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The relationship between counting functions and logical express-
ibility is explored. The most well studied class of counting functions is
*P, which consists of the functions counting the accepting computation
paths of a nondeterministic polynomial-time Turing machine. For a
logic L, *L is the class of functions on finite structures counting
the tuples (T� , c� ) satisfying a given formula �(T� , c� ) in L. Saluja,
Subrahmanyam, and Thakur showed that on classes of ordered structures
*FO=*P (where FO denotes first-order logic) and that every
function in *�1 has a fully polynomial randomized approximation
scheme. We give a probabilistic criterion for membership in *�1 .
A consequence is that functions counting the number of cliques, the
number of Hamilton cycles, and the number of pairs with distance
greater than two in a graph, are not contained in *�1 . It is shown that
on ordered structures *�1

1 captures the previously studied class spanP.
On unordered structures *FO is a proper subclass of *P and *�1

1 is
a proper subclass of spanP; in fact, no class *L contains all polyno-
mial-time computable functions on unordered structures. However, it is
shown that on unordered structures every function in *P is identical
almost everywhere with some function *FO, and similarly for *�1

1 and
spanP. Finally, we discuss the closure properties of *FO under
arithmetical operations. ] 1996 Academic Press, Inc.

1. INTRODUCTION

The relationship between computational complexity and
the expressive power of logical languages is an important
topic in finite model theory. Early results in this area
focussed on decision problems and relational queries.
Examples include the Bu� chi�Elgot�Trakhtenbrot theorem
[8, 11, 33] characterizing regular languages in terms of
monadic second-order logic (probably the first result in the
area) and Fagin's theorem [12] characterizing NP in terms
of existential second-order logic (often cited as the beginning
of finite model theory as a separate research area). Other

results followed, notably the Immerman�Vardi [21, 35]
characterization of P in terms of least fixed point logic, and
Immerman's logical characterizations of other complexity
classes, such as the characterizations of logarithmic space
complexity classes in terms of transitive closure logics [22].
The most important results in this field are surveyed in
[18, 23].

More recent investigations concern logical expressibility
in other areas of complexity theory such as optimization and
counting. As with the earlier work, these results reveal the
logical structure of complexity, but moreover, they yield
insights that could not be achieved without a logical
framework. Papadimitriou and Yannakakis [30], for
example, set forth a new, logical approach to efficient
approximation for NP-optimization problems. Exploiting
Fagin's theorem, they present two syntactically defined
classes of optimization problems, Max Snp and Max Np.
Optimal solutions to problems in these classes are
approximable to within a constant factor in polynomial-
time. Arora et al. [1] showed that problems hard for Max

Snp cannot have a polynomial-time approximation scheme
unless P=NP.

Kolaitis and Thakur [26, 27] systematically investigated
logical expressibility of optimization problems. They
defined Max �n (respectively, Max >n) to be the class of
problems which, given a finite structure U, compute
the maximum number of tuples x� in U satisfying a �n

(respectively, >n) formula �(x� , S� ) as S� ranges over
predicates on U. (The classes Max Snp and Max Np are the
closures of the syntactic classes Max �0 and Max �1 under
appropriate reductions.) Kolaitis and Thakur showed that
the classes Max �n and Max >n collapse to a strict
hierarchy of four levels:

Max :
0

/ Max :
1

/ Max `
1

/ Max `
2
=Max FO.
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In [5] we extended the logical approach to approxi-
mability by allowing formulae to contain predicates
definable in least fixed point logic and maximization to be
taken over constants as well as predicates. We also intro-
duced a new method characterizing rates of growth of
average optimal solution sizes thereby showing that a
number of important problems do not belong to Max �1

with fixed point predicates. This method is related to limit
laws in finite model theory and the probabilistic method from
combinatorics.

The success of the logical approach to optimization
problems motivated research along similar lines on counting
functions. A well studied complexity class of such functions
is Valiant's class *P consisting of the functions that count
the number of accepting computation paths of a given non-
deterministic polynomial-time Turing machine [34].
Saluja, Subrahmanyam and Thakur [32] considered the
class *FO consisting of all functions which, given a finite
structure U, compute the number of tuples T� , c� such that
U < �(T� , c� ) where � is a first-order formula. The class
*�n (respectively, *>n) is defined analogously with
respect to formulae in the prefix class �n (respectively, >n).
Saluja, et al. show that on ordered structures *FO captures
*P, and that the classes *�i and *>i form a proper
hierarchy of five levels.

Theorem 1.1 (Saluja, Subrahmanyam, Thakur). On
ordered structures

*:
0

/ *:
1

/ *`
1

/ *:
2

/ *`
2
=*FO=*P.

In contrast to the situation with optimization problems,
the restriction to ordered structures is necessary here. (We
will discuss this in detail.) A similar phenomenon occurs
with the logical characterizations of decision problems.
Linear orders may be introduced in existential second-order
logic, so Fagin's Theorem applies to arbitrary structures.
The other logical characterizations of complexity classes
cited in the first paragraph apply only to classes of ordered
structures.

As with optimization problems, counting functions are
efficiently approximable in the existential case. Here the
appropriate notion of approximability is the existence of a
fully polynomial randomized approximation scheme
(FPTRAS).

Theorem 1.2 (Saluja, Subrahmanyam, Thakur). Every
function in *�1 has a FPTRAS.

In this paper we continue the investigation on the
relationship between counting classes and expressibility. We
will be concerned with membership in classes such as *�1

and *FO and, more generally, with membership in classes

*L where L is an arbitrary logic. We will also explore the
differences between these classes on ordered and unordered
structures.

In Section 3 we give some background on limit laws in
logic. In Section 4 we use these results to prove a
probabilistic criterion for membership in the class *�1

(on unordered structures) similar to the one we established
in [5] for Max �FP

1 . We show that every function in *�1

has an expected value of 3(q(n) 2(n)), where p(n), q(n) are
polynomials; moreover, if the function is not identically 0,
then its expectation is non-zero. As a consequence,
functions with different growth rates, such as functions
counting the number of cliques, or the number of Hamilton
cycles, or the number of pairs with distance greater than
two in a graph, are not contained in *�1 . This criterion
is then extended to the closure of *�1 under infinitary
reductions.

In Section 5 we investigate functions defined by more
powerful logics than FO. It turns out that fixed point logic
defines the same functions as first-order logic, but going up
to existential second-order logic provides more expressive
power. On ordered structures *�1

1 captures the class
spanP. This class was introduced by Ko� bler, Scho� ning and
Tora� n [24] and contains the functions which are definable
as the number of different outputs produced by a nondeter-
ministic polynomial-time Turing machine. On unordered
structures, *�1

1 is a proper subclass of spanP. In fact, we
prove that no class of the form *L contains all polynomial-
time computable functions on unordered structures. This
holds for arbitrary logics L; the only assumption we
make is that logics do not distinguish between isomorphic
structures.

Despite this general and unavoidable weakness of logical
counting classes we can prove that in a probabilistic sense,
*FO and *�1

1 come very close to capturing *P and
spanP on unordered structures, provided the underlying
vocabulary is rich enough (i.e., contains at least one non-
unary predicate). Indeed for every function F # *P there
exists a function F $ # *FO such that F=F $ on almost all
structures (and similarly for *�1

1 and spanP). To prove
these results we use a theorem by Babai, Erdo� s and Selkow
that there exist polynomial-time algorithms that compute
canonical orderings on almost all graphs.

In the last section we consider closure properties for
classes *L. It is known that *P is closed under a number
of operations, such as addition, multiplication, binomial
coefficients and others. We show that all these closure
properties hold also for *FO. On the other hand, there are
other operations, such as subtraction, division, minima,
medians, etc., under which *P is closed only if certain
generally believed assumptions in complexity theory fail.
We show without using unproved complexity-theoretic
assumptions that *FO is not closed under any of these
operations.

284 COMPTON AND GRA� DEL
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2. PRELIMINARIES

2.1. Complexity and Definability Classes of Counting
Functions

Let M be a nondeterministic polynomial-time Turing
machine (abbreviated NPTM). By convention, every
accepting computation path of M produces precisely one
output, and no rejecting path produces an output. We
denote by acc(M, x) the set of all accepting computation
paths of M on input x, and by out(M, x) the set of all
outputs produced by these paths.

Definition 2.1. A function f from a set of words D
into N is in *P if there exists a NPTM M such that
f (x)=|acc(M, x)| for all x # D. A function f : D � N is in
the class spanP if there is a NPTM M such that
f (x)=|out(M, x)| for all x # D.

In this paper we are mostly interested in functions
F : C � N where C is a class of finite structures over a fixed
vocabulary and where F is invariant under isomorphism,
i.e., F(U)=F(B) for U$B. Such functions are called
numerical invariants or just invariants.

Definition 2.2. Let C be a class of finite structures over
a fixed vocabulary { (e.g., the class of all finite graphs). Let
L be a class of logical formulae over {, with additional
relation and constant parameters. A function F : C � N is in
*L if there exists a formula �(T� , c� ) in L such that for all
structures U # C

F(U)=|[(T� , c� ) : U < �(T� , c� )]|.

In particular, *FO is the class of functions definable in
this sense by first-order formulae.

Example. Given an undirected graph G=(V, E), let
*pm(G) be the number of perfect matchings of G. This
function is in *FO since it is definable by the expression

*pm(G)=|[M : G < .(M)]|

where .(M) says that M is a perfect matching:

.(M)=\x\y(Mxy � (Myx 7 Exy))

7 \x_yMxy 7 \x\y\z(Mxy 7 Mxz � y=z).

We designate the vocabulary of the relation parameters
T� =T1 , ..., Ts by _. Thus, � is in fact a sentence over the
vocabulary { _ _ _ [c� ]. For future reference, we suppose
that relation symbols T1 , ..., Ts have arities m1 , ..., ms and
define the polynomial p_(n) :=�s

i=1nmi. Obviously, there
exist precisely 2 p_(n) different interpretations of T� on a given
universe of cardinality n.

We say that a class L of logical formulae (over some
vocabulary {) is closed under positive first-order operations if
it contains all atomic and negated atomic formulae over the
vocabulary { and if for all formulae � and . of L and all
element variables x, L contains formulae that are equivalent
(on finite structures) to (� 7 .), (� 6.), _x� and \x�.1 If
L is closed under positive first-order operations, then every
function F # *L can be defined by an expression F(U)=
|[T : U < �(T)]| where �(T ) is a formula of L with
precisely one relation parameter T and no constant
parameter.

2.2. Logics

We give some background on the most important logics
that are of interest to finite model theory and descriptive
complexity. This section may be skipped by readers who are
familiar with these fields.

Several logics will be used in this paper. The most basic
one is first-order logic, denoted FO. As usual �m

(respectively, >m) denotes the classes of all first-order
formulae in prenex normal form with m alternating blocks
of quantifiers starting with _ (respectively, \).

It is well-known that first-order logic is not very
expressive. In fact every first-order definable class of
structures can be decided with polynomial-size constant-
depth circuit, i.e. FO�AC0.

More expressive logics considered in this paper are
existential second-order logic �1

1 , the least fixed point logic
FP, and the infinitary logic L|

�| .

Existential Second-Order Logic and NP. The class of all
formulae of the form

_R1 } } } _Rt�

where � is first-order, is called existential second order logic
and is denoted �1

1 . This logic is of fundamental importance
for complexity theory due to the following celebrated result
[12].

Theorem 2.3 (Fagin). Let C be a class of finite
structures over a fixed vocabulary closed under isomorphisms.
Then C is in NP if and only if there exists a sentence � # �1

1

such that C=[U : U < �].

Let us briefly discuss the proof of (the non-trivial
direction of) Fagin's Theorem. First suppose that C is a
class of ordered finite structures (U, <)��where U has
vocabulary { and < is a total order on the universe of U.
The ordering allows for a canonical encoding of the struc-
tures as binary strings: Represent every predicate RU �Ak

285LOGICAL DEFINABILITY OF COUNTING FUNCTIONS
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1 , it is not

known whether they are closed (up to logical equivalence) under negation
on the class of finite structures.
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by its characteristic string /(RU ) whose mth bit is 1 if and
only if the m th tuple of Ak (with the respect to the
lexicographical order on Ak induced by <) belongs to RU.

Fagin proved that from any nondeterministic polynomial-
time Turing machine M that decides C one can construct a
first-order-sentence.(<, T� ) over the vocabulary{ _ [<, T� ]
such that

(U, <, T� ) < _T� .

if and only if the relationsT� describean acceptingcomputation
of M on (the encoding of) (U,<). It follows that

(U, <) < _T� . iff (U, <) # C.

To understand the rôle of the ordering, one should keep
in mind that Turing machines operate on strings while logical
formulae express properties of structures. When we say that
a Turing machine M accepts a class C of structures we
actually mean that M accepts the set of encodings of the
structures in C. But to specify an encoding one needs an
ordering on the universe.

Nevertheless, the assumption that the structures be
ordered can be dispensed with in this case. Indeed, let C be
a class of not necessarily ordered {-structures accepted by
M. In existential second-order logic we can introduce an
ordering by existentially quantifying over a binary relation
< and using a first-order formula :(<) which asserts that
< does indeed define a total order; in fact :(<) is in >1 . As
a consequence we obtain that for all {-structures U

U # C iff U < (_<)(_T� )(: 7 .).

Fixed Point Logic. The expressive power of first-order
logic is limited by the lack of a mechanism for unbounded
iteration or recursion. The most notable example of a query
that is not first-order expressible is the transitive closure
(TC) of a relation. This has motivated the study of more
powerful languages that add recursion in one way or
another to first-order logic. The most prominent of these are
the various forms of fixed point logics.

Let { be a vocabulary, P an r-ary predicate not in { and
�(x� ) be a formula over the vocabulary { _ [P] with only
positive occurrences of P and with free variables x� =
x1 , ..., xr . Then � defines, for every finite {-structure A with
universe |A|, an operator �A on the class of r-ary relations
over |A| by

�A : P [ [a� : (A, P) < �(a� )].

Since P occurs only positively in �, this operator is
monotone, i.e. Q�P implies that �A(Q)��A(P). Therefore
this operator has a least fixed point which may be constructed
inductively beginning with the empty relation. Set 9 0 :=<

and 9 j+1 :=�A(9 j). At some stage i, this process reaches
a stable predicate 9i=9i+1, which is the least fixed point
of � on A, and denoted by 9�. Since 9 i�9i+1, the least
fixed point is reached in a polynomial number of iterations,
with respect to the cardinality of A.

The fixed point logic FP is defined by adding to the
syntax of first order logic the least fixed point formation rule:
if �(x� ) is a formula over the vocabulary { _ [P] with the
properties stated above and u� is an r-tuple of terms, then

[LFPP, x� �](u� )

is a formula over the vocabulary { (to be interpreted as
9�(u� )).

Example. Here is a fixed point formula that defines the
reflexive, transitive closure of the binary predicate E:

TC(u, v)#[LFPT, x, y(x= y) 6 (_z)(Exz 7Tzy)](u, v).

On the class of all finite structures, FP has strictly more
expressive power than first-order logic��it can express the
transitive closure��but is strictly weaker than Ptime-
computability. However, Immerman [21] and Vardi [35]
proved that on ordered structures the situation is different.
There FP characterizes precisely the queries that are
computable in polynomial time. On the other hand, on very
simple classes of structures, such as structures with empty
vocabulary (i.e. sets), FP collapses to first-order logic.

Infinitary Logic. Infinitary logics are extensions of first-
order logic admitting disjunctions and conjunctions over
infinite sets of formulae.

Definition 2.4. The logic L�| is the smallest class of
expressions such that

(i) L�| contains all first-order formulae;

(ii) if � is a formula of L�| , then so is c�;

(iii) if � is a formula of L�| and xi is a variable, then
_xi� and \xi� are formulae of L�| ;

(iv) if 8 is a set of formulae of L�| then �9 and �9
are formulae of L�| .

Infinitary formulae may have an infinite number of
distinct variables. Further, note that every class of finite
structures is definable in L�| . Thus, this logic is too powerful
to be of much interest in finite model theory.

However, by restricting the number of variables we
obtain logics that have turned out to be very important for
finite model theory.

For any natural number k, the logic Lk
�| is the class of all

formulae in L�| that contain only the variables x1 , ..., xk .
Further, L|

�|=�kLk
�| .

286 COMPTON AND GRA� DEL
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One of the reasons for the importance of this logic is that
it contains many of the logics of interest in descriptive
complexity, such as the various forms of fixed point logics.
On the other hand the Ehrenfeucht�Fra@� sse� method that
characterizes elementary equivalence generalizes to a very
elegant game-theoretic characterisation of the distinctive
power of L|

�| in terms of pebble games [3, 20, 31]. Most of
the inexpressibility results for fixed point logics are proved
using these games, so they establish in fact an
inexpressibility result for L|

�| .

Atomic Types and Equality Types.

Definition 2.5. Let { be a relational vocabulary and
x1 , ..., xk be distinct variables. A maximally consistent set t
of {-atoms and negated {-atoms (including equalities and
inequalities) in x1 , ..., xk is called an atomic {-type in
x1 . . ., xk . Since such a set is always finite, we can form in
first-order logic the conjunction of the formulae in t; by
abuse of notation, we denote this conjunction by
t(x1 , ..., xk). On every {-structure U, the type t defines the set
of realizations tU =[u� # Ak : U < t(u� )].

An equality type is an atomic type over the empty
vocabulary, i.e., a maximally consistent set e of equalities
xi=xj and inequalities xi{xj , where 1�i< j�k. On every
structure U, an equality type e defines the set eU =
[u� # Ak : U < e(u� )].

The number of different equality types of k-tuples is
clearly bounded by a number which depends only on k.

Lemma 2.6. For every equality type e there is a polynomial
Ge(n) such that the size of e U for each finite U is Ge( |U| ).

Proof. Let i be the number of distinct components in
every tuple u� satisfying .e . Set Ge(n)=n(n&1) } } }
(n&i+1). K

Lemma 2.7. Every quantifier-free first-order formula is
equivalent to a disjunction over atomic types.

Proof. Let �(x1 , ..., xk) be quantifier-free. Then � is
equivalent to the disjunction

�
t < �

t(x1 , ..., xk)

over all atomic types that imply �. K

3. ASYMPTOTIC PROBABILITIES IN LOGIC

We review here the results on asymptotic probabilities of
logical sentences that we need for analysing *�1 . A more
comprehensive survey of this area is given in [10].

Let { be a relational vocabulary. For C being the class of
all finite {-structures or the class of all graphs, let 0(n) be

the probability space of all structures in C with universe
[0, ..., n&1] with the uniform probability distribution.2

Given a {-sentence � of some logic L, we denote by +n(�)
the probability that U < � for a randomly chosen U # 0(n).
An interesting question is, whether the limit +(�) :=
limn � � +n(�) exists and to determine the possible values of
+(�) as � ranges over the sentences in L.

The first result of this kind is the 0�1 law for first-order
logic which was proved independently by Glebski@$ et al.
[15] and by Fagin [13].

Theorem 3.1. For every first-order sentence � over a
relational vocabulary, either +(�)=0 or +(�)=1.

We present an outline of Fagin's proof. Suppose we have
atomic types s(x1 , ..., xk) and t(x1 , ..., xk , xk+1) such that
s/t. Then we can formulate the extension axiom

_s, t=\x1 } } } \xk(s(x� ) � _xk+1 t(x� , xk+1)).

It states that every realization of s can be extended to a
realization of t. It was observed by Fagin [13] that every
extension axiom is almost surely true on random finite
structures, and that the rate of convergence is exponential.

Lemma 3.2. For every extension axiom _s, t , and all
sufficiently large n

+n(_s, t)�1&c&n

for some constant c>1.

Using a common model-theoretic technique known as a
back and forth argument, Gaifman [14] showed that the
collection T of all extension axioms over a vocabulary {
is an +0-categorical theory. This means that up to
isomorphism, T has precisely one countably infinite model
R, which is often called the countable random structure over
the vocabulary {. (When we deal with graphs R is also
called the Rado graph.) As a consequence the theory T is
complete. By compactness it follows that a first order
sentence � is true in R if and only if it is consequence of a
finite collection of extension axioms. Thus,

R < � iff +(�)=1.

This immediately implies the 0�1 law for first-order logic.
Moreover it proves that all probability sequences +n(�)
have exponential rate of convergence.

More precise results can be obtained by analysing the
properties of the countable random structure R. Using
again a back and forth argument, one shows that R is

287LOGICAL DEFINABILITY OF COUNTING FUNCTIONS
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class, (as are the classes of digraphs or tournaments) cf. [10].
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homogeneous: Given any two k-tuples a� and b� satisfying the
same atomic type, there exists an automorphism of R taking
a� to b� . This implies that for any atomic type s(x� ) and any
first-order formula �(x), either

R < \x� (s(x� ) � �(x� ))

or

R < \x� (s(x� ) � c�(x� )).

Here, we will need a stronger form of Theorem 3.1,
involving formulae rather than sentences.

Note that for a formula �(x� ) and a tuple u� of natural
numbers, the asymptotic probability +(�(u)) need no longer
be 0 or 1, even if � is atomic. For instance, for the formula
P(0), we have +n(P(0))=1�2 for all n.

However, it turns out that the limit +(�(u� )) always exists,
and that its value depends only on �(x� ) and on the equality
type of u� rather than on u� itself.

Theorem 3.3. Let �(x� ) be a first-order formula with free
variables x� =x1 , ..., xk and let e be an equality type of
k-tuples.

(i) There exists a dyadic rational3 qe such that for every
tuple u� # Nk satisfying e(u� ), the probability that a randomly
chosen structure U # 0(n) is a model of �(u� ) converges
exponentially fast to qe .

(ii) If � is existential and qe=0 then e(x� ) 7 �(x� ) is
logically invalid.

Proof. (i) Let X�, e be the set of atomic types
s(x1 , ..., xk) such that

R < \x� (s(x� )) � (e(x� 7 �(x� ))).

In particular e is the unique equality type compatible with
s # X�, e . On the other hand, for a given equality type e, the
number of atomic types s in k variables with e/s is 2m for
some m. Given a tuple u� # Nk realizing e, the probability
that u� also realizes s on a random structure U # 0(n)
is +n(s(u� ))=2&m, for all n>max ui (for smaller n, this
probability is not defined). Let

:(x� )= �
s # X�, e

s(x� ).

Thus +n(:(u� ))=|X�, e | 2&m=: qe for sufficiently large n.
On the other hand, the fact that in R, every atomic type

s(x� ) implies either �(x� ) or c�(x� ) gives

R < \x� (e(x� ) � (:(x) W �(x� ))).

Since all sentences true in R are true on finite random
structures with probability converging to one exponentially
fast, we infer that the sequence +n(�(u� )) converges exponen-
tially fast to +(:(u� ))=qe .

(ii) Let �(x� )=_y� .(x� , y� ) where . is quantifier-free.
Suppose that e(x� ) 7 �(x� ) is satisfiable. We will prove that
+(�(u� ))>0 for tuples u� of equality type e.

There exists a structure U and tuples u� and v� such that

U < e(u� ) 7.(u� , v� ).

Let s(x� ) and t(x� , y� ) be the atomic types of u� and (u� , v� ) in
U. The probability that a tuple u� of equality type e realizes
s is 2&l for some l.

The sentence

\x� ((s(x� ) � _y� t(x, y))

is a consequence of a finite collection of extension axioms,
so it holds almost surely in a random structure. As a
consequence, we also get that

+(\x� (s(x� ) � �(x� )))=1.

But this implies that for any tuple u� of equality type e

+(�(u� ))�+(s(u� ))=2&l>0. K

It turns out that 0�1 laws also hold for many important
extensions of first-order logic, such as fixed point logic,
infinitary logic L|

�| and some fragments of existential
second-order logic.

In particular, Kolaitis and Vardi [28] established the
0�1 law for L|

�| and proved that L|
�| admits quantifier

elimination on a dense class of models.

Theorem 3.4. For every formula �(x� ) in L|
�| there

exists a quantifier-free formula :(x� ) such that

U < \x� (�(x� ) W :(x� ))

for all but an exponentially decreasing fraction of structures
U, when the cardinality of U tends to infinity.

4. A PROBABILISTIC ANALYSIS OF *�1

Given that every function in *�1 has a FPTRAS, it is
interesting to determine the expressive power of this class.
We show that a probabilistic analysis, in the same style as
developed in [5] for optimization problems, can be carried
out also for *�1 and gives interesting non-expressibility
results.
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Definition 4.1. A second-order formula is purely existential
if it has the form _T� _y� . where . is quantifier-free.

Lemma 4.2. Every purely existential second-order
formula is equivalent to an existential first-order formula.

We omit the proof which is an easy exercise.
As in the last section, let 0(n) be a probability space of

{-structures with universe [0, ..., n&1]. Every numerical
invariant F on {-structures can be considered as a random
variable on each 0(n); we denote its expectation by E(F ).

Theorem 4.3 (Probabilistic Criterion for *�1). For all
F # *�1 there exists a polynomial p(n) such that

(i) Suppose F(U) is not polynomially bounded in |U|.
Then for structures U such that F(U){0, log F(U)t p( |U| ).4

(ii) Either F is identically 0 or E(F )=3(q(n)2p(n)) for
some polynomial q(n){0.

Proof. Let F # *�1 be defined by the expression

F(U)=|[(T� , c� ) : U < _y� .(T� , c� , y� )]|

where . is quantifier-free. For each structure U and tuple of
elements c� from U, let

Hc� (U)=|[T� : U < _y� .(T� , c� , y� )]|.

Thus, F(A� )=�c� Hc� (U). Let p(n)=p_(n). Recall that there
are 2 p(n) possible interpretations of T� on U when |U|=n.
Suppose that Hc� (U){0. Let k be the number of occurrences
of T� -atoms in .. If we fix an interpretation T� and witnesses
y� such that U < .(T� , c� , y� ) then we can change the truth-
value of any T� -atom not occurring in .(T� , c� , y� ) and the
formula will still hold in U. Thus it follows that for all c� , if
Hc� (U){0, then Hc� (U)�2&k2 p(n). Let S(U) be the number
of tuples c� for which Hc� (U){0. Then,

S(U)2 p(n)�F(U)�S(U)2&k2 p(n).

For F(U){0, we have nr2 p(n)�F(U)�2&k2 p(n). Since
F is not polynomially bounded, T� cannot be the empty
sequence, i.e., p(n){0. By taking logarithms, claim (i)
follows.

To prove the second claim we estimate the random
variable S on 0(n). We write S as the sum �c� Sc� of the
indicator random variables

Sc� (U)={1
0

if U < _T� _y� �(T� , c� , y� )
otherwise.

The formula _T� _y� �(T� , c� , y� ) is purely existential and there-
fore equivalent to a �1-formula. By Theorem 3.3(i),
E(Sc� ) converges exponentially to some dyadic rational qe

determined by the equality type e of c� . Let Se=�c� # e Sc� . If
qe{0 then E(Se) is exponentially close to qeGe(n), where
Ge(n) is the polynomial described by Lemma 2.6. If qe=0
then, by Theorem 3.3(ii), Se is identically 0. Therefore, if
qe=0 for all equality types e, then S, and hence also F is
identically 0. Otherwise, we infer by linearity of expectation
that E(S)=�e E(Se) which converges exponentially fast to
the polynomial q(n) :=�e qeGe(n). Thus, there exist
constants c, d such that

cq(n) 2 p(n)�E(F )�dq(n) 2 p(n).

If F is defined without constant parameters, i.e., by an
expression F(U)=|[T� : U < _y� .(T� , y� )]|, counting only
predicates, then an obvious modification of the argument
shows that either F=0 or E(F )=3(2 p(n)). K

Applications. We use the probabilistic criterion to show
that certain functions do not belong to *�1 .

v The function *dist2 assigns to a graph the number of
pairs of nodes with distance two. This function, mentioned
in [32], obviously is in *�1 . The related function
*dist>2, counting the pairs of distance at least three, is
easily seen to be in *>1 . Our criterion shows that
*dist>2 � *�1 , because *dist>2 is not identically 0, yet
it is known that E(*dist>2) converges exponentially to 0
(almost all graphs have diameter two).

v Let *cl(G) denote the number of cliques in G.
Obviously, *cl # *>1 . Since the expected number of k-

cliques in a random graph with n vertices is ( n
k) 2

&( k
2) it

follows that almost surely p(n)=o(*cl) for every polyno-
mial p. On the other hand, the maximal clique has almost
surely no more than 2 log n nodes [7], so *cl=o(2n)
almost surely. It follows that *cl � *�1 .

v A similar argument shows that the number of vertex
covers is in *>1&*�1 .

v By using Theorem 4.3(i) we can also obtain non-
expressibility results on classes of graphs with a finite
number of built-in relations such as, e.g., order. We
illustrate the method for *cl. Fix any function f (n) with
log n=o( f (n)) and f (n)=o(n) and let Gn be the graph
consisting of an f (n)-clique and n& f (n) isolated nodes. The
number of cliques in Gn is

*cl=n+2 f (n)& f (n)&1

namely the number of nodes (1-cliques) plus the number of
subsets of cardinality at least two of the f (n)-clique. Thus,
*cl(Gn) is not polynomially bounded, but log(*cl(Gn))=
o(n).
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Note that this argument still holds if the vocabulary is
expanded. It follows that *cl is not in *�1 even on classes
of graphs with built-in relations. In particular this holds for
the class of all ordered graphs.

4.1. Closure under Infinitary Reductions

Here is another simple application of the probabilistic
criterion: The expected number of Hamilton cycles in a
random graph with n vertices is (n&1)!2&n, so *ham �
*�1 . However, a better result than this is known. Simple
monotonicity arguments show that *ham # *>2&*�2

[32]. However, our argument can be expanded to give a
stronger result for which the previously used techniques do
not seem to suffice. Instead of *�1 we consider its closure
under logical reductions.

Definition 4.4. Let L and K be classes of logical
formulae. A formula � over a vocabulary { (possibly with
additional parameters T� , c� ) is in LK if it can be obtained
from a formula . # L over the vocabulary { _ [P1 , ..., Pk]
and formulae :1(z� 1), ..., :k(z� k) # K over the vocabulary {
(without additional parameters!) by substituting :i (x� ) for
all occurrences of atoms Pi (x� ) in ., i.e.,

�(T� , c� )=.(T� , c� , :1 �P1 , ..., :k�Pk).

Theorem 4.5 (Extended Probabilistic Criterion). Let
K�L|

�| . Then, for all F # *�K
1 there exists a polynomial

p(n) such that either E(F ) converges to 0 exponentially fast,
or E(F )=3(q(n)2 p(n)) for some polynomial q(n){0.

Proof. By Theorem 3.4 we have that for every formula
:(x� ) # L|

�| there exists a quantifier-free first-order formula
;(x� ) such that U < \x� (: W ;) for all but an exponentially
decreasing fraction of structures U. So probabilistically, the
predicates from K can be eliminated, i.e., every formula in
�K

1 is equivalent to a formula from �1 almost surely. K

In particular, the extended criterion applies to *�FP
1

since fixed point logic is contained in L|
�| . As a conse-

quence *ham is not even in *�FP
1 . The same applies to the

number of cliques and the number of vertex covers.

Remark. We note that it is important that we closed
*�1 under logical reductions, and not under reduction
defined by resource bounded Turing machines (such as, e.g.,
any kind of polynomial-time reductions), since the latter do
not preserve asymptotic probabilities.

5. THE POWER OF LOGICAL COUNTING CLASSES

We now investigate the power of *FO and classes *L
for logics L that extend FO. We first consider functions
definable by existential second-order logic �1

1 , and relate it
to the class spanP.

Theorem 5.1. On ordered finite structures,

spanP=*:
1

1
=*:

1

1 \`
2+ .

Here, �1
1 (>2) means the class of all �1

1-formulae whose
first-order part is in >2 . The proof is a straightforward
modification of the proof of Fagin's Theorem [12]. It is
known that *P=spanP if and only if UP=NP. Thus, we
cannot separate *FO from *�1

1 on ordered structures,
short of proving that P{NP. The matter is different on
arbitrary finite structures, where model-theoretic methods
suffice to separate the two classes.

Theorem 5.2. On arbitrary finite structures,

*FO / *:
1

1
.

Proof. The characteristic function /C of any set of finite
structures C # NP is in *�1

1 . Indeed, by Fagin's Theorem
there exists a formula � # �1

1 such that C=[U : U < �].
Choose a monadic predicate variable T not occurring in �.
Then

/C(U)=|[T : U < � 7 \xTx]|.

On the other hand, let C=EVEN, i.e., the set of finite
structures over the empty vocabulary with universes of even
cardinality. Assume, towards a contradiction, that

/C(U)= |[T : U < .(T )]|

where .(T ) is first-order. This means that on every structure
U of even cardinality there exists precisely one T such that
U < .(T). on such a structure, every permutation ? of the
universe is an automorphism, so U < .(?T ) as well (where
?T=[x� : ?x� # T]). Thus T must be fixed by all permuta-
tions of the universe. The only predicates that have this
property are unions of equality types (because the group of
all permutations operates transitively on each equality
type). Since the number of equality types is bounded by a
constant, so is the number of unions of these equality types,
and moreover, each such union u is definable by a quantifier-
free formula :u(x1 , ..., xk). We then construct, for each u, the
formula .(:u�T ) by replacing all occurrences of atoms T(z� )
in . by :u(z� ).

It follows that the formula _T.(T), whose models��
according to our assumptions��are precisely the structures
of even cardinality, is equivalent to the first-order formula
�u .(:u �T). But this contradicts the well-known fact that
Even is not first-order expressible. K
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Corollary 5.3. On arbitrary finite structures,

*FO / *P.

Theorem 5.2 is not limited to first-order logic, but applies
to any logic L which does not express Even. In particular
this is the case for every logic that admits a 0�1 law.

Corollary 5.4. On arbitrary finite structures

*:
1

1
&*L|

�|{<.

On unordered finite structures, least fixed point logic FP
is intermediate between first-order and existential second-
order logic: FO / FP / �1

1 . However, for defining counting
functions, FP is no more powerful than first-order logic.

Theorem 5.5. *FP=*FO.

Proof. This is a consequence of the fact that every FP-
definable query is implicitly definable in first-order logic
[25]. In particular, this implies the following: Let F # *FP
be defined by the expression

F(U)=|[(P� , c� ) : U < �(P� , c� )]|

where �(P� , c� ) # FP. Then there exists a first-order formula
.(Q� , P� , c� ) with a new sequence Q� =Q0 , ..., Qr of predicate
variables, such that for all expansions (U, P� , c� ) of U, there
is precisely one sequence of relations Q� with

U < .(Q� , P� , c� )

and moreover, for that sequence Q� , it holds that

U < �(P, c� ) iff U < \xQ0x.

It follows that for all U,

F(U)=|[(Q� , T� , c� ) : U < .(Q� , T� , c� ) 7 \xQ0x]|.

Does FO collapse to *>2 unordered structures? The
proof given in [32] for the ordered case does not extend to
the unordered case, since it depends on encodings of Turing
machine computations. A straightforward use of Skolem
functions also does not work because Skolem functions are
not unique. However, a more sophisticated application of a
Skolem function argument (taking at each step the union of
the graphs of all applicable Skolem functions) shows that
every function in *FO is indeed definable in *>2 . To
summarize, we can complement Theorem 1.1 by

Theorem 5.6. On arbitrary finite structures,

*:
0

/ *:
1

/ *`
1

/ :
2

/ *`
2
=*FO / *P.

Next we discuss the problem of whether *�1
1 captures

spanP on unordered structures. The analogy to NP suggests
that this might be the case, since in �1

1 an ordering can be
introduced by existential quantification. But the straight-
forward extension of the proof of Theorem 5.1 does not
work, since different linear orderings of the input structure
will in general produce different encodings of the output.

In fact it turns out that *�1
1 does not capture spanP on

unordered structures. Even worse, we will prove that some
very simple functions are not definable even by the most
sophisticated logics. We need some facts on group actions of
the symmetric group.

Recall that a group action of a group (G, } ) on a set S is
an operation b : G_S � S (usually written in infix notation)
such that for all g, h # G and a # S, g b (h b a)=(g } h) b a, and
for the identity element id of G, id b a=a. We will write ga
rather than g b a whenever the action can be inferred from
context. If G is a subgoup of Sn (the symmetric group on
n=[0, 1, ..., n&1]), there is a natural group action of G
on n. A group action is k-transitive if whenever a1 , ..., ak is
a sequence of distinct elements in S and similarly for
b1 , ..., bk , there is a g # G such that gai=bi for i=1, ..., k.

Lemma 5.7. If k�n then the natural group action of Sn

on n is k-transitive. If k+2�n then the natural group action
of An (the alternating subgroup of Sn) is k-transitive.

Proof. Let a1 , ..., ak be a sequence of distinct elements of
n, and similarly for b1 , ..., bk . Extend both these sequences
to complete listings a1 , ..., an and b1 , ..., bn of all the
elements of n. The mapping g taking each ai to bi is an
element of Sn satisfying the condition in the definition of
k-transitivity. If k+2�n, form h in the same way as g but
with bn&1 and bn interchanged in the second sequence. Then
either g or h is an element of An satisfying the condition in
the definition of k-transitivity. K

Let e be the equality type of k pairwise unequal variables
and n be the structure with universe n over the empty
vocabulary. Then the natural group action of Sn on en takes
the pair consisting of g and (a1 , ..., ak) to (ga1 , ..., gak). We
define by extension the natural group action of Sn on
the power set of en. By the previous lemma and a little
elementary group theory we have the following Proposition.

Proposition 5.8. Suppose e is the equality type of k
pairwise unequal variables and n�max(5, k+2). For each
nonempty, proper subset T of e n, Sn(T)=[gT : g # Sn] (the
orbit of T ) contains at least n elements.

Proof. Let m be the number of elements in Sn(T ). Thus,
Sn(T ) consists of elements h1 T, ..., hmT where h1=id and
h2 , ..., hm # Sn&[id]. Now every g # Sn is associated with a
permutation ĝ of Sn(T )=Sm where ĝ(hiT)=(ghi)T. The
mapping taking g to ĝ is a group homomorphism from
Sn to Sm . The kernel of this homomorphism is a normal
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subgroup of Sn . Since n�5 there are only three normal
subgroups of Sn ; they are Sn , An , and [id]. The kernel
cannot be Sn because for every g in the kernel, ĝ is the
identity and in particular gT=ĝ(h1 T)=T, but from
the previous lemma, if a=(a1 , ..., ak) # T and b=
(b1 , ..., bk) � T, there is a g # Sn such that ga=b, hence g is
not in the kernel. Similarly, the kernel cannot be An . There-
fore, the kernel is [id] and the homomorphism is an embed-
ding of Sn into Sm . This gives the desired result that
m�n. K

Theorem 5.9. There exist polynomial-time computable
functions which are not in *L for any logic L.

Proof. The only property of L that we use is that L does
not distinguish between isomorphic structures. As in the
proof of Theorem 5.2, we consider functions on structures
over the empty vocabulary. That is, we restrict to structures
of the form n=[0, ..., n&1]. Suppose that F # *L. By
definition,

F(n)=|[(T� , c� ) : n < �(T� , c� )] |

for some � # L. If L is closed under 7 , 6 and first-order
quantifications then we can replace constants and combine
relations so that

F(n)=|[T : n < �(T )]|

for some � # L. There is no loss of generality in making this
assumption since we can close L under these operations and
then produce a polynomial time computable function not in
the expanded *L.

We show that if F(n) is unbounded, then F(n)�n for all
sufficiently large n. Let k be the arity of T. There are only a
bounded number of equality types of k-tuples and therefore
only a bounded number of unions of equality types of
k-tuples. Since F(n) is unbounded, for every sufficiently
large n there is a T such that n < �(T ) and T is not a union
of equality types. Thus, for such an n and T there exists an
equality type e of k-tuples such that T & e n is a nonempty,
proper subset of en.

We wish to show that the orbit of T under the group
action of Sn is of size at least n. It suffices to show that the
orbit of T & en is of size at least n. We may assume that e is
the equality type of pairwise unequal variables (otherwise,
eliminate redundant variables and reduce the arity of T _ en

accordingly). By the previous proposition, the orbit of
T & en is of size at least n for sufficiently large n.

In particular, the function G(n)=n&1 is not in *L for
any logic L. K

The arguments in the proofs of Theorem 5.2 and
Theorem 5.9 also yield the following technical lemma which
we state here for future reference.

Lemma 5.10. Let L$FO be a logic that is closed under
first-order operations and let F # *L be a function on
structures over the empty vocabulary. If F is bounded by a
constant, then for every k # N, the set [n : F(n)=k] is
definable in L.

Proof. Let F(n)=|[T : n < �(T )]| for some � # L.
Since F is bounded, the arguments given above imply that
for some n0 and all n�n0 , every relation T with n < �(T )
is a union of equality types. The case where n<n0 can be
handled by a separate first-order formula, so we may
assume that n is indeed suffiently large. Let U be the set of
unions of equality types of the appropriate arity and, for
u # U, let :u(x� ) be a quantifier-free formula defining u. The
condition that F(n)=k can be defined by a formula stating
that there exist precisely k unions u of equality types that
satisfy �. More formally,

F(n)=k � �

|J |=k
J�U

�
u # J

�(:u �T) 7 �
u # (U&J)

c�(:u�T ).

Thus, the set [n : F(n)=k] is definable in L. K

Remark. We use the term logic here in the sense of
model theory (see [4]). Our definition is very liberal: a logic
L associates with each vocabulary { a set L({) of sentences
and a satisfaction relation < between {-structures and
sentences � # L({). Depending on the context, some condi-
tions may be imposed, e.g., that L({) be recursive. One
condition always present, and the only one we use in the
proof of Theorem 5.9, is the invariance of the satisfaction
relation under isomorphisms, i.e., U < � and U$B imply
B < �.

In descriptive complexity theory, it is often assumed that
certain fixed relations, e.g., an ordering, are present. We do
not consider such built-in relations as part of the logic (as,
say, equality is), but as a means to restrict attention to a
particular class of finite structures such as the class of
ordered finite structures. Clearly non-expressibility for
ordered structures implies non-expressibility for arbitrary
structures, but not vice versa. For instance, in least fixed
point logic FP, we cannot define Even, but on ordered
structures, the order can be used to search through the
structure and express not only Even, but all polynomial-
time computable queries [21, 35].

Theorem 5.9 pertains to the class of arbitrary finite
structures and does not hold for the class of ordered finite
structures (where *FO=*P).

An interesting question arises concerning ``logics with
numbers'' such as fixed point logic with counting (FP+C).
This logic was originally proposed by Immerman. It is
defined over two-sorted structures U*=U _ (n, �) where
U, the first sort, is a {-structure and (n, �), the second
sort, is an ordered structure of the same cardinality. The
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connection between the two sorts is given by counting terms
*x[.(x)] interpreted as the number of elements x satisfying
.. The logic (FP+C) is the closure of first-order logic
over these two-sorted structures under counting terms (or
equivalently, counting quantifiers) and under the rule for
defining inflationary fixed points (over both sorts).
Although this logic fails to capture polynomial-time [9], it
is interesting and provides a natural level of expressiveness
between FP and polynomial time, with many equivalent
characterizations [17]. (FP+C) is a logic in our sense:
for every vocabulary { we have a set of sentences
� # (FP+C)({); given a {-structure U we determine
whether U < � by interpreting � in the two-sorted exten-
sion U* in the obvious way.

Thus, Definition 2.2 gives a class *(FP+C) of counting
functions, namely the class of functions

F(U)=|[(P� , c� ) : (U, P� , c� ) < �]|

where � is a sentence in (FP+C) over the vocabulary
{ _ [P� , c� ]. Note that P� and c� range over U, not over U*.

Clearly, *(FP+C) is more powerful than *FP=*FO
since it contains (the characteristic function of) Even. On
the other hand, Theorem 5.9 tells us that *(FP+C) fails to
define some simple functions, such as n&1.

Question. What is the power of *(FP+C)?

We could consider a variant of *(FP+C), deviating
from Definition 2.2 by allowing the counting of objects
ranging over both sorts. The proof of Theorem 5.9 does not
extend to this class. We can, for instance, define the function
n&1 by counting the elements in the second sort distinct
from 0:

n&1=|[i : U* < _ j( j<i)]|.

However, it should be noted, that in this case we again
consider a restricted class of structures only. This extended
definition for *(FP+C) is also somewhat pathological,
because the operator * is no longer monotone: while
(FP+C)��1

1 , we have *(FP+C) �3 *�1
1 . Nevertheless

it is interesting to determine the power of this variant of
*(FP+C).

6. CAPTURING *P AND spanP
ALMOST EVERYWHERE

Theorem 5.9 reveals a general weakness of classes *L on
structures with many automorphisms. However, in a
probabilistic sense, *�1

1 comes very close to capturing
spanP, provided that the underlying vocabulary has at least
one binary predicate. A similar result holds for *P and
*FO. For simplicity of exposition we will reason about
graphs, but our arguments apply mutatis mutandis to

structures of any non-monadic relational vocabulary. As in
the previous section, we consider unordered structures.

Theorem 6.1. Let F be a graph invariant.

(i) If F # *P, then there exists a function F $ # *FO
such that F=F $ on almost all graphs.

(ii) If F # spanP, then there exists a function F $ # *�1
1

such that F=F $ on almost all graphs.

The proof of this Theorem relies on fundamental results
related to the graph isomorphism problem.

Definition 6.2. Let G be an class of graphs closed
under isomorphism. A canonical ordering on G is a function
mapping each G=(V, E) in G to a linear order �G on V
such that any isomorphism between graphs G and G$ in G
is also an isomorphism between the ordered graphs
(G, � G) and (G$, �G$).

Not every class of graphs has a canonical ordering. A
necessary and sufficient condition for G to have a canonical
ordering is that every graph in G be rigid (i.e., have just
one automorphism, the trivial automorphism). Finding a
canonical ordering on a class G of rigid graphs is at least
as difficult as the graph isomorphism problem on G.
Nonetheless, Babai, Erdo� s and Selkow [2] showed the
following.

Theorem 6.3. There is a class G of graphs for which the
following conditions hold.

(i) Almost every graph belongs to G.

(ii) G has a polynomial-time computable canonical
ordering.

Although the proof of this takes a considerable amount of
calculation, the ordering is simple to describe. Consider a
random graph G=(V, E) on n vertices. Order V by degree
in descending order. Let H be the first W3 log nX vertices in
this order. Almost surely the two following conditions hold.

1. The degrees of vertices in H are distinct and strictly
greater than the degrees of vertices in V&H.

2. Each of the vertices in V&H is connected to the
vertices of H in a unique way.

Let G be the set of graphs G satisfying these two
conditions. The canonical ordering �G is given by listing
elements of H by descending degree and then the listing
elements of V&H lexicographically according to their
connections to H. Clearly �G can be computed in
polynomial time on G.

Proof of Theorem 6.1. Let G and �G be as in the
preceding Theorem. There is a deterministic polynomial-
time Turing machine M which, given the encoding of a pair
(G, �) where G # G, decides whether � is the canonical
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ordering �G . Thus, there is a first-order formula � over the
vocabulary [E, �, S] such that for graphs G # G

(G, �, S) < � iff

(i) S encodes the (unique) computation of M on
code(G, �);

(ii) M accepts code(G, �).

Whenever G # G there are unique relations � and S such
that G < �(�, S); these relations are �G and the relation S
encoding the computation of M on code(G, �G). Let F
be a graph invariant in *P (respectively, spanP) defined
by a NPTM machine. By Theorem 1.1 (respectively,
Theorem 5.1), there is a first-order (respectively, existential
second-order) formula �(E, �, T� , c� ) such that for any fixed
linear order �, F(G)=|[(T� , c� ) : G < �(E, �, T� , c� )] |. Then
for all G # G,

F(G)=|[(�, S, T� , c� ) : G < �(E, �, T� , c� ) 7 �(�, S)] |. K

7. CLOSURE PROPERTIES

In the last few years there has been a considerable effort
to investigate closure properties of function classes like *P
and spanP. For instance, it has been shown that these
classes are closed under (a general form of) addition and
multiplication, as well as under (a restricted form of)
exponentiation and binomial coefficients. On the other
hand it has also been proved that these classes are not closed
under other operations, like subtraction, division and
numerous others, unless certain generally believed assump-
tions in complexity theory fail. In this section we investigate
the status of these closure properties for logically defined
counting classes *L.

In many cases, the most general form in which closure
properties (e.g., for *P) have been established, involves the
function class UPF.

Definition 7.1. A function G belongs to UPF if there
exists a nondeterministic polynomial-time Turing machine
which on every input x has precisely one accepting
computation path and G(x) is the output produced by that
path.

Lemma 7.2. Let f # UPF be a function into N. Then
f # *P.

Although the definitions of UPF makes sense for
arbitrary functions, we will need to consider only UPF-
functions into the natural numbers whose values G(x) are
bounded by a polynomial in |x|. The following Theorem
summarizes most known closure properties for *P, as they
appear in [6]. By default, F and G are functions mapping
words over some alphabet 1 to natural numbers.

Theorem 7.3. Let F, F $ # *P and G be a polynomially
bounded function in UPF. Then the following functions
belong to *P:

(i) Addition: F+F $.

(ii) Multiplication: FF $.

(iii) Generalized addition: � | y|=|x|k F(x, y).

(iv) Generalized multiplication: >i<|x|kF(x, i).5

(v) Powers: F G.

(vi) Binomial coefficients: ( F
G).

(vii) Exponentiation: 2F and 2F&1, provided F(x) is
bounded by a polynomial in |x|.

We want to define analogous closure properties for
classes *L. By this we mean that the closure properties
should make sense for any L and any class of structures, but
that for the special case where we have only ordered
structures, the logical closure property for *FO is the same
as the corresponding one for *P.

We start with a simple observation:

Proposition 7.4. For every logic L closed under positive
first-order operations, the class *L is closed under addition
and multiplication.

Proof. Let F, G # *L be defined by the formulae �F (T )
and �G(S) in the sense that f (U)=|[T : U < �F (T)] |, and
similarly for G. Without loss of generality we assume that S
and T are distinct relation symbols of the same arity. Then

(F+G)(U)= |[(T, R) : U < (\xRx 7�F (T))

6 (\xcRx 7 �G(T ))]|

(FG)(U)= |[(T, S) : U < �F (T ) 7 �G(S)] |.

Proposition 7.5 (Closure under Generalized Addition).
Let F be a function in *L over the vocabulary { _ [T]
(where T is a k-ary predicate symbol ). Then the function
G(U)=�B =(U , T ) F(B) also belongs to *L.

Proof. Let F be defined by the expression

F(B)=|[(S� , c� ) : B < �(S� , c� )]|.

Here � is a formula over { _ [T] with parameters S� and c� .
But � can also be considered as a formula over the
vocabulary { with parameters T, S� , c� defining the function

G(U)=|[(T, S� , c� ) : U < �(T, S� , c� )]|. K

In the sequel, we assume that L contains FO and is closed
under positive first-order operations.
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Proposition 7.6 (Closure under Generalized Multiplication).
Let F be a function in *L over the vocabulary { _ [a� ] (where
a� =a1 , ..., ak). Then the function G(U)=>B =(U , a� ) F(B)
also belongs to *L.

Proof. Let F be defined by the expression

F(B)=|[T : B < �(T )]|

where � is a formula over { _ [a� ] with parameter T. Let S
be a new relation symbol with arity(S)=k+arity(T ).
Given a structure U and instances S and a� we define
Sa� =[b� : (a� , b� ) # S]; moreover we denote by �(Sa� �T ) the
formula obtained from � by replacing every occurrence of
T(z� ) by S(a� , z� ). We consider \a� �(Sa� �T ) as a formula over
{ with parameters S and define

G(U)=|[S : U < \a� �(Sa� )] |= :
B=(U, T )

F(B).

Since S=�a� [a� ]_Sa� it follows that the number of
appropriate predicates S is the product over all a� of the
number of Sa� satisfying �; therefore,

G(U)= `
B=(U, a� )

F(B). K

The idea of this proof is useful to establish other closure
properties as well. To define them we need a model-theoretic
analogue to the class UPF. There is a related notion in
model theory (which was studied long before the advent of
complexity theory): implicit definition.

Definition 7.7. A formula �(T0 , ..., Tm) over the
vocabulary { _ [T0 , ..., Tm] is an implicit definition of a
query Q on a class C of {-structures if for all structures U # C

v there exists a unique tuple T0 , ..., Tm such that
U < �(T0 , ..., Tm);

v if U < �(T0 , ..., Tm) then Q(U)=T0 .6

A well-known result in classical model theory is Beth's
Definability Theorem (see e.g., [19, p. 301]) stating
that every query on the class of all (finite and infinite)
{-structures implicitly definable in first-order logic is also
explicitly first-order definable, i.e., definable by a formula
.(x� ) such that Q(U)=[a� : U < .(a� )] for every U # C.
There also has been considerable effort in model theory to
investigate the status of analogues to Beth's Theorem for
more powerful logics than FO (see [4]). For first-order
logic, Beth's result mostly serves as an excuse to disregard

implicit definitions, since they don't give additional
expressiveness. However, on finite structures, Beth's
Theorem fails, and implicit definitions provide more
expressive power than explicit ones. In fact, implicit
definability is closely related to complexity classes like UP
and in particular to the existence of one-way functions, as
has been shown by Kolaitis [25] and Gra� del [16]. Also, we
have used in the proof of Theorem 5.5 the fact that every
query definable in least fixed point logic is implicitly first-
order definable.

Here rather than implicit definitions of queries, we need
implicit definitions of polynomially bounded functions.
Accordingly, we introduce a new class.

Definition 7.8. The class of polynomially bounded,
implicitly L-definable functions into N, denoted pbi(L), is
the class of functions G which assigns to a structure U the
cardinality of an implicitly L-definable query on U. This
means that there is an implicit definition �(T0 , ..., Tm) such
that G(U)=|T0 | for the unique tuple T� with U < �(T� ).

Proposition 7.9. Let C be a class of ordered structures.

(i) A query Q on C is in UPF if and only if it is implicitly
definable in first-order logic.

(ii) A polynomially bounded function from C into N is in
UPF if and only if it is in pbi(FO).

The proof is straightforward.

Proposition 7.10 (Closure under Powers and Binomial
Coefficients). Let F # *L and G # pbi(L). Then the
functions F G and ( F

G) are in *L.

Proof. Let F(U)=|[R : U < �(R)] | and G(U)=|T0 |
for the unique tuple T0 , ..., Tm such that U < .(T� ), where
�(R) and .(T� ) are formulae from L. Let S be a new
predicate symbol with arity(S)=arity(T0)+arity(R).

We define new functions H and J by the expressions

H(U)=|[(S, T� ) : U < .(T� ) 7 :(S, T� )]|

J(U)=|[(S, T� ) : U < .(T� ) 7 :(S, T� ) 7 ;(S, T� )] |

where

:(S, T� )=\x� (cT0x� � \z� cSx� z� ) 7 \x� (T0x� � �(Sx� �R))

;(S, T� )=\x� \y� ((x� {y� 7 T0x� 7T0 y� ) � Sx� {Sy� ).

Here Sx� is defined in the same way as in the previous
proof, and Sx� {Sy� is shorthand for an appropriate first-
order formula expressing this condition. Note that there is
precisely one tuple T� satisfying ., so we just have to count
the number of appropriate S. For x� � T0 , only Sx� =< is
appropriate. For x� # T0 , the number of appropriate Sx� is
precisely F(U). In the defining expression for J(U) we have
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the additional condition that all Sx� (for x� # T0) are distinct.
Thus, it follows that H=F G and J=( F

G). K

Proposition 7.11 (Closure under Exponentiation). Let
F # *L be defined by an expression F(U)=|[a� : U < �(a� )]|
where � # L. Then the functions 2F and 2F&1 are in *L.

Proof. The defining expressions are

2F(U )=|[T : U < \a� (T(a� ) � �(a� ))]|

2F(U )&1=|[T : U < \a� (T(a� ) � �(a� )) 7 _a� T(a� )]|. K

We now turn to closure properties that probably do not
hold for *P and spanP.

Definition 7.12. Let F be a class of functions into N.

(i) F is closed under span of k functions if for all
f1 , ..., fk # F, function

span( f1 , ..., fk)(x) :=|[ fi (x) : i=1, ..., k] |

is in F.

(ii) For any tuple a� =a1 , ..., ak of natural numbers, let
plu(a� ) be the set of elements that occur most often in a� , i.e.,
the set of all b such that for all j�k, |[i : ai=aj]|�
|[i : ai=b]|. The class F is closed under weak plurality of k
functions if for all f1 , ..., fk there exists a g # F such that
g(x) # plu( f1(x), ..., fk(x)) for all x.

(iii) F is closed under strong plurality of k functions if for
all f1 , ..., fk the function

plu*( f1 , ..., fk)(x) :=minplu( f1(x), ..., fk(x))

is in F.

(iv) F is closed under medians if for every odd k and all
f1 , ..., fk # F, the function med( f1 , ..., fk), which maps x to
the median of ( f1(x), ..., fk(x)) is in F.

Ogiwara and Hemachandra [29] have proved that the
polynomial-time hierarchy, and numerous other complexity
classes, collapse to UP if and only if *P should be closed
under any (and hence all) of the following operations:
subtraction, division, span, weak plurality and strong
plurality. A slightly less drastic collapse of complexity
classes would occur, if *P should turn out to be closed
under medians or under maximal and minima. We refer to
[29] for more details.

These closure properties do not hold for *FO.

Proposition 7.13. *FO is not closed under any of the
operations subtraction, division, span, weak and strong
plurality, minima and median.

Proof. Obviously the functions n and 1 belong to *FO,
but the proof of Theorem 5.9 shows that n&1 does not. For

every F # *P, the function n !F belongs to *FO. In
particular, n ! (the number of linear orderings) belongs to
*FO. Therefore, if *FO were closed under division, then
*P�*L, contradicting Theorem 5.9.

Let C=[n : n even]. We know that the constant
functions and the functions n !/C and n !/C� are in *FO
(count the pairs (<, T ) such that < is a linear order and
T is the set of even elements with respect to < such that T
does not contains (resp. contains) the maximal element).
Further *FO is closed under addition.

Note that

/C=min(n !/C , n !/C� +1)=med(0, 1, n !/C).

Since /C � *FO, we infer that *FO is closed neither under
minima nor medians. (Note that the same argument applies
to any set of finite structures over the empty vocabulary
such that C # NP & Co-NP, but /C � *FO.)

Next, it follows by Lemma 5.10 that the function 1+/C

does not belong to *FO. Since span(0, n !/C )=1+/C it
follows that *FO is not closed under span.

Finally, let the functions f1 , ..., f5 be defined as follows:
fi=in !/C� for i=1, 2 and fi=in !/ C for i=3, 4, 5. Then the
only function g such that g(n) # plu( f1(n), ..., f5(n)) is /C .
Therefore, *FO is not closed under weak and strong
plurality. K

Note that this result does not depend on any unproved
hypothesis from complexity theory.
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