
Theoretical Computer Science 132 (1994) 1799207

Elsevier

179

Asynchronous automata versus
asynchronous cellular automata*

Giovanni Pighizzini

Dipczrtimento di Science dell’lrzformazione. UniuersitZI degli Studi di Milano,

via Corn&o 39, I-2013.5 Milano, Italy

Communicated by M. Nivat

Received September 1992

Revised September 1993

Abstract

Pighizzini G., Asynchronous automata versus asynchronous cellular automata, Theoretical

Computer Science, 132 (1994) 179-207.

In this paper we compare and study some properties of two mathematical models of concurrent

systems, asynchronous automata (Zielonka, 1987) and asynchronous cellular automuta (Zielonka,

1989). First, we show that these models are “polynomially” related, exhibiting polynomial-time

reductions between them. Subsequently, we prove that, in spite of that, the classes of asynchronous
automata and of asynchronous cellular automata recognizing a given trace language are, in general,

deeply different. In fact, we exhibit a recognizable trace language T with the following properties:

there exists a unique minimum asynchronous automaton accepting T, does not exist a unique

minimum asynchronous cellular automaton, but there are infinitely many minimal (i.e., unreducible)

nonisomorphic asynchronous cellular automata accepting T. We characterize the class of concur-
rent alphabets for which every recognizable trace language admits a minimum finite state asyn-

chronous cellular automaton as the class of alphabets with full concurrency relation. Finally,

extending a result of (Bruschi et al., 1988), we show that for every concurrent alphabet with

nontransitive dependency relation, there exists a trace language accepted by infinitely many minimal
nonisomorphic asynchronous automata.

1. Introduction

Trace languages were introduced by Mazurkiewicz in 1977 [21,22] in order to give

a noninterleaving semantic of concurrent systems, In Mazurkiewicz’s approach, the

Corrrspondence to: G. Pighizzini, Dipartimento di Scienze dell’Informazione, Universita degli Studi di

Milano, via Comelico 39, I-20135 Milano, Italy. Email: pighizzi@ghost.dsi.unimi.it.

* Supported in part by the ESPRIT Basic Research Action No. 3166: “Algebraic and Syntactic Methods
in Computer Science (ASMICSY and by MURST.

0304-3975/94/$07.00 c 1994-Elsevier Science B.V. All rights reserved

SSDI 0304-3975(93)E0161-V

180 G. Pighizzini

structure of a system is described by a concurrent alphabet, that is by a finite set of

actions (i.e., an alphabet) and by a binary relation over this set (i.e., a concurrency

relation). This relation, used to specify those pairs of actions can be concurrently

executed, permits to identify different sequential observations of the same behavior. In

this way, a process is described by an equivalence class of strings. This class, called

trace, can also be represented by a partially ordered set of actions.

It is possible to observe that traces are elements of free partially commutative

monoids, algebraic structures introduced by Cartier and Foata [7] with combina-

torial motivations. Using this fact, a theory of trace languages (i.e., subsets of free

partially commutative monoids) has been developed as an extension of the classical

theory of formal languages, as witnessed by many papers (see [l] for a review of many

results in trace theory and for an annotated bibliography).

An interesting subject in trace theory is that of recognizability of trace languages.

The interest for this subject is twofold. From the point of view of concurrent systems,

the class of recognizable trace languages, introduced in [3] using the standard notion

of finite state automata over free partially commutative monoids, is interesting since

the behaviors of labeled condition-event Petri nets can be described by recognizable

trace languages [4]. On the other hand, relevant algebraic properties of recognizable

trace languages have been discovered. In particular, except in the case of empty

concurrency relations, Kleene’s theorem does not hold for trace languages. In fact, it is

not difficult to show that the class of recognizable trace languages over a given

concurrent alphabet is a proper subclass of that of rational (or regular) trace languages

(defined using the usual rational operations). This immediate fact motivated a deeper

analysis of recognizability phenomenon in free partially commutative monoids (e.g.,

19, 26 231).
A main notion in trace theory, which allows to treat concurrent systems from an

algebraic point of view, is that of asynchronous automata [28]. Asynchronous auto-

mata are recognizing devices for trace languages characterized by a distributed

control; thus, they can be seen as mathematical abstractions of concurrent systems.

Notwithstanding the distributed organization, finite state asynchronous automata

characterize the class of recognizable trace languages, that is the same class of trace

languages characterized by finite automata over free partially commutative monoids

(i.e., by devices with a centralized control). This very surprising and nontrivial result

was proved by Zielonka [28].

Another kind of distributed devices recognizing trace languages was proposed in

[29], introducing asynchronous cellular automata. This model is closely related to the

first model of parallel computation, the cellular automaton introduced by Von

Neumann [25]. We recall that a cellular automaton consists of a collection of

elementary automata, with local interconnections, evolving in a parallel and syn-

chronous way. While all these automata change state at the same time, in asyn-

chronous cellular automata only nonconnected automata can concurrently act. Then,

although asynchronous cellular automata and Von Neumann’s cellular automata

have some similarity, they are different models of computation.

Asynchronous automata LWSUS asynchronous cellular automata 181

Asynchronous automata and asynchronous cellular automata have been extensive-

ly studied in literature (e.g. [15, 27, 6, 8, 10, 11, 301); moreover some extensions of

these modes have been proposed (e.g. [20,2, IS]). In this paper we will compare

asynchronous automata and asynchronous cellular automata. We recall that, as

proved in [ll], also asynchronous cellular automata characterize the class of recog-

nizable trace languages. Then, this model has the same recognizing power of asyn-

chronous automata.

In the first part of the paper, we give polynomial-time reductions between asyn-

chronous automata and asynchronous cellular automata. The construction of an

asynchronous automaton accepting the same trace language of a given asynchronous

cellular automaton is quite trivial and it is given only for sake of completeness. On the

other hand, the converse construction is not so immediate and requires the use of

some algebraic properties of prefixes of traces. This fact suggests the idea that

asynchronous cellular automata are in some sense “more complicated’ than asyn-

chronous automata. This idea is supported also by the immediate observation that

monoid automata coincide with asynchronous automata for empty concurrency

relations, while monoid automata coincide with asynchronous cellular automata only

when the alphabet is a singleton.

We strengthen the idea that asynchronous cellular automata are “more complic-

ated” than asynchronous automata in the second part of the paper, where we study

the problem of the existence of minimal asynchronous automata and of minimal

asynchronous cellular automata. The interest in this subject is related to the fact that

all known algorithms for the synthesis of deterministic asynchronous automata and of

deterministic asynchronous cellular automata accepting given trace languages pro-

duce very big automata. Then, it should be very useful to have some technique for

reducing the number of states of these automata.

In [6] it was proved that there are recognizable trace languages over concurrent

alphabets with nontransitive dependency relation for which the minimum asyn-

chronous automaton does not exists.’ In this paper, we extend that result, showing

that for every concurrent alphabet with nontransitive dependency relation there exists

a recognizable trace language T accepted by infinitely muny nonisomorphic minimal

asynchronous automata with a finite number of states and by infinitely many non

isomorphic minimal asynchronous automata with an infinite number of states. We

obtain a similar result also for asynchronous cellular automata. In fact, we show that

for every concurrent alphabet containing at least two dependent letters, there exists

a trace language T that does not admit a minimum asynchronous cellular automaton

r We informally explain the terminology used in the paper. A (monoid, asynchronous, asynchronous

cellular) automaton .d is said to be minimal if it cannot be reduced, that is when we try to identify some
different states of .d, we obtain an automaton that does not recognize the language accepted by .cP. An

automaton .d accepting a trace language T is said to be minimum if all automata accepting T can be
“reduced” to it. Then, the minimum automaton .d accepting a given language, if any, is unique up to

isomorphism and every minimal automaton accepting T is isomorphic to d.

182 G. Piyhizzini

but that admits infinitely many nonisomorphic minimal finite state asynchronous

cellular automata. On the other hand, we point out that this language T admits

a unique minimum finite state asynchronous automaton.

Finally, we show that, notwithstanding polynomial-time reducibility between asyn-

chronous automata and asynchronous cellular automata, the class of concurrent

alphabets for which every recognizable trace language admits a minimum finite state

asynchronous automaton (characterized in [6]) is wider than the class of concurrent

alphabets for which every recognizable trace language admits a minimum finite state

asynchronous automaton. In fact, we show that this last class contains only concur-

rent alphabets with full concurrency relations.

The paper is organized as follows. Basic definitions and facts about trace languages

are recalled in Section 2, while the notions of asynchronous automata and of

asynchronous cellular automata are recalled in Section 3. Section 4 is devoted to study

some properties of a-prefixes of traces. These properties are used in Section 5 to state

the reductions between the two models of automata. Finally, in Section 6, we state our

main results on the existence of minimal asynchronous automata and of minimal

asynchronous cellular automata.

2. Preliminary definitions and results

In this section, basic definitions and facts about trace languages and algebraic

structures supporting them, i.e., free partially commutative monoids, will be

recalled.

Definition 2.1. A concurrent alphabet is a pair (A, (3), where

l A=(u~,...,u,} is a finite alphabet;

l 8 E A x A is a symmetric and irreflexive relation, the concurrency or independency

relation.

The complementary relation of the independency relation 8 is called the dependency

relation and in the following it will be denoted by @ For every aE A, we denote by @(a)

the set of all letters depending on a, i.e., the set

As usual, the relations 0 and 8will be represented as graphs. Observe that, for SEA,

@(a) is the set containing a and the neighbors of a in the dependency graph. Every

clique of the dependency graph, i.e., every subset LX s A such that LX #@ and (a, b)~&,

Vu, bga, will be called dependency clique.

Definition 2.2. The free partially commutative monoid (fpcm) M(A, 0) generated by

a concurrent alphabet (A, 0) is the quotient structure M(A, H)= A*/sB, where E@ is

Asynchronous automata wrsus asynchronous cellular automata 183

the least congruence over A* which extends the set of “commutativity laws”:

{ab=ha~a,b~A and (a,b)~fI).

A trace is an element ofM(A, (!I), a trace language is a subset ofM(A, e).

We denote by [wle (or [w] if 8 is understood) the trace containing the string WE A*.

Then, the product of the traces [wle and [ule, denoted as [wls [ule, is the trace [wvls

and the trace [E&, i.e., the equivalence class containing only the empty string E of A*,

is the neutral element of M(A, 0).

A trace x is said to be a prefix of a trace t if and only if there exists a trace z such that

t=xz.

With every formal language it is possible to associate a trace language in the

following way.

Definition 2.3. Given a concurrent alphabet (A, 6) and a language LcA*, the truce

language generated by L under 19 is the set [LIO= { [w& 1 WGL}.

Conversely, it is possible to associate with every trace language a formal language

as follows.

Definition 2.4. The linearization lin(t) ofu truce ~EM(A, 0) is the set of all strings of A*

belonging to the equivalence class t, i.e., lin(t) = c#- l(t), where 4 denotes the canonical

morphism from A* to M(A, 6). The linearization lin(T) of a trace language TG M(A, 6)

is the set containing all linearizations of traces of T, i.e., lin(T)= u,,rlin(t).

Of course, for every Lr A*, it holds LElin(CL&).

It is possible to introduce Chomsky-like hierarchies of trace languages [l]. In this

paper, we are interested in the class of trace languages accepted by finite state devices.

So, we now recall the notion of monoid automata and, subsequently, that of recogniz-

able truce language [17,3].

Definition 2.5. Let M be a monoid with unit 1. An automaton .c4 over M, or

M-automaton, is a quadruple (Q, 6, I, F), where

l Q is a set of states;

l 6: Q x M -Q is a transition function such that

6(q, l)=q, for every qEQ;

6(q, mm’)=6(6(q, m), m’) for every m, m’EM, qEQ;

l IEQ is the initial state;

l FE Q is the set of ,jnul states.

The automaton & is said to be aJinite state M-automaton if the set Q of states is finite.

The language recognized by the M-automaton B is the set L= { mEM I6(1, m)cF}.

We recall that a state qEQ is reachable in the automaton & if and only if there exists

mEM such that S(1, m)= q; the automaton JX! is said to be reachable if and only if

184 G. Pighizzini

every state in Q is reachable. Of course, removing all nonreachable states and all

transitions from these states, every nonreachable M-automaton can be transformed in

a reachable automaton recognizing the same language. Thus, in this paper we will

consider only reachable automata.

We observe that given a M(A, B)-automaton .d = (Q, 6, I, F), for every state qEQ

and for every pair (a, b)~0, it holds: 6(q, ah) = 6(q, ba). This means that in M(A, 8)-

automata the concurrency among independent actions is reduced to their inter-

leaving.

Definition 2.6. A trace language TsM(A, 0) is called recognizable iff there exists

a finite state M(A, 8)-automaton which recognizes T. The class of recognizable trace

languages over the concurrent alphabet (A, e), will be denoted by Rec(A, 19).

Through the paper, for every finite set of indices J, for every vector s = (sj)jtJ and for

every subset J’ of J, we will denote by sIJS the restriction of s to the elements indexed

by J’, i.e., s~J, = (Sj)jcJ,.

3. Asynchronous automata and asynchronous cellular automata

As observed in Section 2, automata over free partially commutative monoids are

devices with an unique central control, where the concurrency among actions is

reduced to their interleaving.

A different kind of recognizing devices for trace languages was proposed by

Zielonka [28], introducing asynchronous automata. The structures of asynchronous

automata and of monoid automata are very different. In fact, in asynchronous

automata the control is distributed on a set of control units which can act indepen-

dently or synchronized. Every action, represented by a symbol, is processed by

a subset of control units; two actions are independent if and only if they are processed

by disjoint sets of control units. Despite this main difference, the classes of trace

languages accepted by automata over free partially commutative monoids and by

asynchronous automata coincides. This result is very surprising. In fact, from the

point of view of concurrent systems, this means that commutativity can be reduced to

concurrency [4].

Recently, a different model of automata with distributed control, called asyn-

chronous cellular automata was proposed by Zielonka [29]. Also this model character-

izes the class of recognizable trace languages.

In this section, we recall definitions and some properties of these two kinds of

devices.

3.1. Asynchronous automata

First, we recall the notion of asynchronous automata.

Asynchronous automata versus asynchronous cellular automata 185

Definition 3.1. An asynchronous automaton with n processes, over a concurrent alpha-

bet (A, e), is a tuple &=(P1, Pn,(60}aGA, I, F), where

l for i = 1, . . , n, Pi = (Ai, Si) is the ith process, where Si is its set of local states and Ai is

its local alphabet, such that {Al, . ., A,} is a clique cover of the dependency

graph;
0 let Proc= (1, . . . , n>; the domain of a~.4 is the set Dom(a)=(iEProc 1 UEAi}, i.e.,

the set of (indices of) processes that “execute” the action a;

then 6,: ni.Dom(a)si -)niEDan(a) I S. is the (partial) local transitionfunction associated

with the letter a;

l let S = niEP,Oc Si be the set of global states; then I = (I,, . . , I,) is the initial state and

F c S is the set of jinal skates.

If for every iEProc, Si is a finite set, then the asynchronous automaton d is said to be

a jinite state asynchronous automaton.

We underline that the domains Dam(a) and Dam(b) of two actions a, be.4 are

disjoint if and only if a and b are independent; in this case the transition functions

6, and 6, act on disjoint sets of local states and, consequently, the corresponding

actions a and b can be concurrently executed. In this way, asynchronous automata

over M(A, 0) represent all concurrency among actions, specified by the relation 0.

For describing the “global behavior” of a given asynchronous automaton d, we

introduce the global transition function A : S x M(A, f3) + S of d, extending local

transition functions to global states, as follows. Given SES and UEA, A(s, a) is the

global state u such that u,Dom(a)=~a(~iDom(a)) and uiDomo=s ,=. Intuitively, this

corresponds to the fact that a transition on the letter a acts only on the processes in

Dam(a). This function can be extended to traces, in the usual way, by defining

A(s, [E])=s and A(s, ta)=A(A(s, t), a), for SE& tEM(A, Q) and UEA.

Thus, the language T(d) accepted by the asynchronous automaton d can be

defined as the set

T(caf)={t~M(A, S)l A(Z, t)EF).

It is not difficult to verify that the tuple (S, A, I, F) is a M(A, @-automaton

accepting T(d). This monoid automaton will be called in the following sequential

version of the asynchronous automaton ~4 and will be denoted by SEQ(&). Thus, with

every finite asynchronous automaton can be associated a finite state automaton

recognizing the same trace language. Conversely, given a finite automaton over the

fpcm M(A, 0) it is possible to construct- an asynchronous automaton over the same

concurrent alphabet, accepting the same language. This result, not at all obvious, was

obtained by Zielonka.

Theorem 3.2 (Zielonka [28]). The class of trace languages accepted by jinite state

asynchronous automata over the concurrent alphabet (A, 0) coincides with the class

Rec(A, 0) of trace languages recognized by jinite state M(A, Q-automata.

186

Fig. I. M(A, O)-automaton accepting T.

a a,b a a

c

Fig. 2. An asynchronous automaton accepting T

Example 3.3. Let (A, 0) be the concurrent alphabet with symbol set A=(a, b, C} and

concurrency relation 8 = {(a, c), (c, a)}. We consider the cliques A,={a, b} and

A, = { h, c> of the dependency graph and the trace language T= [((aubuc)(auc))*]O.

The language T is recognizable. In fact, it is not difficult to see that the M(A, 0)-

automaton represented in Fig. 1 recognizes it. Let now & be the asynchronous

automaton with two components P1 =(A,, S,) and PI =(Az, S,), so defined:

S1=(s,,sl} and S2={r,,,r,};

6a(.%)=S1, I,=%,

Ms0, r0)=(sl, r0), UsI, rl)=(sl, rO),
dC(rO)=rl, dC(rl)=rO;

I=(s0, r,);

F={(so, r0), (sl, f-l)>.

As pointed out in [28], asynchronous automata can be represented as labeled Petri

nets. In the following we will use this representation. In Fig. 2 the automaton & and

its sequential version SEQ(~) are represented. Observe that the automaton of Fig. 1

cannot be the sequential version of any asynchronous automata over (A, 0).

3.2. Asynchronous cellular automata

We now recall the notion of asynchronous cellular automata introduced by

Zielonka [29] and, independently, by Diekert [12].

Asynchronous automata versus asynchronous cellular automata 187

Definition 3.4. An asynchronous cellular automaton over a concurrent alphabet (A, 0)

is a tuple ZZ’==({S~}~.~, (8a}aeA, I, F) such that

l for aEA, S, is the set of local states associated with the letter aEA;

l for asA, 6, is the (partial) local transition function associated with a,

o,: nbe&a) Sb -+ &I;

l let S = naG A S, be the set of global states of LL@‘; ZES is the initial state of d and F G S

is the set offinal states of d.

If, for every aEA, S, is a finite set, then the automaton d is said to be a$nite state

asynchronous cellular automaton.

By Definition 3.4, we can see an asynchronous cellular automaton as a net

of automata { Pa}atA. Every automaton P, can execute only one action a

and two automata are connected if and only if the corresponding actions do

not commute. So, the graph of the net is an isomorphic copy of the dependency

graph associated to the alphabet. The state that the automaton P, of the net

assumes after the execution of its action a depends on the states of its neighbors, that is

the automata corresponding to letters noncommuting with a. For every pair of

independent actions a and b, the transition function of the automaton P, does not

modify the states read as input by Pb and vice versa; then a and b can be concurrently

executed. Moreover, P, and Pb can read concurrently the states of their common

neighbors.

As for asynchronous automata, we can associate with every asynchronous cellular

automaton a global transition function A : S x A -+S as follows: for SE& aEA, A(s, a) is

the global state u such that ub = sb for all bE A, b #a, and U, = 6,(s,,J(~)). The extension

to traces can be obtained in a standard way.

Finally, the language recognized by the asynchronous cellular automaton G! is the

set T(.d)cM(A, 0) so defined:

T(&)={tEM(A,B)lA(l,t)EFj.

As for asynchronous automata, it is possible to prove that cellular automata are

“distributed” models characterizing the class of recognizable trace languages. In fact,

it is easy to see that for every asynchronous cellular automaton &=({ So}atA,

16a)asA> I, F), the M(A, O)-automaton defined by the tuple SEQ(&‘)=($ A, I, F) and

called sequential version of &, accepts the same trace language T(JZZ) accepted by .d.

Then, trace languages accepted by finite state asynchronous cellular automata over

M(A, 0) are recognizable.

Conversely, the analogous of Theorem 3.2 for asynchronous cellular automata,

proved in [l 11, holds.

Theorem 3.5. The class of languages accepted by finite state asynchronous cellular

automata over the concurrent alphabet (A, 0) coincides with the class Rec(A, 0) of trace

languages recognized by finite state M(A, 9)-automata.

188 G. Pighizzini

b b

Fig. 3. The automaton SEQ(&#).

Fig. 4. A M(A, O)-automaton accepting r(d)

Example 3.6. Let (A, 0) be the (degenerated) concurrent alphabet with A = (a, b} and

0=8. Then $(a)=@b)={a, b).

Every asynchronous cellular automaton on this alphabet has two components

P, and Pb. The local transition functions 6, and 6, are applied to global states and

return as value a local state of the corresponding component.

We consider the asynchronous cellular automaton d defined as follows:

&={s1,s2 > and %={yl,r2};

%(sl, r1)=s2, Us2, rz)=sl,

&(s2, r1)=r2, &(sl, r2)=r1;

I=(si, r,);

F=((sl, rr), (s2, r2)).
It is immediate to see that such an automaton, whose sequential version is

represented in Fig. 3, recognizes the language T(SS?) = [(ab)* lg.
Another monoid automaton accepting the language T(d) is represented in Fig. 4.

It is not difficult to see that this automaton cannot be the sequential version of any

asynchronous cellular automaton.

Remarks

(a) It is obvious that if the independency relation 6’ is empty then every M(A, 0)-

automaton is also an asynchronous automaton over (A, Q) and vice versa. On the

other hand, as shown in Example 3.6 this fact is not true for asynchronous cellular

automata, except when #A = 1.

Asynchronous automata versus asynchronous cellular automata 189

(b) If the independency is full, i.e., 8=AxA-{(a,a)la~A}, then every local

alphabet of an asynchronous automaton contains exactly one letter. In this case every

asynchronous is also an asynchronous cellular automaton and vice versa.

4. a-prefixes of traces

In this section we recall the notion of a-prefix of traces [28], related to properties of

asynchronous and asynchronous cellular automata. This notion and its properties

have been extensively studied in many papers (e.g. [lo, 11,281) and will be useful to

study the reduction from asynchronous cellular automata to asynchronous automata.

We recall, using the notation adopted in [S], that every trace t can be represented as

a poset.

Definition 4.1. Given a trace tEM(A, O), let x=x1 . . . x, be a representative of t, i.e.,

[xl0 = t; the partial order ord(t) associated with t is the pair ord(t)=(O,, <,), such

that

(1) O,={(x1, k,),(x.,, k,)}, w h ere k, denotes the number of symbols equal to

x, in the string x1 . . . x,;

(2) bt is the transitive closure of the relation L defined by:

(xi, ki)L(xj, kj) iff (i<j and (xi, xj)$e).

It is easy to show that there exists a bijection between prefixes of a trace t and order

ideals of ord(t) =(O,, <,), i.e., the subsets of 0, closed with respect to the relation

dt [S]. Let cx be a subset of A. For every trace tEM(A, 0) we consider the order ideal

Pref,(t) containing exactly all symbol occurrences preceding the last occurrence in t of

some letter in c(, i.e.,

Pref,(t)={(xi, ki)(3(xj, kj)EO,: (Xi, ki)bt(xj, kj) and XjEC(}.

The a-prefix d,(t) is defined as the prefix of t corresponding to Pref,(t).

Our interest to the notion of a-prefix of a trace is motivated by the fact that

processes of asynchronous automata and of asynchronous cellular automata work on

prefixes of this kind. More precisely, it is immediate to verify that the state reached by

the process P, of an asynchronous cellular automaton &, executing a trace t, depends

on the prefix oft corresponding to the order ideal Pref{,)(t) generated by the letter a.

Then, we have the main equality A(1, t),ca, = A(I, 8,,,(t)),,,,. Analogously, for every

process Pi of an asynchronous automaton &, we have A (I, t)\ i i) = A (I, a,{(t)), i iI.

The properties stated in the following lemma are immediate consequences of

previous definitions.

Lemma 4.2 For every truce tEM(A, 19), the following properties hold.

(1) V’a, jIsA, ifasp then a,(a,(t))=a,(t);

190 G. Pighizzini

Fig. 5. Graph of 0

-, (b 2)

(CJ) -(c,2)

Fig. 6. The partial order ord(t).

(2) VUCA, c?,(ta)=a,,,(t)a;

(3) for every dependency clique a~ A, !IUEE such that a,(t)=a,(t).

It is possible to observe that if a is a dependency clique and Z,(t)# [E], then there

exists exactly one letter aEz such that a,(t)= i?,(t). In the following, this letter will be

denoted as Last,(t). Intuitively, Last,(t) is the last letter of the set a executed in the

trace t. If d,(t)= [s], then every letter aEr verifies the equality d,(t)=d,(t); in this

case, we will denote by Last,(t) the minimal letter in the set IX with respect to a fixed

linear order on the alphabet A. It is immediate to see that Last,(t) = Last,(B,(t)).

Example 4.3. Given the concurrent alphabet (A, 0) with A = {a, b, c, d, e}, and the

graphs of 0 as in Fig. 5, we consider the clique cover constituted by the sets

A,={a,d}, A,={h,d,e} and A3={c}.

The partial order ord(t) associated with the trace t = [caaedabbc] is the transitive

closure of the graph given in Fig. 6. It is not difficult to see that d,(t)= [medal,

&(t)=[uaedbb], o?,(t)=[cc], a,(t)=[uaed] and a’,(t) = [e]. Moreover, LastA, (t) = a

Last,,(t)=b, and Last,,(t)=c.

5. Reductions between asynchronous cellular automata and asynchronous automata

In this section, we show that asynchronous automata and asynchronous cellular

automata are polynomially related. While the reduction of asynchronous cellular

automata to asynchronous automata is quite trivial, and it is presented only for

completeness (see also [13]), the converse reduction is more complicated and it is

obtained using the results presented in Section 4.

Asynchronous automata versus asynchronous cellular automata 191

5.1. Construction of asynchronous cellular automata from asynchronous automata

The presentation of this construction is split in two parts. First, we define an

asynchronous cellular automaton 93 with the property that for every dependency

clique c(and for every trace tEM(A, O), it is possible to recover the linear order among

the last occurrences of symbols of CI in t (and then the value of Last,(t)) only

comparing the local states reached by processes of SJ associated with the symbols

belonging to c1 (i.e., without remembering all the trace t). This problem was previously

solved with a similar construction using asynchronous automata in [8]. In the second

part of the construction, we will extend the automaton &? so defined in order to

obtain an asynchronous cellular automaton .d’ simulating a given asynchronous

automaton ~2.

For the rest of this section, we fix a concurrent alphabet (A, 0) and a linear order

< on the set A. For every nonempty set LXGA, we denote by max(a) and min(cr) the

maximum and the minimum element of cx with respect to the order relation <.

To define the asynchronous cellular automaton B, we introduce a function

G, associating with every trace a boolean function, and we prove that for every

dependency clique CI E A, from the set (G,(I?,)},,, it is possible to compute Last,(t).

Definition 5.1. Given a concurrent alphabet (A, 0) and a letter UEA, fixed a linear

order -C on A, we define inductively the function G, associating with every trace

a boolean function from @a)- { a}, i.e., G,: M(A, 0) -{ 0, l}BCa)-(a~, as follows.

Va’Eg(a)-{a}, V~EA, b#a, V~EM(A, O),

G,(e)(a’) = 0,

if bfa,

if b=a and a’>a,

l-G,,(t)(a) if b=a and a’<a.

From this definition, it is immediate to see that for every aEA it holds

G,(t)=G,(a,(t)).
The main property of the mapping G is stated in the next lemma, and it is crucial to

define the asynchronous cellular automaton 93.

Lemma 5.2. For every dependency clique 2 E A and for all traces t, reM(A, 0), ifQaEa

G,(t)=G,(r) then Last,(t)=Last,(r).

Proof (outline). The reader can verify that for every pair of distinct letters (a, b)$O

and for every trace UE M(A, O), it holds:

Last(,,b)(u)=
min{a, b) if G,(u)(b)=G,(u)(a),

max { a, b} otherwise.

192 G. Piyhizzini

This permits to conclude that given two traces t, reM(A, 0) and a dependency clique

CI c A if G,(t) = G,(r) for every UEU, then the linear order between the last occurrences

of the letters of a in t coincides with the linear order of the last occurrences of the

letters of z in r. However, by definition, the maximal elements of these linear orders are

respectively Last,(t) and Last,(r). Thus, we can conclude that Last,(t) = Last,(r). 0

In other words, Lemma 5.2 shows that Last,(t) can be computed, without knowing

all the trace t, from the set {G,(t)},,,; thus, we can write Last,({ G,(t),,,) instead than

Last,(t).

It is possible to observe that the time for computing Last,(t) from the set

{G,(t)),,,> using the algorithm outlined in the proof of Lemma 5.2 is

0(#(Co2)<0(d2), where d=max{ #(@a))-1 s.t. UEA} is the maximum degree of

a vertex in the dependency graph.

Now, we are able to define the asynchronous cellular automaton B. The set U, of

local states of the process associated with the letter a is

u, = {G,(t) I tEMl.4 ‘3).

The initial global state is the tuple J=(G,(E)),,,. The local transition function

5, corresponding to the letter a, associates with a tuple (gb)bce(YjEnbEeca, U, the local

state gh = 5,((s&e& such that

sb(a’)=
i

%,(a) if a’>~,

1 -g,,(a) if ~‘<a.

Comparing the definition of the transition function (ta)aEA with the definition of the

function G,, it is not difficult to conclude that for every trace tEM(A, d) it holds

E(J, t)=(Ga(f))aEA, where E denotes the global transition function of B.

At this point, the reader can verify that for every dependency clique txc.4 and for

every trace tEM(A, 0) it holds

Last,(t)=Last,(E(J, t),J,

i.e., Last,(t) can be recovered from the local states reached by processes of 99 asso-

ciated with symbols belonging to a.

Now, we can state the second part of the construction. Let .&=

(Pi,Pfl{41.._4> I, F) be a finite state asynchronous automaton. We show how to

build a finite state asynchronous cellular automaton JS=((S~}~~~, (&,jaeA, I’, F’)

accepting the same trace language of ~2, using the above defined automaton 3?.

The local states of the process l’: of &” are pairs of the form (g, r), where gE U, and

rEniEDomcajSi, and the transition functions are defined in such a way that the local

state reached after the execution of a trace t is the pair (G,(t), d(Z, d,(t)),,,,,,,). So,

the second component of the local state of Pb is used to simulate all processes of

~2 that execute the action a. We observe that the same process Pi of .c4 is simulated by

all process PA of ,d’ with U~Ait each one of them keeps in its internal state the local

Asynchronous automata versus asynchronous cellular automata 193

state d (I, (3, t)(i; moreover:

When a transition of & involving the process Pi has to be simulated, it is useful to get

the correct value of d (I, t)ii . This can easily be done recovering the value of LastAj(t)

from the first components of local states, i.e., the components simulating the auto-

maton 93.

More formally, the initial global state of &’ is Z’=(Zb)UEA, where Zb=(G,(E),

(Z .), ,, IfDomCa)), and the local transition function associated with the symbol UEA, where

Dom(a)={i,,...,i,}, is defined as

&((%> Sb)boB(a))=(5(gb)bEB(a), 6n(SLast,,,((gb)bFa,,), ““SLast,~~~(gb)b.“,,~)),

for gbE ub, SbEnieDom(b) si, be&).

Using the standard algebraic manipulations, the reader can easily prove the

following result.

Lemma 5.3. For every trace tEM(A, 0) the following equality holds:

A’(Z’, t)=(G,(t), d(Z> aa(t)),D.,n,a,h4.

Now we are able of completing the construction of the automaton d’, stating the

main result of this section.

Theorem 5.4. Given an asynchronous automaton &? =(Pl, . . , P,, { 8a}asA, I, F) over

a concurrent alphabet (A, O), it is possible to construct in polynomial time an asyn-

chronous cellular automaton &’ = ({ Sh}asA, { c?L}~.~, I’, F’), recognizing the same trace

language T accepted by J;4.

Proof. We observe that, given two traces t, t’E M(A, 0), if d’(Z’, t) = d’(Z’, t’) then also

d (I, t) = d (I, t’). So, we can well define the set of final states of d’ as

F’ = { A’(I’, t) 1 d(I, t)E F}. Of course, with this choice of final states, it turns out that

the automaton d’ recognizes just the trace language accepted by the given asyn-

chronous automaton d.

Now, we estimate the complexity of the reduction. Let d be the maximum degree of

a node of the dependency graph, and let s be the maximum cardinality of the sets of

local states of the automaton d, i.e., s=max{ #Si 1 iEProc}. Since

{ G,(t)1 rEM(A, e)> 62d and # nisDom(a) Si d s”, it turns out that the cardinality of

the set of local states Sh is at most 2ds”; then it is polynomial in the cardinality of the

sets of local states of cc4. As observed in the previous section, the time for computing

Last,(t), for every dependency clique a, is O(d’). So, given the table of 6,, we can

compute &,((&, sb)b.$(a)) in 0((#Dom(a))d’)=O(nd’) StepS. This number iS con-

stant with respect to the dimension of the automaton d. Hence, the time for

194 G. P ighizzini

computing the table & is linear in its length #Sb, and, thus, it is polynomial with

respect to the dimension of the automaton ~2.

Finally, we explain how to compute in polynomial time the set F’ of final states. We

consider “global transition graphs” associated with automata .d and d’. The nodes of

these graphs represent global states, while the arcs represent all possible transitions

between global states. To the graph associated with &” we apply a depth-first visit,

and we use the graph associated with ,d for choosing final states. More precisely, we

use the following algorithm:

Procedure visit (~‘ES’; qg.S)

begin

mark q’ as visited

if qEF then F’=F’ujq’}

(*) for every as.4 s.t. d(q’, a) is defined d(q’, a) is not visited do

visit(d’(q, a), d(q, a))
end.

The computation starts calling visit(Z’, I) with F’=Ql and every global state of .d’

not visited. The more expensive step is the loop (*). It is executed at most

#A#S’<(#A)z(O(SI))#A<O(s(#A’”) times. Then, we can conclude that, fixed the

concurrent alphabet, the reduction is polynomial in the number of states of the given

asynchronous automaton. 0

5.2. Construction of asynchronous automata from asynchronous cellular automata

Now, we show that every asynchronous cellular automaton .d over a concurrent

alphabet (A, 0) can be reduced in polynomial time to an asynchronous automaton d’,

whose set of local alphabets {A 1, . . , A,} represents a clique cover of the dependency

graph. The reduction is quite simple. The main idea is that the process Pi, iEProc,

of the automaton ,d’ is obtained grouping together the processes P,, UEAi,

of .d.

Formally, the asynchronous automaton ,d’ is defined as follows:

0 for i= l,..., n, Sj=natA,Sn;

l for UEA with Dam(a)={ il, ik), and for (Si,, si,)CnS=r S;,, Sb(si,T ...) Sir) is

defined if and only if there exists a vector (rb)hs,pnJEnbsg(aJSb of local states of

.d such that Si, =(rb)btA,,,j= 1, k; in this case the value of 6~(Si,, . . ., Sir) is the

vector (Uil, . . . , Ui~) where ui, = (rb)bEA,, and

’ i

rh if hiu,

rh= 6a((rb)bE&,)) otherwise;

l for iEProc, the component Zi of the initial state is the tuple (Za)rrtA,;

l F’= {sES’) VUEA 3r,~S, s.t.ViEDom(a) (s~){~~ =ra, and rEF}.

Asynchronous automata wrsus asynchronous cellular automata 195

Observe that every local state siESi is a tuple of local states of &; this tuple contains

one state (si), lo) for every U~ Ai. Thus, the transition function 6, is defined only for

“consistent” tuples of states.

If starting from its initial state and executing a trace t, the automaton J&” so

constructed, reaches the global state s, then the automaton &‘, starting from its initial

state and executing t, reaches the global state (ra)jaaAJ, where ra =(si)l(a), for

iEDom(u). More precisely, by induction on the length of traces, the following result

can be proved.

Lemma 5.5. Given a trace teM(A, d), an asynchronous cellular automaton &, the
asynchronous automaton ~4’ obtained applying to .d the construction stated above, and
the states SES’, rES such that s=d’(l’, t), r=d(Z, t), we have si=(r~)aeAi, i= 1, n.

As a consequence of previous lemma, the following result can be immediately

stated.

Corollary 5.6. The automata LZI and d’ recognize the same trace language.

Using arguments similar to those of the Section 5.1, it is possible to verify that the

construction stated here is a polynomial time reduction.

6. Minimal automata

A classical problem in automata theory is that of finding the minimum automaton

accepting a given language [191. Then, it is quite natural to study this problem also for

asynchronous automata. This is important also since the known constructions of

asynchronous automata (e.g. [lo, 28-J) produce automata with a very high number of

states. While for every recognizable language there exists a minimum (up to isomor-

phism) monoid automaton recognizing it, this is no true for asynchronous automata

[6]. In fact, there exists a trace language accepted by two nonisomorphic minimal (i.e.,

unreducible) asynchronous automata. In this section, after recalling some basic

definitions, we deepen this investigation and we extend these results to asynchronous

cellular automata.

First of all, we have to introduce the notions of reachable asynchronous (cellular)

automata and of morphism between asynchronous (cellular) automata. The interest

for reachable automata is related to the fact that, in order to minimize asynchronous

automata, the first trivial step consists in eliminating from automata all useless states

and all useless transitions. Before recalling the formal definition of reachable asyn-

chronous automaton, we give an example.

Example 6.1. Consider the asynchronous automaton d on the concurrent alphabet

(4 @=({a, b, c}, {(a, c), (c, a)}) re resentedinFig.7,whereS,={u0,u,,u,,u3,u,}, p

196 G. Pighizzini

Fig. 7. The nonreachable asynchronous automaton d.

&=(uo, ul, u2, u,>, I=(uo, uo) and F={(UO, ~01, (UI, ul), (h,h), (~3, ~4). It is
clear that the component PI of ~2 cannot reach the local state u4. Thus, this state and

the transition from it can be removed obtaining another automaton recognizing the

same trace language. The local states uI~SZ and QES~ are reachable from the initial

state (uo, uo), in fact d((uo, vo), c)=(uo, zir) and d((u,, uo), [acba])=(uz, Q). How-

ever, they are not simultaneously reachable, i.e., there is no trace t such that

d(I, r)=(ur, k), or, in other words, the global state (uZ, ur) is not reachable. So, the

transition &(ur, u2) = (ul, u2) is never used, and then it can be removed, obtaining the

automaton &’ represented in Fig. 8. Observe that all local states and all transitions of

the automaton ,ti’ are used in the computation over same trace. An automaton with

such a property is said to be reachable. However, a reachable asynchronous automa-

ton can have some nonreachable global state. For instance, the global state (u2, uI) of

d’ is not reachable.

Example 6.1 should be useful in understanding the meaning of the definition of

reachable asynchronous automata, that can be formulated as follows.

Definition 6.2. Let d be an asynchronous automaton over a concurrent alphabet

(A, 0). Given a set rx~Proc, a tuple of local states SEnieaSi is said to be reachable

whether there exists a trace t@A, 19) such that d(Z, t),a=~.

The asynchronous automaton &’ is said to be reachable if and only if the following

conditions hold.

l every local state s in Si is reachable, i= 1, n;

l for every aeA and for every tuple SEnisDom(a) ,, S. ifs is not reachable, then 6,(s) is

not defined.

As shown in Example 6.1, given an unreachable asynchronous automaton d, it is

easy to obtain a reachable automaton &’ recognizing the same trace language, by

removing all unreachable local states and all transitions from unreachable tuples of

local states. Thus, from this point of all asynchronous automata we will consider are

supposed to be reachable.

Asynchronous automata versus asynchronous cellular automata 197

Fig. 8. The reachable asynchronous automaton obtained from .d.

The notion of reachable asynchronous cellular automaton is very similar to the

notion of reachable asynchronous automaton given in Definition 6.2.

Definition 6.3. Let d be an asynchronous cellular automaton over a concurrent

alphabet (A, Q). Given a set @GA, a tuple SET,,, S, of local states is said to be

reachable if and only if there exists a trace tgM(A, (3) such that d(I, L),~=s.

The cellular automaton & is reachable if and only if the following conditions hold.

l every local state SES,, SEA, is reachable;

0 for every UEA, if a tuple of local state SET bEgCaJ Sb is not reachable then 6,(s) is not

defined.

Of course, as for asynchronous automata, every unreachable asynchronous cellular

automaton can be reduced to a reachable asynchronous cellular automaton. Thus,

from this point on, all asynchronous cellular automata we will consider are supposed to

be reachable.

Now, we introduce the notion of morphism between asynchronous (cellular) auto-

mata. Informally, a morphism between two automata d and A# is a family of maps

from the sets of local states of d to the set of local states of d’, mapping the initial

state of .d in the initial state of &‘, preserving the transitions, mapping final states in

final states and nonfinal states in nonfinal states. Intuitively, a morphism describes

how the states of & can be grouped together in order to obtain a “smaller” automaton

JZ?’ recognizing the same trace language,

Definition 6.4. Given two finite state asynchronous automata JZZ =(Pl, . . . , P,,

MJoeA~ 1, F) d’=(Pi,Pb. {&}d, I’, F’) over the same concurrent alphabet

(A, 0),* a morphism C$ between & and &’ (4 : d + ~2’) is a family of functions

(bi:Si+Si)i=,,. .,n such that

2 We suppose that processes of the automata .d and d’ have the same local alphabets, i.e., AI =
A;, A, = AL; for instance, we can consider without loss of generality the maximal cliques of the

dependency relation [14]. Si and S: will denote the sets of local states of the processes Pi and Pi, respectively.

198 G. Pighizzim

l 4 preserves the initial states, i.e., pi= Ii, i= 1, n;

l preserves the transitions, i.e., for every UEA with Dam(a) = { iI, . , ik} and for every

reachable tuple (,siirsik)~Sil x . . . xSik, 6,(si,, Sik) is defined if and only if

Sb($i,(si,), ~ir(Sir)) is, and, in this case, for j= 1, k, it holds

4i,((60(si~, ‘-.,si~))(li,l)=(~~(~il(sil), .‘.I 4i,(sik)))([ij];

l q5 preserves the set of final states, i.e., for every reachable global state SC& SEF if

and only if (I$~(s~), &(s,))EF’.

Example 6.5. Let & be the asynchronous automaton represented in Fig. 8 and ,d’ be

the asynchronous automaton represented in Fig. 2. Then, the pair of maps

(4, :S; +S,. ti2:S; -S,) such that 41(uO)=$I(u2)=s0, ~I(uI)=~1(u3)=s1,

+2(v,,)=42(v2)=r,, and q5z(v,)=g5z(v,)=rl defines a morphism from A? to .d’.

We introduce now the notion of morphism for asynchronous cellular automata.

Definition 6.6. Given two finite state asynchronous cellular automata &‘=((Sa}oEA,

~&!)l%4, 1, F)> ~~‘=({S&A> {fibIaEA, I’, F’) over the same concurrent alphabet

(A, @), a morphism 4 from .Q to .# (4 : .d + .$II’) is a family of functions

(da : S, --) ,QasA such that

l C$ preserves the initial states, i.e., +,(I,)= Ii, UEA;

l 4 preserves the transitions, i.e., for every a~,4 and for every reachable tuple

(s&,~B(~~E~~~B(~) &, &((s~)~~B(~)) is defined if and only if &((&,(s~))~~B(~~J is, and, in
this case it holds

~a(ba((Sb)btB(a,))=~~((~6(S6))htB(a));

l 4 preserves the set of final states, i.e., for every reachable global state SES, SEF if

and only if (c#I~(s~))~~,.,EF’.

Using previous definitions it is not difficult to verify that given two asynchronous

(cellular) automata .d and .d’, if there exists a morphism 4 : .d -+ d’, then .d and .d’

recognize the same trace language. Moreover, we can prove that, for reachable

automata, this morphism is unique.

Lemma 6.7. Given two reachable asynchronous (cellular) automata SS? and &‘, fthere

exists a morphism 4 : .d -+ a?‘, then this morphism is unique. Moreover, C/J is swjective.

Proof. For asynchronous automata the proof is given in the revised version of [6].

We adapt such a proof to asynchronous cellular automata.

Let Ic,: d --f .d’ be another morphism. First, we study what happens when there is

a reachable global state SES such that ~LI(so)=$,(s,), for all ae.4. Since C$ and

II, preserve transitions and, for every asA, the tuple (s~)~~Q(~) is reachable, if

Asynchronous automata aersus asynchronous cellular automata 199

~a((~b)bE~(aJ) is defined then we have

So, we can conclude that 4(d(s, a))= $(d(s, a)). Using this argument and the fact

that morphisms preserve initial states, i.e., 4(1,) = I,/I(I~) = IL, a~ A, it is not difficult to

conclude that two morphisms Ic/ and 4 coincide.

To prove that 4 is surjective, it is sufficient to remember that &’ is reachable and to

observe that 4(d(s, t))=d’(4(s), t), f or any trace t and global state s of .d. q

In the following, we will denote by AAT and ACA, the families of reachable

asynchronous automata and of reachable asynchronous cellular automata, recogniz-

ing a trace language T.

Definition 6.8. An automaton d (asynchronous automaton, asynchronous cellular

automaton, resp.) in a family %‘? of automata is called minimal or reduced if and only if

for every automaton .d’ belonging to %, every morphism 4 from d to 8’ is an

isomorphism. & is minimum if and only if for every automaton &” belonging to

V there exists exactly one morphism from d’ to G!.~

It should be clear that if a family V contains at least two minimal not isomorphic

automata, then it cannot contain the minimum automaton; on the other hand, if

W contains a minimum automaton &, then every minimal automaton .d’ of %? is

isomorphic to &‘. By Nerode’s results [24], for every trace language T, the family of

monoid automata accepting T contains a minimum (up to isomorphism) automaton.

This fact is no more true when we consider asynchronous automata. For instance, the

trace language T= {a, b, c) over the concurrent alphabet (A, fl) with A = {a, b, c} and

e= {(a, c), (c, a)) IS accepted by two minimal non isomorphic asynchronous auto-

mata. These automata are represented in Fig. 9 (the set of final states are

I(SI> YO)> (SO> r1)) and {(n,, Q), (W 0,)).
More precisely, the following result proved in 163, holds.

Theorem 6.9. Let (A, 19) be a concurrent alphabet. Then the ,following sentences are

equivalent.

l every recognizable trace language TG M(A, 0) admits a unique (up to isomorphism)

minimum jnite state asynchronous automaton;

l the dependency relation 6is transitive.

The fact that when the dependency relation is transitive, for every recognizable

trace language there exists a unique minimum finite state asynchronous automaton

was proved in [6] using Nerode’s equivalence relations.

In the following we will show that there exists a trace language TS M(A, 0) with

8 not transitive, such that the family AA, of asynchronous automata accepting it

‘This definition can be done using categories as, for instance, in [16]

200 G. Pighizzini

Fig. 9. Two minimal asynchronous automata

contains infinitely many minimal finite state asynchronous automata and in$nitely

many minimal infinite state asynchronous automata.

6.1. Minimal asynchronous automata

Here, we deepen the analysis on the existence of minimal asynchronous automata

started in [6] with Theorem 6.9.

To prove our results, it is useful the notion of periodic finite and infinite string, that

now we recall.

Definition 6.10. Let I- be a finite alphabet, and r* the set of finite strings over r. We

denote by P the set of infinite strings over r, and by r” the union of r* and r”.

A finite string YET* is said to be periodic if and only if y=q” for some finite string

v]cT* and some integer n> 1.

An infinite string yGT” is said to be periodic if and only if y=cr@’ for some finite

strings 0, VET* (where ylw denotes the infinite string obtained concatenating infinitely

many occurrences of the finite string q).

In the following, the ith symbol of a string yEP, will be denoted as yi-1. Then

Y=YoYl . ..Ym-l. m= 1~1, when y is finite, and ‘/ =yoyl . . . when y is finite.

The next lemma, whose proof is an immediate consequence of Definition 6.10, will

be useful to obtain the main result of this section.

Lemma 6.11. Let y be a string in r”,

(i) if ‘/ is a$nite periodic string, then there exists an integer h, 0~ h< I yl, such that

for every k, O,<kdy, lik=Ykmodh;

(ii) if y is an inJnite periodic string, then there exists two integers h, n, n > 0, h 3 n

such that for k 3 n, Yk = ?((k n) mod (k n)) + n;

(iii) if’7 is ajnite or infinite non periodic string, then, for every pair (k, j) of integers,

O<k, j<iyl, k#j, there exists an integer ha0 such that Y~k+k)modiy,#Y~j+k)mod,y,.4

4 With the convention that, when y is infinite, nmod 1yI is n, for every integer n.

Asynchronous automata versus asynchronous cellular automata 201

We consider now the alphabet r= { 0, l} and with every (finite or infinite) string

over r we associate an asynchronous automaton &?. We will characterize the class of

strings YET” such that ~4, is a minimal asynchronous automaton, as the class of not

periodic strings.

Let (A, 13) be the concurrent alphabet with A = (a, b, c} and 8 = {(a, c), (c, a)}, and

TcM(A, 6) be the trace language r=[{{a, b, c} {a, c}}*&. Given y~(0, l}“, with

IyI = m, we consider the asynchronous automaton A!, =(Pi, Pz, 6,, &, 6,, I, F) de-

fined in the following way:

for O<k<m:

for Odk<m:

for O<k<m:

I=(%, riJ0);

bJ(so, rOk)=
i

(so, rlk) if ~k=o,
(sl, r0k) if yk= 1;

F={(so, rOk),(~1,rlk)IO~k<m}.

The automata { &?} have a particular structure. We can observe that considering

the Petri Nets representation of the part of an automaton &,, corresponding to states

SO, sly IOk, rlk and rok’, where k’=k+lmodlyl, O<k<ly(, we obtain one of two

patterns represented in Fig. 10. The asynchronous automaton ~2~ is that represented

in Fig. 2, while the sequential version of the automaton &lol is represented in Fig. 11.

It is easy to see that every automaton &, recognizes the trace language

T= [((aubuc)(u~c))*]~. In fact, we can identify all final states of SEQ(S@~) in

a unique state q. and all nonfinal states of SEQ(G',) in a unique state ql, obtaining in

this way the M(A, 6i)-automaton of Fig. 1. Now, we will show that the minimal

automata of the family (dy} are exactly those corresponding to non periodic strings

of r”.

Theorem 6.12. Let y be a string in (0, 1 }“. Then y is not periodic if and only if the

automaton 22, is minimal.

Proof. We start outlining the proof of the fact that if y is periodic then the automaton

d, is not minimal. First, we consider the case IyI =m < co. By definition, there exists

a string VE { 0, 1}* and an integer n > 1 such that y = r~“. Thus, it is not difficult to find

a morphism from &, to &,.

Now, suppose that the periodic string y is infinite. Then, by definition, there exists

two finite strings 0, VET* such that y=o@“. Let n and h denote respectively, the

G. Pighizzini

Fig. 10. Patterns corresponding to yk =0 and yx= 1.

a a,b a a

c

c c

a a,b a a

c

c

Fig. 11. Sequential version of the asynchronous automaton .01,,,

lengths of strings CT and oq, i.e., o=yO . . . yn_l and ~=Y,,...Y~_~. We consider the
asynchronous automaton d’ so defined:

A;=A,={a,b}, A;=AZ={b,c};

s;={sb,s;}, G={rb0, r;0, rbr, r;r,Ll. r;h-r};

s:(s;)=s;, &(s;)=sb;

for O<k<h, &(sb,&)=
(sb,rik) if yk=O,

(G, r&J if yk = 1;

for O<k<h, Sb(s;, rik)=
(s;,Y&+~) if k+l<h

(4, r&J otherwise;

Urbk)=r;k, &(rik)=rbk;

I’=(&, rho);

F’= {(Sk, rbk),(s’~,r;k)IO~k<hf.

We observe that CJ = E the automaton SIT coincides with the automaton SS!,; for CT # E

we obtain an automaton very similar to the automaton .ss!~~: the only difference is in

the transition on the letter h from the global state (s;, rib_ 1).

Asynchronous automata versus asynchronous cellular automata 203

We define now a pair of functions 4 =(&r , 42) from local states of d, to local states

of JzZ’, in the following way:

41(so)=sb and &r(sl)=s;;

if k cn,

otherwise.

Using the second statement of Lemma 6.11 it is possible to verify that 4 is a morphism

from &, to .d.

Now, we show that if y is not a periodic string then the automaton .JG’, is minimal.

Let m = 1 y 1 and C#I be a morphism from &‘, to an asynchronous automaton JZZ. We

have to prove that $I is an isomorphism. Since all automata considered are reachable

and then all morphisms are surjective, if, by contradiction, we suppose that C#I is not an

isomorphism, then we can find two local states q, PESi, for some in{ 1,2}, whose

images by 4 coincide, i.e., g5i(q)= pi.

We consider all possible cases.

&(so)=41(s1).
Since C/I preserves final and nonfinal states, we have the contradiction

(41(so), &(Y~~))EF’, (&(sI), &(roo))4F’ and (PI, ~~(~oo))=(~I(sI),

42tr00)).

42(rok)=&2(rlj), for some O<k,j<m.
As in the previous case, using the fact that C#J preserves final and nonfinal states, we

obtain a contradiction: (41(so), 42(rOk))EF’, (dl(so), $z(rlj))$F and (&r(so),

42(r0k))=(h(S0), 42trlj)).

c$2(ro,)=c$,(roj), for some k, j with k#j, and the equivalent case $z(rlk)=@2(rlj).

The fact that these two cases are equivalent can be proved recalling that 4 preserves

transitions. Then, starting from 42(rOk)=42(roj), we obtain 42(rlk)=c$2(dc(r0k))=
6~(c$2(r0k))=6~(~2(roj))=~2(6c(rOj))=~2(Ylj); in a similar way, starting from

$z(rlk)=42(rlj), we obtain 4z(rok)=&(roj).
We have to consider two subcases: yk #‘/j and Yk = yj.

Yk # yj (without loss of generality yk = 1 and yj = 0).

From 4(rOk)= qb(roj), using the fact that 4 preserves transitions, we obtain

Then, C$ 1 (so) = q5 1 (sl). But, as shown above, this is contradictory.

Yk=Yj.

From 4Z(rlk)=q52(rlj), using the fact that 4 preserves transitions it turns out that

(PI, ~2(rO(k+l)modm))=~b(~l(S1), $2trIk))

=41(41(s1)~ 42(rlj))=($l(sl), 42(ro(j+l)modm)).

Thus, we can conclude that gb2(rOck+ llmodm)= 42(rocj+ l)modm). Iterating this proof

for h times we obtain ~2(rO(k+h)madm)=~2(ro(j+h)madm). But, by the last statement of

204 G. Pighizzini

Lemma 6.11 there exists an integer ha0 such that ~~~~~~~~~~~~~~~~~~~~~~ Thus, we

return to previous case.

In all considered possible cases we have obtained a contradiction. Then, we can

conclude that the automaton ~2, is minimal. 0

Using Theorem 6.12, we can easily state the following result.

Corollary 6.13. Let (A, 0) be a concurrent alphabet with nontransitive dependency
relation. Then there exists a trace language TG M(A, 8) accepted by infinitely many
minimal non isomorphic asynchronous automata with a finite number of states and by
infinitely many minimal nonisomorphic asynchronous automata with an infinite number
of states.

6.2. Minimal asynchronous cellular automata

In this section, we extend to asynchronous cellular automata the results of [6] and

of Section 6.1. We will show that, despite the existence of polynomial time reductions

between asynchronous automata and asynchronous cellular automata, the class of

concurrent alphabets for which every recognizable trace language admits a minimum

asynchronous cellular automaton is different from the class characterized in Theorem

6.9 for asynchronous automata. In fact, we will prove that for every concurrent

alphabet (A, g) containing at least two dependent letters, there exists a recognizable

language over (A, g) accepted by infinitely many nonisomorphic minimal finite states

asynchronous cellular automata.

To state this result, we consider the (degenerated) concurrent alphabet (A, 0) where

A={a,b} and 0=@, and, for n>l, the asynchronous cellular automaton

-c4,, = (S,, S,,, S,, &, I, F) where

&=(s0, s1t s2S, &={r,, rr,rZn}.

6,(s0, rZk)=sl, for Odk<n,

da(sl, r.Zk+l)=sO, for O<k<n- 1,

&(~r,r+~)=s~,

Sa(SZ, r2n)=s0,

44s0,r2k+1)=r2k+2, for O<k<n-1,

4ds0, rhJ=r0,

4dSl> r2k)=rZk+l, for O<k<n-1,

&i(s*, r2n-l)=r2n;

L=(s0, r,);

F={(so,r~~)IOd~~n}~{(s~,r~~+~)lO~~~n}~{(s~,r~~)}.

Asynchronous automata versus asynchronous cellular automata 205

Fig. 12. Sequential versions of .sl, and d2.

The sequential versions of automata &i, ~2~ are represented in Fig. 12.

We prove now the following result.

Theorem 6.14. For every integer na 1, the asynchronous cellular automaton d,, is

minimal.

Proof. By contradiction, consider a morphism C$ from &‘,, to an asynchronous cellular

automaton d’ and suppose that 4 is not an isomorphism. Thus, there exists a symbol

CE {a, b > and two states s, s’ES~ such that &C(s) = 4C(s’). We consider all possible cases.

l ~,(si)=~,(sj), i, jE{O, 1,2) with i#j.

In the case i=O, j= 1, using the fact that 4 preserves final states it is immediate to

obtain the contradiction (Mso), +b(ro))=(4a(si), &(ro)), (Mso), Mro))EF and

(&(si), &(ro))$F’.
For the other pairs (i, j) the proof is similar.

l &,(ri)=+4b(rj), i, je(O, 1, 2n}, with i#j.

We have to consider the following subcases.
_ i is even and j = 2n.

From 4b(ri)=+b(r2n)2 we obtain (dds0L 4b(ri))=(&Ja(So), 4btrZn)). Since

C$ preserves final and nonfinal states, it turns out that the first pair is a final state of

d’ while the second is not. Thus, we obtain a contradiction.

- i is odd and j=2n-1. From (4a(~1), #b(ri))=(4a(si), &,(rzn_i)), using the fact

that 4 preserves transitions on a, we obtain r$Jso)= 4u(sz), but, as shown above,

this is contradictory.

~ Both i and j are even, or both i and j are odd and i<j<2n- 1.

If i and j are even (odd, resp.) then the global states (si, ri) and (si , rj) ((so, ri) and

(so, rj), resp.) are reachable. Using the fact that 4 preserves transitions on the letter

b, we obtain 4b(ri+l)=q5b(rj+l), and iterating this argument, 4b(ri+zn_i-j)=

&(r&... 1), i.e., the previous case.
_ i is even and j is odd.

If j = 2n - 1 and i < 2n, then the global states (si, ri) and (si, rZn _ 1) are reachable,

but &,(si, ri) is defined, while db(sl, rZn- 1) is not defined. This is contradictory,

since morphisms preserve transitions.

206 G. Piyhizzini

Analogously, ifj= 2n - 1 and i = 2n then 6,(s2, r2,,) is defined and 6,(sZ, r2,, _ I) is not

defined, and if j<2n- 1 and i< 2n then bb(sO, ri) is not defined, while &,(s,,, rj) is

defined. Finally, if j<2n- 1 and i=2n, then 6,(s0, rZn)=rO, Sb(sO, rj)=rj+i and

d(r,,) = d(rj+ 1), where j + 1 is even, but, as above shown, this is contradictory. 0

Now, we obtain the main result of this section,

Theorem 6.15. Given a concurrent alphabet (A, 0) the jbllowing sentences are equiva-

lent:

l every recognizable trace language TS M (A, 6)) admits a minimumj?nite states asyn-

chronous cellular automaton;

l M(A, H) is a free totally commutative monoid.

Moreover, when M(A, 0) is nontotally commutative, there are trace languages over

(A, 0) accepted by infinitely many minimal asynchronous cellular automata.

Proof. If the concurrency relation is full, i.e., 8= A x A - {(a, a) 1 aeA f, then every

asynchronous cellular automaton over M(A, S) is also an asynchronous automaton

over M(A, 0) and vice versa. Then, as a consequence of Theorem 6.9, every recogniz-

able trace language Tc M(A, Q) admits a minimum finite state asynchronous (cellu-

lar) automaton.

Conversely, if M (A, 0) is not totally commutative, then there are two letters a, bE A

such that a# b and (a, b)ca By Theorem 6.14, the language [(ab)*& is accepted by

infinitely many minimal non isomorphic asynchronous cellular automata; then, the

minimum does not exist. 0

Acknowledgment

I am indebted to the anonymous referees for helpful comments.

References

[l] I.J.J. Aalbersberg and G. Rozenberg, Theory of traces, Theoret. Cornput. Sci. 60 (1988) l-82.

[2] A. Arnold, An extension of the notions of traces and of asynchronous automata, RAIRO I&orm.

Theor. Appl. 25 (1991) 3555393.
[3] A. Bertoni, M. Brambilla, G. Mauri and N. Sabadini, An application of the theory of free partially

commutative monoids: asymptotic densities of trace languages, in: Proc. 10th MFCS, Lecture Notes

in Computer Science Vol. 118 (Springer, Berlin, 1981) 2055215.
[4] A. Bertoni, G. Mauri and N. Sabadini, Concurrency and commutativity, Tech. Report, University of

Milan, 1982. Presented at 3rd European Workshop on Applications and Theory ofPetri Nets, Varenna,

1982.
[S] A. Bertoni, G. Mauri and N. Sabadini, Membership problem for regular and context-free trace

languages, Inform. and Comput. 82 (1989) 1355150.

Asynchronous automata cersus asynchronous cellular automata 207

[6] D. Bruschi, G. Pighizzini and N. Sabadini, On the existence of the minimum asynchronous automa-

ton and on decision problems for unambiguous regular trace languages, in: Proc. 5th STACS, Lecture

Notes in Computer Science Vol. 294, (Springer, Berlin, 1988) 334-346. A revised version will appear in

Inform. and Comput.

[7] P. Cartier and M. Foata, Problimes combinatorics de commutation et r&arrangements, Lecture

Notes in Mathematics Vol. 85 (Springer, Berlin 1969).

[S] R. Cori, M. Latteux, Y. Roos and E. Sopena, 2-asynchronous automata, Theoret. Comput. Sci. 61

(1988) 93-102.

[9] R. Cori and Y. Mktivier, Recognizable subsets of some partially abelian monoids, Theoret. Comput.

Sci. 35 (1985) 179-189.

[lo] R. Cori and Y. MCtivier, Approximation of a trace, asynchronous automata and the ordering of events

in a distributed system, in: Proc. 15th JCALP, Lecture Notes in Computer Science, Vol. 317 (Springer,

Berlin, 1988) 147-161.

[1 l] R. Cori, Y. MCtivier and W. Zielonka, Asynchronous mappings and asynchronous cellular automata,

Tech. Report 89-97, LaBRI, Universiti: de Bordeaux I, 1989.

[12] V. Diekert, Combinatorial rewriting on traces, in: Proc. 7th STACS, Lecture Notes in Computer

Science, Vol. 415 (Springer, Berlin, 1990) 138%151.

[13] V. Diekert, Combinatorics on traces, Lecture Notes in Computer Science, Vol. 454 (Springer, Berlin,

1990).

[14] C. Duboc, Commutations dans les monoi’des libres: Un cadre thkorique pour I’ttude du parallttlism,

Ph.D. Thesis, Universitk de Rouen, 1986.

[IS] C. Duboc, Mixed product and asynchronous automata, Theorer. Comput. Sci. 48 (1986) 183-199.

[16] H. Ehrig, K. Kiermeier, H. Kreowski and W. Kiihnel, Universal Theory of Automata (Teubner,

Stuttgart, 1974).

1171 S. Eilenberg, Automata, Languages and Machines, Vol. A (Academic Press, New York, 1974).

[lS] P. Gastin and A. Petit, Asynchronous automata for infinite traces, in: Proc. 19th ICALP, Lecture

Notes in Computer Science, Vol. 623 (Springer, Berlin, 1992) 583-594.

1191 J. Hopcroft and J. Ullman, Zntroduction to Automata Theory, Languages and Computations (Ad-

dison-Wesley, Reading, MA, 1979).

1201 S. Jesi, G. Pighizzini and N. Sabadini, Probabilistic asynchronous automata, in: Proc. Workshop: Free

Partially Commutative Monoids, Institiit fiir Informatik - Technische Universitat Miinchen - TUM-

19002 (1990) 99-114. A revised version will appear in Math. Systems Theory.

[21] A. Mazurkiewicz, Concurrent program schemes and their interpretations, Tech. Report DAIMI Rep.

PB-78, Aarhus University, 1977.

1221 A. Mazurkiewicz, Trace theory, in: Aduances in Perri .Verc 19x6. Lecture Notes in Computer Science,

Vol. 255 (Springer, Berlin, 1986) 279-324.

[23] Y. Mktivier, On recognizable subsets of free partially commutative monoids, Theoret. Comput. Sci. 58
(1988) 201-208.

1241 A. Nerode, Linear automaton transformations, Proc. Amer. Math. Sot. 9 (1958) 541-544.

[25] J. Von Neumann, Theory ofSelf_reproducing Automata (Univ. of Illinois Press, Champaign, IL, 1966)

Revised by A.W. Burks.

1261 E. Ochmahski, Regular behaviour of concurrent systems, EATCS Bull. 27 (1985) 56-67.

1271 Y. Roos, Automates virtuellement asynchrones, Tech. Report IT-93, Laboratoire d’Informatique

fondamentale de Lille, Univ. Lille Flandres Artois, 1987.

1281 W. Zielonka, Notes on finite asynchronous automata, RAIRO Inform Theor. Appl. 21(1987) 99-135.
1291 W. Zielonka, Safe executions of recognizable trace languages by asynchronous automata, in: Proc.

Logic at Borik ‘89, Lecture Notes in Computer Science, Vol. 363 (Springer, Berlin, 1989) 278-289.

1303 W. Zielonka, Asynchronous automata, in: Proc. Workshop: Free Partially Commutative Monoids,
Institiit fiir Informatik - Technische Universitat Miinchen - TUM-I9002 (1990) 183-197.

