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Abstract

Using the decomposition theory of modular and integral flow polynomials, we answer a problem of Beck and Zaslavsky, by
providing a general situation in which the integral flow polynomial is a multiple of the modular flow polynomial.
c© 2008 Elsevier B.V. All rights reserved.
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In this note we present an answer to an open problem proposed by Beck and Zaslavsky [1] in the decomposition
theory of flow polynomials, by showing a general situation in which the integral flow polynomial is a multiple of the
modular flow polynomial.

Let us start with reviewing some definitions and notations. By a graph G = (V (G), E(G)), we mean that G has
finite vertex set V (G) and edge set E(G). Loops and multiple edges are allowed. Assume that all graphs considered
here are connected. Each edge e ∈ E(G) is incident with two vertices u, v ∈ V (G), and it can be assigned a direction
either from u to v or from v to u, but not both. In particular, a loop has two directions from a vertex to itself. If each
edge of G has a direction, we say that G is oriented. Let O(G) denote the set of all orientations of G.

Fix an orientation ε ∈ O(G). By a circle of G we mean a 2-regular connected subgraph in G. A directed cycle is
a circle in which all edges have a consistent direction with respect to ε. We say that ε is a totally cyclic orientation if
every edge belongs to a directed cycle. Denote the set of totally cyclic orientations by C O(G). Given two orientations
ε1, ε2 ∈ O(G), let E(ε1 6= ε2) denote the subset of E(G) composed of the edges having opposite directions with
respect to ε1 and ε2. We say that ε1, ε2 are Eulerian-equivalent if E(ε1 6= ε2) can be written as a disjoint union
of directed cycles. As shown in [3,4], Eulerian-equivalence relation is indeed an equivalence relation on O(G) and
induces an equivalence relation on C O(G). Let [ε] be the Eulerian-equivalence class of ε. Let [C O(G)] be the set of
all Eulerian-equivalence classes in C O(G).

For a fixed orientation ε ∈ O(G) and a given vertex v ∈ V (G), let E+(v, ε) be the set of edges taking v as the
head and E−(v, ε) the set of edges taking v as the tail. A nowhere-zero flow of G is a function f : E(G)→ A such
that ∑

e∈E+(v,ε)

f (e) =
∑

e∈E−(v,ε)

f (e), ∀v ∈ V (G)
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holds, where A is an abelian group and f never takes the value 0. Taking A = Z, an integral nowhere-zero flow is
called a nowhere-zero k-flow if | f (e)| < k for every edge e ∈ E(G). It was known that both the number of nowhere-
zero flows with values in a finite abelian group and the number of nowhere-zero k-flows are independent of the chosen
orientation and the actual group structure [3,4,6,7]. The former one is a polynomial function of the order of the finite
abelian group A, and is called the modular flow polynomial, denoted φ(G, k). The latter one is a polynomial function
of k, and is called the integral flow polynomial, denoted φZ(G, k). For each orientation ε ∈ O(G), the number
of nowhere-zero integral flows with values in {0, 1, . . . , k − 1} is also a polynomial function of k [3,4], denoted
φZ(G, ε, k).

Lemma 1 ([3,4]). If ε and ε′ are two Eulerian-equivalent orientations, then

φZ(G, ε, k) = φZ(G, ε
′, k). (1)

Beck and Zaslavsky noticed that both φZ(3K2, x) (3K2 is the graph of 3 parallel links) and φZ(K4, x) (K4 is
the complete graph of 4 vertices) have integral coefficients, and moreover φZ(3K2, x) = 3φ(3K2, x), φZ(K4, x) =
4φ(K4, x); see [1, Example 3.4]. Then, they proposed the following problem [1, Problem 3.5]:

Is there any general reason why for 3K2 and K4 both of the integral flow polynomials have integral coefficients
and the integral flow polynomial is a multiple of the modular polynomial?

Now we can answer the above problem. Note that the modular flow polynomials always have integral
coefficients [1,3]. Therefore, we focus on the reason why φZ(G, x) is a multiple of φ(G, x) for some graph G. In
fact, the answer is implied in the following theorem due to Kochol [4, Equations (1) and (2)] and Chen and Stanley [3,
Theorems 4.4 and 5.6], which shows that the modular and integral flow polynomials admit a nice decomposition.

Proposition 2 ([3,4]). Given a graph G, let φ(G, x) be the modular flow polynomial and φZ(G, x) the integral flow
polynomial. Then

φ(G, x) =
∑

[ε]∈[C O(G)]

φZ(G, ε, x) (2)

φZ(G, x) =
∑

ε∈C O(G)

φZ(G, ε, x). (3)

Note that similar results hold for integral and modular tension polynomials of graphs, see [2,5]. Our main result is
an immediate consequence of Lemma 1 and Proposition 2.

Theorem 3. If each equivalence class of [C O(G)] has the same number of totally cyclic orientations, say m, then we
have

φZ(G, x) = mφ(G, x). (4)

Before answering the problem of Beck and Zaslavsky, let us recall the definition of isomorphism between two
directed multigraphs. Suppose that D = (V, E) and D′ = (V ′, E ′) are directed multigraphs. We say that D is
isomorphic to D′ if there is a bijection θ : V → V ′ such that for all vertices u, v in V the number of edges from u
to v in D is the same as the number of edges from θ(u) to θ(v) in D′. Then θ is called an isomorphism from D to
D′. Given a graph G, note that each orientation ε ∈ O(G) determines a unique directed graph Dε. We say that two
orientations ε1, ε2 ∈ O(G) are isomorphic if Dε1 and Dε2 are isomorphic to each other. By Theorem 3, we obtain the
following result.

Corollary 4. If G is a graph such that any two non-Eulerian equivalent orientations in C O(G) are isomorphic, then
the integral flow polynomial φZ(G, x) has integral coefficients and is a multiple of the modular flow polynomial
φ(G, x).

Proof. If [C O(G)] has only one Eulerian-equivalence class, then the result clearly holds. Otherwise, suppose that ε1
and ε2 are any two totally cyclic orientations which are not Eulerian-equivalent, and we will show that [ε1] and [ε2]

have the same number of totally cyclic orientations. Let θ be the isomorphism from Dε1 to Dε2 . For any orientation
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ε′1 in [ε1], the edge set E(ε1 6= ε
′

1) can be written as a disjoint union of directed cycles with respect to ε1. Since ε1
and ε2 are isomorphic, then the edge set E(ε1 6= ε′1) can also be written as a disjoint union of directed cycles with
respect to ε2. For the orientation ε2, by reversing the direction of the edges in E(ε1 6= ε

′

1) and keeping the direction
of other edges, we obtain an orientation ε′2 which obviously belongs to [ε2]. Note that the orientation ε′2 is uniquely
determined by ε′1 when fixing ε1, ε

′

1 and the isomorphism from Dε1 to Dε2 . This implies that the cardinality of [ε1] is
less than or equal to that of [ε2]. Similarly, we can prove that the cardinality of [ε2] is less than or equal to that of [ε1].
Therefore, each Eulerian-equivalence class of [C O(G)] has the same number of totally cyclic orientations. Applying
Theorem 3, we complete the proof. �

In particular, we have the following conclusion.

Corollary 5. If G is 3K2 or K4, then any two totally cyclic orientations of C O(G) are isomorphic. Therefore, in both
cases the integral flow polynomial is a multiple of the modular flow polynomial.

Proof. Let us first consider graph 3K2 with the vertex set {v1, v2}. For any totally cyclic orientation ε ∈ C O(3K2), we
have either |E+(v1, ε)| = 2 or |E+(v1, ε)| = 1. Given any two totally cyclic orientations ε1 and ε2, if |E+(v1, ε1)| =

|E+(v1, ε2)| then the identity map is an isomorphism between Dε1 and Dε2 . If |E+(v1, ε1)| 6= |E+(v1, ε2)|, then we
take the bijection θ given by θ(v1) = v2 and θ(v2) = v1 as the desired isomorphism.

For any totally cyclic orientation ε ∈ C O(K4), the equality∑
v∈V (K4)

|E+(v, ε)| =
∑

v∈V (K4)

|E−(v, ε)|

forces that there are exactly two vertices, say v1, v2, such that |E+(v1, ε)| = |E+(v2, ε)| = 2, and exactly two
vertices, say v3, v4, such that |E+(v3, ε)| = |E+(v4, ε)| = 1. Without loss of generality, we may assume that for ε
the edge incident with {v1, v2} is directed from v2 to v1 and the edge incident with {v2, v3} is directed from v3 to v2.
In this case, the directions of the remained edges are uniquely determined. For any two orientations ε1, ε2 ∈ C O(K4),
we label the vertices of Dε1 and Dε2 as above. Suppose that V (Dε1) = {v1, v2, v3, v4} and V (Dε2) = {v

′

1, v
′

2, v
′

3, v
′

4}.
Then the bijection θ with θ(vi ) = v

′

i is clearly an isomorphism between Dε1 and Dε2 . �

Theorem 3, Corollaries 4 and 5 actually present an answer to the problem of Beck and Zaslavsky. For the graph
3K2, there are 2 Eulerian-equivalence classes in [C O(3K2)], and each class has 3 totally cyclic orientations. Therefore,
φZ(3K2, x) = 3φ(3K2, x). For the graph K4, there are 6 Eulerian-equivalence classes in [C O(K4)], and each class
has 4 totally cyclic orientations. Therefore, φZ(K4, x) = 4φ(K4, x). However, there exists some graph G for which
the condition of Corollary 4 is not satisfied but its integral flow polynomial φZ(G, x) is still a multiple of φ(G, x).
For such a graph, the reader may consult the graph K4 minus one edge.
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