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Abstract 

Pighizzini G., Asynchronous automata versus asynchronous cellular automata, Theoretical 

Computer Science, 132 (1994) 179-207. 

In this paper we compare and study some properties of two mathematical models of concurrent 

systems, asynchronous automata (Zielonka, 1987) and asynchronous cellular automuta (Zielonka, 

1989). First, we show that these models are “polynomially” related, exhibiting polynomial-time 

reductions between them. Subsequently, we prove that, in spite of that, the classes of asynchronous 
automata and of asynchronous cellular automata recognizing a given trace language are, in general, 

deeply different. In fact, we exhibit a recognizable trace language T with the following properties: 

there exists a unique minimum asynchronous automaton accepting T, does not exist a unique 

minimum asynchronous cellular automaton, but there are infinitely many minimal (i.e., unreducible) 

nonisomorphic asynchronous cellular automata accepting T. We characterize the class of concur- 
rent alphabets for which every recognizable trace language admits a minimum finite state asyn- 

chronous cellular automaton as the class of alphabets with full concurrency relation. Finally, 

extending a result of (Bruschi et al., 1988), we show that for every concurrent alphabet with 

nontransitive dependency relation, there exists a trace language accepted by infinitely many minimal 
nonisomorphic asynchronous automata. 

1. Introduction 

Trace languages were introduced by Mazurkiewicz in 1977 [21,22] in order to give 

a noninterleaving semantic of concurrent systems, In Mazurkiewicz’s approach, the 
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structure of a system is described by a concurrent alphabet, that is by a finite set of 

actions (i.e., an alphabet) and by a binary relation over this set (i.e., a concurrency 

relation). This relation, used to specify those pairs of actions can be concurrently 

executed, permits to identify different sequential observations of the same behavior. In 

this way, a process is described by an equivalence class of strings. This class, called 

trace, can also be represented by a partially ordered set of actions. 

It is possible to observe that traces are elements of free partially commutative 

monoids, algebraic structures introduced by Cartier and Foata [7] with combina- 

torial motivations. Using this fact, a theory of trace languages (i.e., subsets of free 

partially commutative monoids) has been developed as an extension of the classical 

theory of formal languages, as witnessed by many papers (see [l] for a review of many 

results in trace theory and for an annotated bibliography). 

An interesting subject in trace theory is that of recognizability of trace languages. 

The interest for this subject is twofold. From the point of view of concurrent systems, 

the class of recognizable trace languages, introduced in [3] using the standard notion 

of finite state automata over free partially commutative monoids, is interesting since 

the behaviors of labeled condition-event Petri nets can be described by recognizable 

trace languages [4]. On the other hand, relevant algebraic properties of recognizable 

trace languages have been discovered. In particular, except in the case of empty 

concurrency relations, Kleene’s theorem does not hold for trace languages. In fact, it is 

not difficult to show that the class of recognizable trace languages over a given 

concurrent alphabet is a proper subclass of that of rational (or regular) trace languages 

(defined using the usual rational operations). This immediate fact motivated a deeper 

analysis of recognizability phenomenon in free partially commutative monoids (e.g., 

19, 26 231). 
A main notion in trace theory, which allows to treat concurrent systems from an 

algebraic point of view, is that of asynchronous automata [28]. Asynchronous auto- 

mata are recognizing devices for trace languages characterized by a distributed 

control; thus, they can be seen as mathematical abstractions of concurrent systems. 

Notwithstanding the distributed organization, finite state asynchronous automata 

characterize the class of recognizable trace languages, that is the same class of trace 

languages characterized by finite automata over free partially commutative monoids 

(i.e., by devices with a centralized control). This very surprising and nontrivial result 

was proved by Zielonka [28]. 

Another kind of distributed devices recognizing trace languages was proposed in 

[29], introducing asynchronous cellular automata. This model is closely related to the 

first model of parallel computation, the cellular automaton introduced by Von 

Neumann [25]. We recall that a cellular automaton consists of a collection of 

elementary automata, with local interconnections, evolving in a parallel and syn- 

chronous way. While all these automata change state at the same time, in asyn- 

chronous cellular automata only nonconnected automata can concurrently act. Then, 

although asynchronous cellular automata and Von Neumann’s cellular automata 

have some similarity, they are different models of computation. 
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Asynchronous automata and asynchronous cellular automata have been extensive- 

ly studied in literature (e.g. [15, 27, 6, 8, 10, 11, 301); moreover some extensions of 

these modes have been proposed (e.g. [20,2, IS]). In this paper we will compare 

asynchronous automata and asynchronous cellular automata. We recall that, as 

proved in [ll], also asynchronous cellular automata characterize the class of recog- 

nizable trace languages. Then, this model has the same recognizing power of asyn- 

chronous automata. 

In the first part of the paper, we give polynomial-time reductions between asyn- 

chronous automata and asynchronous cellular automata. The construction of an 

asynchronous automaton accepting the same trace language of a given asynchronous 

cellular automaton is quite trivial and it is given only for sake of completeness. On the 

other hand, the converse construction is not so immediate and requires the use of 

some algebraic properties of prefixes of traces. This fact suggests the idea that 

asynchronous cellular automata are in some sense “more complicated’ than asyn- 

chronous automata. This idea is supported also by the immediate observation that 

monoid automata coincide with asynchronous automata for empty concurrency 

relations, while monoid automata coincide with asynchronous cellular automata only 

when the alphabet is a singleton. 

We strengthen the idea that asynchronous cellular automata are “more complic- 

ated” than asynchronous automata in the second part of the paper, where we study 

the problem of the existence of minimal asynchronous automata and of minimal 

asynchronous cellular automata. The interest in this subject is related to the fact that 

all known algorithms for the synthesis of deterministic asynchronous automata and of 

deterministic asynchronous cellular automata accepting given trace languages pro- 

duce very big automata. Then, it should be very useful to have some technique for 

reducing the number of states of these automata. 

In [6] it was proved that there are recognizable trace languages over concurrent 

alphabets with nontransitive dependency relation for which the minimum asyn- 

chronous automaton does not exists.’ In this paper, we extend that result, showing 

that for every concurrent alphabet with nontransitive dependency relation there exists 

a recognizable trace language T accepted by infinitely muny nonisomorphic minimal 

asynchronous automata with a finite number of states and by infinitely many non 

isomorphic minimal asynchronous automata with an infinite number of states. We 

obtain a similar result also for asynchronous cellular automata. In fact, we show that 

for every concurrent alphabet containing at least two dependent letters, there exists 

a trace language T that does not admit a minimum asynchronous cellular automaton 

r We informally explain the terminology used in the paper. A (monoid, asynchronous, asynchronous 

cellular) automaton .d is said to be minimal if it cannot be reduced, that is when we try to identify some 
different states of .d, we obtain an automaton that does not recognize the language accepted by .cP. An 

automaton .d accepting a trace language T is said to be minimum if all automata accepting T can be 
“reduced” to it. Then, the minimum automaton .d accepting a given language, if any, is unique up to 

isomorphism and every minimal automaton accepting T is isomorphic to d. 
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but that admits infinitely many nonisomorphic minimal finite state asynchronous 

cellular automata. On the other hand, we point out that this language T admits 

a unique minimum finite state asynchronous automaton. 

Finally, we show that, notwithstanding polynomial-time reducibility between asyn- 

chronous automata and asynchronous cellular automata, the class of concurrent 

alphabets for which every recognizable trace language admits a minimum finite state 

asynchronous automaton (characterized in [6]) is wider than the class of concurrent 

alphabets for which every recognizable trace language admits a minimum finite state 

asynchronous automaton. In fact, we show that this last class contains only concur- 

rent alphabets with full concurrency relations. 

The paper is organized as follows. Basic definitions and facts about trace languages 

are recalled in Section 2, while the notions of asynchronous automata and of 

asynchronous cellular automata are recalled in Section 3. Section 4 is devoted to study 

some properties of a-prefixes of traces. These properties are used in Section 5 to state 

the reductions between the two models of automata. Finally, in Section 6, we state our 

main results on the existence of minimal asynchronous automata and of minimal 

asynchronous cellular automata. 

2. Preliminary definitions and results 

In this section, basic definitions and facts about trace languages and algebraic 

structures supporting them, i.e., free partially commutative monoids, will be 

recalled. 

Definition 2.1. A concurrent alphabet is a pair (A, (3), where 

l A=(u~,...,u,} is a finite alphabet; 

l 8 E A x A is a symmetric and irreflexive relation, the concurrency or independency 

relation. 

The complementary relation of the independency relation 8 is called the dependency 

relation and in the following it will be denoted by @ For every aE A, we denote by @(a) 

the set of all letters depending on a, i.e., the set 

As usual, the relations 0 and 8will be represented as graphs. Observe that, for SEA, 

@(a) is the set containing a and the neighbors of a in the dependency graph. Every 

clique of the dependency graph, i.e., every subset LX s A such that LX #@ and (a, b)~&, 

Vu, bga, will be called dependency clique. 

Definition 2.2. The free partially commutative monoid (fpcm) M(A, 0) generated by 

a concurrent alphabet (A, 0) is the quotient structure M(A, H)= A*/sB, where E@ is 
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the least congruence over A* which extends the set of “commutativity laws”: 

{ab=ha~a,b~A and (a,b)~fI). 

A trace is an element ofM(A, (!I), a trace language is a subset ofM(A, e). 

We denote by [ wle (or [w] if 8 is understood) the trace containing the string WE A*. 

Then, the product of the traces [ wle and [ ule, denoted as [ wls [ ule, is the trace [wvls 

and the trace [E&, i.e., the equivalence class containing only the empty string E of A*, 

is the neutral element of M(A, 0). 

A trace x is said to be a prefix of a trace t if and only if there exists a trace z such that 

t=xz. 

With every formal language it is possible to associate a trace language in the 

following way. 

Definition 2.3. Given a concurrent alphabet (A, 6) and a language LcA*, the truce 

language generated by L under 19 is the set [LIO= { [w& 1 WGL}. 

Conversely, it is possible to associate with every trace language a formal language 

as follows. 

Definition 2.4. The linearization lin( t) ofu truce ~EM( A, 0) is the set of all strings of A* 

belonging to the equivalence class t, i.e., lin( t) = c#- l(t), where 4 denotes the canonical 

morphism from A* to M(A, 6). The linearization lin( T) of a trace language TG M(A, 6) 

is the set containing all linearizations of traces of T, i.e., lin( T)= u,,rlin(t). 

Of course, for every Lr A*, it holds LElin( CL&). 

It is possible to introduce Chomsky-like hierarchies of trace languages [l]. In this 

paper, we are interested in the class of trace languages accepted by finite state devices. 

So, we now recall the notion of monoid automata and, subsequently, that of recogniz- 

able truce language [17,3]. 

Definition 2.5. Let M be a monoid with unit 1. An automaton .c4 over M, or 

M-automaton, is a quadruple (Q, 6, I, F), where 

l Q is a set of states; 

l 6: Q x M -Q is a transition function such that 

6(q, l)=q, for every qEQ; 

6(q, mm’)=6(6(q, m), m’) for every m, m’EM, qEQ; 

l IEQ is the initial state; 

l FE Q is the set of ,jnul states. 

The automaton & is said to be aJinite state M-automaton if the set Q of states is finite. 

The language recognized by the M-automaton B is the set L= { mEM I6(1, m)cF}. 

We recall that a state qEQ is reachable in the automaton & if and only if there exists 

mEM such that S(1, m)= q; the automaton JX! is said to be reachable if and only if 



184 G. Pighizzini 

every state in Q is reachable. Of course, removing all nonreachable states and all 

transitions from these states, every nonreachable M-automaton can be transformed in 

a reachable automaton recognizing the same language. Thus, in this paper we will 

consider only reachable automata. 

We observe that given a M( A, B)-automaton .d = (Q, 6, I, F), for every state qEQ 

and for every pair (a, b)~0, it holds: 6(q, ah) = 6(q, ba). This means that in M( A, 8)- 

automata the concurrency among independent actions is reduced to their inter- 

leaving. 

Definition 2.6. A trace language TsM(A, 0) is called recognizable iff there exists 

a finite state M( A, 8)-automaton which recognizes T. The class of recognizable trace 

languages over the concurrent alphabet (A, e), will be denoted by Rec(A, 19). 

Through the paper, for every finite set of indices J, for every vector s = (sj)jtJ and for 

every subset J’ of J, we will denote by sIJS the restriction of s to the elements indexed 

by J’, i.e., s~J, = (Sj)jcJ,. 

3. Asynchronous automata and asynchronous cellular automata 

As observed in Section 2, automata over free partially commutative monoids are 

devices with an unique central control, where the concurrency among actions is 

reduced to their interleaving. 

A different kind of recognizing devices for trace languages was proposed by 

Zielonka [28], introducing asynchronous automata. The structures of asynchronous 

automata and of monoid automata are very different. In fact, in asynchronous 

automata the control is distributed on a set of control units which can act indepen- 

dently or synchronized. Every action, represented by a symbol, is processed by 

a subset of control units; two actions are independent if and only if they are processed 

by disjoint sets of control units. Despite this main difference, the classes of trace 

languages accepted by automata over free partially commutative monoids and by 

asynchronous automata coincides. This result is very surprising. In fact, from the 

point of view of concurrent systems, this means that commutativity can be reduced to 

concurrency [4]. 

Recently, a different model of automata with distributed control, called asyn- 

chronous cellular automata was proposed by Zielonka [29]. Also this model character- 

izes the class of recognizable trace languages. 

In this section, we recall definitions and some properties of these two kinds of 

devices. 

3.1. Asynchronous automata 

First, we recall the notion of asynchronous automata. 
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Definition 3.1. An asynchronous automaton with n processes, over a concurrent alpha- 

bet (A, e), is a tuple &=(P1, . . . . Pn,(60}aGA, I, F), where 

l for i = 1, . . , n, Pi = ( Ai, Si) is the ith process, where Si is its set of local states and Ai is 

its local alphabet, such that {Al, . ., A,} is a clique cover of the dependency 

graph; 
0 let Proc= ( 1, . . . , n>; the domain of a~.4 is the set Dom(a)=(iEProc 1 UEAi}, i.e., 

the set of (indices of) processes that “execute” the action a; 

then 6,: ni.Dom(a)si -)niEDan(a) I S. is the (partial) local transitionfunction associated 

with the letter a; 

l let S = niEP,Oc Si be the set of global states; then I = (I,, . . , I,) is the initial state and 

F c S is the set of jinal skates. 

If for every iEProc, Si is a finite set, then the asynchronous automaton d is said to be 

a jinite state asynchronous automaton. 

We underline that the domains Dam(a) and Dam(b) of two actions a, be.4 are 

disjoint if and only if a and b are independent; in this case the transition functions 

6, and 6, act on disjoint sets of local states and, consequently, the corresponding 

actions a and b can be concurrently executed. In this way, asynchronous automata 

over M(A, 0) represent all concurrency among actions, specified by the relation 0. 

For describing the “global behavior” of a given asynchronous automaton d, we 

introduce the global transition function A : S x M(A, f3) + S of d, extending local 

transition functions to global states, as follows. Given SES and UEA, A(s, a) is the 

global state u such that u,Dom(a)=~a(~iDom(a)) and uiDomo=s ,=. Intuitively, this 

corresponds to the fact that a transition on the letter a acts only on the processes in 

Dam(a). This function can be extended to traces, in the usual way, by defining 

A(s, [E])=s and A(s, ta)=A(A(s, t), a), for SE& tEM(A, Q) and UEA. 

Thus, the language T(d) accepted by the asynchronous automaton d can be 

defined as the set 

T(caf)={t~M(A, S)l A(Z, t)EF). 

It is not difficult to verify that the tuple (S, A, I, F) is a M( A, @-automaton 

accepting T(d). This monoid automaton will be called in the following sequential 

version of the asynchronous automaton ~4 and will be denoted by SEQ(&). Thus, with 

every finite asynchronous automaton can be associated a finite state automaton 

recognizing the same trace language. Conversely, given a finite automaton over the 

fpcm M( A, 0) it is possible to construct- an asynchronous automaton over the same 

concurrent alphabet, accepting the same language. This result, not at all obvious, was 

obtained by Zielonka. 

Theorem 3.2 (Zielonka [28]). The class of trace languages accepted by jinite state 

asynchronous automata over the concurrent alphabet (A, 0) coincides with the class 

Rec( A, 0) of trace languages recognized by jinite state M( A, Q-automata. 
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Fig. I. M(A, O)-automaton accepting T. 

a a,b a a 

c 

Fig. 2. An asynchronous automaton accepting T 

Example 3.3. Let (A, 0) be the concurrent alphabet with symbol set A=(a, b, C} and 

concurrency relation 8 = {(a, c), (c, a)}. We consider the cliques A,={a, b} and 

A, = { h, c> of the dependency graph and the trace language T= [((aubuc)(auc))*]O. 

The language T is recognizable. In fact, it is not difficult to see that the M(A, 0)- 

automaton represented in Fig. 1 recognizes it. Let now & be the asynchronous 

automaton with two components P1 =(A,, S,) and PI =(Az, S,), so defined: 

S1=(s,,sl} and S2={r,,,r,}; 

6a(.%)=S1, I,=%, 

Ms0, r0)=(sl, r0), UsI, rl)=(sl, rO), 
dC(rO)=rl, dC(rl)=rO; 

I=(s0, r,); 

F={(so, r0), (sl, f-l)>. 

As pointed out in [28], asynchronous automata can be represented as labeled Petri 

nets. In the following we will use this representation. In Fig. 2 the automaton & and 

its sequential version SEQ(~) are represented. Observe that the automaton of Fig. 1 

cannot be the sequential version of any asynchronous automata over (A, 0). 

3.2. Asynchronous cellular automata 

We now recall the notion of asynchronous cellular automata introduced by 

Zielonka [29] and, independently, by Diekert [12]. 
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Definition 3.4. An asynchronous cellular automaton over a concurrent alphabet (A, 0) 

is a tuple ZZ’==({S~}~.~, (8a}aeA, I, F) such that 

l for aEA, S, is the set of local states associated with the letter aEA; 

l for asA, 6, is the (partial) local transition function associated with a, 

o,: nbe&a) Sb -+ &I; 

l let S = naG A S, be the set of global states of LL@‘; ZES is the initial state of d and F G S 

is the set offinal states of d. 

If, for every aEA, S, is a finite set, then the automaton d is said to be a$nite state 

asynchronous cellular automaton. 

By Definition 3.4, we can see an asynchronous cellular automaton as a net 

of automata { Pa}atA. Every automaton P, can execute only one action a 

and two automata are connected if and only if the corresponding actions do 

not commute. So, the graph of the net is an isomorphic copy of the dependency 

graph associated to the alphabet. The state that the automaton P, of the net 

assumes after the execution of its action a depends on the states of its neighbors, that is 

the automata corresponding to letters noncommuting with a. For every pair of 

independent actions a and b, the transition function of the automaton P, does not 

modify the states read as input by Pb and vice versa; then a and b can be concurrently 

executed. Moreover, P, and Pb can read concurrently the states of their common 

neighbors. 

As for asynchronous automata, we can associate with every asynchronous cellular 

automaton a global transition function A : S x A -+S as follows: for SE& aEA, A(s, a) is 

the global state u such that ub = sb for all bE A, b #a, and U, = 6,( s,,J(~)). The extension 

to traces can be obtained in a standard way. 

Finally, the language recognized by the asynchronous cellular automaton G! is the 

set T(.d)cM(A, 0) so defined: 

T(&)={tEM(A,B)lA(l,t)EFj. 

As for asynchronous automata, it is possible to prove that cellular automata are 

“distributed” models characterizing the class of recognizable trace languages. In fact, 

it is easy to see that for every asynchronous cellular automaton &=( { So}atA, 

16a)asA> I, F), the M(A, O)-automaton defined by the tuple SEQ(&‘)=($ A, I, F) and 

called sequential version of &, accepts the same trace language T( JZZ) accepted by .d. 

Then, trace languages accepted by finite state asynchronous cellular automata over 

M( A, 0) are recognizable. 

Conversely, the analogous of Theorem 3.2 for asynchronous cellular automata, 

proved in [l 11, holds. 

Theorem 3.5. The class of languages accepted by finite state asynchronous cellular 

automata over the concurrent alphabet (A, 0) coincides with the class Rec( A, 0) of trace 

languages recognized by finite state M( A, 9)-automata. 
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b b 

Fig. 3. The automaton SEQ(&#). 

Fig. 4. A M(A, O)-automaton accepting r(d) 

Example 3.6. Let (A, 0) be the (degenerated) concurrent alphabet with A = ( a, b} and 

0=8. Then $(a)=@b)={a, b). 

Every asynchronous cellular automaton on this alphabet has two components 

P, and Pb. The local transition functions 6, and 6, are applied to global states and 

return as value a local state of the corresponding component. 

We consider the asynchronous cellular automaton d defined as follows: 

&={s1,s2 > and %={yl,r2}; 

%(sl, r1)=s2, Us2, rz)=sl, 

&(s2, r1)=r2, &(sl, r2)=r1; 

I=(si, r,); 

F=((sl, rr), (s2, r2)). 
It is immediate to see that such an automaton, whose sequential version is 

represented in Fig. 3, recognizes the language T( SS?) = [ (ab)* lg. 
Another monoid automaton accepting the language T(d) is represented in Fig. 4. 

It is not difficult to see that this automaton cannot be the sequential version of any 

asynchronous cellular automaton. 

Remarks 

(a) It is obvious that if the independency relation 6’ is empty then every M(A, 0)- 

automaton is also an asynchronous automaton over (A, Q) and vice versa. On the 

other hand, as shown in Example 3.6 this fact is not true for asynchronous cellular 

automata, except when #A = 1. 
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(b) If the independency is full, i.e., 8=AxA-{(a,a)la~A}, then every local 

alphabet of an asynchronous automaton contains exactly one letter. In this case every 

asynchronous is also an asynchronous cellular automaton and vice versa. 

4. a-prefixes of traces 

In this section we recall the notion of a-prefix of traces [28], related to properties of 

asynchronous and asynchronous cellular automata. This notion and its properties 

have been extensively studied in many papers (e.g. [lo, 11,281) and will be useful to 

study the reduction from asynchronous cellular automata to asynchronous automata. 

We recall, using the notation adopted in [S], that every trace t can be represented as 

a poset. 

Definition 4.1. Given a trace tEM(A, O), let x=x1 . . . x, be a representative of t, i.e., 

[xl0 = t; the partial order ord(t) associated with t is the pair ord(t)=(O,, <,), such 

that 

(1) O,={(x1, k,), . . ..(x.,, k,)}, w h ere k, denotes the number of symbols equal to 

x, in the string x1 . . . x,; 

(2) bt is the transitive closure of the relation L defined by: 

(xi, ki)L(xj, kj) iff (i<j and (xi, xj)$e). 

It is easy to show that there exists a bijection between prefixes of a trace t and order 

ideals of ord( t) =( O,, <,), i.e., the subsets of 0, closed with respect to the relation 

dt [S]. Let cx be a subset of A. For every trace tEM(A, 0) we consider the order ideal 

Pref,( t) containing exactly all symbol occurrences preceding the last occurrence in t of 

some letter in c(, i.e., 

Pref,(t)={(xi, ki)(3(xj, kj)EO,: (Xi, ki)bt(xj, kj) and XjEC(}. 

The a-prefix d,(t) is defined as the prefix of t corresponding to Pref,(t). 

Our interest to the notion of a-prefix of a trace is motivated by the fact that 

processes of asynchronous automata and of asynchronous cellular automata work on 

prefixes of this kind. More precisely, it is immediate to verify that the state reached by 

the process P, of an asynchronous cellular automaton &, executing a trace t, depends 

on the prefix oft corresponding to the order ideal Pref{,)(t) generated by the letter a. 

Then, we have the main equality A(1, t),ca, = A(I, 8,,,(t)),,,,. Analogously, for every 

process Pi of an asynchronous automaton &, we have A (I, t)\ i i) = A (I, a,{(t)), i iI. 

The properties stated in the following lemma are immediate consequences of 

previous definitions. 

Lemma 4.2 For every truce tEM(A, 19), the following properties hold. 

(1) V’a, jIsA, ifasp then a,(a,(t))=a,(t); 
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Fig. 5. Graph of 0 

-, (b 2) 

(CJ) -(c,2) 

Fig. 6. The partial order ord( t). 

(2) VUCA, c?,(ta)=a,,,(t)a; 

(3) for every dependency clique a~ A, !IUEE such that a,(t)=a,(t). 

It is possible to observe that if a is a dependency clique and Z,(t)# [E], then there 

exists exactly one letter aEz such that a,(t)= i?,( t). In the following, this letter will be 

denoted as Last,(t). Intuitively, Last,(t) is the last letter of the set a executed in the 

trace t. If d,(t)= [s], then every letter aEr verifies the equality d,(t)=d,(t); in this 

case, we will denote by Last,(t) the minimal letter in the set IX with respect to a fixed 

linear order on the alphabet A. It is immediate to see that Last,(t) = Last,(B,( t)). 

Example 4.3. Given the concurrent alphabet (A, 0) with A = {a, b, c, d, e}, and the 

graphs of 0 as in Fig. 5, we consider the clique cover constituted by the sets 

A,={a,d}, A,={h,d,e} and A3={c}. 

The partial order ord( t) associated with the trace t = [ caaedabbc] is the transitive 

closure of the graph given in Fig. 6. It is not difficult to see that d,(t)= [medal, 

&(t)=[uaedbb], o?,(t)=[cc], a,(t)=[ uaed] and a’,(t) = [e]. Moreover, LastA, ( t) = a 

Last,,(t)=b, and Last,,(t)=c. 

5. Reductions between asynchronous cellular automata and asynchronous automata 

In this section, we show that asynchronous automata and asynchronous cellular 

automata are polynomially related. While the reduction of asynchronous cellular 

automata to asynchronous automata is quite trivial, and it is presented only for 

completeness (see also [13]), the converse reduction is more complicated and it is 

obtained using the results presented in Section 4. 
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5.1. Construction of asynchronous cellular automata from asynchronous automata 

The presentation of this construction is split in two parts. First, we define an 

asynchronous cellular automaton 93 with the property that for every dependency 

clique c( and for every trace tEM( A, O), it is possible to recover the linear order among 

the last occurrences of symbols of CI in t (and then the value of Last,(t)) only 

comparing the local states reached by processes of SJ associated with the symbols 

belonging to c1 (i.e., without remembering all the trace t). This problem was previously 

solved with a similar construction using asynchronous automata in [8]. In the second 

part of the construction, we will extend the automaton &? so defined in order to 

obtain an asynchronous cellular automaton .d’ simulating a given asynchronous 

automaton ~2. 

For the rest of this section, we fix a concurrent alphabet (A, 0) and a linear order 

< on the set A. For every nonempty set LXGA, we denote by max(a) and min(cr) the 

maximum and the minimum element of cx with respect to the order relation <. 

To define the asynchronous cellular automaton B, we introduce a function 

G, associating with every trace a boolean function, and we prove that for every 

dependency clique CI E A, from the set (G,( I?,)},,, it is possible to compute Last,(t). 

Definition 5.1. Given a concurrent alphabet (A, 0) and a letter UEA, fixed a linear 

order -C on A, we define inductively the function G, associating with every trace 

a boolean function from @a)- { a}, i.e., G,: M(A, 0) -{ 0, l}BCa)-(a~, as follows. 

Va’Eg(a)-{a}, V~EA, b#a, V~EM(A, O), 

G,(e)(a’) = 0, 

if bfa, 

if b=a and a’>a, 

l-G,,(t)(a) if b=a and a’<a. 

From this definition, it is immediate to see that for every aEA it holds 

G,(t)=G,(a,(t)). 
The main property of the mapping G is stated in the next lemma, and it is crucial to 

define the asynchronous cellular automaton 93. 

Lemma 5.2. For every dependency clique 2 E A and for all traces t, reM( A, 0), ifQaEa 

G,(t)=G,(r) then Last,(t)=Last,(r). 

Proof (outline). The reader can verify that for every pair of distinct letters (a, b)$O 

and for every trace UE M( A, O), it holds: 

Last(,,b)(u)= 
min{a, b) if G,(u)(b)=G,(u)(a), 

max { a, b} otherwise. 
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This permits to conclude that given two traces t, reM(A, 0) and a dependency clique 

CI c A if G,(t) = G,(r) for every UEU, then the linear order between the last occurrences 

of the letters of a in t coincides with the linear order of the last occurrences of the 

letters of z in r. However, by definition, the maximal elements of these linear orders are 

respectively Last,(t) and Last,(r). Thus, we can conclude that Last,(t) = Last,(r). 0 

In other words, Lemma 5.2 shows that Last,(t) can be computed, without knowing 

all the trace t, from the set {G,(t)},,,; thus, we can write Last,({ G,(t),,,) instead than 

Last,(t). 

It is possible to observe that the time for computing Last,(t) from the set 

{G,(t)),,,> using the algorithm outlined in the proof of Lemma 5.2 is 

0(#(Co2)<0(d2), where d=max{ #(@a))-1 s.t. UEA} is the maximum degree of 

a vertex in the dependency graph. 

Now, we are able to define the asynchronous cellular automaton B. The set U, of 

local states of the process associated with the letter a is 

u, = {G,(t) I tEMl.4 ‘3). 

The initial global state is the tuple J=( G,(E)),,,. The local transition function 

5, corresponding to the letter a, associates with a tuple (gb)bce(YjEnbEeca, U, the local 

state gh = 5,((s&e& such that 

sb(a’)= 
i 

%,(a) if a’>~, 

1 -g,,(a) if ~‘<a. 

Comparing the definition of the transition function (ta)aEA with the definition of the 

function G,, it is not difficult to conclude that for every trace tEM(A, d) it holds 

E(J, t)=(Ga(f))aEA, where E denotes the global transition function of B. 

At this point, the reader can verify that for every dependency clique txc.4 and for 

every trace tEM(A, 0) it holds 

Last,(t)=Last,(E(J, t),J, 

i.e., Last,(t) can be recovered from the local states reached by processes of 99 asso- 

ciated with symbols belonging to a. 

Now, we can state the second part of the construction. Let .&= 

(Pi, . . ..Pfl{41.._4> I, F) be a finite state asynchronous automaton. We show how to 

build a finite state asynchronous cellular automaton JS=((S~}~~~, (&,jaeA, I’, F’) 

accepting the same trace language of ~2, using the above defined automaton 3?. 

The local states of the process l’: of &” are pairs of the form (g, r), where gE U, and 

rEniEDomcajSi, and the transition functions are defined in such a way that the local 

state reached after the execution of a trace t is the pair (G,(t), d(Z, d,(t)),,,,,,,). So, 

the second component of the local state of Pb is used to simulate all processes of 

~2 that execute the action a. We observe that the same process Pi of .c4 is simulated by 

all process PA of ,d’ with U~Ait each one of them keeps in its internal state the local 
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state d (I, (3, t)(i; moreover: 

When a transition of & involving the process Pi has to be simulated, it is useful to get 

the correct value of d (I, t)ii . This can easily be done recovering the value of LastAj( t) 

from the first components of local states, i.e., the components simulating the auto- 

maton 93. 

More formally, the initial global state of &’ is Z’=(Zb)UEA, where Zb=( G,(E), 

(Z .), ,, IfDomCa)), and the local transition function associated with the symbol UEA, where 

Dom(a)={i,,...,i,}, is defined as 

&((%> Sb)boB(a))=(5(gb)bEB(a), 6n(SLast,,,((gb)bFa,,), ““SLast,~~~(gb)b.“,,~)), 

for gbE ub, SbEnieDom(b) si, be&). 

Using the standard algebraic manipulations, the reader can easily prove the 

following result. 

Lemma 5.3. For every trace tEM( A, 0) the following equality holds: 

A’(Z’, t)=(G,(t), d(Z> aa(t)),D.,n,a,h4. 

Now we are able of completing the construction of the automaton d’, stating the 

main result of this section. 

Theorem 5.4. Given an asynchronous automaton &? =(Pl, . . , P,, { 8a}asA, I, F) over 

a concurrent alphabet (A, O), it is possible to construct in polynomial time an asyn- 

chronous cellular automaton &’ = ({ Sh}asA, { c?L}~.~, I’, F’), recognizing the same trace 

language T accepted by J;4. 

Proof. We observe that, given two traces t, t’E M( A, 0), if d’(Z’, t) = d’(Z’, t’) then also 

d (I, t) = d (I, t’). So, we can well define the set of final states of d’ as 

F’ = { A’( I’, t) 1 d( I, t)E F}. Of course, with this choice of final states, it turns out that 

the automaton d’ recognizes just the trace language accepted by the given asyn- 

chronous automaton d. 

Now, we estimate the complexity of the reduction. Let d be the maximum degree of 

a node of the dependency graph, and let s be the maximum cardinality of the sets of 

local states of the automaton d, i.e., s=max{ #Si 1 iEProc}. Since 

# { G,(t)1 rEM(A, e)> 62d and # nisDom(a) Si d s”, it turns out that the cardinality of 

the set of local states Sh is at most 2ds”; then it is polynomial in the cardinality of the 

sets of local states of cc4. As observed in the previous section, the time for computing 

Last,(t), for every dependency clique a, is O(d’). So, given the table of 6,, we can 

compute &,((&, sb)b.$(a)) in 0(( #Dom(a))d’)=O(nd’) StepS. This number iS con- 

stant with respect to the dimension of the automaton d. Hence, the time for 
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computing the table & is linear in its length #Sb, and, thus, it is polynomial with 

respect to the dimension of the automaton ~2. 

Finally, we explain how to compute in polynomial time the set F’ of final states. We 

consider “global transition graphs” associated with automata .d and d’. The nodes of 

these graphs represent global states, while the arcs represent all possible transitions 

between global states. To the graph associated with &” we apply a depth-first visit, 

and we use the graph associated with ,d for choosing final states. More precisely, we 

use the following algorithm: 

Procedure visit (~‘ES’; qg.S) 

begin 

mark q’ as visited 

if qEF then F’=F’ujq’} 

(*) for every as.4 s.t. d(q’, a) is defined d(q’, a) is not visited do 

visit(d’(q, a), d(q, a)) 
end. 

The computation starts calling visit(Z’, I) with F’=Ql and every global state of .d’ 

not visited. The more expensive step is the loop (*). It is executed at most 

#A#S’<(#A)z(O(SI))#A<O(s(#A’” ) times. Then, we can conclude that, fixed the 

concurrent alphabet, the reduction is polynomial in the number of states of the given 

asynchronous automaton. 0 

5.2. Construction of asynchronous automata from asynchronous cellular automata 

Now, we show that every asynchronous cellular automaton .d over a concurrent 

alphabet (A, 0) can be reduced in polynomial time to an asynchronous automaton d’, 

whose set of local alphabets {A 1, . . , A,} represents a clique cover of the dependency 

graph. The reduction is quite simple. The main idea is that the process Pi, iEProc, 

of the automaton ,d’ is obtained grouping together the processes P,, UEAi, 

of .d. 

Formally, the asynchronous automaton ,d’ is defined as follows: 

0 for i= l,..., n, Sj=natA,Sn; 

l for UEA with Dam(a)={ il, . . . . ik), and for (Si,, . . . . si,)CnS=r S;,, Sb(si,T ...) Sir) is 

defined if and only if there exists a vector (rb)hs,pnJEnbsg(aJSb of local states of 

.d such that Si, =(rb)btA,,,j= 1, . . . . k; in this case the value of 6~(Si,, . . ., Sir) is the 

vector ( Uil, . . . , Ui~) where ui, = (rb)bEA,, and 

’ i 

rh if hiu, 

rh= 6a((rb)bE&,)) otherwise; 

l for iEProc, the component Zi of the initial state is the tuple (Za)rrtA,; 

l F’= {sES’) VUEA 3r,~S, s.t.ViEDom(a) (s~){~~ =ra, and rEF}. 
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Observe that every local state siESi is a tuple of local states of &; this tuple contains 

one state (si), lo) for every U~ Ai. Thus, the transition function 6, is defined only for 

“consistent” tuples of states. 

If starting from its initial state and executing a trace t, the automaton J&” so 

constructed, reaches the global state s, then the automaton &‘, starting from its initial 

state and executing t, reaches the global state (ra)jaaAJ, where ra =(si)l(a), for 

iEDom(u). More precisely, by induction on the length of traces, the following result 

can be proved. 

Lemma 5.5. Given a trace teM(A, d), an asynchronous cellular automaton &, the 
asynchronous automaton ~4’ obtained applying to .d the construction stated above, and 
the states SES’, rES such that s=d’(l’, t), r=d(Z, t), we have si=(r~)aeAi, i= 1, . . . . n. 

As a consequence of previous lemma, the following result can be immediately 

stated. 

Corollary 5.6. The automata LZI and d’ recognize the same trace language. 

Using arguments similar to those of the Section 5.1, it is possible to verify that the 

construction stated here is a polynomial time reduction. 

6. Minimal automata 

A classical problem in automata theory is that of finding the minimum automaton 

accepting a given language [ 191. Then, it is quite natural to study this problem also for 

asynchronous automata. This is important also since the known constructions of 

asynchronous automata (e.g. [lo, 28-J) produce automata with a very high number of 

states. While for every recognizable language there exists a minimum (up to isomor- 

phism) monoid automaton recognizing it, this is no true for asynchronous automata 

[6]. In fact, there exists a trace language accepted by two nonisomorphic minimal (i.e., 

unreducible) asynchronous automata. In this section, after recalling some basic 

definitions, we deepen this investigation and we extend these results to asynchronous 

cellular automata. 

First of all, we have to introduce the notions of reachable asynchronous (cellular) 

automata and of morphism between asynchronous (cellular) automata. The interest 

for reachable automata is related to the fact that, in order to minimize asynchronous 

automata, the first trivial step consists in eliminating from automata all useless states 

and all useless transitions. Before recalling the formal definition of reachable asyn- 

chronous automaton, we give an example. 

Example 6.1. Consider the asynchronous automaton d on the concurrent alphabet 

(4 @=({a, b, c}, {(a, c), (c, a)}) re resentedinFig.7,whereS,={u0,u,,u,,u3,u,}, p 
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Fig. 7. The nonreachable asynchronous automaton d. 

&=(uo, ul, u2, u,>, I=(uo, uo) and F={( UO, ~01, (UI, ul), (h,h), (~3, ~4). It is 
clear that the component PI of ~2 cannot reach the local state u4. Thus, this state and 

the transition from it can be removed obtaining another automaton recognizing the 

same trace language. The local states uI~SZ and QES~ are reachable from the initial 

state (uo, uo), in fact d((uo, vo), c)=( uo, zir) and d((u,, uo), [acba])=(uz, Q). How- 

ever, they are not simultaneously reachable, i.e., there is no trace t such that 

d(I, r)=(ur, k), or, in other words, the global state (uZ, ur) is not reachable. So, the 

transition &( ur, u2) = (ul, u2) is never used, and then it can be removed, obtaining the 

automaton &’ represented in Fig. 8. Observe that all local states and all transitions of 

the automaton ,ti’ are used in the computation over same trace. An automaton with 

such a property is said to be reachable. However, a reachable asynchronous automa- 

ton can have some nonreachable global state. For instance, the global state (u2, uI) of 

d’ is not reachable. 

Example 6.1 should be useful in understanding the meaning of the definition of 

reachable asynchronous automata, that can be formulated as follows. 

Definition 6.2. Let d be an asynchronous automaton over a concurrent alphabet 

(A, 0). Given a set rx~Proc, a tuple of local states SEnieaSi is said to be reachable 

whether there exists a trace t@A, 19) such that d(Z, t),a=~. 

The asynchronous automaton &’ is said to be reachable if and only if the following 

conditions hold. 

l every local state s in Si is reachable, i= 1, . . . . n; 

l for every aeA and for every tuple SEnisDom(a) ,, S. ifs is not reachable, then 6,(s) is 

not defined. 

As shown in Example 6.1, given an unreachable asynchronous automaton d, it is 

easy to obtain a reachable automaton &’ recognizing the same trace language, by 

removing all unreachable local states and all transitions from unreachable tuples of 

local states. Thus, from this point of all asynchronous automata we will consider are 

supposed to be reachable. 
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Fig. 8. The reachable asynchronous automaton obtained from .d. 

The notion of reachable asynchronous cellular automaton is very similar to the 

notion of reachable asynchronous automaton given in Definition 6.2. 

Definition 6.3. Let d be an asynchronous cellular automaton over a concurrent 

alphabet (A, Q). Given a set @GA, a tuple SET,,, S, of local states is said to be 

reachable if and only if there exists a trace tgM(A, (3) such that d(I, L),~=s. 

The cellular automaton & is reachable if and only if the following conditions hold. 

l every local state SES,, SEA, is reachable; 

0 for every UEA, if a tuple of local state SET bEgCaJ Sb is not reachable then 6,(s) is not 

defined. 

Of course, as for asynchronous automata, every unreachable asynchronous cellular 

automaton can be reduced to a reachable asynchronous cellular automaton. Thus, 

from this point on, all asynchronous cellular automata we will consider are supposed to 

be reachable. 

Now, we introduce the notion of morphism between asynchronous (cellular) auto- 

mata. Informally, a morphism between two automata d and A# is a family of maps 

from the sets of local states of d to the set of local states of d’, mapping the initial 

state of .d in the initial state of &‘, preserving the transitions, mapping final states in 

final states and nonfinal states in nonfinal states. Intuitively, a morphism describes 

how the states of & can be grouped together in order to obtain a “smaller” automaton 

JZ?’ recognizing the same trace language, 

Definition 6.4. Given two finite state asynchronous automata JZZ =(Pl, . . . , P,, 

MJoeA~ 1, F) d’=(Pi, . . ..Pb. {&}d, I’, F’) over the same concurrent alphabet 

(A, 0),* a morphism C$ between & and &’ (4 : d + ~2’) is a family of functions 

(bi:Si+Si)i=,,. .,n such that 

2 We suppose that processes of the automata .d and d’ have the same local alphabets, i.e., AI = 
A;, . . . . A, = AL; for instance, we can consider without loss of generality the maximal cliques of the 

dependency relation [14]. Si and S: will denote the sets of local states of the processes Pi and Pi, respectively. 
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l 4 preserves the initial states, i.e., pi= Ii, i= 1, . . . . n; 

l preserves the transitions, i.e., for every UEA with Dam(a) = { iI, . , ik} and for every 

reachable tuple (,siir . . ..sik)~Sil x . . . xSik, 6,(si,, . . . . Sik) is defined if and only if 

Sb($i,(si,), . . . . ~ir(Sir)) is, and, in this case, for j= 1, . . . . k, it holds 

4i,((60(si~, ‘-.,si~))(li,l)=(~~(~il(sil), .‘.I 4i,(sik)))([ij]; 

l q5 preserves the set of final states, i.e., for every reachable global state SC& SEF if 

and only if (I$~(s~), . . . . &(s,))EF’. 

Example 6.5. Let & be the asynchronous automaton represented in Fig. 8 and ,d’ be 

the asynchronous automaton represented in Fig. 2. Then, the pair of maps 

(4, :S; +S,. ti2:S; -S,) such that 41(uO)=$I(u2)=s0, ~I(uI)=~1(u3)=s1, 

+2(v,,)=42(v2)=r,, and q5z(v,)=g5z(v,)=rl defines a morphism from A? to .d’. 

We introduce now the notion of morphism for asynchronous cellular automata. 

Definition 6.6. Given two finite state asynchronous cellular automata &‘=( (Sa}oEA, 

~&!)l%4, 1, F)> ~~‘=({S&A> {fibIaEA, I’, F’) over the same concurrent alphabet 

(A, @), a morphism 4 from .Q to .# (4 : .d + .$II’) is a family of functions 

(da : S, --) ,QasA such that 

l C$ preserves the initial states, i.e., +,(I,)= Ii, UEA; 

l 4 preserves the transitions, i.e., for every a~,4 and for every reachable tuple 

(s&,~B(~~E~~~B(~) &, &((s~)~~B(~)) is defined if and only if &((&,(s~))~~B(~~J is, and, in 
this case it holds 

~a(ba((Sb)btB(a,))=~~((~6(S6))htB(a)); 

l 4 preserves the set of final states, i.e., for every reachable global state SES, SEF if 

and only if (c#I~(s~))~~,.,EF’. 

Using previous definitions it is not difficult to verify that given two asynchronous 

(cellular) automata .d and .d’, if there exists a morphism 4 : .d -+ d’, then .d and .d’ 

recognize the same trace language. Moreover, we can prove that, for reachable 

automata, this morphism is unique. 

Lemma 6.7. Given two reachable asynchronous (cellular) automata SS? and &‘, fthere 

exists a morphism 4 : .d -+ a?‘, then this morphism is unique. Moreover, C/J is swjective. 

Proof. For asynchronous automata the proof is given in the revised version of [6]. 

We adapt such a proof to asynchronous cellular automata. 

Let Ic,: d --f .d’ be another morphism. First, we study what happens when there is 

a reachable global state SES such that ~LI(so)=$,(s,), for all ae.4. Since C$ and 

II, preserve transitions and, for every asA, the tuple (s~)~~Q(~) is reachable, if 
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~a((~b)bE~(aJ) is defined then we have 

So, we can conclude that 4( d(s, a))= $(d(s, a)). Using this argument and the fact 

that morphisms preserve initial states, i.e., 4(1,) = I,/I(I~) = IL, a~ A, it is not difficult to 

conclude that two morphisms Ic/ and 4 coincide. 

To prove that 4 is surjective, it is sufficient to remember that &’ is reachable and to 

observe that 4(d(s, t))=d’(4(s), t), f or any trace t and global state s of .d. q 

In the following, we will denote by AAT and ACA, the families of reachable 

asynchronous automata and of reachable asynchronous cellular automata, recogniz- 

ing a trace language T. 

Definition 6.8. An automaton d (asynchronous automaton, asynchronous cellular 

automaton, resp.) in a family %‘? of automata is called minimal or reduced if and only if 

for every automaton .d’ belonging to %, every morphism 4 from d to 8’ is an 

isomorphism. & is minimum if and only if for every automaton &” belonging to 

V there exists exactly one morphism from d’ to G!.~ 

It should be clear that if a family V contains at least two minimal not isomorphic 

automata, then it cannot contain the minimum automaton; on the other hand, if 

W contains a minimum automaton &, then every minimal automaton .d’ of %? is 

isomorphic to &‘. By Nerode’s results [24], for every trace language T, the family of 

monoid automata accepting T contains a minimum (up to isomorphism) automaton. 

This fact is no more true when we consider asynchronous automata. For instance, the 

trace language T= {a, b, c) over the concurrent alphabet (A, fl) with A = {a, b, c} and 

e= {(a, c), (c, a)) IS accepted by two minimal non isomorphic asynchronous auto- 

mata. These automata are represented in Fig. 9 (the set of final states are 

I(SI> YO)> (SO> r1)) and {(n,, Q), (W 0,)). 
More precisely, the following result proved in 163, holds. 

Theorem 6.9. Let (A, 19) be a concurrent alphabet. Then the ,following sentences are 

equivalent. 

l every recognizable trace language TG M( A, 0) admits a unique (up to isomorphism) 

minimum jnite state asynchronous automaton; 

l the dependency relation 6is transitive. 

The fact that when the dependency relation is transitive, for every recognizable 

trace language there exists a unique minimum finite state asynchronous automaton 

was proved in [6] using Nerode’s equivalence relations. 

In the following we will show that there exists a trace language TS M( A, 0) with 

8 not transitive, such that the family AA, of asynchronous automata accepting it 

‘This definition can be done using categories as, for instance, in [16] 
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Fig. 9. Two minimal asynchronous automata 

contains infinitely many minimal finite state asynchronous automata and in$nitely 

many minimal infinite state asynchronous automata. 

6.1. Minimal asynchronous automata 

Here, we deepen the analysis on the existence of minimal asynchronous automata 

started in [6] with Theorem 6.9. 

To prove our results, it is useful the notion of periodic finite and infinite string, that 

now we recall. 

Definition 6.10. Let I- be a finite alphabet, and r* the set of finite strings over r. We 

denote by P the set of infinite strings over r, and by r” the union of r* and r”. 

A finite string YET* is said to be periodic if and only if y=q” for some finite string 

v]cT* and some integer n> 1. 

An infinite string yGT” is said to be periodic if and only if y=cr@’ for some finite 

strings 0, VET* (where ylw denotes the infinite string obtained concatenating infinitely 

many occurrences of the finite string q). 

In the following, the ith symbol of a string yEP, will be denoted as yi-1. Then 

Y=YoYl . ..Ym-l. m= 1~1, when y is finite, and ‘/ =yoyl . . . when y is finite. 

The next lemma, whose proof is an immediate consequence of Definition 6.10, will 

be useful to obtain the main result of this section. 

Lemma 6.11. Let y be a string in r”, 

(i) if ‘/ is a$nite periodic string, then there exists an integer h, 0~ h< I yl, such that 

for every k, O,<kdy, lik=Ykmodh; 

(ii) if y is an inJnite periodic string, then there exists two integers h, n, n > 0, h 3 n 

such that for k 3 n, Yk = ?((k n) mod (k n)) + n; 

(iii) if’7 is ajnite or infinite non periodic string, then, for every pair (k, j) of integers, 

O<k, j<iyl, k#j, there exists an integer ha0 such that Y~k+k)modiy,#Y~j+k)mod,y,.4 

4 With the convention that, when y is infinite, nmod 1yI is n, for every integer n. 
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We consider now the alphabet r= { 0, l} and with every (finite or infinite) string 

over r we associate an asynchronous automaton &?. We will characterize the class of 

strings YET” such that ~4, is a minimal asynchronous automaton, as the class of not 

periodic strings. 

Let (A, 13) be the concurrent alphabet with A = (a, b, c} and 8 = {(a, c), (c, a)}, and 

TcM(A, 6) be the trace language r=[{{a, b, c} {a, c}}*&. Given y~(0, l}“, with 

IyI = m, we consider the asynchronous automaton A!, =(Pi, Pz, 6,, &, 6,, I, F) de- 

fined in the following way: 

for O<k<m: 

for Odk<m: 

for O<k<m: 

I=(%, riJ0); 

bJ(so, rOk)= 
i 

(so, rlk) if ~k=o, 
(sl, r0k) if yk= 1; 

F={(so, rOk),(~1,rlk)IO~k<m}. 

The automata { &?} have a particular structure. We can observe that considering 

the Petri Nets representation of the part of an automaton &,, corresponding to states 

SO, sly IOk, rlk and rok’, where k’=k+lmodlyl, O<k<ly(, we obtain one of two 

patterns represented in Fig. 10. The asynchronous automaton ~2~ is that represented 

in Fig. 2, while the sequential version of the automaton &lol is represented in Fig. 11. 

It is easy to see that every automaton &, recognizes the trace language 

T= [((aubuc)(u~c))*]~. In fact, we can identify all final states of SEQ(S@~) in 

a unique state q. and all nonfinal states of SEQ(G',) in a unique state ql, obtaining in 

this way the M(A, 6i)-automaton of Fig. 1. Now, we will show that the minimal 

automata of the family ( dy} are exactly those corresponding to non periodic strings 

of r”. 

Theorem 6.12. Let y be a string in (0, 1 }“. Then y is not periodic if and only if the 

automaton 22, is minimal. 

Proof. We start outlining the proof of the fact that if y is periodic then the automaton 

d, is not minimal. First, we consider the case IyI =m < co. By definition, there exists 

a string VE { 0, 1}* and an integer n > 1 such that y = r~“. Thus, it is not difficult to find 

a morphism from &, to &,. 

Now, suppose that the periodic string y is infinite. Then, by definition, there exists 

two finite strings 0, VET* such that y=o@“. Let n and h denote respectively, the 
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Fig. 10. Patterns corresponding to yk =0 and yx= 1. 

a a,b a a 

c 

c c 

a a,b a a 

c 

c 

Fig. 11. Sequential version of the asynchronous automaton .01,,, 

lengths of strings CT and oq, i.e., o=yO . . . yn_l and ~=Y,,...Y~_~. We consider the 
asynchronous automaton d’ so defined: 

A;=A,={a,b}, A;=AZ={b,c}; 

s;={sb,s;}, G={rb0, r;0, rbr, r;r, . . ..Ll. r;h-r}; 

s:(s;)=s;, &(s;)=sb; 

for O<k<h, &(sb,&)= 
(sb,rik) if yk=O, 

(G, r&J if yk = 1; 

for O<k<h, Sb(s;, rik)= 
(s;,Y&+~) if k+l<h 

(4, r&J otherwise; 

Urbk)=r;k, &(rik)=rbk; 

I’=(&, rho); 

F’= {(Sk, rbk),(s’~,r;k)IO~k<hf. 

We observe that CJ = E the automaton SIT coincides with the automaton SS!,; for CT # E 

we obtain an automaton very similar to the automaton .ss!~~: the only difference is in 

the transition on the letter h from the global state (s;, rib_ 1). 



Asynchronous automata versus asynchronous cellular automata 203 

We define now a pair of functions 4 =(&r , 42) from local states of d, to local states 

of JzZ’, in the following way: 

41(so)=sb and &r(sl)=s;; 

if k cn, 

otherwise. 

Using the second statement of Lemma 6.11 it is possible to verify that 4 is a morphism 

from &, to .d. 

Now, we show that if y is not a periodic string then the automaton .JG’, is minimal. 

Let m = 1 y 1 and C#I be a morphism from &‘, to an asynchronous automaton JZZ. We 

have to prove that $I is an isomorphism. Since all automata considered are reachable 

and then all morphisms are surjective, if, by contradiction, we suppose that C#I is not an 

isomorphism, then we can find two local states q, PESi, for some in{ 1,2}, whose 

images by 4 coincide, i.e., g5i(q)= pi. 

We consider all possible cases. 

&(so)=41(s1). 
Since C/I preserves final and nonfinal states, we have the contradiction 

(41(so), &(Y~~))EF’, (&(sI), &(roo))4F’ and (PI, ~~(~oo))=(~I(sI), 

42tr00)). 

42(rok)=&2(rlj), for some O<k,j<m. 
As in the previous case, using the fact that C#J preserves final and nonfinal states, we 

obtain a contradiction: (41(so), 42(rOk))EF’, (dl(so), $z(rlj))$F and (&r(so), 

42(r0k))=(h(S0), 42trlj)). 

c$2(ro,)=c$,(roj), for some k, j with k#j, and the equivalent case $z(rlk)=@2(rlj). 

The fact that these two cases are equivalent can be proved recalling that 4 preserves 

transitions. Then, starting from 42(rOk)=42(roj), we obtain 42(rlk)=c$2(dc(r0k))= 
6~(c$2(r0k))=6~(~2(roj))=~2(6c(rOj))=~2(Ylj); in a similar way, starting from 

$z(rlk)=42(rlj), we obtain 4z(rok)=&(roj). 
We have to consider two subcases: yk #‘/j and Yk = yj. 

Yk # yj (without loss of generality yk = 1 and yj = 0). 

From 4(rOk)= qb(roj), using the fact that 4 preserves transitions, we obtain 

Then, C$ 1 ( so) = q5 1 ( sl). But, as shown above, this is contradictory. 

Yk=Yj. 

From 4Z(rlk)=q52(rlj), using the fact that 4 preserves transitions it turns out that 

(PI, ~2(rO(k+l)modm))=~b(~l(S1), $2trIk)) 

=41(41(s1)~ 42(rlj))=($l(sl), 42(ro(j+l)modm)). 

Thus, we can conclude that gb2(rOck+ llmodm)= 42(rocj+ l)modm). Iterating this proof 

for h times we obtain ~2(rO(k+h)madm)=~2(ro(j+h)madm). But, by the last statement of 
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Lemma 6.11 there exists an integer ha0 such that ~~~~~~~~~~~~~~~~~~~~~~ Thus, we 

return to previous case. 

In all considered possible cases we have obtained a contradiction. Then, we can 

conclude that the automaton ~2, is minimal. 0 

Using Theorem 6.12, we can easily state the following result. 

Corollary 6.13. Let (A, 0) be a concurrent alphabet with nontransitive dependency 
relation. Then there exists a trace language TG M( A, 8) accepted by infinitely many 
minimal non isomorphic asynchronous automata with a finite number of states and by 
infinitely many minimal nonisomorphic asynchronous automata with an infinite number 
of states. 

6.2. Minimal asynchronous cellular automata 

In this section, we extend to asynchronous cellular automata the results of [6] and 

of Section 6.1. We will show that, despite the existence of polynomial time reductions 

between asynchronous automata and asynchronous cellular automata, the class of 

concurrent alphabets for which every recognizable trace language admits a minimum 

asynchronous cellular automaton is different from the class characterized in Theorem 

6.9 for asynchronous automata. In fact, we will prove that for every concurrent 

alphabet (A, g) containing at least two dependent letters, there exists a recognizable 

language over (A, g) accepted by infinitely many nonisomorphic minimal finite states 

asynchronous cellular automata. 

To state this result, we consider the (degenerated) concurrent alphabet (A, 0) where 

A={a,b} and 0=@, and, for n>l, the asynchronous cellular automaton 

-c4,, = (S,, S,,, S,, &, I, F) where 

&=(s0, s1t s2S, &={r,, rr, . . ..rZn}. 

6,(s0, rZk)=sl, for Odk<n, 

da(sl, r.Zk+l)=sO, for O<k<n- 1, 

&(~r,r+~)=s~, 

Sa(SZ, r2n)=s0, 

44s0,r2k+1)=r2k+2, for O<k<n-1, 

4ds0, rhJ=r0, 

4dSl> r2k)=rZk+l, for O<k<n-1, 

&i(s*, r2n-l)=r2n; 

L=(s0, r,); 

F={(so,r~~)IOd~~n}~{(s~,r~~+~)lO~~~n}~{(s~,r~~)}. 
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Fig. 12. Sequential versions of .sl, and d2. 

The sequential versions of automata &i, ~2~ are represented in Fig. 12. 

We prove now the following result. 

Theorem 6.14. For every integer na 1, the asynchronous cellular automaton d,, is 

minimal. 

Proof. By contradiction, consider a morphism C$ from &‘,, to an asynchronous cellular 

automaton d’ and suppose that 4 is not an isomorphism. Thus, there exists a symbol 

CE {a, b > and two states s, s’ES~ such that &C(s) = 4C( s’). We consider all possible cases. 

l ~,(si)=~,(sj), i, jE{O, 1,2) with i#j. 

In the case i=O, j= 1, using the fact that 4 preserves final states it is immediate to 

obtain the contradiction (Mso), +b(ro))=(4a(si), &(ro)), (Mso), Mro))EF and 

(&(si), &(ro))$F’. 
For the other pairs (i, j) the proof is similar. 

l &,(ri)=+4b(rj), i, je(O, 1, . . . . 2n}, with i#j. 

We have to consider the following subcases. 
_ i is even and j = 2n. 

From 4b(ri)=+b(r2n)2 we obtain (dds0L 4b(ri))=(&Ja(So), 4btrZn)). Since 

C$ preserves final and nonfinal states, it turns out that the first pair is a final state of 

d’ while the second is not. Thus, we obtain a contradiction. 

- i is odd and j=2n-1. From (4a(~1), #b(ri))=(4a(si), &,(rzn_i)), using the fact 

that 4 preserves transitions on a, we obtain r$Jso)= 4u(sz), but, as shown above, 

this is contradictory. 

~ Both i and j are even, or both i and j are odd and i<j<2n- 1. 

If i and j are even (odd, resp.) then the global states (si, ri) and (si , rj) ((so, ri) and 

(so, rj), resp.) are reachable. Using the fact that 4 preserves transitions on the letter 

b, we obtain 4b(ri+l)=q5b(rj+l), and iterating this argument, 4b(ri+zn_i-j)= 

&(r&... 1), i.e., the previous case. 
_ i is even and j is odd. 

If j = 2n - 1 and i < 2n, then the global states ( si, ri) and ( si, rZn _ 1) are reachable, 

but &,(si, ri) is defined, while db(sl, rZn- 1) is not defined. This is contradictory, 

since morphisms preserve transitions. 
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Analogously, ifj= 2n - 1 and i = 2n then 6,( s2, r2,,) is defined and 6,(sZ, r2,, _ I ) is not 

defined, and if j<2n- 1 and i< 2n then bb(sO, ri) is not defined, while &,(s,,, rj) is 

defined. Finally, if j<2n- 1 and i=2n, then 6,(s0, rZn)=rO, Sb(sO, rj)=rj+i and 

d( r,,) = d( rj+ 1 ), where j + 1 is even, but, as above shown, this is contradictory. 0 

Now, we obtain the main result of this section, 

Theorem 6.15. Given a concurrent alphabet (A, 0) the jbllowing sentences are equiva- 

lent: 

l every recognizable trace language TS M (A, 6)) admits a minimumj?nite states asyn- 

chronous cellular automaton; 

l M(A, H) is a free totally commutative monoid. 

Moreover, when M( A, 0) is nontotally commutative, there are trace languages over 

(A, 0) accepted by infinitely many minimal asynchronous cellular automata. 

Proof. If the concurrency relation is full, i.e., 8= A x A - {(a, a) 1 aeA f, then every 

asynchronous cellular automaton over M( A, S) is also an asynchronous automaton 

over M( A, 0) and vice versa. Then, as a consequence of Theorem 6.9, every recogniz- 

able trace language Tc M(A, Q) admits a minimum finite state asynchronous (cellu- 

lar) automaton. 

Conversely, if M (A, 0) is not totally commutative, then there are two letters a, bE A 

such that a# b and (a, b)ca By Theorem 6.14, the language [(ab)*& is accepted by 

infinitely many minimal non isomorphic asynchronous cellular automata; then, the 

minimum does not exist. 0 
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