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Abstract—A resource usage view consists of models that are 
important assets to analyze and control usage of hardware 
resources such as processors and memory elements. In this 
paper, we present the application of a top-down approach to 
construct a resource usage view using actual system runtime 
information. The models in this view help to address the con-
cerns of a resource usage viewpoint providing information in 
terms of system-specific architecture and design execution 
elements such as execution scenarios, tasks, software compo-
nents, processes, and threads. As part of our validation, con-
structing a resource usage view of an MRI system, a represen-
tative large software-intensive system, we observed that the 
constructed models for this view provide useful overviews and 
insights for practitioners to describe part of  the system  execu-
tion architecture and especially to analyze and evaluate the use 
of hardware resources in a top-down fashion.  

Keywords-view construction; resource usage view; execution 
view; dynamic anlysis 

I. INTRODUCTION 

The typical hardware resources that are considered when 
developing and maintaining a software system are proces-
sors, memory, disk, and network bandwidth. Often, an inap-
propriate or unpredicted usage of these resources can com-
promise non-functional properties such as performance and 
reliability, triggering the execution of expensive corrective 
maintenance and even redesign activities. In the literature, 
various methods and approaches use resource usage informa-
tion to predict and analyze performance and reliability issues 
related to resource usage. Some of these methods use as an 
input resource usage information from design models and 
specifications [6, 11] while others use actual measurements 
from an existing system [9, 17].  

As part of our research on the evolvability of large soft-
ware-intensive systems [15], we examined the adoption of 
each type. On the one hand, we observed that the adoption of 
prediction methods using resource usage information from 
design models is not a common practice. This is especially 
true when resource usage information is inaccurate or hard to 
collect due to the size and complexity of the software system 

at hand. For instance, this is the case when the system is de-
ployed across several computers with a particular resource 
configuration (e.g., multicore processors and large memory 
sets) and with a runtime structure composed of multiple 
processes and multiple threads. On the other hand, we also 
observed that measurement-based descriptions of resource 
usage are often used in practice (e.g., for corrective mainte-
nance and crash detection) and supported by various tools 
[2-4].  

Although measurement-based descriptions provide actual 
information about resource usage, this information does not 
directly match the high-level design and architecture abstrac-
tions that practitioners use when developing and maintaining 
large and complex software-intensive systems following 
architecture-driven approaches. Our focus is to support prac-
titioners in constructing resource usage models that describe 
the actual resource usage in terms of design and architecture 
abstractions. Our motivation is that these descriptions enable 
practitioners to manage system complexity, create overviews 
to get insights into the system execution architecture, i.e. 
what a software system does at runtime and how it does it 
[7], and improve predictions with respect to system resource 
usage. The term runtime refers to the actual time that the 
software system is functioning (during testing or in the field). 

In this paper, we present the extension of our previous 
work [8], a top-down approach that uses actual runtime in-
formation, in order to construct resource usage models that 
describe the usage of processor and memory elements. This 
extension has two particular characteristics: it helps to con-
struct models of a resource usage view that address the con-
cerns of an identified resource usage architectural viewpoint 
and it provides information in terms of system-specific run-
time elements (e.g., scenarios, tasks, software components, 
processes and threads). The validation of this extension of 
our approach consisted in constructing a resource usage view 
of an MRI system (a representative large software-intensive 
system developed by Philips Healthcare [5]). The practitio-
ners involved in this validation report that the constructed 
models for this view provide useful overviews and insights 
to analyze and evaluate adequate use of processor and mem-
ory resources in a top-down fashion. 
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The organization of the rest of this paper is as follows. In 
Section II, we briefly describe the top-down approach and 
summarize its customized characteristics to construct re-
source usage models. In Section III, we describe the process 
to identify the required input and process it to construct 
models of a resource usage view. Section IV presents the 
type of models that compose a resource usage view con-
structed with our approach. In Section V, we describe our 
observations and findings from constructing resource usage 
models in practice. In Section VI we discuss related work 
and finally in Section VII, we provide some conclusions and 
future work. 

II. CUSTOMIZED TOP-DOWN APPROACH 

In our previous work [8], we presented a dynamic analy-
sis approach to construct execution models of a large soft-
ware-intensive system in a top-down fashion. This approach 
is an iterative process that allows us to cope with complexity 
by providing means to collect and analyze high-level infor-
mation first, and then dig down for details when needed. 
This has proven useful especially to support top-down and 
architecture-driven activities to analyze the runtime of the 
software of a large software-intensive system. Fig. 1 illus-
trates the main elements of our approach to construct models 
for an execution view. It includes A) the set of inputs and 
steps of the overall process to construct execution models 
interacting with practitioners, B) a metamodel that describes 
a set of concepts and relationships between them that we use 
to describe and analyze the runtime of a software system, 
and C) the sources of actual runtime information that we use. 
In the rest of this section, we describe the key elements, im-
provements, and customizations of the elements of our ap-
proach to construct models for a resource usage view. 

A.  Resource usage viewpoint 

By definition, an architectural viewpoint addresses par-
ticular concerns of the system stakeholders and consists of 
the conventions for the construction, interpretation, and use 
of an architectural view [10]. In [7], we describe how to 
identify a set of viewpoints for a particular large software-
intensive system interacting with key practitioners of a soft-
ware development organization. As an elaboration of our 
approach, we are putting the definitions of the viewpoints 
identified in [7] into practice using them as an input of our 
approach.  

The inclusion of viewpoints to our approach is especially 
important because viewpoints include organization- and sys-
tem-specific concerns and guidelines that help us to focus 
and ease the identification of requirements to construct exe-
cution views, specifically a resource usage view, of a par-
ticular system. In this case, to construct a resource usage 
view, we put into practice the definition of a resource usage 
viewpoint (see A in Fig. 1). The elements that define this 
viewpoint are summarized in Table 1. In general, the concern 
of this viewpoint is to ensure an adequate use of hardware 
resources, e.g., processors and memory elements at runtime. 
Within our approach, the definition of the resource usage 
viewpoint serves as a guideline to ease and scope the interac-
tion with practitioners and reduce the iteration phases. For 
instance, it helps to communicate what runtime concepts 
(elements and relationships) build a resource usage view and 
presents examples of resource usage models. Moreover, it 
helps us to define the requirements and inputs to construct 
new resource usage models (e.g., identify stakeholders, se-
lection of suitable execution scenarios, techniques to collect 
runtime data). 
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Figure 1.  Customized approach for the construction of a resource usage view 
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TABLE I.  RESOURCE USAGE VIEWPOINT SUMMARY 

Concerns Identification of bottlenecks and de-
lays. Definition of metrics, bench-
marks, and budgets. 

Models Scenario-based resource (i.e. proces-
sor, memory, and network) usage 
models, budgets, predictions.

Stakeholders Software architects, designers, testers, 
and system platform supporters.

Development 
activities 

System understanding, analysis of 
alternative designs and implementa-
tions, introduction of new hardware 
resources, testing and conformance of 
design and implementation, corrective 
maintenance, and tuning of nonfunc-
tional properties. 

B. Execution Metamodel 

Our approach is supported by a specific metamodel that 
describes the various elements and relationships that play a 
role during the runtime of a software system (see B in Fig. 
1). We introduced this metamodel in our previous work [8] 
and progressively extended it along the progress of our re-
search.  

In particular, to support the construction of a resource us-
age view, we have included the concept of Processing Node 
and specializations for the Platform Resource concept. A 
processing node represents the hardware devices, e.g., com-
puters, onto which software components are deployed. Fig. 2 
illustrates the specialization of the platform resource concept 
of our metamodel and its relationship with the processing 
node concept. A processing node contains one or more plat-
form resources, which can be either code (software) or 
hardware elements. Fig. 2 as a description of the extension of 
our metamodel, also illustrates that processors and memory 
are used by a given software component through the activity 
performed by the threads of its respective set of processes. 
 

Platform Code Platform Hardware

Processor Memory Network Interface

Processing Node Platform Resource
1..n1..n

 
Figure 2.  Specialization of execution elements for resource usage 

description 

Overall, the various elements in the metamodel define a 
number of concepts described in an execution model of a 
software system. In terms of the elements in our metamodel, 
we can express that a model of a resource usage view de-
scribes in general how a software system uses the hardware 
resources contained in the system processing nodes. In Sec-
tion IV we describe the specific set of elements from our 

metamodel (see the highlights in Fig. 1 B) to construct mod-
els for a resource usage view. 

C. Sources of runtime information 

The source of information for our approach is a combina-
tion of system logging and process activity (see C in Fig. 1). 
In our previous work [8], we described how we synchronize 
and combine these two sources to extract information that 
aligns with the elements and relationships described in our 
metamodel. So far, we have explored runtime data to deter-
mine dependencies (interactions and relationships) between 
scenarios, tasks, and software components. However, to con-
struct models for a resource usage view, we need to include 
data about activity of resources such as processors and mem-
ory of the system’s processing nodes. Various monitoring 
tools, usually provided by the runtime platforms, [2-4] sup-

port the collection and integration of resource’ s activity to 
our source of information.  

For instance, we have extended our source of information 
with measurements that can describe the usage of the proces-
sor(s) and memory of the system’ processing nodes. The 
measured processor usage information consists of indicators 
about its performance in executing arithmetic and logical 
computations, initialization of operations on peripherals, and 
execution of threads. The measured memory usage informa-
tion consists of indicators that measure the access to the 

various sections of the system’ s physical and virtual mem-
ory. In this extension of our approach, we focus on proces-
sors and memory resources, but additional usage information 
can be also measured for resources such as network inter-
faces, disks, and the file system cache. The latter is typically 
used as indicator of I/O operations because it consists of in-
dicators that monitor the file that stores and permit fast ac-
cess to recently used data without having to read it again 
from the disk. 

III. INPUT ANALYSIS AND INTERPRETATION OF RUNTIME 

ACTIVITY  

Technically, it is possible to construct all sorts of re-
source usage models for a given execution scenario. How-
ever, only a set of them address the important concerns of a 
practitioner trying to solve a given problem. In this section, 
we describe how to analyze an execution scenario to identify 
the set of resource usage models (see Table 1) that should be 
constructed including the resource usage that should be 
measured and interpreted. 

A. Scenario input analysis 

For the construction of execution views, in this case a re-
source usage view, our approach relies on the practitioners’ 
criteria to select key execution scenarios. As the input for our 
approach, it is important to define as early as possible the 
resource usage model to be constructed. This is particularly 
important to decide what runtime data to collect and how to 
interpret it. The analysis we follow consists of the identifica-
tion of the concerns of practitioners about resource usage and 
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the decisions that may determine the resource usage within a 
given execution scenario. 

On the one hand, concerns are identified from the charac-
teristics of the system functionality, delivered by the execu-
tion scenario at hand, which requires one or more specific 
resources. For instance, for an execution scenario that deliv-
ers a computation-intensive function, the computation-
intensive characteristic triggers the concern about the proper 
usage of the involved processing nodes’ processors. On the 
other hand, the decisions include design, implementation, 
and deployment decisions that determine which system proc-
essing nodes, software components, and resources (e.g., 
processor or memory elements) are involved within the exe-
cution scenario at hand. This information can be collected by 
asking practitioners and complemented constructing a func-
tional mapping model [7] as a scenario overview, as we pre-
sented in [8]. 

Together, the identified concerns and decisions, in the 
case of computation-intensive scenarios, may suggest that 
the first model to be constructed is a processor usage model 
using measurements of the usage of the corresponding proc-
essor(s) of the processing node (s) involved in the execution 
scenario. For a single process and single processing node 
system, this analysis may be trivial, but when the system at 
hand is large and complex, this is necessary to manage size 
and complexity when deciding which software components, 
processing nodes, and resources should be monitored and 
perhaps instrumented to collect the appropriate runtime ac-
tivity. 

In summary, the identification of concerns and decisions 
of a chosen scenario help us in identifying stakeholders, nar-
rowing down the identification and analysis of the required 
instrumentation to collect runtime activity, and moreover the 
identification of the models that may be actually useful to 
analyze a specific scenario. We will describe more about 
concerns and decisions of execution scenarios in Section V. 

B.  Interpretation of runtime activity 

Based on our observation on how a large organization 
develops a large software-intensive system, we consider that 
presenting resource usage information in terms of the system 
design and architecture elements is appealing for practitio-
ners following architecture-driven strategies. We have shown 
in [8] that applying the concept of mapping rules [16] help us 
to interpret actual runtime activity, i.e. logging messages and 
process activity to extract information about design and ar-
chitecture execution elements. For instance, we used map-
ping rules to extracted instances of execution elements such 
as the tasks of an execution scenario, the software compo-
nents of the system and their respective processes and 
threads, the organization of data repositories, and major code 
elements [8]. 

To support the construction of a resource usage view, we 
have extended our implemented mapping rules mainly to 
enable the graphical representation of correlations between 
resource usage measurement and design and architecture 
execution elements. The types of mapping rules that make 
this representation possible are: 

1) Resource usage indicator:  
This type of mapping rules assigns unique or combined 

resource activity indicators (see Section II.C) to a resource as 
its most representative resource usage information. To 
choose the representative indicators for a given resource and 
design this type of rule it is necessary to follow two activi-
ties. First choose a set of candidate indicators analyzing the 
technical information of the indicators that can be measured 
using the available monitoring tools [2-4]. Second, from the 
candidate set, choose the definitive indicator(s) in common 
agreement with practitioners based on the characteristics of 
the scenario under analysis, as described in Section III.A. 
For the MRI system, we analyzed the technical description of 
the indicators that can be measured on its runtime platform 
[13, 14]. We mapped a combination of the Working Set indi-
cator and created Handles indicator to analyze memory usage 
in a data-intensive scenario. For the interpretation of proces-
sor activity, there is only one type of indicator, but when 
analyzing scenarios using multicore processors, the mapping 
may use averages and maximum values in case there is no 
explicit design or deployment decision that pertains to a par-
ticular core. In Section IV, we describe in more detail these 
examples of mapping of resource usage indicators showing 
models that use them. 

2) Runtime activity codification: 
This type of mapping rules encodes workflow informa-

tion and activity of pre-identified system execution elements. 
This consists of mapping predefined types of text patterns of 
logging messages and process activity events that represent 
some type of activity performed by tasks, software compo-
nents, and threads to numerical values. Fig. 3 shows a snip-
pet of this mapping that illustrates how text patterns that de-
scribe the beginning and end of a task and any other activity 
within the task are codified into values 2 and 15 respectively. 
This codification is may change when digging down for de-
tails such as to split a given task into smaller tasks or make a 
particular interaction, within a task, explicit. The ultimate 
goal of this codification is the homogenization of the input 
that we use to construct the graphical representations of re-
source usage models. 

 
Time Process PID TID Logging Message

Activity 
Code

Available 
Memory

.. .. .. .. .. .. ..
00:04.37 MRBootstrap .. .. ----------------------------------------------------------- 2 7.00
00:04.37 MRBootstrap .. .. Starting Background 15 7.00

.. .. .. .. .. .. ..
00:04.37 MRBootstrap .. .. ----------------------------------------------------------- 15 7.00
00:23.65 MRBootstrap .. .. completed startup of Background 2 6.44

.. .. .. .. .. .. ..

.. .. .. .. .. .. ..
00:30.06 MRBootstrap .. .. ----------------------------------------------------------- 2 6.44
00:30.06 MRBootstrap .. .. Starting Application Software 15 6.44

.. .. .. .. .. .. ..
00:30.06 MRBootstrap .. .. ----------------------------------------------------------- 15 6.44
01:06.98 MRBootstrap .. .. completed startup of Application Software 2 5.98  

Figure 3.  Mapping runtime information for a resource usage model 

C.  Input to construct a resource usage model 

To store the information obtained applying the mapping 
rules described in Section III.B we use two types of tuples. 
First, (t, v, r) that describes the assigned indicator value v 
that represents the usage information of a resource r at a time 
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t. Second, (t, c, e) that describes the code value c that repre-
sents the occurrence of a workflow or interaction activity 
performed by an execution element e at a time t.  

The information in the target view, series of tuples, 
represents the input for the Construction of Execution Model 
activity of our approach (see A in Fig. 1). To construct the 
graphical representations of the models for a resource usage 
view, we plot the first two elements of the described tuples. 
The third component is often used to color code or define the 
texture of the elements in the graphical representation of the 
model. The way we use these values varies among the types 
of models as we describe in Section IV. Due to the use of 
color-coding and textures to represent and differentiate the 
various elements in the graphical representation of the pre-
sented models in Section IV, we suggest reading on-screen 
or using color-printed versions. The current tool support that 
we use to support this process is Microsoft Excel and the 
.netCHARTING library [1].  

IV. MODELS OF A RESOURCE USAGE VIEW 

Models of the resource usage view constructed with our 
approach aim at describing resource usage information in a 
top-down fashion to support top-down or architecture-driven 
strategies to analyze the runtime of a large software-intensive 
system. We distinguish task, component, and thread resource 
usage models. In this section, we describe these types of 
models including the execution elements involved, the 
graphical representation used for each of them. 

A.  Task resource usage models 

Task resource usage models are the most coarse-grained 
representation of resource usage information that we con-
struct. The purpose of this type of models is to describe the 
correlation between the tasks of key execution scenarios and 
the activity of hardware resources. Fig. 4 shows an example 
of a task resource usage model, constructed with the runtime 
information partially shown in Fig. 3. This model describes 
memory usage within the major tasks of the booting of the 
MRI system. The involved execution elements in this type of 
model are the tasks of the given scenario, the measured val-
ues of the usage of the resources under analysis, and the pe-
riod of time that the execution scenario takes place. 

The graphical representation of a task resource usage 
model consists of a horizontal time axis over which the series 
of resource usage indicator tuples are plotted. Then, a verti-
cal axis at the right side of the model is a reference for the 
usage information of the resource being described. On top of 
the usage information, we plot the series of codified runtime 
activity tuples related to workflow to represent the tasks of 
the scenario as consecutive segments along the execution 
time (horizontal axis).  

The correlations described in a task resource usage model 
can help to identify the actual resource budget for a scenario 
as a whole or for its specific tasks under analysis. For in-
stance, the model in Fig. 4 uses the indicator Available 
Memory to describe the required memory to startup the soft-
ware of the MRI system. Looking at this model, one can say 

that the required budget to have the software system up and 
running, in the monitored processing node, is ~1GB in total 
or 0.56GB and 0.46GB for each of its tasks respectively 
when looking at the detail. Nevertheless, as we describe in 
Section V, this is not the only or first information that practi-
tioner may extract using this type of models. 

 

00:00 00:09 00:17 00:26 00:35 00:43 00:52 01:00 01:09 01:18 01:26
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7.4

Active Tasks Available Memory (GB)

Starting Background Starting Application Software

 
Figure 4.  Example of task resource usage model 

B.  Component resource usage models 

Component resource usage models are more fine-grained 
than task resource usage models. The purpose of this type of 
models is to describe the correlation between the activity of 
each system software component (set of one or more running 
processes) and the usage of hardware resources within key 
execution scenarios. Fig. 5 shows an example of a compo-
nent resource usage model for the main scenario of the MRI 
system. The execution elements involved in this model are 
the key software components that interact (running either in 
the same or different processing nodes) to deliver the func-
tionality of the scenario, the measured values of the usage of 
the resources under analysis, and the time that the execution 
scenario takes place.  

The graphical representation of this type of resource us-
age model is very similar to task resource usage models, ex-
cept for two aspects of the description of software compo-
nents’ activity. First, it is necessary to distinguish if the in-
volved software components run in different processing 
nodes. To do this, we split the plot area into horizontal sec-
tions (delimited by dotted lines). Horizontal sections share 
the same horizontal axis (execution time), but the vertical 
axis at the right side serves only as scale for the section that 
contains the plotted usage information. For instance, the 
model in Fig. 5 involves two processing nodes, Scanner 
computer and Recon computer. The first computer contains 
the Scanner software component. The second computer con-
tains the monitored processor and the Reconstructor software 
component. 
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Figure 5.  Example of a component resource usage model 

Second, according to our execution metamodel (see B in 
Fig. 1) a software component is mapped to a set of one or 
more running processes. Thus, the graphical representation 
of a software component activity is an aggregation of the 
activity of the processes (including their respective threads) 
that build it. A horizontal segment (consecutive plotted 
points) represents the software component’s activity at a 
given period. This segment aggregates the interpretation of 
the various logging messages and process activity events 
within the given period. The height of the segment indicates 
if the aggregation is for one or more processes. For instance, 
in the execution scenario described in Fig. 5, the Reconstruc-
tor component has two main active processes (R1 and R2) 
within the execution scenario. When only R1 is active, the 
segment of the Reconstructor component is at the middle of 
the first horizontal level. When both processes are active, the 
segment reaches the middle of the level above. A space be-
tween two consecutive segments represents a period of time 
that the respective component is inactive, e.g., waiting for 
some data or control message from other component. 

The correlations described in a component resource us-
age model expose the periods where a software component is 
active or inactive and the same for the software components 
that interact with it. The analysis of these situations and the 
usage information of the chosen resource enable the identifi-
cation of bottlenecks and delays. For instance, the model in 
Fig. 5 shows one of the most computation-intensive execu-
tion scenarios of the MRI system where the Reconstructor 
component has to compute (convert into pictures) as quickly 
as possible sets of raw data sent by the Scanner component. 
Thus, the concern within this scenario is the adequate use of 
the processor in the Recon computer. To address this con-
cern, the model is constructed using measurement of the 
Processor Usage indicator. 

C. Thread resource usage models 

Thread resource usage models are the most fine-grained 
representations of resource usage that we construct. The pur-
pose of this type of model is to describe the correlation be-
tween thread activity and the activity of hardware resources. 
This level of abstraction is also important because, according 
to our metamodel (see B in Fig. 1), threads are the finest and 
initial links to map resource usage to higher abstractions 
such as components and tasks in case a bottom up approach 
is required. Fig. 6 shows an example of a thread resource 
usage model of another key execution scenario of the MRI 
system. The execution elements involved in this model are 
the threads of the processes that interact to deliver the func-
tionality of the scenario, the measured value of the resources 
under analysis, and the time that the scenario takes place. 

The graphical representation of this type of models also 
presents the activity of the involved execution elements over 
the horizontal time axis. In this case, we present thread activ-
ity as horizontal segments vertically distributed. Therefore, 
segments at the same vertical level represent the activity of 
the same thread but at different points in time. In addition, if 
the interpreted runtime information from the logging and 
process activity makes it possible, gray lines represent the 
execution flow among threads, which aggregates communi-
cation and control flow between them. The vertical level of 
each thread contains the name of the process and thread. For 
instance A_ADUI:MAIN indicates that the thread name is 
MAIN and its respective process name is A_ADUI. Identify-
ing the names of the involved threads is important to present 
this type of models as information that aligns to a design or 
architecture level. Identifying the name of a thread (from the 
collected runtime information), instead of its thread ID (nu-
merical value), helps to make the function or role of the 
thread explicit and eases the analysis of the model.  
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Figure 6.  Example of a thread resource usage model 

However, sometimes it is not enough to make the func-
tion of the thread explicit, especially when the system at 
hand uses third party or off-the-shelf components. Often 
practitioners are familiar with code libraries or modules that 
third party or off-the-shelf components provide, but not with 
the runtime structure, i.e. the processes and threads, of these 
components and how they use hardware resources. Fig. 7 is a 
snippet of a concurrency structure of the scenario described 
by the model in Fig. 6. The support of a concurrency struc-
ture model for a thread resource usage model is to make the 
function or role of threads more explicit showing the code 
elements or events (see EventThread in Fig. 7) that are exe-
cuted within them. The construction of concurrency models 
responds to a concurrency viewpoint [7, 12]. Further infor-
mation on why and how to construct this type of models for 
an existing large and complex software-intensive system is 
part of ongoing work. 

The scenario described in Fig. 6 represents a data-
intensive system functionality where the main concern is the 
efficient usage of memory resources. Thus, the resource un-
der analysis is memory, for which we choose to use the 
Working Sets and Handles indicators as the representative 
information to measure memory usage. On the one hand, the 
Working Sets indicator represents the actual memory that is 
used at a given time, rather than the total allocated one. On 
the other hand, the number of Handles is proportional to the 
amount of memory used. Thus, variations of this correlation 
that are not justified by the function of the involved threads 
may lead to the analysis of the causality of probable inappro-
priate use of memory resources.  

 

 
Figure 7.  Concurrency information to support resource usage analyis at 

thread level 
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We consider that the correlations described by a thread 
resource usage model can also enable the analysis of bottle-
necks and delays but at a finer granularity. Conducting this 
analysis at this level of detail enables a downstream devel-
opment activity to communicate or share the results analysis 
to the internal or external provider that develop or maintain 
the code elements executed within the given threads 

V. RESOURCE USAGE MODELS IN PRACTICE 

Within the validation of our approach, we have con-
structed models for a resource usage view to support the 
analysis of the runtime of the software system of our indus-
trial partner, the Philips MRI scanner. The key contribution 
of this view for practitioners is that it enables the analysis 
and understanding of variations (peaks and valleys) of re-
source usage in terms of their specific system elements (e.g., 
tasks, software components, processes, and threads). This 
enables the analysis of the causality (relation of cause and 
effect) of inappropriate resource usage, and helps to address 
the various concerns within their resource usage viewpoint 
(see Table 1). In the rest of this section, we describe our ob-
servations on how practitioners use a resource usage view 
and the activities that it supports. 

A.  Using a resource usage view 

In Section IV, we provided descriptions of the correla-
tions described by the models of a resource usage view. Our 
main observation in how this view helps to address the con-
cerns of a resource usage viewpoint is that practitioners need 
to complement the described correlations with their own 
domain knowledge and mental models through several itera-
tions. The domain knowledge and mental models of practi-
tioners include references about the system functionality, the 
function and implementation of elements such as software 
components and processes, and physical and mechanical 
characteristics of the system. 

For instance, we present a resource usage model that can 
describe the actual memory budget for the start-up of the 
software system (see Fig. 4). At first, this model provides an 
overview of the actual situation. However, practitioners do 
not take the measured information as the definitive budget; 
instead, they first use domain knowledge and insights to as-
sess what the causality is for the measured value (e.g., 
amount of used memory). In this case, the domain knowl-
edge includes references about the functions and communi-
cation requirements of the various software components that 
are initialized within the starting background and starting 
application software tasks. Another example is the analysis 
of delays and bottlenecks using the model in Fig. 5. In this 
case, the domain knowledge used to assess the nature of low 
processor usage and inactivity periods at the beginning of the 
scenario involves the references about the influence of the 
physical phenomena that rules the acquisition of data by the 
Scanner component. 

In summary, when the information in a constructed 
model does not align with the requirements and design deci-
sions of the given scenario (e.g., drastic variations in the 
described correlations), or it is different from the analyst’s 

mental model, a subsequent analysis is necessary. This may 
consist of splitting the scenario information into smaller 
tasks or constructing models at the component or thread level 
(top-down analysis). When the latter is necessary, the role, 
domain knowledge, and questions of the involved practitio-
ners will often become more specific, until the analysis helps 
to determine for instance, the precise nature and causality of 
inactive periods of a software components and the correla-
tion with the usage of the processor resource when analyzing 
bottlenecks and delays.  

B.  Supporting development activities 

In overall, the resource usage view that we have con-
structed contribute to system understanding. On the one 
hand, we as researchers acquired domain knowledge about 
the system functionality, design, and implementation. On the 
other hand, we observed that a resource usage view is often a 
suitable medium to discuss and transfer technical knowledge 
between practitioners analyzing it.  

We have also observed the application of resource usage 
models to support other specific activities such as the analy-
sis of alternative designs, introduction of new hardware re-
sources, and performance tuning. As part of our experimen-
tation, we have constructed a set of models for the scenario 
in Fig. 5 using different configurations of the system (alter-
native designs and implementations). There we learned how 
practitioners could use resource usage models to analyze 
alternative designs and implementations towards the detec-
tion and correction of bottlenecks and waiting times to im-
prove the performance of the system. We observed that some 
designs rely on the efficient use of resources, e.g., multicore 
processors, to achieve certain requirements. Thus, similar to 
the support of analysis of alternative designs and implemen-
tations, resource usage models help to test, verify, and ana-
lyze if the implementation is actually using the given re-
source as is stated in the design specification.  

Finally, we observed that resource usage models help 
practitioners to tune and analyze the performance of execu-
tion scenarios that involve third party components. As part of 
this activity, we have constructed the model in Fig. 6, which 
so far has helped to identify the use of extra memory due to 
the wrappers that manage the heterogeneity of the code ele-
ments executed by the involved threads. 

VI. RELATED WORK 

We consider that the related work of our contribution 
presented in this paper can be distinguished into two groups. 
The first group includes architecture reconstruction methods 
such as Symphony [16]. This method uses architectural con-
cepts such as viewpoints and views, and mapping rules to 
extract architectural level information from existing software 
systems. This aspect is the main commonality with our work, 
but our focus so far is recovering information for the execu-
tion architecture using specific execution viewpoints and 
views, specifically the resource usage viewpoint and view. 
Furthermore, to construct such execution views, we have 
exploited the concept of mapping rules to map data in a 
source view (the collected logging messages, process activity 
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events, and resource usage measurements) to information in 
a target view (series of resource usage indicators and the 
codified runtime activity). 

The second group includes the existing tools to collect 
and present resource usage measurements tools [2-4]. As we 
described in Section I, our observations are that these tools 
are often used by practitioners, but mainly to conduct online 
analysis to support corrective maintenance. Although these 
tools facilitate the collection of resource usage information 
without any instrumentation and minor overhead, their cur-
rent visualizations or descriptions of resource usage (e.g., 
usage curves and histograms, and lifetime of processes and 
their activities) do not use system-specific design and archi-
tecture concepts. This last point limits the use of these de-
scriptions as architecture or design information to support 
architecture-driven activities when developing large soft-
ware-intensive systems. 

VII. CONCLUSIONS AND FUTURE WORK 

Our contribution is that we provide a structured approach 
to construct a resource usage view that describes the correla-
tion between high-level execution concepts (e.g., tasks of 
key execution scenarios, software components, processes, 
and threads) and the usage of hardware resources. Further-
more, we described how to use this view in practice and the 
need to combine it with specific domain knowledge  

Technically the graphical representations used in the 
models of the resource usage view are not much different 
from visualizations provided by the existing monitoring tools 
[2-4]. Thus, we consider that other software development 
organizations and tooling providers can use and implement 
our process to map runtime information and create similar 
graphical representations to describe resource usage at dif-
ferent levels of abstraction. 

Our ongoing work focuses on constructing execution 
views, including resource usage views, to identify in top-
down fashion opportunities for improvement and tuning non-
functional properties such as performance and ease correc-
tive maintenance. We expect to report more elaborately on 
these results as part of our future work. 
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