
INFORMATION AND CONTROL 53, 52--65 (1982) 

Derivational Complexity of Context-Free Grammars 

SEPPO SIPPU * 

University of Helsinki, Helsinki, Finland 

Derivational complexity of  context-free grammars  is studied. Minimal grammar-  
dependent upper bounds are determined both on the derivational time complexity, 
that is, the number of derivation steps needed to derive a sentence of given length, 
and on the derivational space complexity, that is, the length of the longest sentential 
form needed in the derivation. In addition to general context-free grammars,  these 
upper bounds are also determined specifically for e-free grammars,  non-left- 
recursive and non-right-recursive grammars ,  and for LL(k) grammars.  The results 
might prove useful in parser optimization, because the complexity of  a parser is 
closely related to the derivational complexity of the underlying context-free 
grammar.  

1. INTRODUCTION 

The context-free grammars of programming languages are usually required 
to be "parsable," that is, LL(k) or LR(k) grammars or their variants. These 
grammars have the virtue of possessing deterministic parsing algorithms of a 
linear time complexity. That is, for each sentence w derived by the grammar 
a parse tree can be produced deterministically in time c ] w] + d, where ] w] is 
the length of w, and ¢ and d are constants that depend only on the grammar 
in question. 

There is a close correspondence between the time complexity of a parser 
and the derivational time complexity of the underlying context-free grammar, 
that is, the number of derivation steps needed to derive a sentence in the 
language. In processing a sentence w, an LR(k) parser, for example, 
performs as many reduce actions by grammar productions as is needed to 
construct the parse tree for w. Similarly, an LL(k) parser performs the same 
number of produce actions. In addition, both parsers perform ]w I shift 
actions. Thus, the time complexity of a parser normally equals ]w I plus the 
derivational time complexity of the underlying grammar. An almost equally 
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close correspondence exists between the space complexity of a parser and the 
derivational space complexity of the grammar, that is, the length of the 
longest sentential form needed in the derivation. 

In the literature on parsing theory, a great deal of effort has been made to 
develop optimization methods that decrease the complexity of a parser by 
some constant factor (see, e.g., Aho and Ullman, 1973 and Pager, 1977). As 
the problem of parser optimization reduces in a simple way to the problem 
of decreasing the complexity of the underlying grammar, this invites us to 
determine the exact complexity of context-free grammars, that is, how the 
constants c and d in the complexity bound c I w l + d depend on the grammar 
in question and how they vary when different classes of parsable grammars 
are considered. 

In the present paper we determine tight time and space bounds on the 
grammar-dependent constants c and d in the cases in which the grammar in 
question belongs to one of the following classes: (1) general context-free 
grammars, (2) &free grammars, (3) non-left-recursive grammars, (4) non- 
right-recursive grammars, and (5) LL(k) grammars. The bounds given are 
minimal in that in each case there is a sequence of grammars for which the 
bounds are actually reached in the derivation of every sentence. 

We begin the presentation with &free grammars, and determine their 
complexity in Section 2. In Section 3 we determine the complexity of 
deriving the empty string ~, and in Section 4 we combine these results to 
obtain the complexity of general context-free grammars. In Section 5 we 
consider the complexity of leftmost and rightmost derivations, and in 
Section 6 we make some concluding remarks and pose some open problems. 

In the literature, the notion of derivational complexity has gained little 
attention. Even the fundamental fact that the time complexity of context-free 
grammars (and parsers of parsable grammars) indeed is linear in the length 
of the sentence is usually taken for granted and mentioned without proof. 
Aho and Ullman (1972) deduced the linear time complexity of canonical 
LR(k) parsers indirectly from a result concerning looping configurations in 
general push-down automata. Hopcroft and Ullman (1979) mentioned the 
linear time complexity of context-free grammars as a "starred" exercise. 
Harrison (1978) and Heilbrunner (1981) proved the linear time complexity 
for context-free grammars, but their upper bounds were not the best possible. 

Book (1971) considered derivational complexity from a language theoretic 
point of view and developed a general complexity theory by using grammars 
in place of Turing machines (also see Salomaa, 1973). From the point of 
view of pure language theory, the notion of derivational complexity is rather 
trivial in the case of context-free grammars, because any (nonempty) 
sentence w in a context-free language can always be derived in real time, that 
is, in I w I derivation steps, if a Greibach normal-form grammar is used. 
However, this result is not so useful in parsing and compiling theory, where 
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we are interested not only in the language generated but also in the particular 
grammar used. 

We conclude this section by reviewing some basic concepts concerning 
strings and context-free grammars. We make free use of the notations and 
definitions given in Aho and Ullman (1972). We stipulate that A, B, and C 
denote nonterminals, a and b denote terminals, X denotes either a nonter- 
minal or a terminal, w denotes a terminal string, a and 09 denote general 
strings, n denotes a production string, and e denotes the empty string. The 
"(general) derives" relation of a grammar G is denoted by o .  If rt is a 
production string, = ~  denotes the derives relation that uses the production 
string n. The language generated by a symbol X of G is denoted by Lc(X  ), 
or L(X), for short. A grammar is e-free if it has no production with an empty 
right-hand side. A grammar G is left-reeursive (resp. right-recursive) if 
A =~+ Aa (resp. A =~+ aA) holds in G for some nonterminal A and string a. 

A sequence of strings (a0 ..... an) is a derivation of a n from a o in G if 
a i : > a ; +  1 holds in G for all i = 0  ..... n - 1 .  We say that n is the time 
complexity, and max{lai]]i = 0 ..... n} the space complexity, of the derivation. 
String a derives string a' in time t (resp. in space s) if a '  has a derivation 
from a of time complexity at most t (resp. space complexity at most s). a 
derives a' simultaneously in time t and in space s if a '  has a derivation from 
a of time complexity at most t and space complexity at most s. By the time 
complexity (resp. space complexity) of  deriving a' from a we mean the least 
integer n such that a derives a '  in time n (resp. in space n). For convenience, 
we take the liberty of speaking of "derivations" a *~ a '  and of their time and 
space complexities when we actually mean the corresponding string 
sequences (a ..... a ' ) .  

2. COMPLEXITY OF g -FREE GRAMMARS 

Let m >/1 and let G m be the grammar with the productions 

A 1 ---~A 2 

Az-+ A 3 

A m ~ a I A I A 1 .  

L (A1)=a  + and AI derives the sentence a k (i.e., the string of ka's)  
simultaneously in time 2 m k -  m and in space k, for all k >/1. 

In fact, we have 
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THEOREM 1. Le t  G be an e-free grammar with m nonterminals. I f  X is a 
symbol o f  G and w is in L (X) ,  then X derives w simultaneously in time 

and in space 

2mlwl-m 

[w]. 

Moreover, these bounds are minimal. 

Proof. Firs t  we note that  the space complexi ty  of  any derivat ion in G is 
]w[, because in an e-free g rammar  no derivat ion step can decrease the length 
of  the sentential form. 

We now prove, by induction on [w I, that  whenever w is in L(X) ,  then X 
derives w in time 2m ] w[ - m. If  [ w] = 1 and X=~ ~ w, then the e-freedom of 
G implies that  ~r can contain only unit product ions of the form A-+  B or 
B ~ w. Thus, if zr is the shortest possible product ion string such that  X ~  ~ w, 

then I~1 ~< m = 2m Iwl-  m, because the appearance  in zc of two product ions  
of  the same nonterminal  would imply an unnecessary loop. 

We may  thus assume that  Iwl > 1 and, as an induction hypothesis ,  that 
whenever w' is in L ( X ' )  and Iw't  <lwl, then X '  derives w' in time 
2m I w'l - m. If  x *~ w, then there is a product ion r = A -~ X l . . .  X , ,  n ~> 2, 
product ion strings ~r, ~rl,..., ~z n and terminal  strings w~,..., w, such that  

F 7r i 

X ~  A :. X t ... X , ,  X i ~ w i for all i, and wl " .  wn = w. 

Here zr can contain only unit product ions  of the form B ~ C. Thus, if 7r is the 
shortest  possible,  then I~rl ~< m -  1. On the other hand, n ~> 2 implies that  
Iwi[ < Iwl for all i =  1 ..... n, which means that  we can apply  the induction 
hypothesis  and assume that  [ ~ril ~< 2m I wil - m for all i = 1 ..... n. 

We then have 

t/ 

[zcrTr 1 .. .  zc, I = Ircl + 1 + \,.~ [zri] 
i = 1  

~ < ( m - - 1 ) +  1 + @ ( 2 m l w i ] - m )  
i = 1  

= 2mlw] + (1 - n )m  

<~ 2 m ] w ] - m ,  

as claimed. Moreover,  the g rammars  Gin, m/> 1, presented above show that 
this bound is also minimal.  II 

The g rammars  Gin, m ~> 1, are both left and right recursive. It turns out 
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that this is a necessary property of  the grammar,  if the bound 2m I w l - m is 
to be actually reached. Before showing this, we consider the grammar G" 
with the productions 

A1---~A 2 

A 2 ~ A  3 

A m --+ aA l l b. 

G~ is an LL(1)  grammar,  L ( A 1 ) = a ' b ,  and A~ derives the sentence akb in 
time m(k + 1), for all k >~ 0. 

THEOREM 2. Let G be a non-left-reeursive or non-right-reeursive e-free 
grammar with m nonterminals. I f  X is a symbol of  G and w is in L(X),  then 
X derives w in time 

mlwl. 

Moreover, this bound is minimal. 

Proof. First we note that the non-right-recursive case follows 
immediately from the non-left-recursive case, because G is right-recursive if 
and only if its reversed grammar  G R is left-reeursive. Here G R is obtained 
from G by replacing each production A ~ co in G by A ~ co R in which m R is 
the reversal, or mirror image, of  o). Clearly, X derives w in G in time t if and 
only if X derives w R in G R in time t. 

We now prove, by induction on ]w I, the non-left-recursive case. The case 
I w[ = 1 is proved as in Theorem 1. In the case ] w] > 1 the condition X *~ w 
and the non-left-recursiveness and the e-freedom of G imply that there is a 
terminal a, symbols X~ ..... X , ,  production strings ~z, ~z~ ..... 7r, and terminal 
strings w 1,..., w, such that 

X 'r>aX1 X n, L=l~m, x i  '~'' . . . . .  w; for all i, and aw~ ... w, = w. 

Thus, if 17ril ~< m [ wi[ for all i, we have 

n 

i = 1  

mlw, b 
i = 1  

=mbwl ,  
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as claimed. The g rammars  G~, m/> 1 (and their reversed g rammars )  show 
that this bound is also minimal. | 

3. COMPLEXITY OF DERIVING THE EMPTY STRING 

Let m '  ) 1, n ) 2 and let Gm, n 
means the string of n Ai's ) 

be the g rammar  with the productions (A ~' 

A 2 ~ A  ~ 

Am~ ~" pu. 

Gm,,n is an LL(0)  g rammar  and L(Ai) = {e} for all i = 1 ..... m ' .  Moreover,  A i 
derives e simultaneously in time 

and in space 

l + n + . . . + n k i - ~ - - _ _  
n k i -  1 

n - 1  

(k i -  1 ) ( n -  1) + 1, 

where k i =  m ' - i +  1. Note that k i is the height of  the parse tree that 
corresponds to the derivation A i *~ e. 

To prove that these time and space complexities in fact are upper bounds 
on the time and space complexities of  deriving e in any grammar ,  we define 
the following sets: 

V =  {A ]A is a nullablenonterminal, i.e.,A ~ +  e}, 

V l = {A ] the g rammar  has the production A ~ e }, 

and, for all k > 1, 

k--I 

V k= A ] A ~  U Vi, andthegrammarhasaproductionA-'A~"'Ai  
i=1 

in which each A i ~ Vki for some k i < k (. 

Intuitively, A is in V k if and only if A derives e by a parse tree of  height k, 
but not by any parse tree of  height k' < k. 

We have 

LEMMA 3. V =  Uf--'l  Vk, where m '=  I VI, i.e., the number of nullable 
nonterminals in the grammar. 
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Proof. First, it is clear that each V k is included in V. On the other hand, 
i fA  =>J e, we can show by a simple induction o n j  that A is in V k for some k. 

Thus, V = (,_) ~= 1 Vk. 
If  k > 1 and A is in V k, then, by definition, A ~ [,.)/k ~ i1/and the grammar  

has a production A ~A~  ... A / in which each A i is in Vki for some k i < k. 
Here k t =  k - 1  for some i, because otherwise the conditions k; < k - 1 ,  
i = 1 ..... l, would imply that A is in Vk,, for some k '  ~< k - 1. Thus, for all 
k > 1 Vk_ 1 is nonempty whenever V k is nonempty. In other words, for all 
k > / 1  Vk+ ~ is empty whenever V k is empty. Because the sets V k form a 
pairwise disjoint partition of the set V, we can conclude that V k is empty for 
all k > m' .  II 

LEMMA 4. Let  G be a grammar  and n >~ 2 the length o f  the right-hand 
side o f  the longest production in G. Then f o r  all k >/1 and A in Vk, A derives 
e simultaneously in time 

n k -  1 

n - - 1  

and in space 

( k -  1 ) ( n -  1) + 1. 

Moreover,  these bounds are minimal. 

Proo f  The proof  is by induction on k. If  k = 1, A -~ e is a production of 
G. Thus, A derives e simultaneously in time 1 = (n k -  1 ) / ( n - 1 )  and in 
space 1 = ( k -  1)(n - 1) + 1. We can therefore assume that k > 1 and, as an 
induction hypothesis, that whenever k '  < k and A '  is in Vk,, then A '  derives 
e simultaneously in time (n ~' - 1)/(n - 1) and in space (k'  - 1)(n - 1) + 1. 
By definition, G has a production r = A  ~ A I  ... A I in which each A i is in Vk~ 
for some k t < k. By the induction hypothesis, there are production strings 
nl,..., n t such that, for all i =  1 ..... l, A i ~  '~i e, [nil <~ (n ki - 1)/(n - 1) and the 
space complexity of  each of  these derivations, denoted by s i, is at most 
(k i -  1 ) ( n -  1) + 1. We have 

A r : - A l . " A  ! '~ I : -Az . . .A  z ,~2 . . . .  '~-, At  '~t:.e. 

The time complexity of  this derivation is 

~ n k i - 1  n k - ' - - I  
1 +  17~;1~< 1 + - - ~ < 1 + l  

i=1 i=1 n - - 1  n - - 1  

n k 1 _  1 n k _ l  
~ < l + n  

n - - 1  n - - 1  ' 
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as claimed. The space complexity of the derivation is 

max{s/+ ( l -  i) l i =  1 ..... l} 

~< max{(k i -  1 ) ( n -  1) + 1 + ( l -  i) l i=  1 ..... l I 

~ < m a x { ( ( k - a ) - l ) ( n - 1 ) +  l + ( l - i )  l i = l  ..... l} 

~ < ( k - Z ) ( n - 1 ) + l + ( l - 1 )  

~ < ( k - Z ) ( n - 1 ) +  1 + ( n - l )  

= ( k -  1 ) ( n -  1)+ 1, 

as claimed. The grammars Gm,,n , m' ~ 1, n >~ 2, given above show that these 
bounds are also minimal. II 

By Lemmas 3 and 4 we have 

THEOREM 5. Let G be a grammar, m'>/1 the number of nullable 
nonterminals in G, and let n >~ 2 be the length of the right-hand side of the 
longest production in G. Then any nullable nonterminal A in G derives 
simultaneously in time 

n m ' _ l  

n - 1  

and in space 

( m ' -  1 ) ( n -  1)+ 1. 

Moreover, these bounds are minimal. 

4. COMPLEXITY OF GENERAL CONTEXT-FREE GRAMMARS 

Let m/> 1, m'>/  1, n >~2, and let Gm,m,,n be the grammar with the 
productions 

A 1 ~ A 2 B  ~ i BI_~B~ 

A2-~ A3B~ -1 B2 ~ B ~ 

Am-~A1AIB~-2IaB7 -1 Bm,~e .  

Gm,m,,n has been obtained by combining the grammars G m and Gm,. (see 
Sections 2 and 3). 

If ck + d is the time complexity of deriving a k from A 1 in G m and if t is 
the time complexity of deriving e from B1, then the time complexity of 
deriving a k from A1 in Gm.m,n is 
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(ck + d) + ((ck + d)(n - 1) - (k - 1))t 

= (c+ c ( n -  1 ) t -  t) k +  d +  d(n- -  1)t + t. 

Note that any application of an A-production introduces in the sentential 
form n - 1  instances of B 1, except for the production A m ~ A ~ A ~ B ~  -2, 
which introduces only n -  2 instances. In the derivation of the sentence a k 
this production is used k -  1 times. 

The most space-efficient way to derive a k is to erase the B~'s from the 
sentential form as soon as they appear. That is, after each application of an 
A-production the introduced n - 1 or n - 2 instances of B~ are let to derive 
in the most space-efficient way. Thus, if s is the space complexity of deriving 
e from B1, then the space complexity of deriving a k from A~ in G m , m , n  is 

k + ( n - 2 ) + s .  

To show that these time and space complexities are upper bounds on the 
time and space complexities of any context-free grammar, we use the well- 
known method for removing e-productions from general context-free 
grammars. If G is a grammar, we denote by (~ the e-free grammar that has 
been obtained from G by replacing the production set P of G by the set 

fi = {A ~ a I a 2 . . .  afar+ 1 [ l >/O, a 1 a 2 ... atal + 1 :~ e and for some nullable 

nonterminals Bl,  B 2 ..... B t of G, A ~ a tB  1 a2B 2 ... atBlal+ l is in P}. 

It can be shown (see, e.g., Aho and Ullman, 1972 or Hopcroft and Ullman, 
1979) that L ¢ ( A ) =  LG(A)\{e } for all nonterminals A. Note that in the case 
of the g r a m m a r  Grn,m,n  the transformation produces a grammar Gm,m',, in 
which the set of useful productions (i.e., those productions that can be used 
in the derivation of some sentence) is exactly the production set of G m .  

THEOREM 6. Let G be a grammar in which the length of  the right-hand 
side of  the longest production is n, n >/2, and in which each nullable nonter- 
minal derives e simultaneously in time t and in space s. I f  in the 
corresponding e-free grammar G a nonterminal A derives a terminal string w 
in time c Iwl + d, then in G A derives w simultaneously in time 

(c + c ( n -  1 ) t -  t) ]w[ + d +  d(n - 1)t + t 

and in space 

Iwl + ( n -  2) + s. 

Moreover, these bounds are minimal. 
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Proof  For each nullable nonterminal B in G, let D(B)  be a production 
string such that B derives e by using D ( B )  simultaneously in time t and in 
space s. Furthermore, for each production A-+co in (~ we choose a 
production A ~ a l B  1 ... atBtat+ 1 in G such that a I ... a/+ ~ = 09 and each B i 
is a nullable nonterminal. The construction of  (~ guarantees that this choice 
is possible. We then define homomorphisms f and g from /5, to P* as 
follows: 

f ( A  ~ 09) = A ~ a l B  1 ... atBtat+ l, 

g(A -~ co) = f ( A  -~ 6o) D ( B O  ... D(Bt). 

We say that A --~ co has l e-positions and I col non-e-positions (with respect to 
f) .  

Now if A ~ w  in (~, then it can be shown by a simple induction on [~1 
that A ~g(~) w in G (actually, the proof  of  this is part of  the proof of  the fact 
that L ~ ( A ) = L a ( A ) \ { e } ) .  Note that this derivation is obviously the least 
space consuming because the nullable B's  are erased as soon as they appear. 

The time complexity of  the derivation A=>g~)w is at most [~] + e t  in 
which e is the total number of  e-positions in the productions in zc. Because G? 
is ~-free and because the length of  the right-hand side of any production in G 
is at most n, each production in z~ has at least one non-e-position and at most 
n - 1 e-positions. Thus at least e ~< [n](n -- 1). However, if [w[ > 1, not all of  
the productions in n can be unit productions. More precisely, there must be 
I w l - 1  additional non-e-positions in n. This means that actually e~< 
Izrt(n - 1) - ( [ w ] -  1). I f  Izc I ~< e [w I + d, we can thus,conclude that the time 
complexity of  the derivation A ~ g ~ )  w is at most 

e I wl + d + ((e l wl + d ) ( n -  1 ) -  (Iwl - 1))t 

= (c  + e ( n  - 1 ) t -  t) lwl + d + d(n - 1)t + t, 

as claimed. 
Since after any application of  a production f ( A  ~ co) the nullable nonter- 

minals that correspond to the e-positions in A ~ co are immediately erased, 
one by one, in space s, no immediate sentential form in the derivation 
A =>~)  w can contain more than (n - 2) + s nullable nonterminals that arise 
from e-positions. This means that the space complexity of  the derivation is at 
most [w I + ( n - - 2 ) + s ,  as claimed. 

The minimality of  the bounds follows from the grammars  Gm,m,n. I 

By combining Theorems 1, 5, and 6 we get 

THEOREM 7. Let  G be a grammar,  m >/1 the number o f  nonterminals 
that derive a nonempty terminal string, m'  >/0 the number o f  nullable 



62 SEPPO SIPPU 

nonterminals, and let n >/2 be the length of the right-hand side of the longest 
production in G. I rA  is a nonterminal and w is in L(A)\{e}, then A derives 
w simultaneously in time 

(2mn ~, n ~ ' -  1 ) , n m ' -  1 "-~-._-] [wl--mn m + -  
n - -1  

and in space 

I wl + m ' ( n -  1). 

Moreover, these bounds are minimal. 

By combining Theorems 2, 5, and 6 we get 

THEOREM 8. Let G be a non-left-recursive or non-right-reeursive 
grammar, m ~ 1 the number of nonterminals that derive a nonempty terminal 
string, m '>/0  the number of nullable nonterminals, and let n >/2 be the 
length of the right-hand side of the longest production in G. l f  A is a nonter- 
minal and w is in L(A)\{e}, then A derives w simultaneously in time 

and in space 

mnm, n m ' -  1 ) n m ' -  1 
n ~ - I  Iwl-~ n- -  1 

I wl + m ' ( n  - 1). 

Moreover, these bounds are minimal. 

The minimality of the bounds given in Theorem8 can be seen by 
combining the grammars G" (see Section 2) and Gm, n to yield the following 

! ° 

g r a m m a r ,  Gm,m, n. 

A 1 ~  A2B~ -1 B l a B  ~ 

A2--* A3B~ -1 B: ~ B~ 
: 

A~-~ aA,BT-2 l bB7 - '  Bm,-~ ~. 

Because no LL(k) grammar can be left-recursive and because the grammar 
G~,m, n is an LL(1) grammar for all m, m', and n, we have 

COROLLARY 9. The bounds given in Theorem 8 are minimal upper 
bounds on the derivational time and space complexity of LL(k) grammars, 
g>~l. 
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5. COMPLEXITY OF LEFTMOST AND RIGHTMOST DERIVATIONS 

So far, we have considered only general derivational complexity of 
grammars. That is, given A and w such that A *~ w we have determined tight 
time and space bounds on the most efficient derivation of w from A. In 
parsing theory we are, however, usually concerned with special kinds of 
derivations, such as "leftmost" or "rightmost" derivations. An LL(k) parser 
always produces a leftmost derivation for the sentence to be parsed, which 
means that its complexity is directly related to the complexity of leftmost 
deriving, rather that general deriving, in the underlying grammar. The 
complexity of an LR(k) parser is similarly related to the complexity of 
rightmost deriving. 

Theorems 1, 2, and 5 are easily seen to hold for leftmost and rightmost 
derivations as well. So are the time bounds given in Theorems 6-8. Note that 

r r  I ~r" 
if A ~ w, then A ~ m  W and A ~rm w for some permutations 7r' and 7r" of 7r. 

~' and ~" Here ~ m  =>rm denote the "leftmost derives" and "rightmost derives" 
relations that use the production strings 7r' and ~r", respectively. However, 
the space bounds in Theorems 6-8 have been obtained by using derivations 
that obviously are neither leftmost nor rightmost. Indeed, in any leftmost 
derivation of the sentence akb in the grammar G ' m , ,  (see the previous 
section) the erasing of the nullable nonterminals B1 can begin only at the left 
sentential form a~bB~ in which e is the total number of Bl's in the A- 
productions that have been applied to produce akbB1 . Clearly, e =  
(c(k+ 1 ) +  d ) ( n - - 1 ) - k  in which e(k+ 1)+  d is the time complexity of 
deriving akb in G" (see Section 2). Thus, the space complexity of leftmost 
deriving akb in G ' m , ,  is 

( k +  1 ) + ( e - 1 ) + s = c ( n - 1 ) ( k +  1 ) + d ( n - 1 ) + s ,  

in which s is the space complexity of deriving e from B 1. 

THEOREM 10. Let G be a grammar in which the length of the right-hand 
side of the longest production is n, n >~ 2, and in which each nullable nonter- 
minal leftmost (resp. rightmost) derives e in space s. I f  in the corresponding 
&free grammar G a nonterminal A leftmost (resp. rightmost) derives a 
terminal string w in time e [ w[ + d, then in G A leftmost (resp. rightmost) 
derives w in space 

c (n  - 1)  I w l + d ( n  - 1 ) + s. 

Proof. We consider only leftmost derivations; the rightmost derivations 
are handled analogously. For each nullable nonterminal B in G, let D(B) be 
a production string such that B leftmost derives e by using D(B) in space s. 

643/53/1-2-5 
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Furthermore, let f be the homomorphism defined in the proof of Theorem 6. 
If A ~lm w in (~, then, by the definition o f f ,  we have in G 

A 
f(~) 

D(B 1 ) 

lm 

> W l B l  w2B2 "'" W e B e W e +  1 

> W I W 2 B 2  . . .  w e B e w e +  1 

D(B e) 

lm 
;~ W 1W 2 "'" W e W e +  1 : W. 

Here e is the total number of e-positions in re, and B l ..... B e are the nullable 
nonterminals that correspond to these e-positions. The first derivation 
segment, i.e., that using f(z0, is a leftmost derivation except that the nullable 
B's are not touched. Thus, the derivation is at least as space consuming as 
the most space-efficient leftmost derivation A :~lm W in G. The space 
complexity of the derivation is I w[ + (e - 1) + s. Thus, if [ ~r] ~ c I w[ + d, we 
can conclude that the space complexity of leftmost deriving w from A in G is 
at most 

I w l + ( e - 1 ) + s  

~< tw] + ((e ]w[ + d ) ( n -  1 ) -  ( I w [ -  I ) ) -  1) + s 

= e ( n -  1)tw[ + d ( n -  1) + s, 

as claimed. Note that e ~ l z c ] ( n - 1 ) - ( t w ] - - i  ) as in the proof of 
Theorem 6. | 

By combining Theorems 2, 5, and 10 we get 

THEOREM 1 1. Let G be a non-left-recursive (resp. non-right-recursive) 
grammar, m >~ 1 the number of  nonterminals that derive a nonempty terminal 
string, m' >~0 the number of  nullable nonterminals, and let n >~ 2 be the 
length of  the right-hand side of  the longest produetion in G. I f  A is a nonter- 
minal and w is in L(A)\{e},  then A leftmost (resp. rightmost) derives w in 
space 

m ( n -  1)Iwl + (m ' - -  1)(n-- 1 )+  1. 

Moreover, this bound is minimal. 

COROLLARY 12. The bound given in Theorem 11 is a minimal upper 
bound on the space complexity of  leftmost deriving in LL(k) grammars, 
k>~l. 
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6. CONCLUSIONS 

We have studied derivational complexity from a parsing theoretic point of 
view, and determined minimal grammar-dependent upper bounds on the time 
and space complexity of deriving a sentence in a context-free grammar. The 
classes of grammars considered were the general context-free grammars, the 
a-free grammars, the non-left-recursive grammars, the non-right-recursive 
grammars and the LL(k) grammars. Moreover, we determined a minimal 
upper bound on the space complexity of leftmost deriving in non-left- 
recursive grammars and in LL(k) grammars, and on the space complexity of 
rightmost deriving in non-right-recursive grammars. 

Several open problems remain. First, the time bound obtained for general 
context-free grammars seems to be reachable only in the case of ambiguous 
grammars. This suggests that a tighter bound might be possible to establish 
for unambiguous grammars. Second, the only class of parsable grammars 
Considered was the LL(k) grammars. The bounds obtained for non-left- 
recursive grammars turned out to be minimal also for LL(k) grammars, 
k >/1. Unfortunately, we see no immediate way to obtain minimal bounds 
for the most important class of parsable grammars, the LR(k) grammars. 
Third, we leave open the problem of determining minimal space bounds for 
leftmost and rightmost deriving in general context-free grammars. 
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