

 University of Groningen

Constructing a Resource Usage View of a Large and Complex Software-Intensive System
Callo Arias, Trosky B.; Avgeriou, Paraskevas; America, Pierre

Published in:
16TH WORKING CONFERENCE ON REVERSE ENGINEERING (WCRE 2009)

DOI:
10.1109/WCRE.2009.37

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2009

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Callo Arias, T. B., Avgeriou, P., & America, P. (2009). Constructing a Resource Usage View of a Large and
Complex Software-Intensive System. In A. Zaidman, G. Antoniol, & S. Ducasee (Eds.), 16TH WORKING
CONFERENCE ON REVERSE ENGINEERING (WCRE 2009) (pp. 247-255). LOS ALAMITOS: IEEE (The
Institute of Electrical and Electronics Engineers). DOI: 10.1109/WCRE.2009.37

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 10-02-2018

http://dx.doi.org/10.1109/WCRE.2009.37
https://www.rug.nl/research/portal/en/publications/constructing-a-resource-usage-view-of-a-large-and-complex-softwareintensive-system(c641a12e-9bbc-4ab2-857c-b75ff26b19d6).html

Constructing a Resource Usage View of a

 Large and Complex Software-Intensive System

Trosky B. Callo Arias, Paris Avgeriou
Department of Mathematics and Computing Science

University of Groningen
The Netherlands

trosky@cs.rug.nl, paris@cs.rug.nl

Pierre America
Philips Research and

Embedded Systems Institute
The Netherlands

pierre.america@philips.com

Abstract—A resource usage view consists of models that are
important assets to analyze and control usage of hardware
resources such as processors and memory elements. In this
paper, we present the application of a top-down approach to
construct a resource usage view using actual system runtime
information. The models in this view help to address the con-
cerns of a resource usage viewpoint providing information in
terms of system-specific architecture and design execution
elements such as execution scenarios, tasks, software compo-
nents, processes, and threads. As part of our validation, con-
structing a resource usage view of an MRI system, a represen-
tative large software-intensive system, we observed that the
constructed models for this view provide useful overviews and
insights for practitioners to describe part of the system execu-
tion architecture and especially to analyze and evaluate the use
of hardware resources in a top-down fashion.

Keywords-view construction; resource usage view; execution
view; dynamic anlysis

I. INTRODUCTION

The typical hardware resources that are considered when
developing and maintaining a software system are proces-
sors, memory, disk, and network bandwidth. Often, an inap-
propriate or unpredicted usage of these resources can com-
promise non-functional properties such as performance and
reliability, triggering the execution of expensive corrective
maintenance and even redesign activities. In the literature,
various methods and approaches use resource usage informa-
tion to predict and analyze performance and reliability issues
related to resource usage. Some of these methods use as an
input resource usage information from design models and
specifications [6, 11] while others use actual measurements
from an existing system [9, 17].

As part of our research on the evolvability of large soft-
ware-intensive systems [15], we examined the adoption of
each type. On the one hand, we observed that the adoption of
prediction methods using resource usage information from
design models is not a common practice. This is especially
true when resource usage information is inaccurate or hard to
collect due to the size and complexity of the software system

at hand. For instance, this is the case when the system is de-
ployed across several computers with a particular resource
configuration (e.g., multicore processors and large memory
sets) and with a runtime structure composed of multiple
processes and multiple threads. On the other hand, we also
observed that measurement-based descriptions of resource
usage are often used in practice (e.g., for corrective mainte-
nance and crash detection) and supported by various tools
[2-4].

Although measurement-based descriptions provide actual
information about resource usage, this information does not
directly match the high-level design and architecture abstrac-
tions that practitioners use when developing and maintaining
large and complex software-intensive systems following
architecture-driven approaches. Our focus is to support prac-
titioners in constructing resource usage models that describe
the actual resource usage in terms of design and architecture
abstractions. Our motivation is that these descriptions enable
practitioners to manage system complexity, create overviews
to get insights into the system execution architecture, i.e.
what a software system does at runtime and how it does it
[7], and improve predictions with respect to system resource
usage. The term runtime refers to the actual time that the
software system is functioning (during testing or in the field).

In this paper, we present the extension of our previous
work [8], a top-down approach that uses actual runtime in-
formation, in order to construct resource usage models that
describe the usage of processor and memory elements. This
extension has two particular characteristics: it helps to con-
struct models of a resource usage view that address the con-
cerns of an identified resource usage architectural viewpoint
and it provides information in terms of system-specific run-
time elements (e.g., scenarios, tasks, software components,
processes and threads). The validation of this extension of
our approach consisted in constructing a resource usage view
of an MRI system (a representative large software-intensive
system developed by Philips Healthcare [5]). The practitio-
ners involved in this validation report that the constructed
models for this view provide useful overviews and insights
to analyze and evaluate adequate use of processor and mem-
ory resources in a top-down fashion.

2009 16th Working Conference on Reverse Engineering

1095-1350/09 $25.00 © 2009 IEEE

DOI 10.1109/WCRE.2009.37

247

2009 16th Working Conference on Reverse Engineering

1095-1350/09 $26.00 © 2009 IEEE

DOI 10.1109/WCRE.2009.37

247

The organization of the rest of this paper is as follows. In
Section II, we briefly describe the top-down approach and
summarize its customized characteristics to construct re-
source usage models. In Section III, we describe the process
to identify the required input and process it to construct
models of a resource usage view. Section IV presents the
type of models that compose a resource usage view con-
structed with our approach. In Section V, we describe our
observations and findings from constructing resource usage
models in practice. In Section VI we discuss related work
and finally in Section VII, we provide some conclusions and
future work.

II. CUSTOMIZED TOP-DOWN APPROACH

In our previous work [8], we presented a dynamic analy-
sis approach to construct execution models of a large soft-
ware-intensive system in a top-down fashion. This approach
is an iterative process that allows us to cope with complexity
by providing means to collect and analyze high-level infor-
mation first, and then dig down for details when needed.
This has proven useful especially to support top-down and
architecture-driven activities to analyze the runtime of the
software of a large software-intensive system. Fig. 1 illus-
trates the main elements of our approach to construct models
for an execution view. It includes A) the set of inputs and
steps of the overall process to construct execution models
interacting with practitioners, B) a metamodel that describes
a set of concepts and relationships between them that we use
to describe and analyze the runtime of a software system,
and C) the sources of actual runtime information that we use.
In the rest of this section, we describe the key elements, im-
provements, and customizations of the elements of our ap-
proach to construct models for a resource usage view.

A. Resource usage viewpoint

By definition, an architectural viewpoint addresses par-
ticular concerns of the system stakeholders and consists of
the conventions for the construction, interpretation, and use
of an architectural view [10]. In [7], we describe how to
identify a set of viewpoints for a particular large software-
intensive system interacting with key practitioners of a soft-
ware development organization. As an elaboration of our
approach, we are putting the definitions of the viewpoints
identified in [7] into practice using them as an input of our
approach.

The inclusion of viewpoints to our approach is especially
important because viewpoints include organization- and sys-
tem-specific concerns and guidelines that help us to focus
and ease the identification of requirements to construct exe-
cution views, specifically a resource usage view, of a par-
ticular system. In this case, to construct a resource usage
view, we put into practice the definition of a resource usage
viewpoint (see A in Fig. 1). The elements that define this
viewpoint are summarized in Table 1. In general, the concern
of this viewpoint is to ensure an adequate use of hardware
resources, e.g., processors and memory elements at runtime.
Within our approach, the definition of the resource usage
viewpoint serves as a guideline to ease and scope the interac-
tion with practitioners and reduce the iteration phases. For
instance, it helps to communicate what runtime concepts
(elements and relationships) build a resource usage view and
presents examples of resource usage models. Moreover, it
helps us to define the requirements and inputs to construct
new resource usage models (e.g., identify stakeholders, se-
lection of suitable execution scenarios, techniques to collect
runtime data).

Logging
- Workflow
- Processes
- Threads

Measurements
- Process Activity
- Processor and
 memory activity

Execution Metamodel

Procedure
Call

Data
Sharing

Code
Utilization

Code

Load/Execute

Data
access

Persistent
Data

Access

Interaction

Platform
Resource

Platform
Utilization

Use

Execution
Coordination

Activity

1..n1..n

Execution
Scenario

Thread
1..n1..n

Performs

Task
1..n1..n

Process 1..n1..n

Software
Component

1..n1..n
Require

1..n1..n
Interact

1..n1..n

Processing
Node

1
Deployed in

1

A

B C

Resource usage viewpoint

Resource
Usage Model

Analysis Requirements
- Scenarios
- Stakeholders

System
Execution

Analysis
Input

Logging and
Process Activity

1: Task
Definition

2: Interpretation
of Execution
Information

Model
Presentation

3: Construction of
Execution Model

Practitioner

Feedback Mapping
Rules

Document Activity
Automated

Process Logic

Legend:

Tool Supported

Data

Figure 1. Customized approach for the construction of a resource usage view

248248

TABLE I. RESOURCE USAGE VIEWPOINT SUMMARY

Concerns Identification of bottlenecks and de-
lays. Definition of metrics, bench-
marks, and budgets.

Models Scenario-based resource (i.e. proces-
sor, memory, and network) usage
models, budgets, predictions.

Stakeholders Software architects, designers, testers,
and system platform supporters.

Development
activities

System understanding, analysis of
alternative designs and implementa-
tions, introduction of new hardware
resources, testing and conformance of
design and implementation, corrective
maintenance, and tuning of nonfunc-
tional properties.

B. Execution Metamodel

Our approach is supported by a specific metamodel that
describes the various elements and relationships that play a
role during the runtime of a software system (see B in Fig.
1). We introduced this metamodel in our previous work [8]
and progressively extended it along the progress of our re-
search.

In particular, to support the construction of a resource us-
age view, we have included the concept of Processing Node
and specializations for the Platform Resource concept. A
processing node represents the hardware devices, e.g., com-
puters, onto which software components are deployed. Fig. 2
illustrates the specialization of the platform resource concept
of our metamodel and its relationship with the processing
node concept. A processing node contains one or more plat-
form resources, which can be either code (software) or
hardware elements. Fig. 2 as a description of the extension of
our metamodel, also illustrates that processors and memory
are used by a given software component through the activity
performed by the threads of its respective set of processes.

Platform Code Platform Hardware

Processor Memory Network Interface

Processing Node Platform Resource
1..n1..n

Figure 2. Specialization of execution elements for resource usage

description

Overall, the various elements in the metamodel define a
number of concepts described in an execution model of a
software system. In terms of the elements in our metamodel,
we can express that a model of a resource usage view de-
scribes in general how a software system uses the hardware
resources contained in the system processing nodes. In Sec-
tion IV we describe the specific set of elements from our

metamodel (see the highlights in Fig. 1 B) to construct mod-
els for a resource usage view.

C. Sources of runtime information

The source of information for our approach is a combina-
tion of system logging and process activity (see C in Fig. 1).
In our previous work [8], we described how we synchronize
and combine these two sources to extract information that
aligns with the elements and relationships described in our
metamodel. So far, we have explored runtime data to deter-
mine dependencies (interactions and relationships) between
scenarios, tasks, and software components. However, to con-
struct models for a resource usage view, we need to include
data about activity of resources such as processors and mem-
ory of the system’s processing nodes. Various monitoring
tools, usually provided by the runtime platforms, [2-4] sup-

port the collection and integration of resource’ s activity to
our source of information.

For instance, we have extended our source of information
with measurements that can describe the usage of the proces-
sor(s) and memory of the system’ processing nodes. The
measured processor usage information consists of indicators
about its performance in executing arithmetic and logical
computations, initialization of operations on peripherals, and
execution of threads. The measured memory usage informa-
tion consists of indicators that measure the access to the

various sections of the system’ s physical and virtual mem-
ory. In this extension of our approach, we focus on proces-
sors and memory resources, but additional usage information
can be also measured for resources such as network inter-
faces, disks, and the file system cache. The latter is typically
used as indicator of I/O operations because it consists of in-
dicators that monitor the file that stores and permit fast ac-
cess to recently used data without having to read it again
from the disk.

III. INPUT ANALYSIS AND INTERPRETATION OF RUNTIME

ACTIVITY

Technically, it is possible to construct all sorts of re-
source usage models for a given execution scenario. How-
ever, only a set of them address the important concerns of a
practitioner trying to solve a given problem. In this section,
we describe how to analyze an execution scenario to identify
the set of resource usage models (see Table 1) that should be
constructed including the resource usage that should be
measured and interpreted.

A. Scenario input analysis

For the construction of execution views, in this case a re-
source usage view, our approach relies on the practitioners’
criteria to select key execution scenarios. As the input for our
approach, it is important to define as early as possible the
resource usage model to be constructed. This is particularly
important to decide what runtime data to collect and how to
interpret it. The analysis we follow consists of the identifica-
tion of the concerns of practitioners about resource usage and

249249

the decisions that may determine the resource usage within a
given execution scenario.

On the one hand, concerns are identified from the charac-
teristics of the system functionality, delivered by the execu-
tion scenario at hand, which requires one or more specific
resources. For instance, for an execution scenario that deliv-
ers a computation-intensive function, the computation-
intensive characteristic triggers the concern about the proper
usage of the involved processing nodes’ processors. On the
other hand, the decisions include design, implementation,
and deployment decisions that determine which system proc-
essing nodes, software components, and resources (e.g.,
processor or memory elements) are involved within the exe-
cution scenario at hand. This information can be collected by
asking practitioners and complemented constructing a func-
tional mapping model [7] as a scenario overview, as we pre-
sented in [8].

Together, the identified concerns and decisions, in the
case of computation-intensive scenarios, may suggest that
the first model to be constructed is a processor usage model
using measurements of the usage of the corresponding proc-
essor(s) of the processing node (s) involved in the execution
scenario. For a single process and single processing node
system, this analysis may be trivial, but when the system at
hand is large and complex, this is necessary to manage size
and complexity when deciding which software components,
processing nodes, and resources should be monitored and
perhaps instrumented to collect the appropriate runtime ac-
tivity.

In summary, the identification of concerns and decisions
of a chosen scenario help us in identifying stakeholders, nar-
rowing down the identification and analysis of the required
instrumentation to collect runtime activity, and moreover the
identification of the models that may be actually useful to
analyze a specific scenario. We will describe more about
concerns and decisions of execution scenarios in Section V.

B. Interpretation of runtime activity

Based on our observation on how a large organization
develops a large software-intensive system, we consider that
presenting resource usage information in terms of the system
design and architecture elements is appealing for practitio-
ners following architecture-driven strategies. We have shown
in [8] that applying the concept of mapping rules [16] help us
to interpret actual runtime activity, i.e. logging messages and
process activity to extract information about design and ar-
chitecture execution elements. For instance, we used map-
ping rules to extracted instances of execution elements such
as the tasks of an execution scenario, the software compo-
nents of the system and their respective processes and
threads, the organization of data repositories, and major code
elements [8].

To support the construction of a resource usage view, we
have extended our implemented mapping rules mainly to
enable the graphical representation of correlations between
resource usage measurement and design and architecture
execution elements. The types of mapping rules that make
this representation possible are:

1) Resource usage indicator:
This type of mapping rules assigns unique or combined

resource activity indicators (see Section II.C) to a resource as
its most representative resource usage information. To
choose the representative indicators for a given resource and
design this type of rule it is necessary to follow two activi-
ties. First choose a set of candidate indicators analyzing the
technical information of the indicators that can be measured
using the available monitoring tools [2-4]. Second, from the
candidate set, choose the definitive indicator(s) in common
agreement with practitioners based on the characteristics of
the scenario under analysis, as described in Section III.A.
For the MRI system, we analyzed the technical description of
the indicators that can be measured on its runtime platform
[13, 14]. We mapped a combination of the Working Set indi-
cator and created Handles indicator to analyze memory usage
in a data-intensive scenario. For the interpretation of proces-
sor activity, there is only one type of indicator, but when
analyzing scenarios using multicore processors, the mapping
may use averages and maximum values in case there is no
explicit design or deployment decision that pertains to a par-
ticular core. In Section IV, we describe in more detail these
examples of mapping of resource usage indicators showing
models that use them.

2) Runtime activity codification:
This type of mapping rules encodes workflow informa-

tion and activity of pre-identified system execution elements.
This consists of mapping predefined types of text patterns of
logging messages and process activity events that represent
some type of activity performed by tasks, software compo-
nents, and threads to numerical values. Fig. 3 shows a snip-
pet of this mapping that illustrates how text patterns that de-
scribe the beginning and end of a task and any other activity
within the task are codified into values 2 and 15 respectively.
This codification is may change when digging down for de-
tails such as to split a given task into smaller tasks or make a
particular interaction, within a task, explicit. The ultimate
goal of this codification is the homogenization of the input
that we use to construct the graphical representations of re-
source usage models.

Time Process PID TID Logging Message

Activity
Code

Available
Memory

..
00:04.37 MRBootstrap --- 2 7.00
00:04.37 MRBootstrap Starting Background 15 7.00

..
00:04.37 MRBootstrap --- 15 7.00
00:23.65 MRBootstrap completed startup of Background 2 6.44

..

..
00:30.06 MRBootstrap --- 2 6.44
00:30.06 MRBootstrap Starting Application Software 15 6.44

..
00:30.06 MRBootstrap --- 15 6.44
01:06.98 MRBootstrap completed startup of Application Software 2 5.98

Figure 3. Mapping runtime information for a resource usage model

C. Input to construct a resource usage model

To store the information obtained applying the mapping
rules described in Section III.B we use two types of tuples.
First, (t, v, r) that describes the assigned indicator value v
that represents the usage information of a resource r at a time

250250

t. Second, (t, c, e) that describes the code value c that repre-
sents the occurrence of a workflow or interaction activity
performed by an execution element e at a time t.

The information in the target view, series of tuples,
represents the input for the Construction of Execution Model
activity of our approach (see A in Fig. 1). To construct the
graphical representations of the models for a resource usage
view, we plot the first two elements of the described tuples.
The third component is often used to color code or define the
texture of the elements in the graphical representation of the
model. The way we use these values varies among the types
of models as we describe in Section IV. Due to the use of
color-coding and textures to represent and differentiate the
various elements in the graphical representation of the pre-
sented models in Section IV, we suggest reading on-screen
or using color-printed versions. The current tool support that
we use to support this process is Microsoft Excel and the
.netCHARTING library [1].

IV. MODELS OF A RESOURCE USAGE VIEW

Models of the resource usage view constructed with our
approach aim at describing resource usage information in a
top-down fashion to support top-down or architecture-driven
strategies to analyze the runtime of a large software-intensive
system. We distinguish task, component, and thread resource
usage models. In this section, we describe these types of
models including the execution elements involved, the
graphical representation used for each of them.

A. Task resource usage models

Task resource usage models are the most coarse-grained
representation of resource usage information that we con-
struct. The purpose of this type of models is to describe the
correlation between the tasks of key execution scenarios and
the activity of hardware resources. Fig. 4 shows an example
of a task resource usage model, constructed with the runtime
information partially shown in Fig. 3. This model describes
memory usage within the major tasks of the booting of the
MRI system. The involved execution elements in this type of
model are the tasks of the given scenario, the measured val-
ues of the usage of the resources under analysis, and the pe-
riod of time that the execution scenario takes place.

The graphical representation of a task resource usage
model consists of a horizontal time axis over which the series
of resource usage indicator tuples are plotted. Then, a verti-
cal axis at the right side of the model is a reference for the
usage information of the resource being described. On top of
the usage information, we plot the series of codified runtime
activity tuples related to workflow to represent the tasks of
the scenario as consecutive segments along the execution
time (horizontal axis).

The correlations described in a task resource usage model
can help to identify the actual resource budget for a scenario
as a whole or for its specific tasks under analysis. For in-
stance, the model in Fig. 4 uses the indicator Available
Memory to describe the required memory to startup the soft-
ware of the MRI system. Looking at this model, one can say

that the required budget to have the software system up and
running, in the monitored processing node, is ~1GB in total
or 0.56GB and 0.46GB for each of its tasks respectively
when looking at the detail. Nevertheless, as we describe in
Section V, this is not the only or first information that practi-
tioner may extract using this type of models.

00:00 00:09 00:17 00:26 00:35 00:43 00:52 01:00 01:09 01:18 01:26

Execution time (mm:ss)

5.8

6.0

6.2

6.4

6.6

6.8

7.0

7.2

7.4

Active Tasks Available Memory (GB)

Starting Background Starting Application Software

Figure 4. Example of task resource usage model

B. Component resource usage models

Component resource usage models are more fine-grained
than task resource usage models. The purpose of this type of
models is to describe the correlation between the activity of
each system software component (set of one or more running
processes) and the usage of hardware resources within key
execution scenarios. Fig. 5 shows an example of a compo-
nent resource usage model for the main scenario of the MRI
system. The execution elements involved in this model are
the key software components that interact (running either in
the same or different processing nodes) to deliver the func-
tionality of the scenario, the measured values of the usage of
the resources under analysis, and the time that the execution
scenario takes place.

The graphical representation of this type of resource us-
age model is very similar to task resource usage models, ex-
cept for two aspects of the description of software compo-
nents’ activity. First, it is necessary to distinguish if the in-
volved software components run in different processing
nodes. To do this, we split the plot area into horizontal sec-
tions (delimited by dotted lines). Horizontal sections share
the same horizontal axis (execution time), but the vertical
axis at the right side serves only as scale for the section that
contains the plotted usage information. For instance, the
model in Fig. 5 involves two processing nodes, Scanner
computer and Recon computer. The first computer contains
the Scanner software component. The second computer con-
tains the monitored processor and the Reconstructor software
component.

251251

00:00 03:36 07:12 10:48 14:24 18:00 21:36 25:12 28:48 32:24 36:00 39:36
Execution Time (mm:ss)

0

20

40

60

80

100

120

140

RECONSTRUCTOR SCANNER Processor Usage

SCANNER COMPUTER

RECON COMPUTER

R2

R1

S1

Figure 5. Example of a component resource usage model

Second, according to our execution metamodel (see B in
Fig. 1) a software component is mapped to a set of one or
more running processes. Thus, the graphical representation
of a software component activity is an aggregation of the
activity of the processes (including their respective threads)
that build it. A horizontal segment (consecutive plotted
points) represents the software component’s activity at a
given period. This segment aggregates the interpretation of
the various logging messages and process activity events
within the given period. The height of the segment indicates
if the aggregation is for one or more processes. For instance,
in the execution scenario described in Fig. 5, the Reconstruc-
tor component has two main active processes (R1 and R2)
within the execution scenario. When only R1 is active, the
segment of the Reconstructor component is at the middle of
the first horizontal level. When both processes are active, the
segment reaches the middle of the level above. A space be-
tween two consecutive segments represents a period of time
that the respective component is inactive, e.g., waiting for
some data or control message from other component.

The correlations described in a component resource us-
age model expose the periods where a software component is
active or inactive and the same for the software components
that interact with it. The analysis of these situations and the
usage information of the chosen resource enable the identifi-
cation of bottlenecks and delays. For instance, the model in
Fig. 5 shows one of the most computation-intensive execu-
tion scenarios of the MRI system where the Reconstructor
component has to compute (convert into pictures) as quickly
as possible sets of raw data sent by the Scanner component.
Thus, the concern within this scenario is the adequate use of
the processor in the Recon computer. To address this con-
cern, the model is constructed using measurement of the
Processor Usage indicator.

C. Thread resource usage models

Thread resource usage models are the most fine-grained
representations of resource usage that we construct. The pur-
pose of this type of model is to describe the correlation be-
tween thread activity and the activity of hardware resources.
This level of abstraction is also important because, according
to our metamodel (see B in Fig. 1), threads are the finest and
initial links to map resource usage to higher abstractions
such as components and tasks in case a bottom up approach
is required. Fig. 6 shows an example of a thread resource
usage model of another key execution scenario of the MRI
system. The execution elements involved in this model are
the threads of the processes that interact to deliver the func-
tionality of the scenario, the measured value of the resources
under analysis, and the time that the scenario takes place.

The graphical representation of this type of models also
presents the activity of the involved execution elements over
the horizontal time axis. In this case, we present thread activ-
ity as horizontal segments vertically distributed. Therefore,
segments at the same vertical level represent the activity of
the same thread but at different points in time. In addition, if
the interpreted runtime information from the logging and
process activity makes it possible, gray lines represent the
execution flow among threads, which aggregates communi-
cation and control flow between them. The vertical level of
each thread contains the name of the process and thread. For
instance A_ADUI:MAIN indicates that the thread name is
MAIN and its respective process name is A_ADUI. Identify-
ing the names of the involved threads is important to present
this type of models as information that aligns to a design or
architecture level. Identifying the name of a thread (from the
collected runtime information), instead of its thread ID (nu-
merical value), helps to make the function or role of the
thread explicit and eases the analysis of the model.

252252

00:00 00:07 00:14 00:21 00:28 00:35 00:41 00:48 00:55 01:02 01:09 01:16 01:23
Execution Time (mm:ss)

45

55

65

75

85

95

105

115

Threads Working Sets (MB) Handles x10

A_ADUI::(NULL)

A_ADUI::COMPEXAM

A_ADUI::MAIN

P_QMUI::USERLOG

SCU:: UNKNOWN

SCU::(NULL)

SCU::DMICOM

SCU::EVENTTHREAD

SCU::IMG-PROC

SCU::PMSTRANSFERPERFORMER

SCU::PULLSCHEDULER

SCU::PUSHSCHEDULER

Figure 6. Example of a thread resource usage model

However, sometimes it is not enough to make the func-
tion of the thread explicit, especially when the system at
hand uses third party or off-the-shelf components. Often
practitioners are familiar with code libraries or modules that
third party or off-the-shelf components provide, but not with
the runtime structure, i.e. the processes and threads, of these
components and how they use hardware resources. Fig. 7 is a
snippet of a concurrency structure of the scenario described
by the model in Fig. 6. The support of a concurrency struc-
ture model for a thread resource usage model is to make the
function or role of threads more explicit showing the code
elements or events (see EventThread in Fig. 7) that are exe-
cuted within them. The construction of concurrency models
responds to a concurrency viewpoint [7, 12]. Further infor-
mation on why and how to construct this type of models for
an existing large and complex software-intensive system is
part of ongoing work.

The scenario described in Fig. 6 represents a data-
intensive system functionality where the main concern is the
efficient usage of memory resources. Thus, the resource un-
der analysis is memory, for which we choose to use the
Working Sets and Handles indicators as the representative
information to measure memory usage. On the one hand, the
Working Sets indicator represents the actual memory that is
used at a given time, rather than the total allocated one. On
the other hand, the number of Handles is proportional to the
amount of memory used. Thus, variations of this correlation
that are not justified by the function of the involved threads
may lead to the analysis of the causality of probable inappro-
priate use of memory resources.

Figure 7. Concurrency information to support resource usage analyis at

thread level

253253

We consider that the correlations described by a thread
resource usage model can also enable the analysis of bottle-
necks and delays but at a finer granularity. Conducting this
analysis at this level of detail enables a downstream devel-
opment activity to communicate or share the results analysis
to the internal or external provider that develop or maintain
the code elements executed within the given threads

V. RESOURCE USAGE MODELS IN PRACTICE

Within the validation of our approach, we have con-
structed models for a resource usage view to support the
analysis of the runtime of the software system of our indus-
trial partner, the Philips MRI scanner. The key contribution
of this view for practitioners is that it enables the analysis
and understanding of variations (peaks and valleys) of re-
source usage in terms of their specific system elements (e.g.,
tasks, software components, processes, and threads). This
enables the analysis of the causality (relation of cause and
effect) of inappropriate resource usage, and helps to address
the various concerns within their resource usage viewpoint
(see Table 1). In the rest of this section, we describe our ob-
servations on how practitioners use a resource usage view
and the activities that it supports.

A. Using a resource usage view

In Section IV, we provided descriptions of the correla-
tions described by the models of a resource usage view. Our
main observation in how this view helps to address the con-
cerns of a resource usage viewpoint is that practitioners need
to complement the described correlations with their own
domain knowledge and mental models through several itera-
tions. The domain knowledge and mental models of practi-
tioners include references about the system functionality, the
function and implementation of elements such as software
components and processes, and physical and mechanical
characteristics of the system.

For instance, we present a resource usage model that can
describe the actual memory budget for the start-up of the
software system (see Fig. 4). At first, this model provides an
overview of the actual situation. However, practitioners do
not take the measured information as the definitive budget;
instead, they first use domain knowledge and insights to as-
sess what the causality is for the measured value (e.g.,
amount of used memory). In this case, the domain knowl-
edge includes references about the functions and communi-
cation requirements of the various software components that
are initialized within the starting background and starting
application software tasks. Another example is the analysis
of delays and bottlenecks using the model in Fig. 5. In this
case, the domain knowledge used to assess the nature of low
processor usage and inactivity periods at the beginning of the
scenario involves the references about the influence of the
physical phenomena that rules the acquisition of data by the
Scanner component.

In summary, when the information in a constructed
model does not align with the requirements and design deci-
sions of the given scenario (e.g., drastic variations in the
described correlations), or it is different from the analyst’s

mental model, a subsequent analysis is necessary. This may
consist of splitting the scenario information into smaller
tasks or constructing models at the component or thread level
(top-down analysis). When the latter is necessary, the role,
domain knowledge, and questions of the involved practitio-
ners will often become more specific, until the analysis helps
to determine for instance, the precise nature and causality of
inactive periods of a software components and the correla-
tion with the usage of the processor resource when analyzing
bottlenecks and delays.

B. Supporting development activities

In overall, the resource usage view that we have con-
structed contribute to system understanding. On the one
hand, we as researchers acquired domain knowledge about
the system functionality, design, and implementation. On the
other hand, we observed that a resource usage view is often a
suitable medium to discuss and transfer technical knowledge
between practitioners analyzing it.

We have also observed the application of resource usage
models to support other specific activities such as the analy-
sis of alternative designs, introduction of new hardware re-
sources, and performance tuning. As part of our experimen-
tation, we have constructed a set of models for the scenario
in Fig. 5 using different configurations of the system (alter-
native designs and implementations). There we learned how
practitioners could use resource usage models to analyze
alternative designs and implementations towards the detec-
tion and correction of bottlenecks and waiting times to im-
prove the performance of the system. We observed that some
designs rely on the efficient use of resources, e.g., multicore
processors, to achieve certain requirements. Thus, similar to
the support of analysis of alternative designs and implemen-
tations, resource usage models help to test, verify, and ana-
lyze if the implementation is actually using the given re-
source as is stated in the design specification.

Finally, we observed that resource usage models help
practitioners to tune and analyze the performance of execu-
tion scenarios that involve third party components. As part of
this activity, we have constructed the model in Fig. 6, which
so far has helped to identify the use of extra memory due to
the wrappers that manage the heterogeneity of the code ele-
ments executed by the involved threads.

VI. RELATED WORK

We consider that the related work of our contribution
presented in this paper can be distinguished into two groups.
The first group includes architecture reconstruction methods
such as Symphony [16]. This method uses architectural con-
cepts such as viewpoints and views, and mapping rules to
extract architectural level information from existing software
systems. This aspect is the main commonality with our work,
but our focus so far is recovering information for the execu-
tion architecture using specific execution viewpoints and
views, specifically the resource usage viewpoint and view.
Furthermore, to construct such execution views, we have
exploited the concept of mapping rules to map data in a
source view (the collected logging messages, process activity

254254

events, and resource usage measurements) to information in
a target view (series of resource usage indicators and the
codified runtime activity).

The second group includes the existing tools to collect
and present resource usage measurements tools [2-4]. As we
described in Section I, our observations are that these tools
are often used by practitioners, but mainly to conduct online
analysis to support corrective maintenance. Although these
tools facilitate the collection of resource usage information
without any instrumentation and minor overhead, their cur-
rent visualizations or descriptions of resource usage (e.g.,
usage curves and histograms, and lifetime of processes and
their activities) do not use system-specific design and archi-
tecture concepts. This last point limits the use of these de-
scriptions as architecture or design information to support
architecture-driven activities when developing large soft-
ware-intensive systems.

VII. CONCLUSIONS AND FUTURE WORK

Our contribution is that we provide a structured approach
to construct a resource usage view that describes the correla-
tion between high-level execution concepts (e.g., tasks of
key execution scenarios, software components, processes,
and threads) and the usage of hardware resources. Further-
more, we described how to use this view in practice and the
need to combine it with specific domain knowledge

Technically the graphical representations used in the
models of the resource usage view are not much different
from visualizations provided by the existing monitoring tools
[2-4]. Thus, we consider that other software development
organizations and tooling providers can use and implement
our process to map runtime information and create similar
graphical representations to describe resource usage at dif-
ferent levels of abstraction.

Our ongoing work focuses on constructing execution
views, including resource usage views, to identify in top-
down fashion opportunities for improvement and tuning non-
functional properties such as performance and ease correc-
tive maintenance. We expect to report more elaborately on
these results as part of our future work.

ACKNOWLEDGMENT

We would like to thank the Software Architecture Team
and the software designers of the MRI system in Philips
Healthcare, in particular Sergiy Bachynskyy, Henri Matthi-
jssen, and Harry van de Kerkhof. We also extend our grati-
tude to Johan Muskens and our Darwin colleagues for their
feedback and joint work.

This work has been carried out as a part of the Darwin
project at Philips Healthcare under the responsibility of the
Embedded Systems Institute. This project is partially sup-
ported by the Dutch Ministry of Economic Affairs under the
BSIK program.

REFERENCES

[1] .netCHARTING,

http://www.dotnetcharting.com/

[2] Sysinternals Suite,

 http://technet.microsoft.com/en-us/sysinternals/bb842062.aspx

[3] Windows Performance Analyzer (WPA),

http://msdn.microsoft.com/en-us/library/cc305187.aspx

[4] LTTng Project,

http://ltt.polymtl.ca/

[5] Philips Healthcare - Magnetic Resonance Imaging, February 2009
http://www.healthcare.philips.com/main/products/mri/index.wpd

[6] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, Model-based
performance prediction in software development: A survey, IEEE
Transactions on Software Engineering, vol. 30, pp. 295--310, 2004.

[7] T. B. Callo Arias, P. America, and P. Avgeriou, Defining Execution
Viewpoints for a Large and Complex Software-Intensive System, in
Joint Working IEEE/IFIP Conference on Software Architecture &
European Conference on Software Architecture, 2009.

[8] T. B. Callo Arias, P. Avgeriou, and P. America, Analyzing the Actual
Execution of a Large Software-Intensive System for Determining
Dependencies, in 15th Working Conference on Reverse Engineering,
2008.

[9] M. Devarakonda and R. Iyer, Predictability of Process Resource
Usage: A Measurement-Based Study on UNIX, IEEE Transactions on
Software Engineering, vol. 15, pp. 1579--1586, 1989.

[10] ISO/IEC-JTC1/SC7, ISO/IEC 42010 Systems and software
engineering - Recommended practice for architectural description of
software-intensive systems 2007.

[11] J. Muskens and M. Chaudron, Prediction of run-time resource
consumption in multi-task component-based software systems, in
International Symposium on Component-Based Software
Engineering: Springer LNCS, 2004.

[12] N. Rozanski and E. Woods, Software Systems Architecture: working
with stakeholders using viewpoints and perspectives Addison Wesley
2005.

[13] Technet-Microsoft, Memory Object: Core Services,
http://technet.microsoft.com/en-us/library/cc778082(WS.10).aspx

[14] Technet-Microsoft, Process Object: Core Services,
http://technet.microsoft.com/en-us/library/cc780836(WS.10).aspx

[15] P. van de Laar, P. America, R. Rutgers, S. van Loo, G. Muller, T.
Punter, and D. Watts, The Darwin Project: Evolvability of Software-
Intensive Systems, presented at 3rd International IEEE Workshop on
Software Evolvability 2007.

[16] A. van Deursen, C. Hofmeister, R. Koschke, L. Moonen, and C. Riva,
Symphony: View-Driven Software Architecture Reconstruction, in
4th Working IEEE/IFIP Conference on Software Architecture: IEEE
Computer Society, 2004.

[17] T. Wood, L. Cherkasova, K. Ozonat, and P. Shenoy, Profiling and
Modeling Resource Usage of Virtualized Applications, in 9th
ACM/IFIP/USENIX International Conference on Middleware, 2008.

255255

