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1. INTRODUCTION 

Enriques surfaces constitute one of the special classes in the classification of nonsingular 
algebraic surfaces. Over the field of complex numbers an Enriques surface can be defined as 
the quotient of a K3-surface by a fixed point free involution. Complex Enriques surfaces 
considered as smooth 4-manifolds are all diffeomorphic. Moreover, their moduli space is 
irreducible. 

A real Enriques surface is a complex Enriques surface equipped with an antiholomorphic 
involution (called complex conjugation). The fixed point set of this involution is called the real 

part of the surface, or its set ofreal points. If this set is nonempty, the involution can be lifted to 
the covering K3-surface. Thus the study of real Emiques surfaces with a nonempty real part 
can be reduced to the study of real K3-surfaces supplied with a holomorphic fixed point free 
involution (and whose real part is nonempty; note by the way that there are real Enriques 
surfaces, with an empty real part, whose real structure does not lift to an involution). 

Contrary to the complex case, the moduli space of real Enriques surfaces is not 
connected. Real Enriques surfaces considered as smooth 4-manifolds with a smooth 
involution, and even their real parts considered as smooth 2-manifolds, turn out to be of 
several different types. The present paper is devoted to classification of the topological types 
of the real parts of real Enriques surfaces. The main result, which gives this classification, is 
Theorem 2.2 (see Section 2). 

The only, to our knowledge, published observation concerning this classification prob- 
lem is due to Silhol [13], who found one of the so-called maximal real Enriques surfaces 
(briefly, M-surfaces). Significant progress in this direction was recently achieved by Nikulin. 
It is his preprint [ 1 l] that originated our present work. 

Nikulin’s paper is devoted to a somewhat more detailed study of the real part. Namely, 
there is a natural decomposition of the set of the components of the real part of an Enriques 
surface into two groups (which is due to the two different liftings of the real structure to the 
covering K3-surface, see 3.2 below for details), and this decomposition is included in the 
classification problem. To solve this problem, he studies (2/2x Z/2)-actions in the K3- 
lattice, the two Z/Zfactors corresponding to the deck translation of the covering (Enriques 

+ This work was fulfilled during the first author’s stay at the Universiti: Louis Pasteur, Strasbourg, France. 
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involution) and to one of the two real structures, respectively. Interpreting topologically the 
arithmetical information obtained, he produced two lists which bound the collection of 
realizable topological types, along with the decomposition, from above and below. For the 
topological types (without decomposition) he left a lacuna of 21 elements: his lower and 
upper lists contain 59 and 80 elements, respectively. 

Influenced by Nikulin’s result, we tried to understand it and to complete the classifica- 
tion. For that purpose, we chose a different, simpler, approach, which had already 
proved its efficiency in the case of K3-surfaces (see [6, 163): first, we use purely topo- 

logical methods to prohibit most of the types, and then we give an explicit construction 
for the rest. We suceeded in completing Nikulin’s classification (the full list contains 87 
elements: Nikulin’s tables turned out to contain a few mistakes). Besides, our construction 
gives all the existing topological types, which makes the proof of completeness self- 
contained. 

Our approach shows, in addition, that the problem of enumeration of the topological 
types of Enriques surfaces belongs, in fact, to topology of smooth involutions. Namely, 
transforming the properties used in the proof into axioms, one can introduce a much more 
relaxed notion ofJlexible real Enriques surface and still obtain the same list of topological 

types of real parts. More precisely, we give the following definition: 

Dejnition. A JEexible real Enriques surface is a jlexible real K3-surface with a flexible 
Enriques involution, i.e., a triple (X, t, z), where X is a closed smooth oriented 4-dimensional 
manifold homotopy equivalent to a K3-surface equipped with the complex orientation and 
t and r are two commuting smooth orientation preserving involutions X + X so that 

(1) 7 is fixed point free, and 
(2) the normal and tangent bundles of the fixed point sets of both t and t 0 z are 

antiisomorphic (equivalently, the Euler characteristic of each fixed point set is equal to 
minus its normal Euler number). 

Naturally, by the real part of a flexible real Enriques surface one means the fixed point 
set of the involution induced by t on XJr. 

The paper is organized as follows. In Section 2 we formulate the main result; it is proved 
in Sections 3 (prohibitions) and 4, 5 (constructions). In the Appendix we prove certain 
auxiliary results, which are known or almost known but whose proof is not published 
elsewhere, and give an alternative, flexible, proof of some results of the main text to show 
that, as is stated above, the classification obtained extends to a wider class of objects. In 
conclusion, in A.5, we briefly discuss the problem of extended classification of real Enriques 
surfaces, with the splitting of the real part into two halves taken into account. 

2. LISTING OF THE TOPOLOGICAL TYPES 

2.1. Notation. In what follows, we use the notation S, and VP to stand, respectively, for the 
connected sum of g copies of a 2-torus and the connected sum of p copies of a real projective 
plane. It is convenient for us to consider the 2-sphere S to belong to both the families, 
s=so= v,. 

To describe the topological types of real Enriques surfaces, we use the notion of Morse 
simplification, i.e., Morse transformation which decreases the total Betti number. There are 
two types of such simplifications: 
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(1) removing a spherical component (S + a), and 

(2) contracting a handle (S,+i + S, or I’,+, + V,). 

By topological type we mean a class of surfaces with homeomorphic real parts. 
A topological type of an Enriques surface is called extremal if it cannot be obtained from the 
topological types of another Enriques surface by a Morse simplification. 

Remark. Note that a Morse simplification may not correspond to a Morse simplifica- 
tion in a continuous family of Enriques surfaces. As a result, the notions of extremal 
topological type and extremal (in the obvious sense) surface may be different: a priori, the 
topological type of an extremal surface may not be extremal. 

2.2. THEOREM. There are 87 topological types of real Enriques surfaces. Each of them can 

be obtained by a sequence of Morse simplijcations from one of the 22 extremal types listed 

below. Conversely, with the exception of the two types 6s and Sr u 5S, any topological type 

obtained in this way is realized by a real Enriques surface. 

The 22 extremal types are: 

(1) M-surfaces: 

(a) x(Eu) = 8: (b) x(Eu) = - 8: 

4vj u2s VllUVl 

Vz’-‘2VI ‘~3s VIOU v2 

V,UVlU4S v9 u v3 

2v2 U4s V8 u b 

v4/45s v7 u v5 

I/2”sl u4s 2V6 

vlo”sl; 

(2) (M - 2)-surfaces with x(Eu) = 0: 

V4U2VI v, u v, u s 

v3 u v2 I-J v, v4 u v2 u s 

ve’622s 2V3US 

V4USlUS 2v2 u&St; 

(3) Pair of tori: 2Sl. 

3. PROHIBITIONS 

In this section we study topological properties of the real part of a real Enriques surface. 
We use the following notation: E is the Enriques surface under consideration, as well as its 
set of complex points, X and r are the covering K3-surface and the Enriques (deck 
translation) involution on it, respectively, conj is the antiholomorphic involution on 
E which defines the real structure, and ER is the real part Fix conj of E. The real part is 
supposed to be nonempty (the case ER = 0 is trivial, and we do not consider it). 
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3.1. Topology of the set of complex points. The following properties, which do not require 
a real structure on the surface, are well known (most of them are immediate consequences of 
the definition of an Enriques surface; see, for example, Cl]): 

(3.1.1) 711(E) = Hi(E$) = H,(E;Z) = Z/2; 
(3.1.2) H2(E; Z) z Zo” @ Z/2; the nontrivial element of TorsH*(E; Z) is the Chern 

class c 1 (E); 

(3.1.3) a(E) = - 8 and the intersection form on H2(E; Z)/Tors is even; 

(3.1.4) H2(E; Z/2) g (E/2)@12; 
(3.1.5) the kernel of pr!:H,(E;Z/2) + H,(X;iZ/2) is nontrivial; it coincides with the 

image of TorsH2(E; Z) z Z/2 in H,(E;Z/2); the only nontrivial element of this kernel is 

~2 (E). 

In particular, this implies that H,(E;Z)/T ors z - Es 0 U as a lattice, h’*‘(E) = 

h**‘(E) = 0, h’*‘(E) = 10, P,(E) 2 CdimHi(E;Z/2) = 16. 

3.2. Decomposition of the real part. Since ER # 0, the Z/Zaction on E given by conj lifts 
to a (Z/2 0 Z/2)-action on X: there are two antiholomorphic involutions t(l), t(*) : X + X, 
which commute with each other and whose composition is r (the proof is obvious as soon 
as the points of X are represented by homotopy classes of paths in E starting at a fixed point 
of ER). 

Since Fix r = 0, both the two real parts Xt’ = Fix tci), i = 1,2, and their images in E are 
disjoint. Thus, ER canonically splits into two disjoint parts, which we will refer to as the 
halves of ER and denote by E’,“, Et’. Note that both the halves consist of whole components 
of ER, and that X’,” and Xx’ are unramified double coverings of E’,1’ and E’,Z’, respectively. 
(In fact, these are the orientation coverings, see 3.4). 

3.3. Eigenspaces of the complex conjugation. Intersecting the eigenspaces of r* and t$‘, one 
obtains the orthogonal decomposition 

H*(X;R)=H++@H+-OH-+@H-- (3.3.1) 

where Hd” is the bi-eigenspace {x E H2(X; IF!) 1 T*X = 6x, t I” x = EX}. The dimensions and 
signatures of these spaces can be found using, respectively, the Lefschetz fixed point theorem 
and the Hirzebruch signature formula applied to r, t(l), and t”‘. They are 

dimH++ =4+3x, a(H++) = -4-+x 

dimH+- = 6 -$x, a(H+-)= -4+3x 

dimH-+ = 6 + $(x1 - x2), a(H-+) = - 4 - f(x, - x2) 

dimH-- = 6 +3(x, - xi), o(H--) = - 4 -+(x2 - xi) 

(3.3.2) 

where x = x(E w ) and x. = x(E”‘) I IR . 

3.4. Orientability of real components. The projection XB + Ei’ is the orientation covering 
of E$. Thus, there are only the following two possibilities for a component C of Eg’: 

(1) it is covered by a pair T1, T2 of the components of X2’ interchanged by z; then C is 
orientable; 

(2) it is covered by a connected component T of Xz’ invariant in respect to r; then C is 
nonorientable. 
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Here we reproduce Nikulin’s proof ([ 111, cf. also [ 141) which appeals (via holomorphic 
forms) to the complex structure. A flexible (in the sense of Introduction) proof is given in 

A.2. 

Proof. There is a unqiue, up to multiplication by nonzero reals, nontrivial holomorphic 
2-form o on X such that t”‘w = 0. When restricted to X$, this form defines an orientation 
on it. Thus, the result follows from the fact that o, like any other holomorphic 2-form on X, 
is skew-invariant in respect to z. (This skew-invariance property is well known. It follows, 
for example, from the fact that h2Vo(E) = 0; see, e.g., [l]; cf. 3.1.) cl 

Remark. The above orientation of X$’ given by a holomorphic form is well defined up 
to total reversing. With certain ambiguity, although commonly accepted, we call it the 
canonical orientation of X$‘. (A somewhat more proper name would be the canonical 
semiorientation.) Note that an orientation of one half constructed in such a way determines 
the orientation of the other half if t(‘)o = 6, then tt2’ico = Z. This correspondence is not an 
involution, it has order 4. It gives a structure a little bit finer than just the union of the 
semiorientations of the halves. 

3.5. Components of high genus. The real part XR of a K3-surface X can have at most one 
nonspherical component, with the exception of the case XIR = 2Si (see [6]). In view of 3.4 
this implies that each of the two halves Et’ is of one of the following three forms: 

(1) aV,, UUV, u bS, g > 1, a > 0, b > 0, a = 0,l; 

(2) 2v2; 

(3) S1. 

The next two assertions also follow from [6] (for completeness we give their proof, which is 
flexible, in A.3 and A.4). 

3.5.1. If Xx) = 2Sr, then the two components TI and T2 of Xi’ realize proportional 
nontrivial elements in H2 (X; [w). 

Remark. In fact, these elements are equal if the surface is algebraic; this follows, e.g., 
from [lo]. They may not be equal in the case of flexible surfaces. 

3.5.2. If XR = S1, then XR realizes a nontrivial element in H2(X;Z/2). 

3.6. PROPOSITION. The real part of any Enriques surface is of one of the 87 topological 

types given in Theorem 2.2. 

Proof. To prohibit almost all the topological types not included in Theorem 2.2, it 
suffices to combine 3.5 with the following known inequalities and congruences: 

(1) Smith-Thorn inequality [15]: &(ER) < P,(E) = 16 (where 8, is the total Betti 
number over Z/2); 

(2) Gudkov-Rokhlin congruence [12]: if E is an M-surface, then x(ER) = a(E) = - 8 
(mod 16); 

(3) Gudkov-Kharlamov congruence [7]: if E is an (M - l)-surface, then x(ER) E 
a(E) f 2 = + 10 (mod 16). 
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Thereafter, there are only three types, 6S, Si u 5S, and 31/,, and one series, Sr I-I I’, u ... , 

still left to be prohibited. This is done in the rest of this section. 

3.7. Prohibition of the type 6s. Existence of such a surface contradicts Comessatti-Severi 
inequality [2]. Indeed, applying it to an Enriques surface and using the fact that the 
complex conjugation always interchanges the two halves of the cone 

{x E H’(E; R) 1 x2 > 0}, one gets the inequality x(ER) < h’*‘(E) = 10 which is not satisfied 

in the case XR = 6s. Cl 

3.8. Prohibition of the type S1 u 5s. According to 3.4 and 3.5, if such a surface exists, the 
component Si should constitute one of the halves, say Et’. Let T,, TZ be the two 
components of X’,” with their canonical orientations induced by w (see 3.4), and let 

[Ti],[TJ EH~(X;R) be their fundamental classes. Then [T]’ = - x(T,) = 0 and 
[TZ] = r[Tl] # 0 for some r E Q, see 3.51. In addition, r.+[Ti] = - [TZ], since z reverses 
the canonical orintation, see 3.4. Hence, - r is an eigenvalue of r,, i.e., r = f 1. Thus, [ Ti ] 

is a nontrivial isotropic class, which is invariant in respect to tt’ and either skew-invariant 
(case r = 1) or invariant (case r = - 1) in respect to r*, i.e., [Ti] belongs to one of the 
subspaces H - +, H ’ + of the decomposition (3.3.1). On the other hand, from (3.3.2) it follows 
that a(H-+) = dimH-+ = 1 and a(H++) = -dimH++ = -4, i.e., H-+ is positive 

definite and Ht ’ is negative definite. Thus, neither of these subspaces can contain an 
isotropic class. 0 

Remark. In fact, in the algebraic case the above r is equal to 1, i.e., [Ti] = [TZ] (see the 
remark in 3.5.1). In order to give a flexible proof we do not use this information. 

3.9. Prohibition of the type 3V,. The two halves should be Et’ = 2vZ and Ef’ = V,. Since 
E is an (M - 2)-surface and x(ER) = 0 = a(E) + 8 (mod 16), from Theorem A.1 (see Appen- 
dix) it follows that the fundamental class [Ew] equals w,(E) in H2(E; Z/2), and, hence, [X,] 
vanishes in H,(X;Z/2), see (3.1.5). On the other hand, this class cannot be trivial since 
[Xg’] vanishes in H2(X; Z/2), but [Xg’] does not, see 3.5.2. 0 

3.10. Prohibition of the types S1 u VI u ... . To avoid the realizability problem, let us work 
with flexible surfaces (see Section l), which form a wider class. The results cited and 
obtained in 3.5 extend to flexible real K3- and Enriques surfaces (see the definition in 
Section 1); the proofs given in [6] and in A.3, A.4 work without change. 

From Lemma 3.10.1 below it follows that, if there exists a (flexible) real Enriques surface 
with the real part S1 U Vi U ... , then there also exists a flexible surface with one of the 
halves S1 I-I 1/i; this contradicts 3.5 (in its flexible setting). 0 

3.10.1. LEMMA. If there exists a (jexible) real Enriques surface with Et) = EL and 

E’,2’ = Ei U VI, then there also exists a flexible real Enriques surface with E’,” = EL U VI and 
E’,Z’ = E{. In other words, a component VI can be transferred from one half to the other. 

An informal way to think about the desired transformation is the following: The original 
surface is included into a one-parametric real family which has a single singular fiber with 
one singular point in it. (This is a nondegenerate double point in the covering family of 
K3-surfaces; the singularity downstairs is somewhat more complicated.) When passing 
through the singular fiber, the component VI collapses to the singular point and then 
reappears in the other half. As we are working with flexible surfaces and we do not know if 
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the above family can be made algebraic when the original Enriques surface is algebraic, we 
give below an alternative description of this deformation in terms of modification of the real 

structure. (In order words, instead of passing through the singular fiber, one may go around 
it in the complex part of the parameter line; this corresponds to “one half” of the 
Picard-Lefschetz transformation.) 

Proof of Lemma 3.10.1. Pick a component V, E Et’ and denote by 3 its pull-back in X. 
One can identify certain both to’- and z-invariant tubular neighborhood of 3 with the total 
space of the tangent bundle of 3, and then, in this neighborhood, identify to) with the 
differential of - t(‘)l~. Denote by S: X + X the map which is the identity outside the 

chosen neighborhood of 3 and sends a point r, /I 5 11 < 1, of the tangent bundle of 3 into the 
point which is obtained from 5 by the geodesic flow at time ~(1 - 11<11) (assuming that the 
metric on 3 is homogeneous of radius one and that the radius of the tubular neighborhood 
is also one). Then 6 acts on 3 as the antipodal map (just like to’ does) and satisfies the 
commutative relations 6 0 t(l) = t(l) 0 6- ’ and 6 0 z = r 0 6. The desired surface is obtained 
now by replacing t(l) with t(‘)o6. 0 

4. CONSTRUCTION (PRELIMINARIES) 

4.1. General idea. Let X be the X3-surface obtained as the double covering of 
Y = @P’ x @P’ branched over a nonsingular curve C c Y of bi-degree (4, 4). Denote by 
s: Y + Y the Cartesian product of the nontrivial involutions (u: u) + ( - u : v) of the 
factors. If C is s-symmetric, s lifts to two different involutions on X, which commute with the 
deck translation d of X + Y. If, besides, C does not pass through the fixed points of s, then 
exactly one of these two involutions, which we denote by r, is fixed point free (see, e.g., [S] or 
Cl]), and, hence, the orbit space E = X/z is an Enriques surface. 

Suppose now that Y is equipped with a real structure conj which commutes with s, and 
C is a real curve. Then s 0 conj is another real structure on Y and C. We denote the real point 
sets of these two structures by Y$’ and C$, i = 1, 2 (i = 1 corresponding to conj) and call 
them the halves of Y and C, respectively. The involutions conj and s 0 conj lift to four 
different commuting real structures (t(l), t@’ = T 0 t(l), d 0 t(l), and d 0 t@‘) on X, which, in 
turn, descend to two real structures on E; we call them the expositions of E. A choice of an 
exposition is determined by a choice of one of the two liftings t(l), t(‘) of conj to X. 

In the rest of this section we prove some preliminary results, and in Section 5 we show 
that the real part of E = X/z may have any topological type not forbidden by Proposition 
3.6. This completes the proof of Theorem 2.2. We use the real models of Y given by real 
quadrics in @P3. 

Remark. There are many other constructions of (complex) Emiques surfaces, most of 
them going back to Enriques himself. Examples are pencils of elliptic curves with two 
double fibers, order six surfaces in @P3 with six double lines forming a tetrahedron, and 
double projective planes branched over order eight curves with certain singularities. The 
double plane model was used in the initial version of the proof, in addition to the present 
construction. The construction via elliptic pencils seems to be general: there is certain 
evidence that any real Enriques surface is a real pencil of elliptic curves. 

Remark. Note that, although the construction used in the paper does give all the 
topological types of ER, there are rigid isotopy classes (i.e., components in the moduli space) 
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of real Elliptic surfaces which cannot be obtained in this way. Indeed, if E can be obtained 
from @Pi x @Pi, it carries two elliptic pencils. The half-fi~rs (or multiple fibers) of such 
a pencil are the projections of the pull-backs of two lines in Y which pass through the fixed 
points of s and both belong to the same family of generatrices of Y. In particular, the two 
generatrices Li , Lz of Y passing through a fixed point of s produce two curves L;, L; in 
E such that [J$J’ = 0, i = 1,2, and [L;] 0 [L;] = 1. If Y, E, and the chosen fixed point of 
s are real, then either L;, Lb are both conj-invariant or they are transposed by conj. This 
gives the following necessary condition: if a real Enriques surface with both the halves 

nonempty can be obtained from Y = @P’ x CP’, then there are some homology classes 

CGI, CL;1 E JJ,uca such that [L:12 = 0, i = 1,2, [L;] 0 [L;] = 1, and either 
conj,[L:] = - CL:], i = 1,2, or conj*[L;] = - CL;]. There is at least one lattice which 
does not satisfy this condition: according to [l 11, conj, may act on 
H2(E;Z)/Tors z E8 @ U so that the invariant and the skew-invariant parts are DB (the 
lattice generated by the root system D8) and U(2) (the hyperbolic plane whose form is 
multiplied by 2), respectively. 

4.2. Quad&s to be used. Let Y be a quadric in CP3 real in respect to the standard complex 
conjugation involution and invariant in respect to the symmetry s:@P3 + Q=P3, 
(xo:xI:x2:x~) -+ (x0:x1: -x2: - x3). The complex conjugation and s commute with 
each other. If Y does not contain either of the two axes x0 = x1 = 0 and x2 = x3 = 0 of s, 
then s has four fixed points on Y and exchanges its two families of generatrices. 

In our construction Y is one of the following three quadrics: 

(1) ~y~e~boZoid of type I, given by the equation xx + x3 = x: + xf . Both the halves, 
Yg’ and Yi2), are topological tori. They have four common points which are the four fixed 

points of sly. 
(2) Hyperboloid oftype II, given by xi + x: = xl + xi. In this case Yc’ is a torus, Yp’ 

is empty and s has no fixed point in Yf’. 
(3) ellipsoid, given by x0 2 = x: + xg + x$. Both the halves are spheres. They have two 

common points which constitute the fixed point set of the restriction of s to YA”, as well as 

to Y2’. 

Since C is a bi-degree (4,4) curve, C$ separates Y$ into two parts, which have C$’ as 
their common boundary (at least one of the two parts is nonempty unless Y$’ is empty). The 
fixed point set X2’ of tfit is the pull-back of one of the parts. Thus, a choice of to’ is 
equivalent to a choice of one of the two parts of Yi”, and, since tf2’ = z 0 t(l), the latter 
determines as well the choice of the part of Yi2’ whose pull-back is Fix t(‘). This correlation 
is easily controlled due to the fact that X’,” and Xx’ are disjoint: 

4.2.1. The pul~-b~~ of a point of Yi”n Yz’ is contuined in exactly one of the sets XX’, 
X2’. (Note that in all the examples we use, the above intersection is not empty unless one of the 

halves is empty.) 

Another assertion we use is the following: 

42.2. If Cp’ is empty and X2) is nonempty, then Xp’ -+ Yp’ is the trivial double 
covering. 

ProoJ: The statement needs proof only in the case of the hyperboloid of type I. In this 
case we should show that the images of the generators of Hi (Yi”; H/2) in Hi(Y\C; Z/2) are 



REAL ENRIQUES SURFACES 719 

trivial, i.e., that the generators are not linked (mod 2) with C. The standard generators are 
cut on Yy’ by the real gene ratrices of Y. Such a generatrix intersects C in four imaginary 

pair-wise conjugate points. Thus, a hemisphere of imaginary points intersects C in two 
points, which means that the generator realized by the circle of real points is not linked 
with C. cl 

4.3. Branch curves. To construct the branch curve C E Y we start with a singular s- 
symmetric curve c E Y given by an equationf= 0, and perturb it to the curve C given by 
f + E/I = 0; here f and h are homogeneous real b&degree (4, 4) polynomials either both 
s-symmetric or both s-skew-symmetric and E is a small real parameter, The following 
considerations are used to control the topology of C$‘: 

4.3.1. Nodes of c. 

LEMMA. Suppose that all the singularities of c are nodes which all belong to one of the two 
halves oft? Then the symmetric pairs of nodes can be perturbed indepe~entzy with prese~~ng 

the symmetry of the curve. 

Proof From the generalized Bruzotti theorem for order two surfaces (see [4]) it follows 
that one can find a perturbing term h with any prescribed distribution of signs at the nodes 
of c. (This means that the nodes can be perturbed i~de~ndently.) If the prescribed 
distribution of signs is of the same symmetry asf, we can replace h with h + s* h or h - s* h 

to obtain a symmetric perturbation. cl 

Remark. In fact, the same reasoning covers the case when (? is allowed to have nodes at 
some of the fixed points of s (while all the other nodes are still concentrated in one half). 
(Note that in this case e must be given by a symmetric, not skew-symmetric, polynomial.) 
The result is the same: the symmetric pairs of nodes and the fixed nodes can be perturbed 
independently with preserving the symmetry of c. 

43.2. Double com~nen~s of c. In this subsection we assume that: 

c has a symmetric real double component T, the real parts Tz’, Tz’ of both the halves of 
T are smooth and disjoint from the other components of e, and the zero-set D of the 
perturbative term h is transversal to c. 

Under such a perturbation the topology of the curve changes only in a neighborhood of 
T BP = Tfi)vT’2’ w R . This modification is controlled, in an evident way, by the set Dne, called 
the ramification divisor, and the signs off, h, and E: a portion of TR doubles while the 
complementary portion disappears. In particular, if T passes through a fixed point of s, then 
the portion containing this point doubles in one half and disappears in the other (Fig. l(a)). 

The ramification divisors considered are always conj-s-symmetric, and the difference of 
any two such divisors is the divisor of a rational conj-s-inva~ant function. Besides, the 
linear system of the bi-degree (4, 4) sections on T is complete. Thus, to decide whether 
a conj-s-symmetric set 9 c: T is a ramification divisor (i.e., can be taken for the ramification 
divisor of a real symmetric perturbation), one should consider the conj-invariant set 9/s in 
the quotient T ’ = T/s, which is a real algebraic curve; then the problem reduces to existence 
of a linear equivalence over Iw on T ’ between 9/s and the quotient of an arbitrary chosen 
particular ramification divisor. 

We use this approach in the next lemma to take care about the set of ramification points. 
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LEMMA. Let T be either a rational curve of bi-degree (1,1) or an elliptic curve of bi-degree 

(2, 2). 
(1) Zf T is elliptic and it does not pass through any of the fixed points of s, consider 

a conj-s-invariant set A c TR of 4k, k 6 4, points. It is isotopic in TR to a set which can be 
taken for the real part Dn TR of the ramification divisor of a symmetric real perturbation if and 

only if each connected component of TA contains an even number of points of Afs. 
(2) In the other two cases, any conj-s-invariant set of 8 (if T is rational) or 16 (if T is 

elliptic and contains a fixed point of s) points is the ramification divisor of a symmetric real 

perturbation. 

Proof: Statement (2): Under the hypotheses T’ is a rational curve; hence, any two 
conj-invariant sets on T’ of the same cardinality are linear equivalent over [w. 

Statement (1): The parity condition follows from the observation that h has a well- 
defined sign on TR which descends to Tk and divides it into two parts (“positive” and 
“negative”) which have (DnT,)/s as their common boundary. 

It remains to prove the last part, where T is elliptic, s is fixed point free on T, and 
A satisfies the parity condition. Then T ’ is also elliptic. Let us take for the basic ramification 
divisor Do the one given by h = (xi + x:)(x: + x:); its real part DonTR is empty. 

We will distinguish between the following two possibilities: TA has one connected 
component Fr , or TA has two connected components F1 , Fz. (If TA is empty, the assertion 
is trivial; Do gives an example.) It suffices to prove, in each of the two cases, the following 
assertion: given an even integer p1 < 8 (respectively, two even integers pl, p2 with 
p1 + p2 < 8), there exists a conj-invariant subset Y c T’ linearly equivalent over R to 
9 = (DonT)/s and such that #(YnFi) = pi. 

In both the cases T ’ = C/L, where L E @ is a lattice invariant in respect to the standard 
conjugation z --t Z, and R and 9’ can be represented in @ by sets (rt , Fl, . . . , r4, r4) and 

h, .-., sg}, respectively. Then 9 and 9’ are linearly equivalent over Iw if and only if 

rr + **. +14=s1 + ... + ss (mod L). 

In the first case L is generated by 1 f ai, a E R, the only real component is represented 
by [w c C, and one can replace any pair ri, fi of conjugate points of W with a pair Re ri + E, 
E E IX, of real points which have the same sum. 

In the second case L is generated by 1 and 2ai, a E R, the real components are 
represented by R c @ and Iw + ai c @, and a pair ri, fi can be replaced with either 
Re ri f E E [w or Re rr + a i + E E Iw + ai, E E [w, without changing the sum mod L. q 

4.3.3. Other singularities. The only other type of singular curves used in our construc- 
tion is the union of a smooth curve and the double of another smooth curve intersecting the 
first one transversally. As in 4.3.2, we consider only perturbations with the zero-set 
D transversal to c. The only new feature is that the doubling of the multiple component 
switches to disappearing at a point of intersection with the single one (see Fig. l(b)). Note 
that here the double curve is always rational, and, due to the lemma in 4.3.2, the ramifica- 
tion points can be chosen arbitrarily. 

5. CONSTRUCTION (DESCRIPTION) 

5.1. In Table 1 we list all the topological types not prohibited by Proposition 3.6, and for 
each type give a reference to the paragraph(s) of this section where it is constructed. The 
branch curve C involved in the construction is obtained by a small perturbation of 
a singular curve e shown in Figs. 2, 3, and 6-10 below. Each figure consists of two parts 
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Fig. 1. 

Table 1 

Types Paragraph(s) 

4v,“kS 5.2 (k Q 2) 

Vzu2VIukS 
VhU2V, 
v, u v, u v, 

5.2 (k Q 3) 
5.3 
5.3 

KU K 
V 2,+I”h 
V,u VG_,‘-‘kS 
V, u VI u kS 
2V, I- kS 
2V, u kS 

5.2 (6 < r + s < 12; r, s > 1) 

5.4 (1 d r < 5) 

5.3 (I = 1,2,3; k < 1) 

5.4 (k < 4) 
5.2 (k < 4) 
5.6 (k < 3); 5.8 (k = 4) 

V,, u kS 5.4 (r 3 2; k + r < 5) 
5.5 (2 ( r < 5; k = 1) 

5.5(r=2; 1 <k<5) 

5.6, 7, 8 (r = 1; k < 5) 

kS 5.8,9 (k Q 5) 

V,uS,ukS 
S,ukS 
S,U 

5.4 (k < 4) 
5.4 (k < 4) 
5.10 (other types) 

which represent the two halves of the real part of Y (only the “visible side” of each half is 
shown; the rest can be recovered using the symmetry); the bold (light) lines denote double 
(resp. single) components of c; the black dots and dotted lines represent the fixed points of 
sly and the axis of symmetry of s, respectively. A more precise description of each curve is 
given in 5.2-5.10; existence of the desired perturbation follows each time from the lemmas 
in 4.3.1 and 4.3.2. 

The figures are some sort of coded description of the curves. To decode them and to 
recover the topology of ER we use the following conventions and rules. 

Projection used: In Figs 2-7, which represent hyperboloids of type I, we show the affine 
part x0 # 0. The left-hand piece of each picture shows the “real” half of YR in its projection 
to the (x0 : x1 : x,)-plane; the right-hand piece shows the “imaginary” half in its projection to 
the (x0 : x1 : ixz)-plane. (Actually, these are rather schemes than projections; in particular, 
the visible counter of the hyperboloid is represented by two vertical lines.) The two left fixed 

points of s seen in the two pieces of a picture in fact coincide, and so do the two right fixed 
points. Figures 8-10 show ellipsoids: the affine part x0 # 0 of the “real” half projected to 
(x0 : x1 : x3) (the left-hand piece of the figures) and the affine part x1 # 0 of the “imaginary” 
half projected to (x0: xi : ix3). Finally, Fig. 11 represents the affine part R’ x [w’ of the 
hyperboloid RP’ x RP’. 
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Choice of an exposition: As is explained in 4.2, the topological type of Ew depends on the 
branch curve C and on the choice of an exposition, i.e., of one of the two parts into which CR 
divides YR. In Figs 2-7 (hyperboloid of type I) and in the listings related to these figures we 
mark with a * the surfaces obtained by doubling the part of Yw\Cw which contains the 
upper left corner of the picture. 

The topology of ER: The exposition being fixed, the topology of Es can easily be 
recovered: each s-invariant component of the chosen part of Yw\CR produces a nonorient- 
able component of Ew of the same Euler characteristic (or a torus, if the original component 
coincides with one of the halves of YR, see Lemma 4.2.2), and each pair of components of 
Yw\CR transposed by s produces an orientable component of ER; the Euler characteristic of 
the latter is twice that of each of the components of the considered pair. 

Remark. In the subsequent paragraphs, describing the figures, we also list the topologi- 
cal types obtained using each branch curve. Note that our list is a little bit excessive: certain 
topological types appear several times. The reason is that we tried to construct as many 
surfaces as possible, taking into account the distribution of the components between the 
two halves of the real part. For that reason for some surfaces we indicate the distribution 

obtained, using the notation (half Et’] u (half _@i’>. 

5.2. (Fig. 2). Y is the hyperboloid of type I, and c is the double of a bi-degree (2,2) curve 
F which has two components in each half of Y and passes through all the four fixed points 
of sly. To construct I;, we perturb the union of two bi-degree (1,l) curves on Y through two 
of the four fixed points each. The latter may be given by x1 = 0 and x3 = 0. 

The types obtained are: 

4V1 u kS, k 6 2, 

V3u2V1ukS, k < 3, 

{W} “(kS), k < 4 

*v,u v,, 6 < r + s < 12, 

r,s>2,r+s=O(mod2). 

To achieve this, we pick an appropriate number of ramification points in an appropriate 
position (see 4.3.2) to form up to eight ovals and/or double up to two connected components 
(to obtain V,). More precisely, the type 4V1 u kS is obtained by forming 4 + 2k ovals so that 
four of them contain the fixed points of s; the type V, U2V, I-I kS is obtianed by forming 
2 + 2k ovals (two of them contain the fixed points of s) and doubling one component of c; 

the type {2Vz} LJ {kS) is obtained by doubling two components (which must belong to the 
same half of Yw) and forming 2k ovals; the type V, U V, is obtained by forming (r - 2) ovals 
in one half of YR and (s - 2) ovals in the other half. 

5.3. (Fig. 3). Y is the hyperboloid of type I, and c is the union of the double of a b&degree 

(1, 1) curve through two of the four fixed points (given by x3 = 0) and a bi-degree (2, 2) 

Fig. 2. 
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Fig. 4. 
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Fig. 5. 

curve. The latter may be given by xg + x: = 4x$ + 4x: in case (a) and by x0x1 = xi + xi in 
case (b). 

The types obtained are: 

(a) *VsUViUkS, k < 1 *v,u2v, 

V-, I-I V, I-I kS, k < 1 V, l-l V-2 u Vi 

2V3’-‘kS, k < 1 (b) V,‘-‘V,‘-‘kS, k = 1,2. 

The branch curve C (the perturbation of e) in cases (a) and (b) is shown in Figs 4 and 5, 
respectively, where small circles and semicircles represent the ovals obtained by doubling 
a portion of the double component of c, and large shapes come from the simple component. 
Whenever present, a pair of symmetric small ovals may disappear to decrease the number of 
spherical components of &. 

5.4 (Fig. 6). Y is the hyperboloid of type I. In cases (a) and (b), c is the double of a bi-degree 
(2,2) curve (cf. 5.3); in case (c) it is the union of two such curves with eight common points. 
(To construct c in this case, one can start with a curve with an isolated double point at the 
“right” fixed point, and then perturb it in the two different ways holding eight points.) 

The types obtained are: 

(a) {V2UkS}~{S1}, k 6 4 (b) {W’J’~}‘-‘{kS}, k < 4 

{kS} u {S,}, k < 4 *{l’,,} u {kS}, r 2 2, k + I < 5 

*{Vb+l UV,}, l<r<5 (c) {W-‘kS)~{l/,}, k < 4 

*{V,,+,>q~,}, 1 <r < 5. 
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(4 

Fig. 6. 

Fig. 7. 

Fig. 8. 

The perturbation of c to C is the following: in case (c), we perturb the nodes to form 2k or 

(2r - 2) ovals; for the type {kS} u {S } 1 , we form 2k ovals from c; for the type { vzr) u {kS}, 
we form (2r - 2) ovals from the left component of c and 2k ovals from the right one; for the 
other types in cases (a) and (b), we form up to eight (2k or (2r - 2)) ovals from the left 
component and double the right one. 

5.5 (Fig. 7). Y is the hyperboloid of type I. To construct c, we start with a bi-degree (2,2) 
curve with two components in one of the halves of Y and two isolated double points in the 
second half (say, given by the equation x t = 4x: - 4x2 - xi), and perturb it in the two 
different ways keeping eight points fixed. In case (a), e is the double of the perturbation 
which has two components in each half; in case (b) it is the union of two diferent 
perturbations. 

We use this construction to obtain two types: 

(a) {kS)u{V4uS}, k < 4, (b) *{I’,,} u {S}, 2 < r < 5. 

In case (a), we form 2k ovals from the left half of e and double the right half; in case (b), we 
perturb the nodes to form (2r - 2) ovals. 

5.6 (Fig. 8). Y is the ellipsoid; c is the double of a b&degree (2, 2) curve through both the 
fixed points of sly. The two types obtained are: 

2vr UkS, k < 3, (I’z} u {kS), k G 4. 

The first type is obtained by forming (2k + 2) ovals (two of them must contain the fixed 
points of s in their interior); to obtain the second type, we double the left half of c and form 
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Fig. 9. 

(a) (b) 

id) 
Fig. 10. 

2k ovals from the right one. The exposition is chosen so that a neighborhood of the leftmost 
fixed points of s in Yt’ (the left half of YR) is covered by Xx’. 

5.7 (Fig. 9). Y is the ellipsoid, c is the double of a bi-degree (2, 2) curve which has two 
components in each half of Y (it may be given by xi + 4x2, = 4x:). We double the two left 
connected components of c and form 2k ovals from the two right ones to obtain the type 
( V, u S> u { kS}, k < 4. The exposition is chosen so that a neighborhood of the leftmost fixed 
points of s in Y’,” (the left half of Yw) is covered by Xp’. 

5.8 (Fig. 10). Y is the ellipsoid. To construct e in cases (a), (b) and (d), we start with 
a b&degree (2,2) curve given by x8 + x0x1 = xi + x: (this curve has one oval in the left half, 
no ovals in the right half, and an isolated double point at the “left” fixed point of sb) and 
perturb it in the two different ways keeping eight real points on the oval fixed. e is the 
double of one of the perturbations (cases (a), (b)) or the union of two different perturbations 
(case (d)). 

To explain the construction of c in the remaining case (c) let us use the .affine 
coordinates x = x1/x0, y = x2/x0, z = x3/x0. Cosider the ellipse F given in the (xy)-plane 
by the equation 16x2 + y2 = 4, and a tangent L to F. Choose the latter in such a manner 
that both the contact point and the point of intersection with the x-axis belong to the disk 
x2 + y2 < 1 (bounded by the visible counter of Yt’ in the (xy)-plane). Let L’ be the line 
symmetric to L against the x-axis. Consider the union Lu L’ and slightly perturb it to 
a hyperbola H which intersects F in four real points which all belong to the same branch of 
H. (The perturbation should be so small that all the four points, as well as the two points of 
intersection of H and the x-axis, still belong to the disk.) Now we can take for c the curve 
cut on Y by the cylinder over H u F. 

The types obtained are: 

(a) {V2UkS}U{S}, k < 4 (b) (c) (d) 

{kS}u{S}, k < 4 21/, u kS, k < 4. 
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Fig. 11. 

(We use (b), (c) and (d) to obtain a variety of distributions of the components of the type 
2V1 u kS.) In cases (a) and (b) we form 2k ovals from the right component of 2; and, except 
the type (kS} LJ (S), double the left component. In cases (c) and (d) we perturb the nodes to 
form 2k ovals. In ail the cases except (c) no neighborhood of the Ieftmost fixed point of s in 
Yi” (the left half of YR) is covered by Xg’. 

5.9. The empty surface and the distribution {kS}, k < 4, are obtained from the hyperboloid 
of type II, C being the double of any nonempty curve on it, which is perturbed to form 2k 
ovals. 

5.10 (Fig. 11). With the exception of V, LI kSu S1 and kSuSi (see 5.4), any topological type 
which has a torus S1 can be obtained from the hyperboloid of type I, c being the union of 
four lines of bi-degree (1,O) and four lines of bi-degree (0,l). The perturbation are shown in 
Fig. 11, where the affine part R’ x 58’ of Yz’ is respresented. (The black dot is one of the 
four fixed points of s; the other three points are at infinity.) The other half of CR is empty, 
and the exposition is chosen so that Yz’ (not shown in the pictures) is covered by the torus 
Xx’ (see 4.2.2). 

5. 

6. 

7. 

8. 

9. 

10. 

11. 
12. 

13. 
14. 
1.5. 
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APPENDIX A 

A.l. THEOREM. Let E be a real algebraic (M - 2)-surface, and x(Ea) = o(E) + 8 
(mod 16). Then [&I = w,(E), where [ER] denotes the image of the fundamental class of ER in 

H&T U2). 

Proof: Denote A, = H2(E; Z)/Tors and H = H2(E; Z/2), and let Hz be the image of 
H2(E; Z) in H. Known arguments (cf., e.g., [lo]; everything follows, in fact, from the Smith 
exact sequence and the Van der Blij formula) show that 

(A.l.l) dim(Ker[(l - conj,):RE --) fiz]/Im (1 + conj.,)) = rk R, - 4, 
(A.1.2) the twisted intersection form x + x oconj, x on I?z and the ordinary square 

x + x 0 x are congruent to each other mod 2; 

Since [EJ represents the characteristic class of the twisted intersection form (x, 
y) + x 0 conj, y, from (A.1.2) it follows that the difference [ER] - w,(E) annihilates integral 
classes, i.e., belongs to the image of Tors. 

Since E is an (M - 2)-surface, from (A.l.l) and the Smith exact sequence it follows that 
each element x E H/Hz has a conj,-invariant representative f E H. Then X 0 [ER] = 

Xoconj, X = 2’ = $0 w,(E); thus, [Ew] - w,(E) annihilates also H/HZ, i.e., is zero. 0 

A.2. Proof of 3.4. More precisely, we prove here the following result: 

Let X be a smooth oriented Spin simply connected 4-manifold with o(X) 3 16 (mod 32). Let 
T be ajxed point free orientation preserving involution on X, and let t be another orientation 
preserving involution on X which commutes with T. Suppose that both the fixed point sets 

Xw = Fix t and XL = Fix(t 0 r) are surfaces (i.e., each of them is either empty or of pure 
dimension two). Then XR (as well as Xl,) has a canonical orientation which is reversed by T. 

Remark. Orientability of XR is a well-known fact, see e.g, [3], [14], [S]. We need a little 
bit more: a canonical orientation. We use an idea which goes back to our old discussions 
with 0. Viro, which was inspired by Natanzon’s observation about the Spin-orientations of 
real algebraic curves, see [9]. 

Proof. The canonical orientation is provided by the Spin-structure on X. Pick a point 

x E Xw and an orientation of XR at x. In order to compare this orientation and an 
orientation at another point y E Xn, represent them by 2-frames (<f , 5;) and (5’1, &) and 
complete these 2-frames to positively oriented 4-frames by some t-skew-invariant vectors 
(g;, (“4) and (55, ($), respectively. Then pick a path y connecting x and y, extend the 4-frames 
to a 4-frame field Z = (11, t2, &, e4) over y, and evaluate the Spin-structure on the loop 



728 Alexander Degtyarev and Viatcheslav Kharlamov 

y * QJ-’ framed with B * Et, where 3’ = (dt l,, d&, - d&, - d&)_ (The latter framed 
loop is called a test hp.) The two o~entations at x and y are considered coherent iff the 
value obtained is 0. 

This constructon is consistent since on a simply connected manifold the Spin-structure 
is unique and, in particular, equivariant, i.e., it takes equal values on any pair of symmetric 
framed loops. 

Note now that the quotient X/z, as well as the quotient of X by any fixed point free 
orientation preserving involution, is not Spin since a(X/z) = ia G 8 (mod 16) f 0 
(mod 16). Hence, given a z-symmetric loop with a 4-frame field 5 = (tl, t2, c3, r4), the value 
of the Spin-structure on it is 1 if E is z-invariant, and it is 0 if Z is z-skew-invariant, i.e., dz(c,, 

52% 53954) = G 52, - 53, - &#). 
To complete the proof it suffices now to construct a z-invariant test loop. If 

Fix(t 0 Z) # 0, pick some x E Xw and a E Fix(t 0 z), join them by an arc (xa), and let y be the 
loop formed by the four arcs (xa), t(xu), z(xa), and tz(xa). Pick a t-invariant frame (51, 5;) at 
x (respectively, a (toz)-invariant frame (r’;, 5%) at a), complete them by t-skew-invariant 
vectors (<‘j, 5:) (respectively, (to @-skew-invariant vectors ([(j, 5:)) to positively oriented 
4-frames, and extend these 4-frames to a 4-frame field over (xa). Now simple reflection gives 
a t-invariant continuous Cframing over y. 

If Fix(t 0 z) = 12/ ,we pick a point a E X whose orbit a, ta, za, tra consists of four elements. 
To form a test loop we take the same four arcs as above and complete them by an arc 
connecting a and tn.z and its t-symmetric copy. The test loop obtained in the similar manner 
as before is not r-invariant; it is the sum of two loops, one t-invariant and one (to z)- 
skew-invariant. Since both z and (t 0 z) are fixed point free now (and since they both preserve 
the orientation), the Spin-structure takes value 1 on the former portion and 0 on the latter 
one, which totals to 1 on y. Cl 

A.3. Proof of 3.5.1. [TI] and [T2] are nontrivial even in Hz(X; Z/2), since the only linear 
combination which may vanish in H2(X; H/2) is [Tj ] + [ZJ. (This follows, e.g., from the 
Smith exact sequence.) These classes belong to the eigenspace of t’,” corresponding to the 
eigenvalue 1. But the latter space is hyperbolic, and in such a space two orthogonal isotropic 
classes cannot be linearly independent (see [6] for details). cl 

A.4 Proof of 3.5.2. Consider the quotient ~manifold X’ = X/conj. Then 

and 
cr(X ‘) = + (a(X) + [X,-J ox [X,]) = 4 o(X) = - 8 

wz(X) = [X,] + ‘II* wz(X’) 

where a:X -+ X’ is the quotient map. As is shown in [6], the kernel 
Ker (A* : H2(X’; H/2) + H2(X; Z/2)) is generated by the elements realized by the compo- 
nents of X,. Hence, if in the case under consideration XR realized zero in H2(X’; Z/2), then 
w2(X’) would be zero too, and this would contradict the Rokhlin congruence a(X’) E 0 
(mod 16). cl 

A.5. Dis~~tio~ of the components. In this section we briefly discuss the problem of 
distribution of the components of & between the two halves. 

For all the topological types except those listed in Figs Al, A2 below, our construction 
shows that any distribution which satisfies the restriction of 3.4 can be realized. The 
exceptional types with at most one nonspherical component are listed in Fig. Al. (We use 
the notation (half Ep’J u {half EE’).) 



REAL ENRIQUES SURFACES 

b b 

b 

a (1 a 

taWtbS1, {V,uaS}u{bS) {V,uaS)u{bS} {VsuaS)u{bS}, 

{V,uaS}u{bS} tVdaSluibS1 

Fig. Al. Topological types with at most one nonspherical component. 

b b b 

{ZV,uaS}u{bS}, {V,uaS}u{V,ubS), {V?uaS}u{V,ubS} 

{V,uaS}u{V,ubS} {V,uV,uaS}u{bS} 

Fig. A2. Topological types with two nonspherical components. 

The distributions marked by black nodes are constructed in Section 5. The distributions 
(2s) u (2s) and {V, u 2s) u (2s) (the white node in Fig. Al) are constructed by Nikulin 
[ 111, and there is strong reason to believe that they cannot be obtained from a hyperboloid 
or ellipsoid using the approach of Section 4. 

A.6 THEOREM. The distribution of the components of a real Enriques surface with at most 
one nonspherical component is one of those represented in Fig. Al. 

The proof will appear elsewhere. 
The other exceptional types are given in Fig. A2, where, similar to Fig. Al, the black and 

white nodes correspond, respectively, to the distributions constructured in Section 5 and to 
those constructed by Nikulin [ 111. 

At present, we can only conjecture that for these types any distribution is possible. 

Note added in proof. Now we can prove this conjecture. As we recently discovered, Hitchin 
showed that a real structure on an Enriques surface lifts to the covering K3-surface even if 
the real point set is empty [see N. Hitchin, J. Difirent. Geom. 9 (1974), 435-4411. 


