LIST�X� NAT �
class Buffer � contents� List �

msg put in � Elt OId �� Msg �

msg getfrom replyto � OId OId �� Msg �
msg to elt�in is � OId OId Elt �� Msg �

vars B I� OId �
var E� Elt �

var Q� List �

rl �put�
put E in B� �B� Buffer � contents� Q� ��
�B� Buffer � contents� E Q�

if length
Q� � s
s
s
s
s

����� �

rl �get�
getfrom B replyto I� �B� Buffer � contents� Q E� ��
�B� Buffer � contents� Q�

to I elt�in B is E� �

endom

An �object� class is declared by an identi�er and a list of attributes and

their sorts� OId is the sort of Maude identi�ers reserved for all object identi�

�ers� CId is the sort of all class identi�ers�

An object is represented by a term�more precisely by a tuple�comprising

�

Wirsing and Knapp

a unique object identi�er� an identi�er for the class the object belongs to and

a set of attributes with their values� e�g� �B� Buffer � contents� X Y Z

nil��

A message is a term that consists of the message�s name� the identi�ers of

the objects the message is addressed to� and� possibly� parameters �in mix�x

notation�� e�g� �put W in B��

A Maude program makes computational progress by rewriting its global

state� called �con�guration
 of Maude sort Configuration �in the following

abstractly denoted by ��� A con�guration is a multiset of objects and mes�

sages�

fjm�� � � � � mkjg � fjo�� � � � � onjg or� for short m� � � �mk o� � � � on

where � is a function symbol for multiset union �in Maude denoted by juxta�
position�� m�� � � � � mk are messages� and o�� � � � � on are objects�

A rewrite rule

t
l
�� t

� � denoted by �l� t �� t
�
if

transforms a con�guration into a subsequent con�guration� where t and t
�
are

terms of sort Configuration� is a conjunction of equations and l is a label

�or proof term� of the form l�x�	� � � 	xk� with x�� � � � � xk being the variables

occurring in t� t
�
� and �we omit these variables�� It accepts messages for

some objects under a certain condition� possibly modi�es these object� and

emerges new ones and some additional messages�

In this paper we restrict rewrite rules to those used in Simple Maude of

the form

m o
l
�� o

�
o� � � � on m� � � � mk �

where m� m�� � � � � mk are messages �k � ��� m being optional� and o� o
�
�op�

tional�� o�� � � � � on are objects �n � �� with o being �possibly� changed to o
�
�

Formally� we consider a Maude speci�cationM as a quadruple �!� E� L�R�

given by a signature ! " �S� F �� a set E of conditional equations� a set L of

labels �also called actions�� and a set R of labeled conditional rewrite rules�

We assume that for any label there is at most one rule�

Deduction� i�e� rewriting� takes place according to rewriting logic de�ned

by the following four rules �cf� ������

�i� Re
exivity�

t
t
�� t

�ii� Congruence� For each function symbol f � s� � � � sn � s � F

t�
���� u�� � � � � tn

�n�� un

f�t�� � � � � tn�
f��� ������n�
������� f�u�� � � � � un�

�iii� Replacement� For each rewrite rule t�
l
�� u� � � R

t�
���� u�� � � � � tn

�n�� un

t��t�� � � � � tn�
l��� ������n�
������� u��u�� � � � � un�

� if �t�� � � � � tn�

�

Wirsing and Knapp

�iv� Composition�

t�
��
�� t�� t�

��
�� t�

t�
�����
���� t�

where matching is de�ned modulo E� �In fact� Maude uses rewriting logic for
both its functional and its object�oriented part� we use equational logic for
the former one��

We say thatM entails a sequent t
�
�� t� if t

�
�� t� can be obtained by �nite

application of the rules above and write M � t
�
�� t��

Such a sequent is called one�step concurrent rewrite if it can be derived
from R by �nite application of the rules �i���iv�� with at least one application
of the replacement rule �iii�� It is called a sequential rewrite if it can be derived
with exactly one application of �iii��

Since every rewrite step can be decomposed in an �interleaving� sequence
of sequential rewrites ������ we can restrict our attention to such simple rewrite
steps� For any sequential rewrite� we abstract from the actual proof term �

and consider only the label l of the unique application of the replacement
rule �iii�� Moreover� we omit parameters which are not necessary for the
synchronisation� mostly this amounts to a statement of the sender and the
receiver of a message� A run of M is a possibly in�nite chain

t�
l�
�� t�

l�
�� t�

l�
�� � � �

of one�step sequential rewrites with M � tn
ln
�� tn�� for every n � ��

A �!� L��structure A " ��As�s�S� �f
A�f�F � �

l
��

A�l�L� is given by a family
�As�s�S of sets� a family �f

A�f�F of functions with f
A � As�

�� � ��Asn
� As for

f � s� � � � sn � s � F and a family �
l
��

A�l�L of relations with
l
��

A
	 A� � A�

for a rewrite rule t
l
�� t� � � R�

A is a model of M " �!� E� L�R� if A satis�es all equations of E and all
conditional rules R� The semantics of M is de�ned to be the initial model I
of all models of M �

A run of A is a possibly in�nite chain

t
A

�

l�
��

A
t
A

�

l�
��

A
t
A

�

l�
��

A
� � �

of one�step rewrites�

��� Modules with Control

The one�step rewrites build the basis for a small language of processes describ�
ing the admissible chains of rewrite steps for particular computations�

Now� an atomic process is a sequential rewrite labeling l� Moreover� there
are a constant ��
 denoting re
exivity and a constant � for deadlock which is
used to denote a situation where none of the rules below can be applied�

A composite process may be an atomic process� sequential composition�
nondeterministic choice� or parallel composition of processes� or a repeat state�
ment� The abstract syntax of processes is given by

�

Wirsing and Knapp

A ��" � j � j l

P ��" A j �P� P� j �P � P� j �P k P� j �P��

Processes are assumed to satisfy the following laws of Table � �borrowed from

process algebra PA� see ����� Note that the last equation for parallel composi�

tion induces an interleaving approach to concurrency� either l� or l� has to be
executed �rst� This assumption simpli�es our notion of re�nement �cf� �����

Any process de�nes a set of traces it accepts where a trace is a �nite or in�nite

sequence atomic processes�

� p � p� p�
 � p� �� p � ��

p�� �p�� p�� � �p�� p��� p��

�
 p � p�

p�
 p� � p�
 p�� p�
 �p�
 p�� � �p�
 p��
 p��

�p�
 p��� p� � p�� p�
 p�� p��

 k p � p� � k p � ��

p� k p� � p� k p�� p� k �p� k p�� � �p� k p�� k p��

�p�
 p�� k p� � �p� k p��
 �p� k p���

�l�� p�� k �l�� p�� � l�� �p� k �l�� p���
 l�� ��l�� p�� k p��

p
� � �p� p��

Table

Process algebra axioms

With the help of processes we can on the one hand constrain the set of

possible runs of a Maude module� on the other hand� processes may trigger

certain actions�

To actually incorporate process expressions into Maude speci�cations� we

build up a hierarchy of process de�nitions D " ��li� pi����i�n over a given set

of labels L� where L� " fl�� � � � � lng is set of new labels disjoint from L and
each process expression pi uses only labels in L �

S
��j�ifljg� L � L� is called

label set of D� Every such hierarchy de�nes a function D � L� � P that maps

a new label to a process expression over L� we will also denote its extension

to process expressions over L� � L by D�

De�nition ��� A Maude speci�cation with control �M�D� p� q�� is a Maude

speci�cation M " �!� E� R� L� together with a process de�nition D over L� a

process expression p with labels in the label set of D and an initial con�gura�
tion q� � T �M�� where T �M�� denotes all terms built from the signature of

M of Maude sort Configuration�

We say that �M�D� p� q�� � t
�
�� t� with the labels of � in L� if t is reachable

from the initial con�guration q� and if t rewrites to t� via �� i�e� there is an ��

such that M � q�
���� t� M � t

�
�� t� and any trace of ���� is a trace of D�p��

Analogously� �M�D� p� q�� � t
s
�� t� for a process expression s with labels in L

and that of D� if �M�D� p� q�� � t
�
�� t� for a trace � of D�s�� Finally� a run

of M is a run of �M�D� p� q�� if it starts in q� and its sequence of labels is a

�

Wirsing and Knapp

trace of D�p��

A model A of M is a model of �M�D� p� q�� if every run in �M�D� p� q�� is

a run in A�

For the concrete syntax� we extend the Maude language by a new key�

word cntrl to declare the message control that is to be used within omod

� � � endom� since it represents the global control� it is only meaningful in the

uppermost module of a hierarchy� The BUFFER example could be extended by

cntrl �ppput� put
 �B�� �

cntrl �gget� getfrom
B�I�� to
I�B� �� getfrom
B�I�� to
I�B� � �

cntrl ppput� gget �

The last label�less process declaration de�nes the global control�

The initial state is not regarded part of a module� It has to provided when

opening �starting� a derivation in Maude�

Maude modules that use cntrl are called Maude modules with control�

Obviously� every Maude moduleM is equivalent to a module with control�

let l�� � � � � ln be the rule labels of M � Then the process expression p " �l� �

� � � � ln�
� does not restrict the possible runs� Thus M and M extended by

cntrl p
 accept the same runs� if they start with the same con�guration�

On the other hand� any Simple Maude module with control can easily be

translated to a normal Maude module�

For this purpose� we de�ne two functions hd � P� ��A� and tl � A�P� P

that compute the accepted atomic processes for an arbitrary process expres�

sion and its behaviour after an atomic process has been executed� respectively�

These may be easily implemented� since every process expression has an equiv�

alent head normal form �see �����

Now� let M be such a module with process de�nition D� control p and

rules r�� � � � � rn� First� we
atten p to D�p� by replacing all labels of L� by

their corresponding bodies� thus making D super
uous� Next� we construct

another module M � which extends M by the import of an implementation of

hd and tl and sorts A and P for atomic and composed processes �such that A

is a subsort of P�� Moreover� M � declares a class Control of synchronization

objects which have a process expression as attribute�

class Control � process� P

Now we de�ne two reductions to Maude� a general one with a global con�

trol which works for all process expressions and a more speci�c one with a

distributed control which is well de�ned only for a set of parallel processes�

In the case of global control� we declare one control object C�� Control

and initialize it with p� Moreover� for i " �� � � � � n we translate any rule

rl �ri� m o �� c if
 to

rl �ri� m o �C�� Control � process� Q� ��

c �C�� Control � process� tl�m	Q��

�

Wirsing and Knapp

if m � hd�Q� and

Note that M � admits only �interleaving concurrency
� in contrast to M

�and thus in contrast to �M�D� p� q��� no concurrent rewrite steps are possible

in M � among r�� � � � � rn�

Note also that using methods as advocated e�g� in ���� M � can further be

translated to a module in Simple Maude�

In the case of distributed control we assume that we have k objects o�� � � � � ok
and that p is of the form q� k � � � k qk such that all atomic labels �di�erent

from � and �� in qi denote messages received by oi �i " �� � � � � k�� For each oi

we declare a control object ci� Control and initialize it with qi� Moreover�

we translate any rule

rl �r� m oi �� c if
 to

rl �r� m oi �ci� Control � process� Q� ��

c �ci� Control � process� tl�m	Q��

if m � hd�Q� and

Here M
� admits �true concurrency
� using the replacement rule �iii� of

rewriting logic� rules corresponding to di�erent objects can be applied ���re
�

concurrently�

Fact ��� Let �M�D� p� q�� be a module with control� M
� its translation to

Maude with global control and under the assumptions above M �� its translation

to Maude with distributed control� Then �M�D� p� q��� M
�� and M

�� admit the

same runs�

��� Re�nement

The principal notion for expressing the correctness of a system wrt� its re�

quirements is the notion of re�nement�

De�nition ��� Let A be a �!� L��structure and C a �!�
� L

���structure with

! " �S� F � 	 �S �
� F

�� " !� and L 	 L
�� Then C is a re�nement of A if there

exists a �!� L��substructure R " ��Rs�s�S� �f
R�f�F � �

l
��R�l�L� of C and a !�

homomorphism #� � R � A which induces a bisimulation� i�e� for any s � S�

r � Rs� and l � L the following holds�

a � As �
�
�#r

l
��

A
a� � �r

�
� Rs � #r� " a
 r

l
��

R
r
�

�

r
�
� Rs �

�
�r

l
��

R
r
�� � �a � As � #r� " a
 #r

l
��

A
a

�

Let M and M
� be two Maude modules �both possibly with control�� M

� is

called a �semantic� re�nement of M if the initial model of M � is a re�nement

of the initial model of M �

This re�nement relation is obviously transitive�

The control may be re�ned in the standard way �see ��� and ���� by substi�

tuting complex process expressions for atomic ones� In our context� a hierarchy

�

Wirsing and Knapp

of process de�nitions is enlarged at the lower end by new process expressions

for labels the hierarchy is based on�

De�nition ��� Let D " ��li� pi����i�n and D� " ��l�
i
� p�

i
����i�n� be process

de�nitions over label sets L and L� respectively� with L " L��L�� L��L
� " ��

and L� 	 L�� Then� D� is called a process de�nition re�nement of D� if it is

of the form ��l�
�
� p�

�
�� � � � � �l�

k
� p�

k
�� �l�� p��� � � � � �ln� pn�� with fl

�
�
� � � � � l�

k
g 	 L��

We distinguish a special re�nement relation that will play a major r$ole in

the sequel�

De�nition ��� Let M " ��!� E� L�R�� D� p� q�� and M � " ��!�� E �� L�� R���

D�� p�� q�
�
� be two Maude speci�cations with control� We call M � an object

control re�nement of M if �!�� E �� is a persistent extension of �!� E�� D� is a

process de�nition re�nement of D� p " p�� and the following holds�

There is a C � 	 T �M ��� with q�
�
� C � and a surjective abstraction function

%� � C � � T �M�� of con�gurations compatible with the equational axioms

such that C �� % is isomorphic to T �M�� with respect to multiset union �on

equivalence classes�� %q�� " q� and

�i� For any sequent M � c�
l
�� c� and for any %c�� " c� there is a corresponding

sequent M � � c�
�

l
�� c�

�
such that %c�� " c��

�ii� For any sequent M � � c�
�

l
�� c�

�
with %c�� " c� there is a corresponding

sequent M � c�
l
�� c� such that %c�� " c��

Lemma ��� Let M and M � be two Maude modules with control� If M � is an

object control re�nement of M then M � is a re�nement of M �

Proof� Let %� � T �M ��� � C � � T �M�� be an abstraction function with the

required properties� Let A be the initial model of M and C that of M �� Let

R� " C�C �� �where C�C �� denotes the interpretation of C � in C�� Rs " Cs for

any other sort s� and #� � R� A be %� transferred to R such that R�r� " A�%r��

Then R and #� ful�ll the requirements of the re�nement de�nition� �

� Enhanced OOSE Development Process

The development process of OOSE consists of �ve phases� use case analysis�

robustness analysis� design� implementation and test ���� �see Figure ���

The use case analysis serves to establish a requirement document which

describes the processes of the intended system in textual form� A use case is a

sequence of transactions performed by actors �outside the system� and objects

�of the system�� During the robustness analysis the use cases are re�ned and

the objects are classi�ed in three categories� interaction� control and entity

objects� Then in the design phase a system design is derived from the analysis

objects and the objects of the reuse library� The design is implemented during

the implementation phase and �nally during test the implementation is tested

with respect to the use case description�

The use case analysis is the particular feature which distinguishes OOSE

��

Wirsing and Knapp

Test

class...
extends
{... ok

ok

fail

Implemen-
tation

DesignUse case
analysis

Robustness
analysis

}

Fig�
� Development phases of OOSE

from other development methods and which shall be integrated e�g� in the

new versions of OMT and Booch�s method� Use cases have the advantage to

provide a requirement document which is the basis for testing and which can

serve as a reference during the whole development�

As in all semiformal approaches one problem is that testing can be done

only at a very late stage of development� another problem is the fact that

many important requirement and design details can neither be expressed by

�the current� diagrams nor well described by informal text�

In our enhanced fOOSE method we provide means to overcome these de�

�ciencies without changing the basic method� The enhanced development

process consists of the same phases� The only di�erence is that the diagrams

can optionally be re�ned and annotated by formal text� Any annotated dia�

gram can be semi�automatically translated into a formal speci�cation� i�e� the

diagram is automatically translated into an incomplete formal speci�cation

which then has to be completed by hand to a formal one�

Thus any fOOSE diagram is accompagnied by a formal speci�cation so that

every document has a formal meaning� In many cases the formal speci�cation

generates proof obligations which give additional means for validation of the

current document� Further proof obligations are generated for the re�nement

of descriptions� e�g� from analysis to design� These proof obligations can serve

as the basis for veri�cation� Finally� due to the choice of the executable

speci�cation language Maude early prototyping is possible during analysis

and design� Moreover� in many situations we are able to provide a schematic

translation of the speci�cation to Java and thus an automatic generation of

an object�oriented implementation�

In the sequel we will use the following method for constructing a formal

Maude speci�cation �see Figure �� from an informal description�

For any given informal description we construct two diagrams� an object

model with attributes and invariants� and an enhanced interaction diagram�

The object model is used for describing the states of the objects and the

�inheritance� relationships� the interaction diagram describes the �data�
ow

of the messages the objects exchange� The object model directly translates to

a speci�cation� the interaction diagram yields an incomplete speci�cation� The

��

Wirsing and Knapp

translation of both diagrams yields �after completion� a Maude speci�cation

with control together with some proof obligations� Moreover� object control

re�nement provides the information for tracing the relationship between use

case descriptions and the corresponding design and implementation code� the

induced proof obligations are the basis for verifying the correctness of designs

and implementations�

Further schematic translation to Java provides a direct implementation in

an object�oriented language� Our current translation is well�suited to systems

composed of a set of concurrently running sequential objects� it might be slow

and cumbersome in more complex situations� A further precondition is that

the basic data types have e	cient implementations� This may not be the case

for speci�cations of the requirements or analysis phase�

Note that in contrast to OOSE we use interaction diagrams also in the

analysis phases� and not only in the design phase� We believe that interac�

tion diagrams are good for illustrating the interactions of the objects also at

abstract levels�

A customer
...

omod M is
class..
rules
...

endo

Theorem
...Informal

description

Object
model

Formal
specification

Validation
of proof
obligations,
prototyping

Interaction
diagram

where
...

invariant ...

class ...
extends ...
{

...

}

Java
implemen-
tation

Fig� �� Construction and use of formal speci�cations

� The fOOSE Method in More Detail

In this section we present our method fOOSE �formal Object�Oriented Soft�

ware Engineering� for developing and re�ning a formal speci�cation of an

informal description of a use case and illustrate it by the example of a re�

��

Wirsing and Knapp

cycling machine which is the running example of Jacobson�s book on OOSE

�Object�Oriented Software Engineering� ������

For the construction of a formal speci�cation of a use case we proceed in

three steps�

�i� A semi�formal description consisting of an object model and an interac�

tion diagram are developed in the usual OOSE style from the informal

�textual� description�

�ii� Functional speci�cations are constructed for all data types occurring in

the diagrams�

�iii� The object diagram is �if necessary� extended by invariants and the

interaction diagram is re�ned� Then a Maude object module is semi�

automatically generated from both re�ned diagrams�

Any re�ned speci�cation is constructed in the same way� Moreover� for re�

lating the re�ned �concrete
 speci�cation with the more abstract speci�cation

one has to give the relationship between the �abstract
 and the �concrete

con�gurations and to de�ne the process de�nitions for the re�ned labels� This

generates proof obligations �see Section ���� which have to be veri�ed to guar�

antee the correctness of the re�nement�

Finally� if the speci�cation is concrete enough� it is schematically translated

to a Java program�

We show the speci�cation and re�nement activities for the recycling ma�

chine example on the level of requirements analysis and robustness analysis

in Sections ��� and ���� In Section ��� the generation of the Java code is

presented�

��� Requirements Analysis

The informal description of the recycling machine consists of three use cases�

One of them is the use case �returning items
 which can be described in a

slightly simpli�ed form as follows�

�A customer returns several items �such as cans or bottles� to the recycling

machine� Descriptions of these items are stored and the daily total of the

returned items of all customers is increased� The customer gets a receipt for

all items he has returned before� The receipt contains a list of the returned

items as well as the total return sum�

We develop a �rst abstract representation of this use case with the help

of an object diagram that describes the objects of the problem together with

their attributes and interrelationships� and of an interaction diagram that

describes the
ow of exchanged messages�

To do this we model the use case as an interactive system consisting of

two objects of classes SB and RM �Figure � on the left�� The class SB stands

for �system border
 representing the customer� i�e� the actor of this use case�

It is modeled without any attributes� The class RM repesents the recycling

machine and has two attributes storing the daily total and the current list of

��

Wirsing and Knapp

items� For simplicity of presentation both attributes are considered as lists of

items� � The interaction diagram �Figure � on the right� shows �abstractly� the

interaction between the customer and the recycling machine� The customer

sends a return message containing a list of returned concrete items� The

machine prints a receipt with the list of �descriptions of� the returned items

as well as the total return sum �in DM�� To distinguish between the concrete

items and their descriptions in the machine we call the sort of lists of concrete

items CList and the other IList�

RM

total

cur

IList
print(IList, DM)

SB RM

return(CList)
SB

Fig� �� Object model and interaction diagram of the recycling machine

More generally� an object model consists of several objects �represented by

cycles� with their attributes �represented by lines from circles to rectangles�

and the relationships between the objects �represented by arrows�� Objects

are labeled with their class name and attributes with their name �on the line�

and the sort of the attribute �below the rectangle�� There are several kinds

of relationships� In this paper we consider only the inheritance relationship

represented by a dotted arrow from the heir to the parent �for an example see

Figure ���

An interaction diagram consists of several objects represented by vertical

lines and messages represented by horizontal arrows� Each arrow leads from

the sender object to the receiving object� Objects are labeled with the class

name and messages with their name and the sorts of their arguments� Progress

in time is represented by a time axis from top to bottom� a message below

another should be handled later in time� Moreover� an abstract algorithm can

be given at the left hand side of the diagram for describing the control
ow

�for an example see Figure ���

There are di�erent ways of interpreting interaction diagrams� Jacobson

focuses on sequential systems where every message generates a response� Since

we aim at asynchronous distributed systems� in our approach we prefer to state

the return messages explicitly� Obviously� it would not be di	cult to formalize

also Jacobson�s interpretation�

Object and interaction diagrams give an abstract view of the informal

description� But several important relationships are not represented which will

� The choice of lists for the daily total here is a premature design decision we make for

simplicity of presentation� It would be better to choose an abstract container type�

��

Wirsing and Knapp

be expressed by the formal speci�cations� For example in the use case �return

items
 there is a connection between the current list and the daily total�

moreover� the list of printed items is a description of the list of returned items�

The formal speci�cation will be able to express these semantic dependencies�

It will also be used to �x the basic data types�

����� Functional Speci�cations for Data Types

The functional speci�cations are written in the functional style of Maude� For

any data type occurring in the diagrams a speci�cation is constructed either

by reusing prede�ned modules from a speci�cation library such as NAT and

LIST or designing a completely new speci�cation�

The following speci�cation of items is new� It introduces two sorts CItem

and Item denoting the �concrete
 items of the user and the descriptions of

these items� The operation desc yields the description of any concrete item

whereas the operation price computes the price whose value will be given in

DM�

fth ITEM is

protecting DM �

sorts CItem Item �
op price� Item �� DM �

op desc� CItem �� Item �

endft

The speci�cation of lists is obtained by instantiating the list module twice�
once with concrete items for elements and once with items� in both cases we

rename also the sort List�

make CLIST is LIST�CItem� �
sort List to CList� endmk

make ILIST is LIST�Item� �
sort List to IList� endmk

Moreover� we need two more operations� amount�l� calculates the sum of the

prices of the elements of l and desclist�cl� converts any �concrete
 list cl
in a list of descriptions�

fmod LIST��I��ITEM� is

protecting CLIST ILIST �
op desclist� CList �� IList �

op amount� IList �� DM �

var I� Item �
var Ci� CItem �

var L� IList �

var Cl� CList �
eq desclist
nil� � nil �

eq desclist
Ci Cl� � desc
Ci� desclist
Cl� �
eq amount
nil� �
 �

eq amount
I L� � price
I� � amount
L� �

endfm

��

Wirsing and Knapp

����� Re�ning The Diagrams

The third step consists of two activities� the extension of the object models

by invariants and the re�nement of the interaction diagrams�

An invariant is a relation between the attributes of an object or between

the objects of a con�guration which has to be preserved by all rewriting steps�

RM

total

cur

IList

IList

print(l : IList,s : DM)

SB RM

return(cl : CList)

invariant :
RM.cur ≤ RM.total

where l = desclist(cl)
and s = amount(l)

SB

Fig� �� Object model with invariant and re�ned interaction diagram of the recycling

machine

For example� the attributes total and cur of the recycling machine satisfy

the property that all items of cur have also to be in total� i�e� the value of the

cur is in the � relation �see the speci�cation LIST on Section ���� w�r�t the

value of total� We express this formally in the object diagram by using a dot

notation for selecting the values of the attributes �see Figure ���

Interaction diagrams are re�ned in order to express semantic relationships

of the parameters of the messages�

We replace the parameter sorts of messages by variables of the appropriate

sorts and state the relationships between the variables in an additional �where

clause
� any message expression m�s�� � � � � sn� is replaced by an expression

m�v� � s�� � � � � vn � sn� where v�� � � � � vn are variables of sorts s�� � � � � sn� the

�where clause
 is a conjunction of equations of the form t� " u�
� � �
 tk " uk

such that tj� uj are terms containing at most the variables v�� � � � � vn�

For example� the message expressions return�CList� and print�List�DM� of

the interaction diagram in Figure � are replaced by return�cl � CList� and

print�l � IList� s � DM� where cl� l� and s are variables of sorts CList� List� and

DM� Then the equation l " desclist�cl� states that l is a list of descriptions

of the elements of cl and the equation s " amount�l� that s is the sum of the

prices of l�

The right part of Figure � shows the re�ned interaction diagram�

��

Wirsing and Knapp

����� Construction of a Formal Speci�cation

In this step we show how one can construct semi�automatically a formal spec�

i�cation of the use case from the diagrams� The object model generates the

class declarations and invariants� by a combination of the object model with

the interaction diagram one can construct automatically a set of �incomplete�

rewrite rules which after completion �by hand� de�ne the dynamic behaviour

of the use case�

The automatic part of the construction is as follows�

� Every object model induces a set of Maude class declarations�

� Each object name C with attributes a�� � � � � an of types s�� � � � � sn of the

diagram represents a class declaration

class C � a�� s�	 � � � 	an� sn

� Each inheritance relation from D to C corresponds to a subclass declara�

tion

subclass D � C

� Each invariant I of the attributes C�a�� � � � � C�an of an object C is trans�

lated to the sort constraint

sct �O� �C � a�� v�	 � � � 	an� vn	 a�� C

if I�a� � v�� � � � �an � vn�

where the constraint condition I�a� � v�� � � � �an � vn� is obtained from I

by substituting the variables v�� � � � � vn for C�a�� � � � � C�an�

� The interaction diagram induces a set of message declarations�

� Each message m�v� � s�� � � � � vn � sn� induces the message declaration

msg m� OId s� � � � sn OId �� Msg

The �rst argument of m indicates the sender object� the last argument

the destination�

� Both diagrams generate the skeleton of a rule�

� For any message m�� � � vj � sj � � � � from E� to C of the interaction dia�

gram� let

class C � � � � ai � si � � �

class E� � � � � bi � s
�

i
� � �

be the corresponding class declarations� mk�� � � wkj � skj � � � � for � �

k � n� be the outgoing messages from C to class Ek of the same activity

belowm before another message is received by C �if any� and the �where

clause
 of the diagram� Then we obtain the following skeleton of a rewrite

��

Wirsing and Knapp

rule�

�m� m�o�	 � � � 	vj	 � � � 	o� �o� C � � � � ai� wi � � � � ��

�o� C � � � � ai� & � � � �

m��o	 � � � 	w�j	 � � � 	o�� � � �

mn�o	 � � � 	wnj	 � � � 	on�

if and &

where o�� � � � � on are object identi�ers �for the classes E�� � � � � En��
�

� The interaction diagram de�nes a control strategy which is based on the

assumption that the objects of the diagram are controlled by �sequential�

processes which are composed in parallel�

For each object the incoming messages are sequentially composed from

top to bottom� if a message block is part of a loop� the translated block is

surrounded by a repeat statement� These object behaviours are composed

in parallel�

� The initial state contains a concrete example of the use case� i�e� the set of

objects derived from the object model that are concerned by the interaction

diagrams and some messages occuring there�

The rule skeleton expresses that if the object o receives the message m

it sends the messages m�� � � � � mn� The question marks & on the right hand

side of the rule indicate that the resulting state of o is not expressed in the

diagram� Therefore the new values of the attributes have to be added by hand�

Similarily� & states that the condition is perhaps under�speci�ed�

For example� the diagrams of Figure � induce the following skeleton�

�ret� return
O
�Items�Rm�
�Rm� RM � total� W�� cur� W�� ��
�Rm� RM � total� �� cur� ��
print
Rm�L�S�O
�

if L � desclist
Items� and S � amount
L� and ��

To get the complete rule one has to �ll the question marks with the appropriate

value �l d� and l�

The control strategy interprets the vertical axis as time� the messages have

to occur at one object in the de�ned order� The di�erent objects may act in

parallel� controlled by this protocol� The emergence of new messages is left to

the object�

In the example� the interaction diagram de�nes the following control strat�

egy

cntrl ret �

The full speci�cation of the use case �return items
 is as follows�

omod RM is

� Note that in practice only the relevant part of the �where clause� is taken as the condition

for the rule� not the full �where clause��

��

Wirsing and Knapp

protecting LIST� �

class RM � total� IList� cur� IList �

sct �O� �RM � total� D� cur� L�� RM if L � D �

msg return� OId IList OId �� Msg �

class User �

msg print� OId IList DM OId �� Msg�

var Items� CList �

vars Rm Usr� OId �

vars L
 L D� Ilist �

var S� DM �

rl �ret� return
Usr�Items�Rm�

�Rm� RM � total� D� cur� L
� ��

�Rm� RM � total� L D� cur� L�

print
Rm�L�S�Usr�

if L � desclist
Items� and S � amount
L� �

rl �print� print
Rm�L�S�Usr�

�Usr� User� ��

�Usr� User� �

cntrl ret �

endom

An invariant I for a class C has to be satis�ed by all objects of C and

of its subclasses� As a consequence it generates a proof obligation on rewrite
rules� every axiom of the form

m �o� Y � a�� t�	 � � � 	an� tn	 a� ��

�o� Y � a�� u�	 � � � 	an� un	 a
�
� c

if

�where Y is C or any of its subclasses� has to satisfy the correctness condition

I�a� � u�� � � � �an � un��
 I�a� � t�� � � � �an � tn�

For example the rule �ret� induces the correctness condition

L �
L D� if L
 � D and L � desclist
Items�

and S � amount
L�

Obviously� L � �L D� holds for any list L and D� In this case the preconditions
are irrelevant�

A possible initial con�guration of RM can be de�ned as follows�

q� � �Usr� User� �Rm� RM � total� nil� cur� nil�

return
Usr�
ci� ci� ci� nil��Rm�

��� Robustness Analysis

The use case �return items
 is re�ned in two aspects� instead of returning a

list of items the customer returns the items one by one� the machine itself is

decomposed into several objects� Accordingly� the informal description con�
sists of a re�nement of the use case description of Section ��� and a description

of the objects of the machine�

��

Wirsing and Knapp

�A recycling machine receives returning items �such as cans or bottles� from

a customer� Descriptions of these items and the daily total of the returned

items of all customers are stored in the machine� If the customer presses the

start button he can return the items one by one� If the customer presses

the receipt button he gets a receipt for all items he has returned before�

The receipt contains a list of the returned items as well as the total return

sum�

����� Object Model With Invariants

To cope with these re�nements� in the second phase of OOSE� called �ro�

bustness analysis
� the objects are classi�ed in three categories� interface�

control and entity objects� Interface objects build the interface between the

actors �the system border� and the system� the entity objects represent the

�storable� data used by the system and the control objects are responsible for

the exchange of information between the interface and the entity objects�

Now� the recycling machine consists of �ve objects �sorts�� the inter�

face object Customer Panel� a control object Receiver and the entity objects

Current� Day Total and Deposit Item� Customer Panel and Receiver communi�

cate the data concerning the returned items� the Receiver uses Current and

Day Total for storing and computing the list of current items and the daily

total� Deposit Item stands for all kinds of returned items� in particular for the

class of bottles which is modeled as its heir �see Figure ���

Customer_Panel

Receiver

Day_TotalCurrent

Deposit_Item

Fig� �� Object model of the robustness analysis of the recycling machine

In the object model interface objects are represented by hooked circles�

control objects by circles with an arrow� and entity objects by full circles�

Additionally� object models are given in two parts� one showing the at�

tributes of the objects and the other showing the relationships between the

objects�

��

Wirsing and Knapp

In our case� the objects of the robustness analysis have the following

attributes �see Figure ��� the Customer Panel and the Receiver have no at�

tributes� Deposit item has a name and a price� Bottle has additionally a height

and a width� the class Current has a list �of Deposit item� and an amount as

attributes� Day Total a list of deposit items�

Current

list

amount

IList

DM

Receiver

Day_Total IList

String

Meter

Bottle

DM

name

price

width

Item

height

Customer_Panel

invariant:
Current.amount =
amount(Current.list)

Fig� �� Object model with attributes and invariants of the robustness analysis of

the recycling machine

The attributes of Current satisfy the invariant that the amount is the sum

of the prices of the items of the list�

����� Interaction Diagram

From the informal description one can derive three kinds of messages which are

sent from the system border �i�e� from the customer� to the Customer Panel�

a start message� a return message for returning one concrete item and a receipt

message for requiring a receipt� Each of these messages begins a new activity

of the customer panel� On the other hand� the customer panel sends a print

message to the system border�

The start message concerns only the Customer Panel� After receipt of the

return message the customer panel sends a message� say new�i�� with the de�

scription i of the concrete item to the receiver� Then the receiver forwards

this information to Current and Day Total by two messages� both being called

add� the end of such a return process is to be acknowledged by a message ack�

In the third activity the Customer Panel sends a print receipt request to the

Receiver which in turn sends a standard get message to Current� After get�

ting the answer the Receiver forwards the answer to the Customer Panel �by a

message called send� which prints the result�

��

Wirsing and Knapp

The resulting interaction diagram derived from this text is� in the next

step� re�ned by inserting variables for the parameters of messages and by

stating semantic properties of the parameters �see Figure ���

In particular the diagram shows that the description i of a returned item

ci is not changed and that the amount of the print message is compatible with

the prices of the returned items�

SB Customer_
Panel

Receiver Current Day_
Total

start

return(ci:CItem

receipt

print(l2: IList,
s2: DM)

new(i:Item)

print_receipt

send(l1: IList,
s1: DM)

add(k:Item)

&(j: Item)

get

repeat







where i =desc(ci) and j=i and k=j and
amount(l) = s and l1=l and l2=l1 and s1 =s and s2=s1

to(l:IList,s:DM)

ack

Fig� �� Re�ned interaction diagram of the robustness analysis of the recycling

machine

����� Construction of a Formal Speci�cation

The re�ned diagram generates automatically eleven message declarations ac�
cording to our method in Section ������ e�g�

msg start� OId OId �� Msg �

msg return� OId CItem OId �� Msg �

msg new� OId Item OId �� Msg �

To de�ne the rule skeletons for the interaction diagram of the recycling
machine we use the attributes de�ned in the object model �Figure ��� Then
we get the following skeletons for e�g� the start� return and new message�

�start� start
Sb�Cp�

�Cp� Customer Panel � state� A� ��

�Cp� Customer Panel � state� ��
if ��

��

Wirsing and Knapp

�return� return
Sb�Ci�Cp�
�Cp� Customer Panel � state� A� ��
�Cp� Customer Panel � state� ��
new
Cp�I�Rc�

if I � desc
Ci� and ��

�new� new
Cp�I�Rc�
�Rc� Receiver� ��
�Rc� Receiver�
�
Rc�I�Cur�
add
Rc�I�Dt�
if ��

The behaviour of the interaction diagram is represented by the following
strategy�

start�
return��� ack� receipt� send�

k

new��� print receipt� to�

k

���� get�

k
add��

To get the full rules one has to add the state changes and the necessary
preconditions� We require preconditions only for the behaviour of the customer
panel� pressing the start button should actually start the machine only if it is
in state o�� returning an item and requiring a receipt should be possible only
if the machine is on� By �lling in values also for the other question marks we
obtain the following rules�

rl �start� start
Sb�Cp�
�Cp� Customer Panel � state� A� ��

�cp� Customer Panel � state� on�
if A � off �

rl �return� return
Sb�Ci�Cp�
�Cp� Customer Panel � state� A� ��

�Cp� Customer Panel � state� on�
new
Cp�I�Rc�
if I � desc
Ci� and A � on �

rl �new� new
Cp�I�Rc�
�Rc� Receiver� ��
�Rc� Receiver�
�
Rc�I�Cur�
add
Rc�I�Dt� �

Moreover� the following proof obligation is automatically created�

price
I��S � amount
I L� if S � amount
L�

�whose proof follows trivially from the de�nition of amount��

A possible initial con�guration of this speci�cation can be de�ned as fol�
lows�

q� � �Usr� User�
�Cp� Customer Panel � state� off�
�Rc� Receiver�
�Cur� Current � list� nil� amount�
�
�Dt� Day Total � list� nil�

��

Wirsing and Knapp

start
Sb�Cp�

return
Sb�ci��Cp� return
Sb�ci��Cp� return
Sb�ci��Cp�

receipt
Sb�Cp�

The text of the full speci�cation can be found in Appendix A�

It remains to prove� that the speci�cation of the robustness analysis step
is a re�nement of the speci�cation of the requirements analysis� Actually�
we will prove that it is an object control re�nement� The former class RM

is now represented by the four classes Customer Panel� Receiver� Current�
and Day Total� i�e� each instance of RM is replaced by one instance of the
mentioned classes each� More precisely� we set

��Cp� Customer Panel � state� A�

��Rc� Receiver�

��Cur� Current � list� L� amount� S�

��Dt� Day Total � list� L� �

�Rm� RM � total� Dt�L� cur� Cur�L�

The control expression is trivially re�ned by

cntrl �ret�
start�
return� ack�
�
� receipt� send�

k

new�
�
� print receipt� to�

k

��
�
� get�

k
add�
�

Fact ��� The robustness analysis speci�cation of this section is an object con�

trol re�nement of the requirements speci�cation of Section ����

��� Design and Implementation

In the design step� the analysis model of the system is transformed and re�ned

in the light of the actual implementation environment� In our case� this will

be the programming language Java with its extensive class libraries �������

In general� there are three ways to proceed� First� the robustness analysis

model can be directly implemented using ad�hoc�methods� but guided by some

heuristics� that would amount to the original OOSE method� Second� the

Maude module with control that was the result of the speci�cation process can

be implemented� either by using the translation with global control of Section

��� or by re�implementing the rewriting and the control mechanism� Third�

one can make use of the special simple structure of this resulting speci�cation

which satis�es the assumptions of our translation with local control �in Section

����� Moreover� since the behaviour of any object of the interaction diagram

is sequential the computations of hd and tl are particularly simple and can

be represented by a �nite automaton� Thus we can consider an interaction

diagram as a set of asynchronously running concurrent automata which run

in parallel to the method calls de�ned by the rewrite rules�

We will follow this third option� However� it seems worth trying to extend

steadily the transformable constructs of Maude in order to make the analysis�

��

Wirsing and Knapp

design�step more natural�

In our Java implementation� every object is provided with control� orga�

nized as a �nite state machine� This makes use of the fact� that inside an

object there is only sequentiality� The only branching states of the controlling

automaton are loop starting points where a decision is to be taken whether

the body of the loop is entered or not� �For this decision we must require that

the �rst action inside the loop and the �rst action after the loop are di�erent��

Every method checks if the object is in a state to accept the message called�

If this is not the case the call is refused� The sending object�which is obliged

to make this speci�c call�has to wait for a state change of the object called�

Now� a Maude module with control that is the result of the speci�cation

process shown is implemented in Java as follows�

� The underlying equational theory is translated to suitable Java functions�

�We omit this translation��

� Every class de�nes a separate Java class� all attributes of the Maude class

are taken over by the Java class�

� Every message to a class� i�e� every message on the left hand side of a rule

that occurs together with that class� de�nes an instance method of the

corresponding Java class� Only the formal parameters that do not concern

the sending and the accepting class are taken over�

� The control part of the Maude module de�nes an automaton for every ob�

ject� Each class extends a special Foose class that itself extends the Java

class Thread�

class Foose extends Thread

f
private protected int acc	got

private protected Object�� env

private protected void notifyenv��

f
for �int i��
i�env
length
i���

f if �env�i���this�

f synchronized �env�i��

f env�i�
notify��
 g g g
g

private protected void accept�int s�

f
synchronized �this�

f got��
 acc�s
 g
notifyenv��

while ��got�acc�����

f Thread
yield��
 g
acc��

��

Wirsing and Knapp

g
g

This Foose class provides the attributes and methods necessary to im�

plement the control automaton� There is an attribute acc which represents

the state� If a message was accepted this is stored in another attribute

got� A method accept serves for the manipulation of the state and the

acknowledgement of the other participating objects �in env� of a change in

state�

The state itself is coded as a disjunction of the allowed messages� For

this purpose� additionally� each class contains class constants M for the

possible messages m� Finally� the run���method of Thread is re�de�ned by

an implementation of the control�automaton using the accept���method�

The automaton is constructed in the standard way by calculating �using

for example hd and tl� the accepted traces of the control part that belongs to

the object� For the repeat statement a while�loop is constructed that stops

if one of the possible �rst messages after the repeat statement has arrived�

the body of the while loop must�because its �rst message will have arrived

before it is executed�accept the messages of the control expression in the

order rotated one to the left�

� Every rule de�nes �di�erent parts of� a body of an Java instance method�

The translation is performed in a natural way which we omit� Merely the

methods are enriched by synchronization code�

public boolean m��

f
if �M�acc��M�

return false

else

f synchronized �this�

f got�M

notifyenv��
 g
� � �

return true
 g
g

A method call m of another object o is replaced by

while ��o
m� � � � ��

f synchronized �this�

f try f wait��
 g
catch �InterruptedException ignored� f g g g

Note� that the automaton in the run���method largely corresponds to the

distributed control expressions of the Maude implementation �see Section �����

For the recycling machine this means for example�

��

Wirsing and Knapp

class Receiver extends Foose

f
private final static int NEW��� PRINTRECEIPT��� TO���

private CustomerPanel cp�

private Current cur�

private DayTotal dt�

public Receiver
�

f
System�err�println
�Receiver���

g

public void reg
CustomerPanel c�Current u�

DayTotal d�Object�� e�

f
cp�c� cur�u� dt�d� env�e�

g

public boolean mynew
Item i�

f
if

NEW�acc���NEW�

return false�

else

f System�err�println
�new
����

synchronized
this�

f got�NEW�

notifyenv
�� g
while
�dt�add
i��

f synchronized
this�

f try f wait
�� g
catch
InterruptedException ignored� f g g g

while
�cur�conc
i��

f synchronized
this�

f try f wait
�� g
catch
InterruptedException ignored� f g g g

return true� g
g

public boolean printreceipt
�

f
if

PRINTRECEIPT�acc���PRINTRECEIPT�

return false�

else

f System�err�println
�printreceipt
����

synchronized
this�

f got�PRINTRECEIPT�

notifyenv
�� g
while
�cur�get
��

f synchronized
this�

f try f wait
�� g
catch
InterruptedException ignored� f g g g

return true� g
g

public boolean to
IList l�int s�

f

��

Wirsing and Knapp

if

TO�acc���TO�

return false�
else

f System�err�println
�to
����

synchronized
this�
f got�TO�

notifyenv
�� g
while
�cp�send
l�s��

f synchronized
this�

f try f wait
�� g
catch
InterruptedException ignored� f g g g

return true� g
g

public void run
�
f
System�err�println
�runrc���

while

got�PRINTRECEIPT���PRINTRECEIPT�
accept
PRINTRECEIPT�NEW��

accept
TO��

g
g

The complete Javs program and a test run of the initial con�guration can

be found in Appendix B� It runs with the so�called �appletviewer
 program�

� Concluding Remarks

In this paper we have presented an extension of OOSE by formal speci�cations

which has several advantages�

� The formal meaning of diagrams provides possibilities for prototyping and

generates systematically proof obligations for which can serve for validation

activities�

� The re�nement relation gives the information for tracing the relationships

between use case descriptions and the corresponding design and implemen�

tation code� the generated proof obligations form the basis for the veri�ca�

tion of the correctness of designs and implementations�

� The operational nature of our speci�cation formalism allows one to generate

directly Java code from design speci�cations�

� Traditional OOSE development can be used in parallel with fOOSE since

all OOSE diagrams and development steps are valid in fOOSE�

However� there remain several open problems and issues� Our formal an�

notations of the interaction diagrams cover only repeat statements� means for

if and while statements should be added as well� Interaction diagrams as in

Jacocson�s OOSE are inherently sequential� the whole OOSE method is de�

signed for the development of sequential systems� In contrast to this we focus

on the description of distributed concurrent systems� Therefore we need also

means for describing the concurrent behaviour in our diagrams� not only in

the interaction diagrams but also in other kinds such as use case diagrams�

��

Wirsing and Knapp

Another problem is that our notion of re�nement is de�ned on the level of
speci�cations� For software engineers it would be easier if we could de�ne also

a re�nement relation on the level of diagrams which ensures the validity of an
object control re�nement�

Finally� our Java implementation has two drawbacks� until now we do

not have any formal semantics of Java which makes it impossible to prove

the correctness of our translation to Java� To compensate this we plan to

de�ne a rewriting logic semantics of central parts of Java which would allow
us to perform correctness proofs� The second drawback concerns the style

of our implementation which uses heavily the �synchronization code
 of the

process expressions� In many cases this code is super
uous since the control

is already induced by the �natural
 data
ow of the messages �e�g� in the

recycling machine example it would be enough to construct an automaton
for the customer panel� all other synchronization code could be omitted��

We are investigating data
ow analysis methods for eliminating unnecessary
synchronizations�

References

�
� L� Aceto and M� Hennessy� Towards action�re�nement in process algebras� Inf�
Comp��
�����������
����

��� L� Aceto and M� Hennessy� Adding action�re�nement to a �nite process algebra�
Inf� Comp��

��
�������
����

��� E� Astesiano� G� Mascari� G� Reggio� and M� Wirsing� On the parameterized
algebraic speci�cation of concurrent processes� In H� Ehrig� C� Floyd� M� Nivat�
and J� Thatcher� editors� TAPSOFT
��� Vol� �� volume
�� of LNCS� pages
�������� Berlin�
���� Springer�

��� J� C� M� Baeten and W� P� Weijland� Process Algebra� Cambridge University
Press� Cambridge�
����

��� J� A� Bergstra and J� W� Klop� Algebra of communicating processes with
abstraction� Theo� Comp� Sci�� ������
�
�
����

��� P� Borovansky� C� Kirchner� H� Kirchner� P��E� Moreau� and M� Vittek� ELAN�
A logical framework based on computational systems� This volume�

��� E� Brinksma� editor� LOTOS� A formal description technique based on the
temporal ordering of observational behaviour� Technical Report Dis ����� ISO�

����

��� M� Dodani and R� Rupp� Integrating formal methos with object�oriented
methodologies� In M� Wirsing� editor� ICSE��� Workshop on Formal Methods

Applications in Software Engineering Practice� Seattle�
����

��� H� D� Ehrich� M� Gogolla� and A� Sernadas� Objects and their speci�cation� In
M� Bidoit and C� Choppy� editors� Recent Trends in Data Type Speci�cation�
volume ��� of LNCS� pages ������ Berlin�
���� Springer�

��

Wirsing and Knapp

�
�� J� Goguen and J� Meseguer� Order�sorted algebra I� Equational deduction
for multiple inheritance� overloading� exceptions and partial operations� Theo�
Comp� Sci��
����
������
����

�

� J� Goguen� T� Winkler� J� Meseguer� K� Futatsugi� and J��P� Jouannaud�
Introducing OBJ�� Technical Report SRI�CSL������� SRI�
����

�
�� J� Gosling and H� McGilton� The Java Language Environment� A White Paper�
Sun Microsystems� Mountain View� Oct�
����

�
�� H� Hu�mann� Formal foundations for pragmatic software engineering methods�
In B� Wol�nger� editor� Innovationen bei Rechnern und Kommunikations

systemen� pages
���� Berlin�
���� Springer�

�
�� I� Jacobson� M� Christerson� P� Jonsson� and G� �Overgaard� Object
Oriented

Software Engineering� Addison�Wesley� Wokingham� England� �th edition�

����

�
�� H� B� M� Jonkers� An introduction to cold�k� In J� A� B� M� Wirsing� editor�
Algebraic methods� theory� tools and applications� volume ��� of LNCS� pages

������� Berlin�
���� Springer�

�
�� K� Lano� Formal Object
Oriented Development� Springer� London�
����

�
�� U� Lechner� Object�oriented speci�cations of distributed systems in the ��
calculus and Maude� This volume�

�
�� U� Lechner� C� Lengauer� F� Nickl� and M� Wirsing� �Objects
 Concurrency�
� Reusability A Proposal to Circumvent the Inheritance Anomaly� In
Proc� Europ� Conf� Object
Oriented Programming
�	� LNCS� Berlin�
����
Springer� To appear�

�
�� S� Mauw� An algebraic speci�cation of process algebra� In J� A� B� M� Wirsing�
editor� Algebraic methods� theory� tools and applications� volume ��� of LNCS�
Berlin�
���� Springer�

���� J� Meseguer� A logical theory of concurrent objects and its realization in the
Maude language� In G� Agha� P� Wegner� and A� Yonezawa� editors� Research
Directions in Concurrent Object
Oriented Programming� pages �
������ MIT
Press� Cambridge� Massachusetts�London�
��
�

��
� J� Meseguer and T� Winkler� Parallel programming in Maude� In J� Banatre
and D� le Metayer� editors� Research Directions in High
Level Parallel

Languages� volume ��� of LNCS� pages �������� Berlin�
���� Springer�

���� S� Nakajima and K� Futatsugi� Constructing OBJ speci�cations with object�
oriented design methodoly�
���� To appear�

���� G� Reggio� Entities� an institution for dynamic systems� In H� Ehrig�
K� P� Jantke� F� Orejas� and H� Reichel� editors� Recent Trends in Data Type

Speci�cation� volume ��� of LNCS� pages �������� Berlin�
��
� Springer�

���� M� Wirsing� Algebraic speci�cation� In J� van Leeuwen� editor� Handbook of

Theoretical Computer Science� Vol� B� Formal Models and Semantics� pages
�������� Elsevier� Amsterdam�
����

��

Wirsing and Knapp

A Complete Maude Speci�cation

fth STATE is

sort State �

op on� �� State �
op off� �� State �

op wait� �� State �
endft

fth DMM is

protecting NAT �

sort DM � NAT �
endft

omod RM is

protecting DMM� STATE� CLIST� ILIST �

class Usr �

class Customer Panel � state� State �

class Receiver �
class Current � list � IList� amount � DM �

class Day Total � list � IList �

msg start� OId OId �� Msg �
msg return� OId CItem OId �� Msg �

msg new� OId Item OId �� Msg �

msg add� OId Item OId �
msg �� OId Item OId �

msg ack� OId OId �

msg receipt� OId OId �
msg print receipt� OId OId �

msg get� OId OId �
msg to� OId IList DM OId �

msg send� OId IList DM OId �

msg print� OId IList DM OId �

vars Sb�Cp�Rc�Cur�Dt� OId �
var A� State �

var CI� CItem �
var I� Item �

var L� IList �

var S� DM �

rl �start� start
Sb�Cp�
�Cp� Customer Panel � state� A� ��

�Cp� Customer Panel � state� on�
if A � off �

rl �return� return
Sb�Ci�Cp�

�Cp� Customer Panel � state� A� ��
�Cp� Customer Panel � state� on�

new
Cp�I�Rc�

if I � desc
Ci� and A � on �
rl �new� new
Cp�I�Rc�

�Rc� Receiver� ��
�Rc� Receiver�

�
Rc�I�Cur�

add
Rc�I�Dt� �
rl ��� �
Rc�I�Cur�

��

Wirsing and Knapp

�Cur� Current � list� L� amount� S� ��

�Cur� Current � list� I L�

amount� price
I��S� �

ack
Cur�Cp� �

rl �add� add
Rr�I�Dt�

�Dt� Day Total � list� L� ��

�Dt� Day Total � list� I L� �

rl �ack� ack
Cur�Cp�

�Cp� Customer Panel� ��

�Cp� Customer Panel�

rl �receipt� receipt
Sb�Cp�

�Cp� Customer Panel � state� A� ��

�Cp� Customer Panel � state� wait�

print receipt
Cp�Rc�

if A � on �

rl �print receipt� print receipt
Cp�Rc�

�Rc� Receiver� ��

�Rc� Receiver�

get
Rc�Cur� �

rl �get� get
Rc�Cur�

�Cur� Current � list� L� amount� S� ��

�Cur� Current � list� nil� amount�
�

to
Cur�L�S�Rc� �

rl �to� to
Cur�L�S�Rc�

�Rc� Receiver� ��

�Rc� Receiver�

send
Rc�L�S�Cp� �

rl �send� send
Rc�L�S�C�

�Cp� Customer Panel � state� A� ��

�Cp� Customer Panel � state� off�

print
CP�L�S�SB�

if A � wait �

endom

B Complete Java Program

class Foose extends Thread

f
private protected int acc�got�

private protected Object�� env�

private protected void notifyenv
�

f
for
int i�
�i�env�length�i���

f if
env�i���this�

f synchronized
env�i��

f env�i��notify
�� g g g
g

private protected void accept
int s�

f
synchronized
this�

f got�
� acc�s� g
notifyenv
��

while

got�acc���
�

��

Wirsing and Knapp

f Thread�yield
�� g
acc�
�

g
g

class CustomerPanel extends Foose

f
private final static int START��� RETURN��� ACK���

RECEIPT��� SEND����

private Receiver rc�

private State state�

public CustomerPanel
�

f
System�err�println
�CustomerPanel���

g

public void reg
Receiver r�Object�� e�

f
rc�r� env�e�

g

public boolean mystart
�

f
if

START�acc���START�

return false�

else

f if
state��OFF�

f System�err�println
�start
����

synchronized
this�

f got�START�

notifyenv
�� g
state�ON�

return true� g
else

return false� g
g

public boolean myreturn
CItem ci�

f
if

RETURN�acc���RETURN�

return false�

else

f if
state��ON�

f Item i�ci�desc
��

System�err�println
�return
����

synchronized
this�

f got�RETURN�

notifyenv
�� g
while
�rc�mynew
i��

f synchronized
this�

f try f wait
�� g
catch
InterruptedException ignored� f g g g

return true� g
else

return false� g
g

��

Wirsing and Knapp

public boolean ack
�

f
if

ACK�acc���ACK�

return false�

else

f System�err�println
�ack
����

synchronized
this�

f got�ACK�

notifyenv
�� g
return true� g

g

public boolean receipt
�

f
if

RECEIPT�acc���RECEIPT�

return false�

else

f if
state��ON�

f System�err�println
�receipt
����

synchronized
this�

f got�RECEIPT�

notifyenv
�� g
state�WAIT�

while
�rc�printreceipt
��

synchronized
this�

f try f wait
�� g
catch
InterruptedException ignored� f g g

return true� g
else

return false� g
g

public boolean send
IList l�int s�

f
if

SEND�acc���SEND�

return false�

else

f if
state��WAIT�

f System�err�println
�send
����

synchronized
this�

f got�SEND�

notifyenv
�� g
state�OFF�

System�out�println
l��

System�out�println
s��

return true� g
else

return false� g
g

public void run
�

f
System�err�println
�runcp���

accept
START��

while
true�

f accept
RETURN�RECEIPT��

��

Wirsing and Knapp

if

got�RECEIPT���RECEIPT�

break�
accept
ACK�� g

accept
SEND��

g
g

class Receiver extends Foose

f
private final static int NEW��� PRINTRECEIPT��� TO���

private CustomerPanel cp�
private Current cur�

private DayTotal dt�

public Receiver
�
f
System�err�println
�Receiver���

g

public void reg
CustomerPanel c�Current u�
DayTotal d�Object�� e�

f
cp�c� cur�u� dt�d� env�e�

g

public boolean mynew
Item i�

f
if

NEW�acc���NEW�

return false�
else

f System�err�println
�new
����

synchronized
this�
f got�NEW�

notifyenv
�� g
while
�dt�add
i��

f synchronized
this�

f try f wait
�� g
catch
InterruptedException ignored� f g g g

while
�cur�conc
i��
f synchronized
this�

f try f wait
�� g
catch
InterruptedException ignored� f g g g

return true� g
g

public boolean printreceipt
�

f
if

PRINTRECEIPT�acc���PRINTRECEIPT�
return false�

else
f System�err�println
�printreceipt
����

synchronized
this�

f got�PRINTRECEIPT�

notifyenv
�� g
while
�cur�get
��
f synchronized
this�

f try f wait
�� g

��

Wirsing and Knapp

catch
InterruptedException ignored� f g g g
return true� g

g

public boolean to
IList l�int s�

f
if

TO�acc���TO�

return false�

else

f System�err�println
�to
����

synchronized
this�

f got�TO�

notifyenv
�� g
while
�cp�send
l�s��

f synchronized
this�

f try f wait
�� g
catch
InterruptedException ignored� f g g g

return true� g
g

public void run
�

f
System�err�println
�runrc���

while

got�PRINTRECEIPT���PRINTRECEIPT�

accept
PRINTRECEIPT�NEW��

accept
TO��

g
g

class Current extends Foose

f
private final static int CONC��� GET���

private CustomerPanel cp�

private Receiver rc�

private IList list�

private int amount�

public Current
�

f
System�err�println
�Current���

g

public void reg
CustomerPanel c�Receiver r�Object�� e�

f
cp�c� rc�r� env�e�

g

public boolean conc
Item i�

f
if

CONC�acc���CONC�

return false�

else

f System�err�println
�conc
����

synchronized
this�

f got�CONC�

notifyenv
�� g
list�cons
i��

amount��i�price
��

��

Wirsing and Knapp

while
�cp�ack
��

f synchronized
this�

f try f wait
�� g
catch
InterruptedException ignored� f g g g

return true� g
g

public boolean get
�

f
if

GET�acc���GET�

return false�

else

f System�err�println
�get
����

synchronized
this�

f got�GET�

notifyenv
�� g
list�null�

amount�
�

while
�rc�to
��

f synchronized
this�

f try f wait
�� g
catch
InterruptedException ignored� f g g g

return true� g
g

public void run
�

f
System�err�println
�runcur���

while

got�GET���GET�

accept
CONC�GET��

g
g

class DayTotal extends Foose

f
private final static int ADD���

private IList list�

public DayTotal
�

f
System�out�println
�DayTotal���

g

public void reg
Object�� e�

f
env�e�

g

public boolean add
Item i�

f
if

ADD�acc���ADD�

return false�

else

f System�out�println
�add
����

synchronized
this�

f got�ADD�

notifyenv
�� g
list�cons
i��

��

Wirsing and Knapp

return true� g
g

public void run
�

f
System�out�println
�rundt���

while
true�

accept
ADD��

g
g

class User extends Thread

f
private CustomerPanel cp�

private Receiver rc�

private Current cur�

private DayTotal dt�

private Object�� env�

public void run
�

f
cp�new CustomerPanel
��

rc�new Receiver
��

cur�new Current
��

dt�new DayTotal
��

env�new Object����

env�
��cp�

env����rc�

env����cur�

env����dt�

env����this�

cp�reg
rc�env��

rc�reg
cp�cur�dt�env��

cur�reg
cp�rc�env��

dt�reg
env��

dt�start
��

System�out�println
�dt���

cp�start
��

System�out�println
�cp���

rc�start
��

System�out�println
�rc���

cur�start
��

System�out�println
�cur���

while
�cp�mystart
��

f System�out�println
�start����

synchronized
this�

f try f wait
�� g
catch
InterruptedException ignored� f g g g

while
�cp�myreturn
new CItem
�Item �����

f System�out�println
�return�����

synchronized
this�

f try f wait
�� g
catch
InterruptedException ignored� f g g g

while
�cp�myreturn
new CItem
�Item �����

f System�out�println
�return�����

��

Wirsing and Knapp

synchronized
this�

f try f wait
�� g
catch
InterruptedException ignored� f g g g

while
�cp�myreturn
new CItem
�Item �����

f System�out�println
�return�����

synchronized
this�

f try f wait
�� g
catch
InterruptedException ignored� f g g g

while
�cp�receipt
��

f System�out�println
�receipt����

synchronized
this�

f try f wait
�� g
catch
InterruptedException ignored� f g g g

g
g

public class RecyclingMachine extends java�applet�Applet

f
public void start
�

f
System�out�println
�Main���

new Thread
new User
���start
��

g
g

The following is a sample debugging output of this Java program �on
System
err��

Main return
� ack
�

CustomerPanel new
� receipt�

Receiver add
� receipt
�

Current conc
� printreceipt
�

DayTotal ack
� get
�

dt return�� to
�

cp return
� send
�

rc new
�

cur add
�

start� conc
�

rundt ack
�

runcp return��

runrc return
�

runcur new
�

start
� add
�

return�� conc
�

��

