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We study the relations between stable and well-founded semantics of logic programs. 

(1) We show that stable semantics can be defined in the same way as well-founded semantics 

based on the basic notion of unfounded sets. Hence, stable semantics can be considered as 

“two-valued well-founded semantics”. 

(2) An axiomatic characterization of stable and well-founded semantics of logic programs is given 
by a new completion theory, called srrong completion. Similar to the Clark’s completion, the strong 

completion can be interpreted in either two-valued or three-valued logic. We show that 

. Two-valued strong completion specifies the stable semantics. 

l Three-valued strong completion specifies the well-founded semantics. 

(3) We study the equivalence between stable semantics and well-founded semantics. At first, we 

prove the equivalence between the two semantics for strict programs. Then we introduce the 

bottom-stratified and top-strict condition generalizing both the stratifiability and the strictness, and 

show that the new condition is sufficient for the equivalence between stable and well-founded 

semantics. Further, we show that the call-consistency condition is sufficient for the existence of at 

least one stable model. 

1. Introduction 

There are many alternative approaches to the semantics of negation in logic 

programming. Kunen [14] distinguishes two main competing approaches: the logical 
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consequence approach based on program completion, and the canonical model 

approach which picks out some specific models of the program. 

In the logical consequence approach, the semantics may be defined by the Clark’s 

completion [4]. Given a logic program P, the completion of P, comp( P), consists of 

some equality axioms plus a completed definition of each predicate symbol. Roughly, 

this completed definition is obtained by replacing the “if” by “8”. The completion of 

a program can be interpreted either in the two-valued logic [4] or in a three-valued 

logic [ 111. While the three-valued completion is always consistent, this is not the case 

for the two-valued completion. But if the program is call-consistent [15, 241, then 

two-valued completion is consistent, too. The three-valued semantics is weaker than 

the two-valued, in the sense that every query supported in the three-valued semantics 

is also supported in the two-valued semantics but not conversely. But if the program is 

strict then these two semantics are equivalent [15]. 

However, the Clark’s completion does not always capture the intended meaning of 

the program. For example, let P consist of the single clause pep. Intuitively, we expect 

that any meaningful semantics of P would imply that p is false. But since the comp( P) 

is p ~1 p, we cannot conclude from comp( P) that p is false. To clarify once more the 

shortcomings of the Clark’s completion, consider the following example taken 

from [21]. 

Example 1.1. Let P be 

edge( a, b)- 

edge(c, d)+ 

reachable(a)+ 

reachable( _u)t reachable ( y), edge(y. x) 

unreachable( .x)+1 reachable(~) 

P can be illustrated by the following picture: 

. . . . . . . . . . . . a-b 

cdd 

We obviously expect the vertices c,d to be unreachable; indeed, Clark’s semantics 

implies unreachable(c), unreachable(d). 

Now adding to P the clause edge(d,c) will result in a new program P’ which is 

illustrated by the following picture: 

. . . . . . . . . . . . a-h 

c-d 

The Clark’s completion of P’ could not imply that c,d are unreachable, although it 

still appears to be expected from the given information. 



Relations herww stable and uell+unded semantics 9 

Two major semantics in the canonical model approach are the (two-valued) stable 

semantics and the (three-valued) well-founded semantics. 

The stable semantics of a program is defined by the set of its stable models. This 

semantics has its root in nonmonotonic logics, where a logic program is considered as 

an autoepistemic theory whose stable extensions correspond to the stable models of 

the logic program [13]. In general, the stable semantics overcomes the drawbacks of 

the Clark’s completion, e.g. the stable semantics of the program in Example 1.1 

provides the expected conclusion. The problem of stable semantics is that it is not 

defined for every logic program, e.g. the program consisting of only the clause p tip 

has no stable models. To illustrate the seriousness of this problem, let us consider one 

more example. 

Example 1.2 (The Barber’s paradox). “Beardland is a small city where the barber 

Noel shaves every citizen who does not shave himself. 

Does Noel shave the city mayor Casanova? 

Does Noel shave himself?” 

The problem can be represented by a logic program consisting of the clauses 

shave(Noe1, X) tl shave(x, x) 

mayor(Casanova)c 

Despite the confusion about who shaves Noel, we expect that Noel shaves the city 

mayor Casanova. But this program has no stable model, i.e. we could not conclude 

anything with respect to the stable semantics. 

The idea of well-founded semantics is negation as (possibly infinite) failure, i.e. the 

failure (possibly in infinitary) to prove a fact (a ground atom) to be true leads to the 

acceptance of this fact being false. Formally, the well-founded semantics is defined by 

the well-founded model, which is defined as the least fixpoint of a monotone operator 

[12]. In contrast to the stable semantics, the well-founded semantics is defined for 

every logic program. It is interesting to note that the well-founded semantics delivers 

the expected conclusion in the Barber’s paradox example. The major shortcoming of 

the well-founded semantics is its inability to handle conclusions which can be reached 

only by “proof by cases”. The following example illustrates this problem. 

Example 1.3. Let P be 



It is reasonable to expect that c holds. But with respect to the well-founded semantics, 

all u, h,c are unknown. Note that in this case the stable semantics provides the 

expected conclusions. 

The fact that each approach to semantics of negation has its own strength and 

weakness suggests that there is probably not a “best” semantics for logic programs. 

Which semantics should be used depends on concrete applications. To be able to 

choose the “right” semantics among different ones, it is of’ yreut importance to 

understand the inherent relations between them. 

Although a logic program is a set of clauses P, its canonical model semantics is 

defined by picking out some specific models of P. Here we are interested in the 

question whether or not it is possible to extend P into a richer theory Th which 

specifies the canonical model semantics of P in the sense that an interpretation is 

a model of Th iff it is a canonical model of P. This problem is strongly related to one 

open question between nonmonotonic logic and logic programming, the question 

whether or not there is a circumscriptive specification of the stable semantics [22, IS]. 

Since stable semantics is not defined for every logic program, it is interesting to 

characterize some class of programs for which the stable semantics is defined. In other 

words, we are looking for syntactical conditions guaranteeing the existence of at least 

one stable model. 

Similar to the relation between three-valued and two-valued semantics of the 

Clark’s completion, the well-founded semantics is weaker than the stable semantics. 

Since many ordinary programmers will find two-valued semantics more natural and 

easier to understand than a three-valued one, it is desirable to find sufficient condi- 

tions to guarantee the equivalence between stable and well-founded semantics. 

The purpose of this paper is to study these problems. 

l We show that stable semantics can be defined in the same way as well-founded 

semantics using the basic notion of unfounded sets. In other words, we show that 

stable semantics can be considered as “two-valued well-founded semantics”. From 

this fact, together with the result in 1231, which states that well-founded semantics 

can be viewed as three-valued stable semantics, we can conclude that the two 

concepts of stability and well-foundedness in the semantics of logic programming 

are equivalent. Thus, the difference between stable semantics and well-founded 

semantics indeed results just from the difference between the logics in which these 

concepts are interpreted. 

l We construct for each program P a new completion theory called the strong 

completion of P, written stomp(P), such that 

~ stable semantics is specified by two-valued strong completion, 
_ well-founded semantics is specified by three-valued strong completion. 

l We show that the call-consistency condition is sufficient for the existence of at least 

one stable model. 

l We show that strictness guarantees the equivalence between stable and well- 

founded semantics. 
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l We introduce the bottom-stratified and top-strict condition generalizing both the 

stratifiability and the strictness, and show that the new condition is sufficient for the 

equivalence between stable semantics and well-founded semantics. 

2. Stable models as relatively well-founded models 

To illuminate the inherent relations between stable semantics and well-founded 

semantics, we show in this section that both of them can be defined using the same 

concept of unfounded sets. 

Note that the logic we are working in in this section is the classical two-valued logic, 

where a Herbrand interpretation is considered as a subset of the Herbrand base. 

A logical formula is defined as usual [2, 171. A sentence is a closed logical formula. 

A logical theory is a set of sentences. A program clause is a clause of the form 

A + L1, . . . . L, with n30, 

where A is an atom and Lcs are literals. If II=O, we write At t or just A+, where 

t denotes the truth value true. For any clause C, C- (C’) denotes the set of literals (the 

atom) occurring in the body (in the head) of C. Further, the set of positive subgoals in 

the body of C is denoted by pas(C) while the set of atoms under negation in C is 

denoted by neg( C). 

A program is a finite set of program clauses. The set of all ground instances of the 

clauses in P is denoted by GP. From now on, P denotes an arbitrary, but fixed, 

program. When we talk about the first-order language of P, we mean the language 

defined by the alphabet consisting exactly of the constant, function and predicate 

symbols occurring explicitly in P. We assume that P contains at least one constant. 

The Herbrand base (the Herbrand universe) of P is denoted by HBp (HU,) (or, 

shortly. HB and HU if the subscript is clear from the context). INT = {I ( 1 G HB} is 

the set of all Herbrand interpretations of P. 

We recall now the definition of stable models from [13]. Let 1 c HB be a Herbrand 

interpretation of P. The Gelfond-Lifschitz transformation of P w.r.t. I is the program 

GL(I, P) obtained from GP by: 

l Deleting all clauses in GP which have negative premises 1 A such that AEI. 

l Deleting all negative premises 1 A from the remaining clauses. 

It is clear that GL(I, P) is a definite Horn program. I is called a stable model of P if I is 

the least Herbrand model of GL(I, P). 

Example 2.1. Let P be ti t n,lb. Let I=@ Hence, GL(Z, P) consists of only the 

clause a +- a. I is a stable model of P since the least Herbrand model of GL(I, P) is 

also empty. 

The following notion of unfounded set is taken from [12] 

Definition 2.2. A set S of ground atoms is an unfounded set of P with respect to an 



Herbrand interpretation FEINT if each atom AES satisfies the following condition: 

For each clause C from GP whose head is A, at least one of the following holds: 

(1) The body of C is false in I. 

(2) Some positive subgoal of the body of C occurs in S. 

The following lemma reveals the inherent relations between the Gelfond-Lifschitz 

transformation and the unfoundedness. 

Lemma 2.3. Let I c HB he II Herhrund interpretution qf’P. Then u set of ground atoms 

S is trn urzfounded set of’P bv.r.t. I if’s is an unfoundrd set of’GL(I, P) w.r.t. I. 

Proof. Let Q denote GL( I, P). It is to be noted that Q is a set of ground-definite Horn 

clauses. 

*: Let S be an unfounded set of P w.r.t. I. Let C be a clause in Q whose head 

belongs to S. We need to show that at least one of the following holds: 

( 1) The body of C is false in 1. 

(2) Some positive subgoal of the body of C occurs in S. 

Assume that the body of C is true in I. This means that C c I. Since C belongs 

to GL(1, P). there exists a clause D in GP such that D is of the form 

c++-C ,lA,,...,lA, and Ai~HB\I for each O<i<n+l. Therefore, the body of 

D is also true in I. Since S is an unfounded set of P w.r.t. I, there exists a positive 

subgoal in the body of D which occurs in S. This means that there exists a positive 

subgoal in the body of C which occurs in S. Therefore, S is an unfounded set of Q 

w.r.t. 1. 

t: Let S be an unfounded set of Q w.r.t. I. Let D be a clause in GP whose head 

belongs to S. We need to show that at least one of the following holds: 

(1) The body of D is false in I. 

(2) Some positive subgoal of the body of D occurs in S. 

Assume that the body of D is true in I. It follows immediately that pas(D) s I and 

neg(D) c HB’,I. Let C denote the clause D ’ +pos( D). Hence, C belongs to GL( I, P). 

Since S is an unfounded set of Q w.r.t. I, there exists a positive subgoal in the body of 

C which occurs in S. This means that there exists a positive subgoal in the body of 

D which occurs in S. Therefore. S is an unfounded set of P w.r.t. I. S 

Definition 2.4. A Herbrand model FEINT of P is said to be relatively well-founded if 

I AS = @ for every unfounded set S of P w.r.t. I. 

The following theorem shows the correspondence between stable models and 

relatively well-founded models. 

Theorem 2.5. Let I he u Herhrund model of P. Then I is stclble @ I is relutivel4 

well-j&mded. 

Proof. Let Q =GL(I, P). Define T,: INT+INT by 

TQ(J)=(A13CcQ: Cf=A and C-C_J)-. 



Note that Q is a set of ground-definite Horn clauses. Thus, T, is continuous (w.r.t. set 

inclusion) and the least Herbrand model M of Q coincides with the least fixpoint of T,, 

which can be computed by M = u { Th(@) I z IS a natural number} [ 173. Further, since 

I is a model of P, I is also a model of Q. Thus, M E I since M is the least Herbrand 

model of Q. 

+: Let I be a stable model of P. Let S be an arbitrary nonempty unfounded set of 

P w.r.t. I. To show that I is relatively well-founded, we need only to show that S and 

I are disjoint. From Lemma 2.3, it follows that S is an unfounded set of Q w.r.t. I. Since 

I is stable, I is the least Herbrand model of Q, i.e. I = M = UiTh(@). We show by 

induction that Sn T;(0) =@ for any natural number i. 

Initial step: S n 0 = 0. Obvious. 

Induction step: If SnTh(8)=0 then Sn T 2 ‘(@)=f~ for any natural number i. 

Assume the contrary. Hence, there exists an atom AES~ TF ‘(0). Therefore, there is 

a clause C in Q such that A = C + and C _ c r;(0). Because Sn Th(8) =!?J, we have 

that C - nS=@. Since S is an unfounded set of Q w.r.t. I, and no subgoal in the body 

of C occurs in S, C - must be false w.r.t. I. But this contradicts the fact that 

C - s Th(@) G I. Thus, the induction hypothesis holds. 

It follows immediately that S and I are disjoint. 

+: Let I be a relatively well-founded model of P. Assume that I is not stable. Thus, 

I # M. Let S= I\M. Hence, S#@ because M 5 I. We want to show that S is an 

unfounded set of Q w.r.t. I. Let CEQ such that C+ES and C- is true w.r.t. I. Hence, 

C - c I. Since M is a fixpoint of T, and S=I \M and C + ES, C is false in M. 

Therefore, C - contains one atom from S. So, S is an unfounded set of Q w.r.t. I. From 

Lemma 2.3, S is also an unfounded set of P w.r.t. I. Thus, S is disjoint to I. 

Contradiction! ! Thus, I = M, i.e. I is a stable model of P. 0 

Przymusinski [23] has introduced the three-valued stable models, a natural exten- 

sion of (two-valued) stable models, and showed that the well-founded model of any 

logic program coincides with its least three-valued stable model. In other words, 

well-founded semantics can be considered as three-valued stable semantics. From this 

fact, together with our result which states that stable semantics can be viewed as 

two-valued well-founded semantics, we can conclude that the two concepts of stability 

and well-foundedness in the semantics of logic programming are equivalent. Thus, the 

difference between stable semantics and well-founded semantics indeed results just 

from the difference between the logics in which these semantics are defined. 

3. The strong completion of logic programs’ 

Tn this section, we first develop a new completion theory, called strong completion, 

for logic programs: then we show how the new theory specifies the stable semantics. 

’ Note that in this section we are still in the classical two-valued logic 



Let p1 , . . . . pnz be the predicate symbols occurring in P, and ql, . . . . q, be the 

corresponding predicate variables. Further, let S be a subset of HB, and for each 

0 < i < m + 1, Si be the subset of S consisting of all those atoms in S whose predicate is 

pi. Let p= [qI/SI, . . . . qm/S,,,] denote the following assignment of (two-valued) rela- 

tions on the Herbrand universe of P to qi: 

qi(tl, ...( t,*i) is true iff pi(fI, . . . . t,,i)ESi.Z 

Let C be a clause in P. Without loss of generality, we can assume that C is of the 

form 

p(f I..... f,,)t~,(tl,,...,tl,,,),...,ps(tk,,...,tk,,,),NB 

where p~[p, . . . . . pm) and NB consists of all negative subgoals in the body of C. 

Define UF( C) as 

VJ1 . ..b’yrM. 

where M is the following formula: 

q(t I,..., t,)+(lC-vql(tl ,,..., tl,,)v”‘vq,(tk, )...) f/&k)) 

with q being the predicate variable in {ql, . . . . qm) corresponding to p, and Jli’s being 

the free variables in C. 

The intuition behind UF(C) is that given a certain subset S of HB, UF(C) is true 

w.r.t. a Herbrand interpretation I and p = [ql/S1, , q,JSm] if and only if S is 

a unfounded set of C w.r.t. I. This can be explained as follows: UF(C) is true w.r.t. 

I and ,~i iff for any value assignment \V = [ y1 .‘t , , , yr/tr] (i.e. for any ground instance 

D of C) if q( \v( tI ), . , w( t,,)) is true w.r.t. p (i.e. the head of D is in S) then either C is 

false w.r.t. l,~l(i.e. the body of D is false in I) or the disjunction q,(H!(tll), . . ..w(tlflI)) 

v ... v qk( VV( tk,), , ~v(tk,,~)) is true w.r.t. p (i.e. some positive subgoal of the body of 

D is contained in S). 

HPIIC~, S is an ur~fhrndrd set of P tr.r.t. I if nnd only if UF( C) is true w.r.t. I und 

p= [ql/!SI, . . . . q,n/S,] ,jiir cwlh c.hu.se C qf‘ P. 

Example 3.1. Let P be 

C,: Pl(-x_) + P2b) 

c2: PZ(Q) +lPz(h) 

c3: P*(h) +lPz(c’) 

TheHerbranduniverseofPis (LI,~,c). LetI=jp,(h),p,(h)) andS=(pI(a),p2(a)}. 

It is clear that S is unfounded w.r.t. I. 

’ II would be more exact to say that jc(q,)(r,, . t,,,) IS true ifp,(t,, . . . ~,,)ES,. We abuse the notation here 

for the sake of simpluty. 
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We have 

UF(CI): V’x(q,(x) -+ (~PZ(X)V e(x)) 

UF(Cz): qz(a) + I, 

UF(C3): e(b) + PZ(C) 

Let ,u=[qI/S1, q2/S2], where S1={p,(a)} and SZ={p2(a)}. It is clear that 

Aqi)=ja) and cl(q2)=jaj. It IS not difficult to see that UF(Ci) is true w.r.t. I and 

p for each O<i<4. 

Let Ci, . , C, be the clauses of P. Let UF(P) denote the conjunction UF( C,) A ... A 

UF( C,), and let WF( P) be the following second-order sentence 

vqi...vqm(UF(P) -((qi G~P~)A ... A(q,dlpm))h 

where qi<lpi denotes V.~,...Vx~i(q~(.x~, . . ..x.~) +lpi(xl, . . ..x.i)). 

It is not difficult to see that qi 61 pi is true w.r.t. I and p = [ ql/S1, . , qm/S,] if and 

only if Si and I are disjoint to each other. Hence, WF(P) is true w.r.t. Herbrand 

interpretation I iffor each subset S ef the Herbrand base, if S is unfounded w.r.t. I then 

S is disjoint to I. Therefore, if I is a Herbrand model of P and WF(P), then I is 

a relatively well-founded model qf P. 

Definition 3.2. The strong completion qf P, stomp(P), is defined as the following 

theory 

P+WF(P)+CET, 

where CET is Clark’s equality theory [17] of the language of P. 

Example 3.3 (Continuation of Example 3.1). Let P, I be defined as in Example 3.1. 

WF(P) is the following sentence: 

Let 7 be an arbitrary assignment of unary relations on {a, b, c} to ql, qz such that 

UF(P) is true w.r.t. I and T. Then there exists an (w.r.t. I) unfounded set R such that 

7= [ql/R,, q2/R2]. It is not difficult to see that the following properties are satisfied: 

For any tE[a, b, c>: p,(t)ER iff p*(t)ER and p,(b)#R. 

Therefore, it is easy to see that if qi( t) is true w.r.t. 7 then t # b. Since lpi(t) is true iff 

t #b, it follows that Vx(qi(x)-lpi(x)) is true w.r.t. I and 7. 

Thus, WF(P) is true w.r.t. 1. Since I is clearly a model of P, I is a relatively 

well-founded model of P. 



The following theorem follows immediately from Theorem 2.5. 

Theorem 3.4. I is LI stczhle model of’ P $f I is a Herhrand model of’scomp( P). 

Since the semantics of negation in logic programming is nonmonotonic, in the sense 

that an extension to a logic program does not necessarily lead to an extension of its 

consequences. the question about its relations to other nonmonotonic logics arises 

naturally. In [lS, 131, it is shown that both default logic and autoepistemic logic 

specify the stable semantics of logic programs. But there is only a partial answer in the 

literature to the question about the relations between McCarthy’s circumscription 

and stable semantics [6, 201. If the programs are stratified then prioritized circum- 

scription specifies the perfect-model semantics (another name for the stable semantics 

of stratified programs) [20]. An extension of the prioritized circumscription for locally 

stratified programs is given in [22]. But the problems here is that because of the 

undecidability of the local stratification [3], given a logic program it is undecidable 

whether or not we could circumscribe this program. An extension of McCarthy’s 

circumscription in a three-valued logic which specifies the stable semantics is given in 

161. But the approach proposed there is a bit strange since the circumscriptive 

specification is three-valued whereas the stable semantics is two-valued. Although our 

strong completion theory is not directly a form of McCarthy’s circumscription [ 191, it 

has the same spirit as it also circumscribes the effects of the predicates. The interesting 

point is that while McCarthy’s circumscription circumscribes the “positive parts” of 

the predicates, our approach circumscribes their “negative parts”. This may indicate 

that. in general. a dual form of McCarthy’s circumscription may be defined based 

on an appropriate generalization of the well-foundedness where, instead of cir- 

cumscribing the positive informations, the negative informations should be 

circumscribed. 

4. Well-founded semantics: three-valued strong completion 

We show in this section that three-valued strong completion specifies well-founded 

semantics. 

The logic for this section is three-valued with the truth values t (true), f (false), and 

u (undefined). 

The logical operators A. v. and 1 are the Kleene’s operators defined by the 

following truth tables: 
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The operator + is defined by the following truth table: 

tit f u 

t t t t 

f ftt 

u ftt 

The intuition behind “p+q” is that if q is true then p is true, too. For more about this 

operator see [25]. 

A partial three-valued interpretation I of a program P is a pair (IT, IF), where 

IT, IF are disjoint subsets of HBp. Often, if no confusion is possible, we shortly say 

three-valued interpretation for partial three-valued interpretation. The set IT contains 

all ground atoms true in I, the set IF contains all ground atoms false in I. The truth 

value of the remaining atoms is undefined. A three-valued interpretation I is total if 

HB, = IT u IF. The set of all three-valued interpretations is denoted by PINT. It is 

clear that any two-valued interpretation M G HB corresponds to (M, HB\M). 

The union between two three-valued interpretations is defined by (IT, 1F)u 

(IT’, IF’) = (IT u IT’, IF u IF’). A partial order < in PINT is defined by (IT, IF) < 

(IT’,IF’) iff ITGIT’and IFsIF’. 

Definition 4.1. T,‘, T; are mappings from PINT into INT defined as follows: 

T;(Z)=(AI~CEG,: Cf=A and C- is true in I}, 

T;(I)={AIVCEG~: if C+=A then C is false in I}. 

Further, let Tp(l)=( T,‘(I), T;(I)). 

From the definition of the implication operator in our three-valued logic, Lemma 

4.2 follows immediately. 

Lemma 4.2. A three-valued interpretation I = (IT, IF) is a model of P if Tp’( I) c IT. 

The notion of unfounded sets can be interpreted straightforwardly for any three- 

valued interpretation. For the sake of readability we recall it again here. 

Definition 4.3. A set S of ground atoms is a unfounded set of P with respect to an 

interpretation I = (IT, IF) if each atom AES satisfies the following condition: For 

each clause C from GP whose head is A, at least one of the following holds: 

(1) The body of C is false in I. 

(2) Some positive subgoal of the body of C occurs in S. 

It is easy to see that the union of unfounded sets is again an unfounded set. So, for 

any interpretation I there exists always a greatest unfounded set of P with respect to I. 

This set is denoted by GU(I). Define 

V,(Il=<T;(Il,GU(I)). 

It is clear that VP is monotone. 
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Lemma 4.4. V, is molzotone. 

Therefore, V, has a least fixpoint. The well-founded model of P, written as WFMp, is 

defined as the least fixpoint of V, [12]. 

Theorem 4.5. Let I he a three-valued Herbrand interpretation of P. Then I is a model qf 
stomp(P) iff V,(Z)dZ. 

Proof. +: Let I = (IT, IF ) such that Vp( Z ) <I. Since I is a Herbrand interpretation, 

I clearly satisfies Clark’s equality theory CET. From I$( I) < I, it follows immediately 

that Tp’( I) G IT. Thus, I is a three-valued model of P (Lemma 4.2). It remains to show 

that Z satisfies WF(P). For each O<i<n+l, let p=[ql/atrl,...,q,/atr,] be an 

assignment of three-valued relations atri on Herbrand universe of P to qi such that 

(I, ,u) satisfies UF(Ci) A ... A UF(C,,). We have to show that (I, p) satisfies 

(qidlpi) for each i. Let S={pi(tI,...,t,i)EHBIatri(t,,...,t,,,) is true}. From the 

definition of the three-valued implication operator and the fact that (I, p) satisfies 

UF(Ci) A ... A UF( C,), it follows immediately that S is an unfounded set of P with 

respect to 1. Thus, S is a subset of GU( I). Hence, S c IF, i.e. if ~( qi)( tl , , t,i) is true 

then pi( tl, . . . . t,i) is false in I. Therefore, (I, ,u) satisfies (qi<lpi). 

3: Let Z = (IT, IF) be a Herbrand model of scomp( P). Since I is a model of P, it 

follows that T:(Z) G IT. It is easy to see that IF contains every unfounded set of 

P with respect to I. Hence, GU(Z)c_ IF. Thus, Vp(Z)6Z. 0 

Corollary 4.6 follows immediately. 

Corollary 4.6. The well$ounded model qf P is the least three-valued Herhrund model of 

scomp( P). 

From Corollary 4.6, it follows immediately that the well-founded semantics of P is 

specified correctly by the three-valued strong completion. 

5. Signed dependencies and the equivalence between stable and well-founded semantics 

Since not every logic program has a stable model, it is meaningful to ask for 

sufficient conditions guaranteeing the existence of at least one stable model. Further, 

because many ordinary programmers will find a two-valued semantics more natural 

and easier to understand than a three-valued one [ 151, it is desirable to find sufficient 

conditions for the equivalence between stable and well-founded semantics. In this 

section, these problems will be addressed. 

From now on, we permit programs to contain possibly infinitely many clauses, but 

require that only finitely many predicates appear in each program. 
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To avoid any possible confusion, we want to note that the logic we are working in in 

this section is three-valued, where a three-valued interpretation (T, F) is said to be 

total if Tu F = HB.3 Thus, a total (three-valued) interpretation (M, HB\M) is stable 

if M is a (two-valued) stable model in the classical two-valued logic as defined in 

Section 1. A predicate p is totally de$ned w.r.t. a three-valued interpretation I if each 

ground atom of p is either true or false in I. 

Let Pred be the set of all predicate symbols occurring in P. The predicate depend- 

ency graph [l] of a program is a directed graph with signed edges. The nodes are the 

elements of Pred. An edge from p to q is positive (negative) iff p occurs in the head of 

a clause C of P and q occurs in a positive (negative) literal in the body of C. 

Define the binary relations 3 + 1 and 3 _ 1 as: p 3 + 1 q (p 3 _ 1 q) iff there is a path 

from p to q containing an even (odd) number of negative edges in the predicate 

dependency graph of P. 

Further, let us define 

p3q iffp3+lqorp3-1qorp=q, 

p>q iff p3q and pfq, 

p&q iff p 3+1q and p >-iq, 

p-q iff p>q and q>p, 

IPI- ‘{4lP’41~ 

CPls=~4lP341. 

If $C Pred, we say that $is downward closed iff for all p~$ and qEPred, p>q implies 

qE$. This implies that $= u { [p] _ I p~$}. 

For any downward closed set $, let P Is= { CE P I the predicate of C + belongs to $}. 

If $= [q] S for some q then P Is is also denoted by De&(q). 

A program is said to be stratijed [l] if we never have both p E q and p 3 _ 1 q, i.e. 

within each equivalence class all dependencies are positive. 

A program P is cull-consistent [24, 151 if there is no predicate symbol p such that 

p 3 _ 1 p. P is strict Cl, 151 if we never have p$q. 

It is easy to verify that any program which is either strict or stratified is call- 

consistent but not vice versa. 

Example. Let P be 

c+a 

c+-h 

a+-lb 

btlu 

’ Note that when we speak about a two-valued interpretation, we always mean a subset of the Herbrand 
base. 



Then a 2 _ 1 b and h 3 1 CI. Further, C’ 9 a. Thus, P is Call-COnSiStent but not strict. 

Let $G Pred. A si~~rrirrg is a map, sig : $- ( +l, -1) such that whenever p,qE$and 

p di q, sig(p)= i.sig( q). As we will see very soon, signings will allow us to convert 

partial fixpoints of Tp into total ones. 

Definition 5.1. A program P is called stclhlr-consistent if P has at least one stable 

model. 

To show that the call-consistency is sufficient for the existence of at least one stable 

model, we need the following notion of semantic kernel. 

The semantic kernel of a logic program is defined as the fixpoint of a continuous 

operator QP on quasi-interpretations [S], where a quusi-interprrtution is a set of 

ground clauses of the form A +l B1, . , 1 B,,, II 3 0, with A, Bi being ground atoms, 

and the operator QP on quasi-interpretations is defined as follows: 

QP(I)=(A+lB1,..., 1 B,,, Body 1, . , Body, I 
there exist CEG, and C,EI, 1 <id m s.t. C is of the form 

AtlB1,..., lB,,, AI, . . . . A,, with n30, m30 and 

Ci is of the form A, *Bodyi with 1 <i < 1n j. 

QP is a continuous operator in the lattice of the quasi-interpretations [S]. The 

semantics kernel of P. written as SK(P), is defined by 

SK(P)=U jQ;(@)ln>1). 

Lemma 5.2 (Dung and Kanchana Kanchanasut [8,9]). (1) Let I = (IT, IF) he u par- 

tial three-dud model c~f‘ P. Then I is stuhle #I is u total jxpoint qf TSK,P,. 

(2) The lrust jxpoirzt of T,,,,, is the well~fi~~mlrd model qf P. 

The following lemma holds obviously. 

Lemma 5.3. Jf’ P is cull-c.onsistrnt (strict) then SK(P) is also cull-consistent (strict). 

Our goal in this section is to show that call-consistent programs are stable- 

consistent. In [15] the following result has been proved. 

Lemma 5.4. lf P is jinite ad ~NII-c,onsistent then T, has at ltwst u totul ,fixpoint. 
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Hence, call-consistent logic programs with finite semantic kernel always possess at 

least one stable model. We prove now that Lemma 5.4 holds also for infinite P which 

contains only finitely many predicates. 

Lemma 5.5. Let I be a three-valued interpretation satisfying the property I < Tp( I). 

Then there exists a @point J of Tp such thut I < J. 

Proof. Obvious since T, is monotone. 0 

Since T,, is monotone (w.r.t <), it has a fixpoint. To show the existence of a total 

fixpoint of Tp, we need the following lemma. 

Lemma 5.6. If‘ P is cull-consistent and I = (IT, IF) is a jixpoint of T, such that 

ITuIF#HB. Then there exists a Herbrund interpretation I’= (IT’, IF’) such that 

(1) l<l’<T,(l’). 

(2) There exists a predicate p in Pred such that p is totally defined w.r.t. I’, hut not 

totally dejned w.r.t. I. 

Proof. Let p= min, { q~Pred 1 q is not totally defined w.r.t. I}. Let sig : [p] - -+ 

(+l, -I} bedefinedasfollows: sig(p)=+l and for allqE[p]-,sig(q)=iifp>,q. 

Since P is call-consistent, sig is a signing of [p] 5. Define a three-valued interpretation 

I’= (IT’, IF’) as follows: 

IT’=ITu(AjA=q(t,,...,t,)s.t.q~[p]- andsig(q)=+l andA$ITuIF} 

IF’=IFu( A 1 A=q(t i, . . ..t.) s.t. qE[p]- and sig(q)= - 1 and A$ITuIF} 

It is not difficult to see that 1~1’6 Tp(l’) and each predicate q from [p] - is totally 

defined w.r.t. I’. J 

Since only finitely many predicates are occurring in P, Lemma 5.7 follows immedi- 

ately (by induction) from Lemma 5.6. 

Lemma 5.7. [f P is call-consistent then T, has at least one total jixpoint. 

Theorem 5.8.4 !f P is cull-consistent then P is stable-consistent. 

Proof. It is clear that the semantic kernel of P, SK(P), is also call-consistent. Thus, 

T sKCPj has at least one total fixpoint. It follows immediately from Lemma 5.2 that 

P has a stable model. 0 

4 Independently, Fages [lo] has shown that order-consistent logic programs 1241 are also stable- 

consistent. Although the result of Fages is slightly more general than that of ours, the proofs of both results 
are largely similar. 
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The following lemma is an immediate consequence of the previous lemmas. 

Lemma 5.9. Let P he u cull-consistent proyrum and I a jixpoint of Tp. Then Tp bus 

a totul jifispoint J such thut I < J. 

Let L be a ground literal of P. We write P I=S L if L is true in every stable model of P. 

Similarly, we write PI=,,. L if L is true in the well-founded model of P. 

It is clear that the well-founded semantics is weaker than the stable semantics, i.e. if 

P I=,,. L then P I=\ L. 

Definition 5.10. We say that the stable semantics is equivalent to the well-founded 

semantics if for any ground literal L: if P +$ L then P kW L. 

Theorem 5.11. Jf P is strict then the stuhle semuntics is equident to the welllfounded 

semantics. 

Proof. Assume the contrary. Then there exists a ground literal L such that P +, L and 

P kW L. To show the contradiction, we construct a stable model in which L is false. Let 

p be the predicate occurring in L, and 

$={qEPredlpaq). Definesig:$+{+l, -1) by 

sig(q)= ,Y 
i 

i if L is a 

if L is a 

positive literal and p >iq, 

negative literal and p >iq. 

Since P is strict, sig is clearly a signing of $. Let WFM = ( T, F) be the well-founded 

model of P. Define an interpretation I = (IT, IF) as follows: 

IT=Tu(AIA=q(t,,...,t,)s.t. q~$and sig(q)=+l and A$TuF), 

IF=FujAIA=q(t, ,..., t,,)s.t. qE$and sig(q)=-1 and A$TuF}. 

From the facts that WFM is a fixpoint of T sk(pj (Lemma 5.2) and SK(P) is also strict, , 

it is not difficult to see that WFM <I< TsKtPj (I). Hence, there exists a total fixpoint 

J=(M, HB\M) of TSK(P) such that WFM < I < J (Lemma 5.9). It follows immedi- 

ately that L is false in J. But L is also true in J since P +, L and J is stable (Lemma 5.2). 

Contradiction! !. C 

Another class of programs whose stable semantics and well-founded semantics are 

equivalent, is the class of stratified programs. 5 Note that the class of strict programs 

and the class of stratified programs are independent. One does not include the other. 

For example, the program consisting of the two clauses p+lq and q+lp is strict 

’ It is well known that the stable model and well-founded model of stratilied programs coincide. 
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but not stratified while the program consisting of only the clause pcq, 1 q is stratified 

but not strict. Thus, there arises naturally the question of a sufficient condition for the 

equivalence between stable and well-founded semantics which generalizes both the 

stratifiability and the strictness. 

Definition 5.12. A program is said to be bottom-stratified and top-strict iff for each 

pair P, 4 

if p 9 q then Def,( q) is stratified. 

It is clear that bottom-stratified and top-strict programs are call-consistent. 

Further, any program which is either strict or stratified is bottom-stratified and 

top-strict but not vice versa. 

Example. The following program is bottom-stratified and top-strict, but neither strict 

nor stratified. 

eta 

ctr 

Theorem 5.13. We&founded semantics and stable semantics are equivalent for bottom- 

stratijed and top-strict programs. 

Proof. Let TOP= { p I3q:p>q and Def,(q) is not stratified}. Thus, TOP is strict, i.e. 

there are no two predicates p, q from TOP such that p$q. Let BOTT= Pred\TOP. 

Then it is clear that for each ~EBOTT, Def,(p) is stratified. It is easy to see that BOTT 

is downward closed. Let Q = P IRoT=. Further, let R=P\Q. Then it is clear that the 

predicates in BOTT occur only in the clause bodies of clauses in R. It is not difficult to 

see that Q is stratified. Therefore, its well-founded model WFM = (T, F) is also 

stable. Let Reduct be the program obtained from CR as follows: 

~ Deleting each clause whose body contains one literal L whose predicate is in 

BOTT such that L is false in WFM. 

- Deleting all remained literals whose predicates are in BOTT. 

It is easy to see that Reduct satisfies the following two propositions. 

Proposition 5.14. Let S s HB be a two-valued Herbrand interpretation of P. Then S is 

a (two-valued) stable model of P @there is a (two-valued) stable model S’ of Reduct such 

that 

S=S’uT. 
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Proposition 5.15. Let W, W’ be the wellTfounded models of’P and Reduct, respecticely. 

Then 

W= W’u WFM. 

Proof of Theorem 5.13 (Conclusion). It is clear that Reduct is a strict program. Thus, 

the well-founded semantics and stable semantics of Reduct are equivalent. From 

Propositions 5.14 and 5.15, it follows immediately that the we&founded semantics 

and stable semantics of P are equivalent, too. 17 

The results of this section can be generalized to show the equivalence between 

two-valued strong completion and three-valued strong completion. But to do so, we 

would have to introduce the notion of non-Herbrand stable models as well as 

non-Herbrand well-founded models. Further, an extension of the semantic kernel to 

accommodate clauses with variables would also be necessary. But this would go 

beyond the scope of this paper. A forthcoming paper will handle this problem. 

6. Conclusion 

The goal of this paper was to study the inherent relations between stable semantics 

and well-founded semantics. The results are threefold. First, we have shown that 

stable semantics can be considered as two-valued well-founded semantics. We argue 

that the two concepts of stability and well-foundedness in the semantics of logic 

programming are equivalent. Second, we have given an axiomatic characterization of 

the stable and well-founded semantics by introducing a new completion theory called 

strong completion. Third, we have studied the equivalence between the two semantics 

and found a new sufficient condition for their equivalence, the bottom-stratified and 

top-strict condition. 

Since the strong completion is a second-order formula, it would be meaningful to 

ask whether it is possible to transform it into a first-order theory. Unfortunately, the 

answer is negative. In [S], we show that, in general, strong completion is not 

first-order-definable. This result suggests that in order to have a first-order character- 

ization of stable and well-founded semantics, new extra function symbols as well as 

predicate symbols should be used [26]. 
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