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Abstract 

This paper presents an innovative approach for the design and analysis of production systems using multi-objective optimization 
and data mining. The innovation lies on how these two methods using different computational intelligence algorithms can be 
synergistically integrated and used interactively by production systems designers to support their design decisions. Unlike ordinary 
optimization approaches for production systems design which several design objectives are linearly combined into a single 
mathematical function, multi-objective optimization that can generate multiple design alternatives and sort their performances into 
an efficient frontier can enable the designer to have a more complete picture about how the design decision variables, like number 
of machines and buffers, can affect the overall performances of the system. Such kind of knowledge that can be gained by plotting 
the efficient frontier cannot be sought by single-objective based optimizations. Additionally, because of the multiple optimal design 
alternatives generated, they constitute a dataset that can be fed into some data mining algorithms for extracting the knowledge 
about the relationships among the design variables and the objectives. This paper addresses the specific challenges posed by the 
design of discrete production systems for this integrated optimization and data mining approach and then outline a new interactive 
data mining algorithm developed to meet these challenges, illustrated with a real-world production line design example.   
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1. Introduction 

Designing a production system involves many complex 
decisions over various phases of the project period in order to 
satisfy the strategic objectives of the manufacturing company. 
These design decisions include equipment sizing, layout, level 
of automation, workload allocations, internal and external 
material logistics, for a new facility or for the re-configuration 
of an existing one can pose big challenges to the 
designer/manager (or decision maker, DM) because of the 
complex combinations and interactions among the system 
entities. While ideally all designers want their systems to be 
“optimally” designed, but in most of the practical design 
situations, to select the optimal values of the design variables 
of the system entities so as to achieve the desired overall 

performance of the system is a very difficult, if not an 
impossible task. This is particularly relevant to production 
systems design as the number of design variables is very often 
numerous, which making the determination of which variables 
are influencing and should be included in the analysis activity 
too difficult to be answered. On the other hand, a fact that is 
easily overlooked by many designers is that production system 
design is actually a multi-criteria decision-making (MCDM) 
problem by nature. Firstly, practically all production 
development projects are subject to a cost constraint so that the 
system requirements (e.g. production capacity) can only be 
fulfilled within a fixed budget. A trade-off situation can very 
easily be encountered, for instance, when certain design 
solutions suggest higher performance machinery with higher 
investment cost can replace some lower performance, but 
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cheaper machinery. In other words, a production system design 
problem always involves at least two objectives: production 
capacity and cost. Secondly, if a designer considers more than 
one performance measures of the system, for example, system 
throughput (TH), Work-In-Process (WIP) and cycle time (CT), 
according to Factory Physics [1], then how the decision 
variables affect these performances will become a complicated 
issue. Take a very simple design decision for discussion: how 
to allocate the inter-station buffers, i.e., how many and where 
inter-station buffers are allocated, can be the crucial decision 
variables that affect TH and WIP as two conflicting objectives 
in designing a production line. 
Computer simulation has been described as the most effective 
tool for designing and analysing complex production systems 
in industry, especially when the analysts are interested in the 
dynamics of the system and the system performance of a given 
design [2]. Simulation should be utilized to predict the impact 
on system performance in advance, early in the conceptual 
phase of production system design, before any important 
design decisions have been made [3, 4]. When designing a 
production system in the conceptual phase, there are often 
many different design alternatives for the DM to select. To 
succeed in building an effective production system in terms of 
maximized TH and minimized required investment, a decision 
support tool can be utilized in aiding the responsible DM to 
select the best possible configuration of the system. Simulation 
by itself, however, does not suggest solutions of how the 
system should be configured to achieve the desired 
performance – it merely provides the DMs with valuable 
information so that their decisions to select the final solutions 
for implementation can be based on [5]. Since the number of 
different possible alternatives can be huge when considering all 
the combinations of the related decision variables, it can be 
impractical or even impossible to find an appropriate system 
configuration with an acceptable performance level by using a 
trial-and-error approach with experiments on a simulation 
model alone [4]. As explained in [6], simulation for 
performance evaluations alone is often insufficient – a more 
powerful approach is to combine simulation with optimization 
when analyzing complex manufacturing systems. By using 
multi-objective optimization (MOO) techniques, trade-off 
solutions for configurations of the system can be found and 
then analyzed when designing a production system [7]. 
The aim of this paper is to introduce a production systems 
design approach that explicitly integrates interactive decision-
making and rule visualization into a general simulation-based 
optimization system for supporting decision making. 
Particularly, the approach will put emphasis on how interactive 
decision making and rule visualization can fit perfectly into a 
MOO framework. As will be explained in Section 2, unlike 
ordinary optimization approaches for production systems 
design, which several design objectives are linearly combined 
into a single mathematical function, MOO that can generate 
any design alternatives and sort them into an efficient frontier 
can enable the designer to have a more complete picture about 
how the design decision variables, like number of machines 
and buffers, can affect the performance of the system. Because 
of the multiple optimal design alternatives generated, they 
constitute a dataset that can be fed into some data mining 
algorithms for extracting the knowledge about the relationships 
among the design variables and the objectives (see Fig. 1). Such 
kind of knowledge obtained from the optimization and the post-
optimality processing is important for confident decision 

making, as will be revealed in a real-world conceptual design 
study in Section 4. Section 3 addresses the specific challenges 
posed by the design of discrete production systems and then 
outlines a new interactive data mining algorithm called 
Flexible Pattern Mining developed to meet these challenges.   
 

 
 
Fig. 1. The key components of the proposed approach. 
 
 

2. Multi-Objective Optimization 

In this section, we consider how a production system design 
problem is transformed into a multi-objective optimization 
problem (MOP). Consider a general MOP consisted of M 
objective functions, fi(x), i=1,…,m, which can be minimized 
and maximized with x as a decision (design) vector, consisted 
of n decision variables, xi, within their respective lower bounds 
(xi

L) and upper bounds (xi
U). Mathematically,   

Maximize/Minimize F(x)={f1(x),…, fm(x)}                          (1) 

 
 

 
For a continuous MOP, we call as the 
design space. is called the objective space with the mapping 

  that evaluates f1(x),…, fm(x), for x . For a 
production system design problem,  can be either continuous 
or discrete. While processing times, availability are continuous 
by nature, they can be restricted to be discrete in most practical 
situations. Similarly, layout geometry and conveyor lengths 
can be formulated as either continuous or discrete. However, 
buffer capacities, number of workers/pallets/AGVs and other 
nominal variables are always discrete.  
In many MOPs, where the objectives fi(x) are in conflict with 
each other, finding a single best optimal design is impossible 
because improving one objective would deteriorate the other. 
This gives rise to the concept of Efficient Frontier (EF) that 
denotes the best trade-off in  with respect to fi(x). The 
definition of dominance is essential for an optimization to find 
and compute x that constituent EF: considering only 
Min{f1(x),…, fm(x)}, a design vector x1 is said to dominate 
another solution vector x2, denoted as x1 x2, iff f1(x1) ≤fi(x2) 

 but  s.t. f1(x1) < fi(x2). A design 
vector x*  is Pareto-optimal if x that dominates x*. In 
other words, the Pareto-optimal set, PS, is consisted of x* that 
are non-dominated to each other in . Equivalently, an 
objective vector z*  is Pareto-optimal if the design vector 
corresponding to it is Pareto-optimal [8].  
With the above formulation, it is not difficult to understand an 
optimization-based design approach will involve a process for 
finding the PS that forms EF so that a DM can make a final 
selection on which z* to choose. The MOO literature refers to 
this post-optimality decision-making process to be based on 
some higher-level information, which is also very common to 
involve some preferences of the DM that were not formulated 
into the objectives in the MOP. 
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With a simulation-based optimization approach, all function 
evaluations are done through the simulation model, giving only 
estimation of fi(x). In other words, F(x) can only be estimated 
by (x) through the performance values obtained from 
simulation replication runs. Stochastic simulation will give 
different (x) in each replication so the estimated output 
objective function values used for the optimization are actually 

(x) = {( , }. Therefore, 
MOO is in general more computational demanding than single-
objective optimization, requiring many more function 
evaluations [9]. The fact that stochastic simulation requires 
multiple replications to reduce the uncertainty of the objective 
functions evaluations has further increased the computational 
burden for finding x*. In [9], a summary of several important 
topics for future MOO research is given, including: (1) 
automatic, on-line adaptation of tuning parameters; (2) hybrid 
MOO and local search strategies; (3) algorithms that can 
provide good performance with few function evaluations; (4) 
efficient algorithms for many (>3) objectives; (5) the 
incorporation of user preferences into the algorithms. The DM 
is not always interested in the whole EF has led to the idea that 
efficiency of optimization can be improved by incorporating 
the preference(s) so that algorithm search will be focused in the 
interested area(s) of the EF. This concept of acquiring the 
preferences from the DM to guide the search of trade-off 
solution is a central theme in MCDM research. There are a 
variety of techniques and numerous examples in the MCDM 
literature for helping DM to select among the trade-off 
solutions [8, 10]. Nevertheless, the fact that many MCDM 
research efforts only put focus on assisting the DM to choose 
among the solutions by performing analysis on the objectives 
(i.e. selecting z*) have ignored two important facts: (1) before 
a decision is made, very often a DM wants to know if there are 
any patterns/rules that relate the decision variables (x*) to the 
z*; (2) the decision space is equally important in decision 
making as there may happen that several x* can lead to the 
same z*. Fig. 2 illustrates the concept of finding pattern of 
solutions in PS in the decision space that lead to the EF in the 
objective space. 
 

 

Fig. 2. Mapping between x in the decision space and z in objective space; also 
showing a pattern of x* that leads to the solutions on the efficient frontier 

(adapted from [11]). 

The idea of deciphering knowledge, or knowledge discovery, 
by the post-optimality analysis of Pareto-optimal solutions 
from MOO was first proposed by Deb [11]. He coined the term 
innovization (innovation via optimization) to describe the task 
of discovering the salient common principles present in the 
Pareto-optimal solutions so that deeper knowledge/insights on 
the behaviour/nature of the problem can be gained. The 

innovization task employed in earlier publications involved the 
manual identification of the important relationships among 
decision variables and objectives that are common to the 
obtained trade-off solutions. Recent studies using data mining 
techniques so that innovization procedures can be performed 
automatically have been shown to be promising in various 
engineering design problems [12, 13].  
The uniqueness of innovization, as has been shown in several 
engineering applications, is in using advanced data analysis to 
decipher salient properties from the optimization data 
generated, and not data that are already exist in a data source. 
Such concept of using advanced visualization and data mining 
techniques to products, engineering design and operation 
research applications has emerged to be an important research 
topic [14, 15]. As a matter of fact, by integrating the concept of 
innovization with simulation and data mining techniques, the 
innovization task can be used effectively for the analysis and 
decision-making support in the system design/development of 
industrial-scale production or supply-chain systems. Related 
studies that use MOO for production systems design can be 
found in [16] but more recent advance in combining advanced 
visualization and data mining into the optimization-based 
design process can be found in [17-20]. 

 

3. Knowledge Discovery in MOO 

Data mining of MOO datasets can reveal interesting properties 
about the solutions and, in general, can help discover domain-
specific knowledge [11, 13]. Based on the representation of the 
knowledge gained, data mining methods can be categorized as: 
(i) descriptive statistics, (ii) visual data mining, and (iii) 
machine learning methods. Descriptive statistics are simple 
univariate and bivariate measures that summarize the location, 
spread, distribution and correlation between the variables in the 
form of numbers, but the knowledge extracted is explicit, 
meaning that it is compact and can be easily stored, transferred 
or parsed programmatically. On the other hand, visual data 
mining methods convey knowledge visually through graphs, 
heatmaps, coloured clusters, etc., which are all implicit 
knowledge representation, meaning that they lack a formal 
notation and hence prone to subjectivity. Machine learning 
methods are capable of learning or discovering knowledge 
from data in both implicit and explicit forms. For example, 
support vector machines and neural networks generate implicit 
knowledge models, whereas decision trees give explicit rules. 

3.1 Interactive Data Mining 

While several data mining methods already exist for numerical 
data, most of them are not tailored to handle MOO datasets that 
come with inherent properties that distinguish them from 
ordinary datasets. Firstly, the presence of two different spaces, 
objective space and decision space, adds a certain degree of 
difficulty in discovering knowledge of relevance. Since DMs 
are often interested in the objective space, it would be 
beneficial to develop data mining methods that operate in the 
decision space, but at the same time, take the structure of 
solutions in the objective space into consideration. 
Furthermore, DMs usually express preferences to certain 
regions of the objective space. Data mining methods for MOO 
datasets should be able to take these preferences into account. 
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A knowledge-driven optimization-based (KDO) design 
process is therefore more than finding the PS that forms the EF 
for a MOP. It involves a knowledge extraction process that tries 
to explain, in some explicit knowledge representation format, 
the relationships between x* and z*, as illustrated in Fig. 3.  
 

 

Fig. 3. Unlike innovization, interactive data mining in MOO allows the DM 
to select and analyze preferred solutions in z in the objective space to find the 
pattern of x*. Also important to note is that FPM allows the analysis of any z, 

including solutions that are not on the EF. 

Although most data mining techniques can be directly applied 
to process the optimization datasets, they do not respect the fact 
that optimization data involve two distinct spaces, objective 
space and decision space. For example, visual data mining 
methods either ignore one of the spaces or deal with them 
separately. This makes the involvement of a DM difficult if the 
mappings between the decision space and the objective space 
are interested, like Fig. 2. The distance-based regression tree 
learning approaches proposed in [19, 20] are the only methods 
that come close to achieving this. The shortage of such 
interactive data mining methods is the biggest hurdle in the 
analysis of MOO datasets. On the other hand, discreteness in 
optimization data also presents new challenges to most of the 
existing data mining methods. Unlike engineering design 
problems that usually work with continuous variables, 
production system design problems are most often consisted of 
discrete (integer) variables. There are many decision variables 
that are either inherently discrete, like buffer capacities or 
practically discrete, e.g. processing times, albeit theoretically 
are continuous variables, are forced to change in steps of 
seconds. The following deficiencies are observed when dealing 
with optimization data containing discrete variables: 

 With visual data mining methods, discreteness may 
lead to apparent but non-existent correlations between 
the variables.  

 Most distance measures used in both visual and non-
visual methods are not applicable to ordinal and 
nominal variables. For instance, “Machine Option 1” 
and “Machine Option 2” is usually not quantifiable.  

 Data mining methods that use clustering may also 
result in superficial structures.  

 Association rules are a suitable form of representation 
for discrete, nominal variables. However, since 
association rule mining is unsupervised, it is difficult 
for a DM to get involved in the knowledge discovery 
process. 

With the above discussions, it is argued that there is a need to 
develop some new, customized interactive data mining 
methods to tackle the specific challenges posed by the design 

of discrete production systems. In the next section, we 
introduce a new algorithm called Flexible Pattern Mining 
(FPM) which is an extended version of Sequential Pattern 
Mining (SPM). 

3.2 Flexible Pattern Mining 

The term sequential pattern was first used in the context of 
market basket data analysis [5]. An instance in such a dataset 
typically consists of the transaction IDs and the items bought 
together by a customer in each transaction. An item-set is a 
non-empty set of items and a sequence is an ordered list of 
item-sets. Each row in a transaction table is therefore a 
customer's complete sequence. A customer is said to support a 
sequence if it is contained within that customer's complete 
sequence. The goal of SPM is to generate an exhaustive list of 
all sequences that are supported by a predefined number of 
customers.  

Table 1. An example of discrete optimization dataset. The wildcard * can take 
any integer between 1 and n, assuming some values for * in solution k. 

 
A typical discrete optimization dataset is shown in Table 1. The 
entry dij represents the j-th discrete option of the i-th variable. 
A SPM algorithm can be applied to such a dataset by 
considering each solution vector as a customer sequence, each 
variable as a separate transaction, and each discrete variable 
option as a different item.  
The Apriori algorithm [21] is one of the earliest and most 
popular of sequential pattern mining techniques in literature. 
Given a dataset and a minimum support value, the algorithm 
first generates a list of all one-item-set sequences. Those 
sequences that meet the minimum support condition form the 
set L1 which stands for frequent one-item-set sequences. Next, 
the algorithm makes use of the downward closure property or 
Apriori principle. This also means that frequent sequences with 
higher number of item-sets can be formed by combining 
smaller frequent sequences. The candidate generation step 
combines various one-item-set sequences to form candidate 
two-item-set sequences, of which those satisfying minimum 
support form a new set L2. The process repeats till Lk is empty, 
i.e. no frequent k-item-set sequences can be found. A final step, 
called the maximal phase, prunes all non-maximal frequent 
sequences from . A sequence is maximal if it is not 
contained in any other sequence and the maximal sequences 
that remain after pruning are called sequential patterns. 
Sequential pattern mining is extremely useful for finding exact 
patterns in the dataset. For example, given the simple one-
dimensional dataset x1 = {1,1,2,2,2,2,3,3,10,10,10}T, it can 
detect that the patterns (x1 = 1), (x1 = 2) and (x1 = 10) have 
supports 3, 4 and 3 respectively. However, it cannot detect the 
more important rule (x1 < 10) which has a support of 9. To 
address this inflexibility of SPM, we propose FPM as an 
extension. Like SPM, FPM extends the concept of market 
basket data to MOO datasets by considering each solution as a 
customer and each variable as a transaction containing 

f2(
x)

x3

x1

Decision Space  with 3 variables Objective Space with 2 objectives

Efficient Frontier 

Preferred solutions for 
data mining analysis 
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individual items (variable values). However, to enable the 
generation of rules through the same Apriori algorithm, the 
optimization data in Table 1 is transformed into a truth table. 
The columns of this table correspond to each of the n variables 
being less than (<), equal to (=) and greater than (>) each of its 
discrete options. If n1, n1, … and nn are the number of discrete 
options for x1, x2, : : : and xn respectively, then the total number 
of columns in the truth matrix are 3(n1 + n2 + … + nn) – 2n. The 
second term comes from the fact that no variable xi can take a 
value less than di1 or greater than dini. The transformed truth 
vector for one of the solutions from Table 1 is shown in Table 
2.  

Table 2. The truth vector of solution k from Table 3, as required for FPM. 

 
FPM combines the merits of SPM, classification trees and 
hybrid learning. Firstly, like SPM it is unsupervised and can be 
applied to the whole dataset in the absence of user preferences. 
Secondly, like classification trees, it generates rules which are 
much more flexible than exact patterns. Thirdly, like hybrid 
learning, it does not require the user to provide class labels. 
Sequential pattern mining is usually applied to the whole 
dataset. However, often the decision-maker is interested in a 
preferred region of the objective space. DMs sometimes have 
vague preferences which makes it difficult to provide a single 
reference point. A more natural and interactive approach is to 
allow the user to “brush” over solutions using a mouse input to 
select a region of interest in the objective space. The modified 
Apriori algorithm is applied only to the selected set of 
solutions, but the patterns discovered in the process can be 
visualized over all solutions. In case the user chooses to express 
preference by brushing over solutions, an additional processing 
can be performed on the rules. By sorting the rules according 
to the ratio of support in the selected solutions to that in the rest 
of the solutions, a unique ordering of the rules may be obtained. 

The topmost rule in such an ordering then represents the most 
distinguishing property of the selected region. We illustrate this 
through a real-world application example in Section 4. 
 

4. Real-world Production Line Design 

This section reveals how the proposed approach has been used 
to help an automotive manufacturer in deciding a future 
production line design, instead of their current practice of using 
static Excel spreadsheet to estimate the number of machines 
and buffers that are needed for every production stage, which 
does not consider the dynamics of system as a whole. In this 
design scenario, there are many different parameters that affect 
the decisions in earlier phases, such as quality (Q), cost, space, 
flexibility, competence/complexity (C) and automation level. 
Regarding quality, some finer machining may need a certain 
type of specialized machines which are inflexible, but able to 
keep higher process quality. When considering only flexibility, 
multi-purpose machines are in general better option as they can 
perform several types of operations and sometimes more space-
efficient. The automation level required at each machine will 
determine whether there is an option between a fully automated 
material handling such as gantry robots or other types of lower-
cost manual handling. Automation level is also associated with 
the labour cost (L), since L in some countries is lower and a 
manual solution may be the appropriate choice. Furthermore, 
the competence required for some workstations (or stations 
hereafter) may not be possible if there is a shortage of well-
educated personnel. Fig. 4 shows the complete simulation 
model in FACTS Analyzer [4], which is composed of about 22 
operation stages. Fig. 5 shows one stage in more details. The 
operation stages have one to three different options regarding 
the types of stations to be chosen. However, there are also 
various choices among automation level, buffer sizes and the 
number of inspection stations at different operation stages. An 
example of an operation stage is shown in Fig.5, showing the 
buffers “B1” and “B2” have changeable buffer sizes, mainly 
for the transportation and to absorb the variability between the 
operation stages. 

Fig. 4. The complete model in FACTS Analyzer for conceptual design of an automotive machining line. 
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Fig. 5. An operation stage in the conceptual design showing alternative 
options: one specialized station M1 or two standardized stations (M1A and 

M11A). The numbers on the arrows can have different purposes: with a cyclic 
exit strategy the outputs from the buffers are randomly pass to the first non-
blocked station. The arrows with label 9 and 1 represent 90% output to the 

output buffer and 10% to inspection.   

In Fig.5, there are two main options: (1) two specialized 
stations named M1A and M11A and (2) one standard/flexible 
station, M1. The standard station is cheaper to buy, but the 
specialized stations are faster and therefore there is a trade-off 
between the options. Furthermore, all the stations can be 
consisted of parallelized operations. The company requested 
that a combination of these two options can exist so that the 
decision variables are the number of parallel machines in each 
station with M1A and M11A controlled by an inequality 
constraint in the form of: M1+M1A×M11A ≥ 1. Every 
inspection (quality control) station in a process stage is also 
possible to be parallelized if needed making some additional 
decision variables to the optimization problem. The 
optimization has been formulated with TH, INV (total 
investment) and WIP as a 3-objective optimization problem: 
 

 

 
Fig. 6 and 7 illustrate two different ways to “brush over” the 
Pareto-optimal objective vectors in the INV-TH plot in order to 
generate the rules presented in Table 3 by highlighting the 
selected solutions with various colour. The optimization was 
run using the well-known NSGA-II algorithm as in [11,12], but 
any other efficient MOO algorithms can also be used. Each 
colour represents one set of z* that is selected by the DM as 
inputs to FPM. While the DM in Fig. 6 is interested on what 
form the 6 separate clusters in the objective space, Fig. 7 
represents a more realistic decision-making activities to 
analyse the solutions that can be used for the final design, with 
respect to what TH level is desired. 

 

Fig. 6. EF with respect to the 3 objectives; highlighted with the solutions 
“brushed” for different FPM runs. 

Fig. 7. Preferred solutions “brushed” for different FPM runs for deeper 
analysis of their properties in the decision space. 

 
The FPM results, showing composite, topmost rules 
(significance > 80% and ratio of selected and unselected 
solutions that match the rules > 60%) of the selected solutions 
from Fig. 6 and 7 are shown in Table 3. When checking the 
rules in the table, the DM has learnt which are the most 
important stations that primarily determine the performance of 
the whole line (note that R3, M3, M6 and M5 repeatedly appear 
in the topmost significant rules). When looking at the rules that 
separate Selection 1 to 4, it can be easily see the combination 
of R3 and M3 mostly determine the TH level of the line. In 
terms of the combination of specialized station and flexible 
ones. The rules have shown some very important knowledge – 
specialized machine (M1A & M11A) are more optimal for low 
volume production (TH) whereas standardized/flexible 
machine (M1) is favourable when higher TH is desired. This 
finding is somewhat counter-intuitive to the DM and 
impossible to be found by any current industrial design 
practice.  
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Table 3. Rules generated by using FPM on the highlighted MOO data. 

Selected z Rules on decision variables (xi) Other 

Indexes 

Cluster 1 R3=1 ∩ M6<3 ∩ M3<3 ∩ M5<3 ∩ B7=1 ∩ M1=0 ∩ 
B13>1 ∩ F7=1 ∩ M7=1 ∩ M1A=1 ∩ M11A=1 

Q<113  
L <37   
C<111 

Cluster 2 R3=2 ∩ M6=3 ∩ M1=0 ∩ F7=1 ∩ M1A=1 ∩ M11A=1 
∩ M7=1  

Q <125  
L <41  
C <123 

Cluster 3 M5=3 ∩ M3=3 ∩ R3=2 ∩ M6=3 ∩ M1>0 ∩ B13=1 ∩ 
B7>1 ∩ M1A>0 ∩ M11A>0 

Q>122  
L>40  
C>120 

Cluster 4 M1=3 ∩ R3=3 ∩ F7=2 ∩ M1A=0 ∩ M11A=0 ∩ M7=2 
∩ M5>2 ∩ B13=1 ∩ M3>2 ∩ B7>1 ∩ M6>2 

Q>128 
L>42 
C>126 

Cluster 5 M1>3 ∩ R3=3 ∩ M3>3 ∩ M5>3 ∩ B19>1 ∩ M6>3 ∩ 
F9>1 ∩ M1A=0 ∩ M11A=0 ∩ M7=2 ∩ B9=1 ∩ F7>1  

Q>143  
L>47 
C>141 

Cluster 6 R3>3 ∩ F5=2 ∩ M1>3 ∩ F3>1 ∩ F9>1 ∩ M3>3 ∩ 
M5>3 ∩ M6>3 ∩ M1A=0 ∩ M11A=0 ∩ B19>1 ∩ 
M7>1 ∩ B9=1 ∩ F7>1  

Q>155 
L>51 
C>153 

Selection 1 M3=1 ∩ M5=1 ∩ R3=1 ∩ M6 <3 ∩ B7=1 ∩ B13>1 ∩ 
M1=0 ∩ F7=1 ∩ M7=1 ∩ M1A=1 ∩ M11A=1 

Q <110 
L <36 
C <108 

Selection 2 M5=2 ∩ M3=2 ∩ R3=2 ∩ M1=0 ∩ F7=1 ∩ M7=1 ∩ 
M1A=1 ∩ M11A=1  

Q=116 
L=38 
C=114 

Selection 3 M1=1 ∩ M5=3 ∩ M3=3 ∩ R3=2 ∩ M6=3 ∩ B13=1 ∩ 
F7=1 ∩ M7=1 

Q=125 
L=41 
C=123 

Selection 4 M1=1 ∩ R3=3 ∩ M5=3 ∩ M3=3 ∩ M6=3 ∩ F7=2 ∩ 
B13=1 ∩ M7=1  

Q=131 
L=43 
C=129 

 

5. Conclusions & Future Work 

This paper introduced a “knowledge-driven” production 
systems design approach that synergistically combines 
simulation, MOO and data mining so that a designer can 
understand better the relationships among the decision 
variables and design objectives. Although apparently this 
approach could be implemented with different MOO and data 
mining algorithms, this paper addressed the specific challenges 
posed by a large amount of discrete design variables so that a 
new data mining called FPM, based on SPM commonly used 
in market basket analysis, has been developed. A real-world 
production line sizing and selection problem found in an 
automotive manufacturer has been used to illustrate how 
useful, explicit knowledge has been obtained from the 
optimization and the post-optimality processing to support 
more confident decision making. It is believed that the same 
approach and algorithm, FPM, can also be applied effectively 
to other problem domains that involve a large set of discrete or 
mixed variables, like complex engineering systems design. Our 
current work is focused on developing a FPM-embedded, 
“knowledge-driven” optimization algorithm that can use the 
knowledge gained during the optimization to automatically 
enhance the performance of the algorithm in an on-line basis. 
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