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The Cluster Editing problem asks to transform a graph by at most k edge modifications
into a disjoint union of cliques. The problem is NP-complete, but several parameterized
algorithms are known. We present a novel search tree algorithm for the problem, which
improves running time from O (1.76k + m + n) to O (1.62k + m + n) for m edges and n
vertices. In detail, we can show that we can always branch with branching vector (2,1)

or better, resulting in the golden ratio as the base of the search tree size. Our algorithm
uses a well-known transformation to the integer-weighted counterpart of the problem.
To achieve our result, we combine three techniques: First, we show that zero-edges in the
graph enforce structural features that allow us to branch more efficiently. This is achieved
by keeping track of the parity of merged vertices. Second, by repeatedly branching we
can isolate vertices, releasing cost. Third, we use a known characterization of graphs with
few conflicts. We then show that Integer-Weighted Cluster Editing remains NP-hard for
graphs that have a particularly simple structure: namely, a clique minus the edges of
a triangle.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Given an undirected graph G , the Cluster Editing problem asks to transform a graph by at most k edge modifications
into a vertex-disjoint union of cliques. In the corresponding Integer-Weighted Cluster Editing problem, we are given
integer modification costs for each edge or non-edge, and we ask if there is a set of edge modifications with total weight at
most k. Here, one assumes that all edges have non-zero modification cost.

In application, the above task corresponds to clustering objects, that is, partitioning a set of objects into homogeneous
and well-separated subsets. Similar objects are connected by an edge, and a cluster is a clique of the input graph. The input
graph is corrupted and we have to clean (edit) the graph to reconstruct the clustering under the parsimony criterion.
Clustering data still represents a key step of numerous life science problems. The weighted variant of the Cluster Editing

problem has been frequently proposed for clustering biological entities such as proteins [24,25].
The Cluster Editing problem is NP-hard [19], and several proofs of this fact have been published. The Cluster Editing

problem remains NP-hard on graphs with maximum degree six [18]. The parameterized complexity of Cluster Editing,
using the number of edge modifications as parameter k, is well studied, see also the FPT races column in [23]. A first algo-
rithm with running time O ∗(2.27k) [12] was improved to O ∗(1.92k) by an extensive case analysis [11]. By transforming the
unweighted Cluster Editing problem to the integer-weighted variant, running time was advanced to O ∗(1.82k) [1]. Using
a characterization of graphs that do not contain many conflicts, results in the previously fastest algorithm for Cluster Edit-

ing with running time O ∗(1.76k) [3]. A linear kernel with 4k vertices [13] was later improved to 2k vertices [5]. Similarly,
a kernel for the integer-weighted variant with O (k2) vertices [1] was improved to 2k vertices [4]. Recently, Cluster Editing
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with “don’t care edges” (that is, edges whose modification cost is zero) has been shown to be fixed-parameter tractable [20].
Alternative parameterizations of the Cluster Editing problem have been studied in [18]. To find exact solutions in practice,
a combination of data reduction and Integer Linear Programming proved to be very efficient [2]. Related problems such
as Cluster Deletion [3,7], Cluster Vertex Deletion [16], or s-plex Editing [14] have also been studied frequently in the
literature.

Our contributions. We present a new search tree algorithm for Cluster Editing with running time O (1.62k + m + n)

for m edges and n vertices, being the fastest known for the problem. The algorithm itself is rather simple, and is based
on the merge branching introduced in [1]. The improved running time is based on three observations: All graphs created
through our branching satisfy a particular property, namely, the “parity property”, see Section 3. Next, as soon as we have
generated zero-edges, we can continue to branch on the incident vertices until a vertex is isolated from the remaining
graph, releasing cost bound by bookkeeping, see Section 4. Finally, we use a known characterization of graphs that are
“locally simple”, see Section 5. We stress that our result does not hold in general for the Integer-Weighted Cluster Editing

problem, as such instances will usually not satisfy the “parity property”. Finally, we show that Integer-Weighted Cluster

Editing is NP-hard even for graphs that have a particularly simple structure, namely, a complete weighted graph minus
a triangle.

2. Preliminaries

A problem with input size n and parameter k is fixed-parameter tractable (FPT) if it can be solved in O ( f (k) · p(n))

time where f is any computable function and p is a polynomial. In our analysis, we naturally focus on the f (k) factor.
For a general introduction we refer to [8,21]; in particular, we assume familiarity with bounded search trees, branching
vectors, and branching numbers. In the following, let n be the number of vertices, and k the number of edge modifications.

For brevity, we write uv as shorthand for an unordered pair {u, v} ∈ (V
2

)
. Let s : (V

2

) → Z be a weight function that encodes
the input graph: For s(uv) > 0 a pair uv is an edge of the graph and has deletion cost s(uv), while for s(uv) < 0, the pair uv
is not an edge (a non-edge) of the graph and has insertion cost −s(uv). The neighborhood of u, denoted N(u), is the set
of all vertices v ∈ V such that s(uv) > 0. If s(uv) = 0, we call uv a zero-edge. We require that there are no zero-edges in
the input graph. Nonetheless, zero-edges can appear in the course of computation and require additional attention when
analyzing the algorithm.

The connected components of an integer-weighted graph are the connected components of the unweighted graph that
contains exactly the edges of the integer-weighted graph. We say that C ⊆ V is a clique in an integer-weighted graph if all
pairs uv ∈ (C

2

)
are edges. If all vertex pairs of a connected component are either edges or zero-edges, we call it a weak clique.

Vertices uv w form a conflict triple in an integer-weighted graph if uv and v w are edges but uw is either a non-edge or
a zero-edge. We distinguish two types of conflict triples uv w: if uw has weight zero then the conflict triple is called weak,
whereas if uw is a non-edge then the conflict triple is called strong. See Fig. 1 for examples. An integer-weighted graph is
transitive if it is a disjoint union of weak cliques. If an integer-weighted graph contains no conflict triples then it is transitive.
But the converse is obviously not true, as the example of a single weak conflict triple shows: This graph is a weak clique but
contains a (weak) conflict triple. To solve Integer-Weighted Cluster Editing we first identify all connected components of
the input graph and calculate the best solutions for each component separately, because an optimal solution never connects
disconnected components. Furthermore, if the graph is decomposed during the course of the algorithm, then we recurse
and treat each connected component individually.

An unweighted Cluster Editing instance can be encoded as an integer-weighted instance by assigning weights s(uv) ∈
{+1,−1}. In the resulting graph, all conflict triples are strong. During data reduction and branching, we may set pairs uv to
“forbidden” or “permanent”. Permanent pairs can be merged immediately: Merging uv means replacing the vertices u and v
with a single vertex u′ , and, for all vertices w ∈ V \ {u, v}, replacing pairs uw , v w with a single pair u′w . In this context,
we say that we join vertex pairs uw and v w . The weight of the joined pair is s(u′w) = s(uw) + s(v w). In case one of the
pairs is an edge while the other is a non-edge, then we can decrease parameter k by min{|s(uw)|, |s(v w)|}. Note that we
may join any combination of two edges, non-edges, or zero-edges when merging two vertices. We stress that joined pairs
can be zero-edges. See again Fig. 1.

We encode a forbidden pair uv by setting s(uv) = −∞. By definition, every forbidden pair uv is a non-edge, since
s(uv) < 0. A forbidden pair uw can be part of a conflict triple uv w , which then is a strong conflict triple. Assume that we
join pairs uv and uw where uw is forbidden and, hence, a non-edge. From the above definition, the resulting pair u′w is
forbidden, too, as s(u′w) = s(uw)+ s(v w) = −∞+ s(v w) = −∞ holds for all s(v w) ∈ Z∪ {−∞}. Finally, if uw is forbidden
and v w is an edge then k is decreased by min{∞, |s(v w)|} = s(v w). See again Fig. 1.

The following branching was proposed in [1]: We branch on an edge uv by recursively calling the algorithm two times,
either removing uv and setting it to forbidden, or merging uv . If uv is part of at least one strong conflict triple, then
merging uv will generate cost: As there is both an edge uw and a non-edge v w , we can reduce k by min{s(uw),−s(v w)}.
In case s(uw) = −s(v w), joining uw and v w into u′w results in u′w being a zero-edge. At a later stage of the algorithm,
this would prevent us from decreasing our parameter when joining the zero-edge u′w . To circumvent this problem, the fol-
lowing bookkeeping trick was introduced in [1]: We assume that joining uw and v w with s(uw) = −s(v w) only reduces
the parameter by min{s(uw),−s(v w)} − 1 = |s(uw)| − 1 � 1 . If at a later stage we join this zero-edge with another pair,
2 2 2
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Fig. 1. Merging a pair uv . Dashed lines are non-edges, pointed lines are zero-edges. Non-edges ua, v f , u′a, u′ f are forbidden. Pairs between vertices
a, . . . , f have been omitted for clarity. Conflict triples uva and vub are strong, conflict triple vud is weak. Joining ua, va decreases the parameter by 2,
and so does joining ub, vb. If we use bookkeeping, then joining ud, vd and joining ue, ve both decrease the parameter by 1

2 for destroying a zero-edge
each.

we decrease our parameter by the remaining 1
2 . So, both generating and destroying a zero-edge generates cost of at least 1

2 .
Note that joining any pair with a forbidden pair cannot create a zero-edge. See again Fig. 1.

Assume that s(v w) = −s(uw) with |s(v w)| = |s(uw)| � 2. Then, merging an edge uv in a conflict triple uv w will also
generate a zero-edge, and generates cost of at least 3

2 . In contrast, if s(v w) = −s(uw) = ±1 then merging uv has cost
only 1

2 . In our analysis, we sometimes concentrate on the “hard” case that s(v w) = −s(uw) = ±1. We do so only if it is
absolutely obvious that |s(v w)| = |s(uw)| � 2 will result in the desired branching vector.

During branching, we may reach an instance (G ′,k′) that does not contain any (weak or strong) conflict triples. At this
point, we have to “cash in” the remaining zero-edges, replacing them by non-edges. This generates cost of 1

2 for each zero-
edge. To this end, we check whether at most 2k′ zero-edges are present in G ′ . If so, we halt the algorithm and output “yes”
since G ′ is a solution. Otherwise, the true modification cost exceed the initial parameter k, so we discard G ′ and continue
our search tree algorithm.

Our fixed-parameter algorithms require a cost limit k: In case a solution with cost � k exists, the algorithm finds this
solution and answers “yes”; otherwise, “no solution” is returned. To find an optimal solution we call the algorithm repeat-
edly, increasing k. Note that in truth we are interested in the solution itself; but for our formal presentation, we will usually
concentrate on the algorithm answering “yes” or “no”.

3. Vertex parities

We need a simple observation about the input graphs to reach an improved running time: An integer-weighted graph G
with weight function s : (V

2

) → Z has the parity property if there is a parity mapping p : V → {even,odd} such that, for each
pair uv , s(uv) is odd if and only if both p(u) = odd and p(v) = odd holds. We ignore forbidden pairs in this definition,
since s(uv) = −∞ has no parity. Note that p is not necessarily unique, as demonstrated by a graph with two vertices and
even edge weight. We infer a few simple observations from this definition: If s(uv) is even, then either u or v or both must
have evenparity. If u is eventhen s(uv) is even or uv is forbidden, for all v 	= u.

Clearly, an unweighted instance of Cluster Editing has the parity property, as we can set p(u) = odd for all vertices
u ∈ V . The interesting observation is that a graph does not loose the parity property if we merge two vertices. Quite
possibly, this result has been stated before in a different graph-theoretical context.

Lemma 1. Assume that an integer-weighted graph G has the parity property. If we merge two vertices in G, then the resulting graph
also has the parity property.

Proof. Assume that the weight function s : (V
2

) → Z encodes G , and that p is the parity mapping of G . We merge u, v and
define a parity mapping p′ for the resulting graph G ′ with p′(w) := p(w) for all w 	= u, v , and

p′(u′) :=
{

odd if either p(u) = odd or p(v) = odd

even if p(u) = p(v) = odd or p(u) = p(v) = even

for the new vertex u′ that results from merging u, v . It is easy to check that the resulting graph has the parity property for
this mapping: For example, if s(uw) and s(v w) are odd then u, v , w are odd and, in G ′ , s(u′w) = s(uw) + s(v w) is even
and u′ is even. �

If the input graph has the parity property then, after any sequence of merging operations, the resulting graph still has
the parity property. This is particularly so for the edge branching from [1], as both operations (setting an edge to forbidden,
or merging two vertices) preserve the parity property. For our branching, it is important to notice that a zero-edge has even
parity, so the parity of at least one of its incident vertices must be even.
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4. Isolation and vertices of even parity

Let ϕ = 1+√
5

2 = 1.61803 . . . be the golden ratio, satisfying ϕ = 1 + 1
ϕ . One can easily see that a search tree algorithm with

branching vector (2,1) results in a search tree of size O (ϕk): This branching number is the positive root of x−2 + x−1 − 1,
so 1 + x − x2 = 0, and dividing by x results in the definition of the golden ratio.

Our branching strategy is based on a series of lemmata, ensuring that either there is an edge to branch on, or that the
remaining graph is “easy”. Clearly, branching on an edge that is part of four or more conflict triples results in the desired
branching number, see Observation 1 below. To this end, we concentrate on the critical case of three conflict triples. First,
we consider the case of three strong conflict triples:

Lemma 2. Let G be an integer-weighted graph that has the parity property. Assume that an edge uv is part of exactly three conflict
triples, all of which are strong. Then, we can branch with branching number ϕ = 1.61803 . . . .

We use the following lemma to show that we can find an edge to branch on, if we can find an edge that is part of at
least three conflict triples.

Lemma 3. Let G be an integer-weighted graph that has the parity property. Assume that an edge uv is part of three or more conflict
triples. Then, we can either find an edge with branching number ϕ , or we can reduce k without branching.

The remainder of this section is devoted to proving these two central lemmata. Before we do so, we collect some
observations regarding certain structures in the graph that allow us to branch with branching vector (1,2) or better (that is,
branching number ϕ or better). These observations will be used repeatedly throughout the proofs.

Observation 1. If an edge uv is part of four (weak or strong) conflict triples then it is obvious that we can branch on uv
with branching vector (1,4 · 1

2 ) = (1,2) or better.

Observation 2. If an edge uv with s(uv) � 2 is part of two or more (weak or strong) conflict triples, then branching on uv
has branching vector (2,2 · 1

2 ) = (2,1) or better: deleting uv costs s(uv) � 2 and merging uv costs at least 2 · 1
2 .

Observation 3. Assume that an edge uv with s(uv) � 2 is part of a (weak or strong) conflict triple uvx, and that there
is an additional zero-edge uy with y 	= x. Then, branching on uv has branching vector (2,2 · 1

2 ) = (2,1) or better: Clearly,
deleting uv costs s(uv) � 2. But merging uv costs at least 1

2 for destroying the conflict triple uvx, plus an additional 1
2

for destroying the zero edge uy, releasing its cost from bookkeeping. Note that the pair resulting from joining edges uy
and v y can be an edge, non-edge, or zero edge; the important point is that in all three cases, we can release the cost of
zero-edge uy. Clearly, the same holds true if there is an additional zero-edge v y.

Observation 4. If an edge uv is part of three conflict triples, and there is a conflict triple uvx such that s(vx) � 2 or
s(ux) � −2, then branching on uv has branching vector (1,2) or better. We stress that this includes the case where ux is
a forbidden edge. Obviously, deleting uv costs at least 1. But merging uv costs at least 2 · 1

2 +1: For −s(ux) 	= s(vx) merging
uv into u′ will not create a new zero-edge u′x, so we do not have to put aside 1

2 . For −s(ux) = s(vx) merging uv generates
cost of at least 3

2 .

Observation 5. If a vertex v is isolated (that is, only non-edges and zero-edges are incident to v), then it is a cluster of
size one in any optimal solution. In this case, we can immediately “cash” all costs of zero-edges incident to v: If there are l
zero-edges incident to v then we decrease k by l

2 .

We now present the proofs of Lemmas 2 and 3.

Proof of Lemma 2. We will show that we can find an edge to branch on, with branching vector (1,2) or better. In our
reasoning, we will show that either, we have already reached the desired branching vector; or, we can infer certain structural
properties about the instance.

Let a, b, c be the three vertices that are part of the three conflict triples with u, v . If s(uv) � 2 then we are done
by Observation 2. If uvx with x ∈ {a,b, c} is a conflict triple such that s(vx) � 2 or s(ux) � −2, then we are done by
Observation 4. The same argumentation holds for a conflict triple vux. In the following, we may assume that s(uv) = 1 and
|s(wx)| = 1 holds for all w ∈ {u, v} and x ∈ {a,b, c}; for all other cases, we have already shown that the desired branching
vector can be reached. This implies that u, v , a, b, c are odd.

Assume that u, v do not have a common neighbor, so N(u) ∪ N(v) = {u, v,a,b, c}. Then, merging u, v into u′ generates
three zero-edges u′a, u′b, u′c, and u′ is isolated, so N(u′) = ∅. By Observation 5, we do not have to use bookkeeping for
these edges. So, branching on uv results in branching vector (1,3).
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Fig. 2. Proof of Lemma 2, isolating vertex u′ . Numbers indicate the cost of performing the corresponding operation. Note that merging u′ with any other
vertex, will destroy three zero-edges u′a, u′b, u′c with cost 3

2 . Isolating u′ also releases cost 3
2 from bookkeeping.

We will now use the same trick that the merged vertex u′ can be isolated, but this is slightly more involved in case u, v
have at least one common neighbor. Let Y := N(u) ∩ N(v), then N(u) ∪ N(v) = Y ∪ {u, v,a,b, c} and |Y | � 1. Our first step
is to branch on uv: We delete uv with cost 1, and set it to forbidden.

Next, we merge u, v into a new vertex u′ . This generates three zero-edges u′a, u′b, u′c with cost 3
2 . Here, s(u′ y)� 2 holds

for all y ∈ Y = {y1, . . . , yl}. We will now branch on all edges u′ y j where the case that u′ y j is deleted, is further analyzed.
In detail, we either merge u′ yi with cost 3

2 ; or, we delete u′ yi with cost 2 and branch on u′ yi+1, if i < l. See Fig. 2. Note
that we either delete all edges to y1, . . . , yl , or we finally merge some u′ yi with cost 3

2 . In the second case, the total cost of
this branch are 2(i − 1) + 3

2 . But in the very last case where all edges to y1, . . . , yl are deleted, we have isolated u′ . Hence,
by Observation 5 we can “cash” cost 3

2 we have put aside when generating the three zero-edges u′a, u′b, u′c. So, the cost of
this final branch are 2l + 3

2 . Recall that in all cases, we have additional cost 3
2 for generating the three zero-edges. In total,

we reach the partial branching vector (0 + 3,2 + 3, . . . ,2l + 3) = (3,5,7, . . . ,2l + 3).
We combine these two partial branching vectors into one branching vector (1,3,5,7,9, . . . ,2l + 3). We claim that any

such branching vector corresponds to a branching number z < ϕ , and that the numbers converge towards ϕ . To this end,
first note that 1/ϕ is the unique positive root of the polynomial z2 + z − 1, that is the characteristic polynomial of branching
vector (2,1). We analyze the infinite series f (z) := z0 + z2 + z4 + · · · that converges for all |z| < 1. Now, z2 · f (z) = f (z) − 1
and

(
z2 + z − 1

) · f (z) = f (z) − 1 + z · f (z) − f (z) = z · f (z) − 1.

So, for the series g(z) := z · f (z) − 1 we have

g(z) = z · f (z) − 1 = (
z2 + z − 1

) · f (z)

and, hence, g(1/ϕ) = 0. For the partial sums Sl(z) := z2l+3 + z2l+1 +· · ·+ z3 + z1 −1 we infer Sl(z) < Sl+1(z) and Sl(z) < g(z)
for z ∈ (0,∞). Also, Sl is strictly increasing in [0,∞).

Note that any polynomial of the form p(z) := anzn + · · · + a1z1 − 1 with ai � 0 for all i, has exactly one positive root
for p 	≡ −1. This follows as p is continuous, p′(z) > 0 for all z > 0, so p is strictly increasing in (0,∞), p(0) = −1,
and limz→∞ p(z) = ∞. Let zl be the unique positive root of Sl(z). With Sl(zl+1) < Sl+1(zl+1) = 0 we finally infer

z1 > z2 > z3 > · · · > 1/ϕ.

By definition, 1/zl is the branching number for branching vector (1,3,5,7,9, . . . ,2l + 3), and we reach

1/z1 < 1/z2 < 1/z3 < · · · < ϕ.

Since the series Sl converges uniformly to g in the interval [0,α] for every α < 1, we infer that liml→∞ 1/zl = ϕ must hold,
which concludes the proof of the lemma. �
Proof of Lemma 3. Again, we will show that either, we have already reached the desired branching vector (1,2) or better;
or, we can infer certain structural properties about the instance.

If uv is part of four conflict triples then we are done by Observation 1. If uv is part of three strong conflict triples
then Lemma 2 guarantees branching number ϕ . So, assume that uv is part of exactly three conflict triples, and that uv w
is a weak conflict triple, so uw is a zero-edge. As uv is part of exactly three conflict triples, we can choose a, b such that
N(u) � N(v) = {w,a,b}, where A � B = (A ∪ B) − (A ∩ B) denotes the symmetric difference of two sets A, B . If s(uv) = 2
then we are done by Observation 2, so we may assume s(uv) = 1 in the following. This implies that both u and v must have
oddparity. Since uw is a zero-edge, we infer that w has evenparity and, hence, that s(v w) � 2 holds. For our worst-case
considerations, we may assume s(v w) = 2. See Fig. 3.

If v w is part of any additional conflict triples besides w vu, then we are done by Observation 2. The same holds true if
additional zero-edges besides uw are incident to v or w , see Observation 3. So, assume there are no zero-edges incident
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Fig. 3. Proof of Lemma 3. Dotted lines are zero-edges, dashed-dotted lines are either non- or zero-edges. Left: Initial constellation, example where va and
ub are edges. Right: Including the set Y of neighbors of u, v , w .

Fig. 4. Proof of Lemma 3: The three cases a,b ∈ Y (left), a ∈ Y and b /∈ Y (middle), and a,b /∈ Y (right). Dashed lines are non-edges, dotted lines are
zero-edges, and dashed-dotted lines are either non- or zero-edges. Recall that w has even parity.

to v or w besides uw , and vx is an edge if and only if wx is an edge for all x 	= u, v, w . Let Y ⊆ V \ {u, v, w} be the set of
vertices adjacent to v and, consequently, also to w . Let X := Y \ {a,b}, and note that this set can be empty. We infer that
X = N(u)∩ N(v) as otherwise, there is a fourth conflict triple for the edge uv . This implies N({u, v, w}) ⊆ {u, v, w,a,b}∪ X .

Choose an arbitrary x ∈ X . If wx is part of an additional conflict triple besides wxu, then we are done by Observation 2,
as w is evenand, hence, s(wx) � 2. The same holds if x is incident to a zero-edge by Observation 3. Hence, we infer that
each y adjacent to some x ∈ X is also adjacent to w and, hence, y ∈ Y . So, N(X) ⊆ {u, v, w,a,b} ∪ X . Furthermore, each
pair x, y ∈ X must be connected by an edge. See again Fig. 3. We distinguish three cases:

(1) Assume a,b ∈ Y , so va and vb are edges. In this case, u, v , w , a, b, X form a connected component. If ab is a non-edge
or zero-edge, then we are done by Observation 3 branching on wa, since w is evenand s(wa) � 2. So, we may assume
that ab is an edge. By the same reasoning, ax and bx must be edges, for all x ∈ X . Next, if s(ux) � 2 for some x ∈ X
then we are done by Observation 3, so we may assume s(ux) = 1 for all x ∈ X . See Fig. 4. The cost of isolating u from
all other vertices is |X | + 1, and the resulting graph consists of two cliques {u} and {v, w,a,b} ∪ X . The cost of any
other cut in this connected component is at least |X | + 3 (for isolating a or b), since w is adjacent to all vertices but u
with edges of weight at least 2. The cost of transforming the connected component into a clique is |s(ua)| + |s(ub)|.
So, we can test in constant time if one of the two possible transformations has cost at most k.

(2) Assume a ∈ Y and b /∈ Y , so va and ub are edges. Then, N({u, v, w,a} ∪ X) ⊆ {u, v, w,a,b} ∪ X . For s(ua) < −1 we are
done by Observation 4 branching on uv . So, s(ua) ∈ {0,−1} must hold. Since bv is a non-edge, bw and bx for all x ∈ X
are also non-edges: Otherwise we branch on v w or wx, see above and Observation 3. If s(ub) � 2 then we are done
branching on ub, see Observation 3. See again Fig. 4. Now, one can easily check that no optimal solution can bisect v ,
w , a, X (that is, v , w , a, X must all be part of the same cluster in the solution): For X = ∅ a bisection of vertices v , w , a
costs at least 3 since w is even; and for X 	= ∅ cost are at least 4. Given a solution that bisects v , w , a, X , we modify the
solution by putting u, v , w , a, X in an isolated clique, with cost at most 1 for inserting ua, and cost 1 for removing ub.
Clearly, this new solution has smaller total cost than the initial solution, so the initial solution cannot be optimal. Hence,
we can merge v , w , a, X without branching, generating cost of at least 1

2 for destroying the zero-edge uw .
(3) Assume a,b /∈ Y , so ua and ub are edges. Then, va and vb are non-edges, since no zero-edges can be incident to v .

Similar to above, wa and wb as well as ax and bx for all x ∈ X can be assumed to be non-edges, too: Otherwise, we can
branch on v w or wx. If s(ua) � 2 then we are done by branching on ua, see Observation 3. So, we infer s(ua) = 1 and,
by symmetry, s(ub) = 1. See again Fig. 4. Now, merging uv into some vertex u′ results in a separated clique with vertex
set u′ , w , Y that is not connected to the rest of the graph, and can be removed immediately. Hence, branching on uv
leads to branching vector (1,2) as we do not have to put away 2 · 1

2 for potentially destroying zero-edges u′a and u′b
later.

We have shown that we can find an edge that allows for the desired branching vectors, simplify the instance and
reduce k without branching, or solve the remaining instance in constant time. �
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5. Solving remaining instances

Assume that there is no edge in the graph that is part of three or more (weak or strong) conflict triples. We transform
our weighted graph into an unweighted counterpart Gu , where zero-edges are counted as non-existing. This graph Gu is
called the type graph of the weighted graph. Then, there is no edge uv in the unweighted graph Gu that is part of three
conflict triples, since weak or strong conflict triples in the weighted instance become conflict triples in Gu . Damaschke [7]
characterizes such graphs: Let Pn , Cn , Kn be the chordless path, cycle, and clique on n vertices, respectively. Let G + H
denote the disjoint union of two graphs, and let p · G denote p disjoint copies of G . Let G ∗ H be the graph G + H where,
in addition, every vertex from G is adjacent to every vertex from H (graph join operation). Finally, the graph Gc has the
same vertex set as G , and {u, v} is an edge of Gc if and only if it is no edge of G . Now, Theorem 2 from [7] states:

Lemma 4. Let G be a connected, unweighted graph such that no edge is part of three or more conflict triples. Then, G has at most
six vertices, is a clique, a path, a cycle, or a graph of type Kq ∗ H for q � 0 and H ∈ {K1 + K1, C5, P4, K1 + K1 + K1, K2 + K2,

K2 + K1, (p · K2)
c}, p � 2.

In fact, the characterization in [7] is slightly more complicated: To this end, note that Kq ∗ P3 = Kq+1 ∗ (K1 + K1). Any
non-edge in the type graph can be a non-edge or zero-edge in the weighted graph, and edges and non-edges can be
arbitrarily weighted. We now show that we can efficiently solve all remaining, “simple” instances. This is similar to the
argumentation in [3] but as we want to reach branching vector (2,1), our argumentation is slightly more involved.

Lemma 5. Let G be a connected graph that has the parity property. Assume that there is no edge that is part of three conflict triples.
Then, we can find an edge with branching number ϕ; reduce k without branching; or, we can solve the instance in polynomial time.

Proof. If the graph is a clique, we are done. We transform our graph G into the corresponding type graph Gu , then Gu is
connected and does not contain an edge that is part of three conflict triples. Lemma 4 characterizes all of these graphs. If G
has up to six vertices, we can solve it in constant time. If Gu is a cycle or a path, then it can be solved in O (n3) time [1].

Next, assume that the graph is Kq ∗ H for q � 1 and H ∈ {K1 + K1, C5, K1 + K1 + K1, K2 + K2, P4, K2 + K1}. We check if
transforming the graph into a clique has cost at most k, in which case the answer is yes. This can be done in constant time,
as there are at most five edges missing in the graph. We make a case distinction depending on H :

• Assume that H = K1 + K1, so the graph is a clique minus a single non-edge or zero-edge uv . Now, u and v are either
part of the same cluster, and we insert uv with cost −s(uv); or the u and v belong to different clusters, and we
separate them with cost of a minimum u-v-cut. A maximum u-v-flow corresponding to the minimum u-v-cut can be
computed in polynomial time [10].

• Assume that H = K2 + K1, where u, v are the vertices of the K2 and w is the vertex of the K1. We branch on uv:
Merging uv results in a graph Kq ∗ (K1 + K1) we can solve in polynomial time. Afterwards, we can delete uv and
decrease k by s(uv) � 1 without branching.

• Assume that H ∈ {C5, K1 + K1 + K1, K2 + K2}. Recall that by Observation 2, an edge uv that is part of two (weak or
strong) conflict triples and has weight s(uv) � 2, allows us to branch with branching vector (2,1). For any vertex u
of Kq and any v of H , uv is an edge and is part of two conflict triples, so we can assume s(uv) = 1. We have checked
above if we can transform G into a clique; so, any solution partitions the vertices of H , as a partition that leaves H
intact, is surely suboptimal. We claim that an optimal solution will put all vertices in Kq together with the largest
cluster C from H : Putting vertices from Kq into different clusters of the solution, or putting Kq with a different cluster
from H will only increase the cost. So, for each partition of vertices from H we put Kq with the largest cluster and
compute the cost of the resulting partition. If we can find a partition with cost at most k then the answer is yes. As the
number of partitions is constant, we can solve the instance in polynomial time.

• Assume that H = P4, where u, v , w , z are the vertices of the P4. This case is somewhat technical, and requires
several steps of branching. If s(v w) � 2 then branching on v w has branching vector (2,1) by Observation 2, so we
can assume s(v w) = 1, and v and w are odd. First, we branch on v w , either deleting v w with cost 1, or merging v w
into a new vertex v ′ . Consider the second case: If neither v ′u nor v ′z is a zero-edge, then merging v w generated
cost at least 2 and we are done. Now, assume without loss of generality that v ′u is a zero-edge. If v ′z is a zero-edge,
too, then uz is the only non-edge in the graph. We can compute an u-z-cut in polynomial time, and test whether the
cost of this cut does not exceed the remaining parameter. The same holds true if v ′z is an edge, so we are left with
the case that v ′z is a non-edge, in which case merging v w generated cost 3

2 . Now, v ′ is even, so s(v ′z) � −2 and
s(v ′x) � 2 for all vertices x of Kq must hold. We branch on v ′x: Merging v ′x generates cost at least 3

2 for destroying
the zero-edge v ′u plus the conflict triple v ′xz with s(v ′z) � −2. Deleting v ′x has cost 2, and we branch one last time:
Choose another y from Kq . Merging v ′ y generates cost 5

2 , deleting v ′ y costs 2. In total, we reach the branching vector
(1, 3

2 + 3
2 , 3

2 + 2 + 5
2 , 3

2 + 2 + 2) = (1,3,6,5 1
2 ) with branching number 1.604 < ϕ .

The final case that our graph is of the type Kq ∗ (p · K2)
c with q � 0 and p � 2, is slightly more complicated. We claim

that there exist no zero-edges in the graph: If there is a zero-edge v w then one of the vertices, say v , has evenparity. But for
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graphs of this type, we can always find an edge uv incident with v that is part of two conflict triples. From s(uv) � 2 we
infer that we can branch on uv with branching vector (2,1) by Observation 2. Furthermore, for any pair of non-edges,
we can find an edge that is part of two conflict triples with these two non-edges. We conclude that there can be at most
one non-edge v w with s(v w) < −1: Otherwise, choose the edge uv that “connects” the two non-edges, then branching on
uv leads to branching vector (1,2) as we create no zero-edges, see Observation 4. In the following, let v w be a non-edge
such that all non-edges but v w have insertion cost one.

It is easy to check that if v , w end up in the same cluster of the solution, then the solution is to insert all missing edges:
This follows as all non-edges have insertion cost one. To this end, inserting all edges costs p − 1 − s(v w), and we test if k
does not exceed this bound. Otherwise, assume that v , w do not end up in the same cluster of a solution. Any partition of
the vertices also induces a bipartition X , Y with v ∈ X and w ∈ Y . Without loss of generality, we assume that |X | � |Y |.
The bipartition requires us to delete |X | · |Y | edges if our graph was a clique. As the graph is not a clique, there are at most
min{|X |, p} edges that we do not have to delete. Hence, the cost of a solution that induces the bipartition X , Y are at least

|X | · |Y | − min
{|X |, p

}
� |X |(2p + q − |X |) − |X | = |X |(2p + q − 1 − |X |).

Recall that |V | = 2p + q � 7 what implies p + q � 4. As |X |� |Y | we also have 1 � |X |� 2p+q
2 . Let f (z) := z(2p + q − 1 − z),

then f ′(z) = −2z + 2p + q − 1 and f ′′(z) = −2. So, f has no minima and only one maximum. We distinguish two final
cases:

• If s(v w) = −1, then inserting all edges costs p, and any bipartition induces larger cost f (|X |) > p. We only have to
check the interval borders to prove this claim: For |X | = 1, we infer f (1) = p + p + q − 2 > p. For |X | = 2p+q

2 we have
f (|X |)� 7

2 · ( 1
2 (2p + q) − 1) > p + 7

4 (p + q − 2) > p.
• If s(v w) � −2, then all edges vx must have weight one as otherwise, branching on an edge vx with s(v w) � 2 results

in branching vector (2,1). Then, isolating v costs 2p + q − 2 for edge deletions and p − 1 for edge insertions, and the
cost for isolating any other vertex, as well as the deletion cost for any bipartition with |X | � 2, are at least this large.
To this end, for |X | = 2 we infer f (|X |) = 2(2p +q−1−2) = 4p +2q−6 = 3p +q−3+ p +q−3 > 3p +q−3. For |X | = 3
we have f (|X |) = 3(2p + q − 1 − 3) = 6p + 3q − 9 = 3p + q − 3 + 3(p + q − 2) > 3p + q − 3. Finally, for |X |� 4 we infer

f
(|X |) = |X |(2p + q − 1 − |X |) � 4

(
2p + q − 1 − 1

2
(2p + q)

)
= 4

1

2
(2p + q − 2)

= 4p + 2q − 4 = 3p + q − 3 + p + q − 1 > 3p + q − 3.

This concludes the proof of the lemma. �
6. A golden ratio base for search tree size

Assume that G has the parity property. We want to show that we can either find an edge to branch on with branching
number ϕ; decrease k without branching; or, solve the remaining instance in polynomial time. If there is an edge uv that
is part of at least three (weak or strong) conflict triples, we branch on this edge. By Lemma 3, doing so results in branching
number ϕ , or we reduce k without branching, as desired. We can find an edge to branch on, in time O (n3). Similarly, we can
perform all other tasks required for one step of the branching, in this time. If there is no edge uv that is part of at least
three conflict triples, then Lemma 5 guarantees that we can branch with branching number ϕ; reduce k without branching;
or, solve the instance in polynomial time. To compute minimum s-t-cuts as part of Lemma 5, we use the Goldberg–Tarjan
algorithm [10] to compute a maximum s-t-flow in time O (n3), independent of edge weights. We reach:

Lemma 6. Given an instance of the Integer-Weighted Cluster Editing problem with no zero-edges that satisfies the parity property,
this instance can be solved in O (ϕk · n3) time.

Theorem 1. Given an instance of the Integer-Weighted Cluster Editing problem with no zero-edges that satisfies the parity prop-
erty, this instance can be solved in O (ϕk + n2) time.

Proof. We can combine Lemma 6 with the weighted kernel from [4] with O (k) vertices and running time O (n2). Doing so
results in running time O (ϕk · k3 + n2). To get rid of the multiplicative polynomial factor, we want to use interleaving [22].
Unfortunately, the instances generated during the course of branching may contain zero-edges, making it impossible to
directly apply the kernel from [4].

The underlying idea of the following formal construction is to “inflate” the weights of original instance to an extend that
modifications with cost one are unimportant for reaching an optimal instance. This is very similar in spirit to the proof of
Lemma 7 below.

To this end, assume that we have reached an instance (G,k) during the course of branching, that may possibly contain
zero-edges. Let z be the number of zero-edges in G . Recall that all zero-edges in G must be resolved at some point.
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This implies z � 2k and, hence, for z > 2k we can stop. We multiply the costs of all edges and non-edges in G by 4k + 1;
and by replacing all zero-edges in G by non-edges with insertion cost one. Let G̃ be the resulting instance.

Consider an edge or non-edge uv of G with modification cost |s(uv)| in G: The corresponding edge or non-edge uv
in G̃ has modification cost (4k + 1)|s(uv)| in G̃ . On the other hand, there are at most 2k zero-edges in G , so removing all
corresponding non-edges in G̃ (each having insertion cost one) can generate at most cost 2k for the complete instance.
To this end, any solution for G with cost k corresponds to a solution in G̃ with cost between (4k + 1) · (k − z

2 ) and

(4k + 1) · (k − z
2 )+ 4k. In particular, (G,k) has a solution if and only if (G̃, k̃) has a solution where k̃ := (4k + 1) · (k − z

2 )+ 4k:

In view of k̃ < (4k + 1) · (k − z
2 + 1) the solution for (G̃, k̃) may not modify any additional edges or non-edges of weight

larger one.
Next, we can apply the kernel from [4] to (G̃, k̃), resulting in an instance (G̃ ′, k̃′) with number of vertices linear in k̃.

By construction, (G̃, k̃) has a solution if and only if (G̃ ′, k̃′) has a solution. Also, k̃′ � k̃ holds.
Let ψ(x) := �(x − 2k)/(4k + 1)�. The kernel in [4] only deletes edges, inserts non-edges, or merges vertices. We infer that

for each edge or non-edge in G̃ ′ , the cost of inserting or deleting it is the sum of modification costs of edges and non-edges
in G̃ , each with positive or negative sign. Non-edges with insertion cost one can contribute at most 2k to the cost of an
edge in G̃ ′ , in either direction. Let y := ψ(x), then x ∈ [(4k + 1)y − 2k, (4k + 1)y + 2k]. Hence, the modification cost x of
an edge or non-edge without the contribution of non-edges with insertion cost one, equals (4k + 1)y. We transform the
instance G̃ ′ back to an instance G ′ by applying ψ to all edge weights. Let z′ � z be the number of zero-edges in G ′ , and set
k′ := �k̃′/(4k + 1)� + z′

2 . Similar to above we infer that (G̃ ′, k̃′) has a solution if and only if (G ′,k′) has a solution.
From our above reasoning, we finally infer that (G,k) has a solution if and only if (G ′,k′) has a solution. By construction,

k′ � k̃′

4k + 1
+ z′

2
� k̃

4k + 1
+ z

2
< k − z

2
+ 1 + z

2
= k + 1,

so k′ � k as both are integer; and the number of vertices in G ′ is linear in k̃ and, hence, polynomial in k. �
Given an unweighted Cluster Editing instance, we first identify all critical cliques in time O (m + n) for a graph with n

vertices and m edges [15], and merge the vertices of each critical clique [1,13]. The resulting integer-weighted instance
has O (k) vertices and no zero-edges, and satisfies the parity property. Using Theorem 1 we reach:

Theorem 2. Cluster Editing can be solved in O (1.62k + m + n) time.

7. Computational complexity of graph type Kq ∗ (K1 + K1 + K1)

Above, we have repeatedly used that integer-weighted graphs of the type Kq ∗ (K1 + K1), a complete graph minus an
edge, can be solved in polynomial time by computing a minimum cut. Hence, it is daunting to try the same for graph type
Kq ∗ (K1 + K1 + K1), a complete graph minus the edges of a triangle: Let uv , v w , uw be the three non- or zero-edges in
the graph. Branch on uv by either setting it to forbidden with no cost, or inserting and merging with cost −s(uv). The later
results in a graph of type Kq ∗ (K1 + K1) that can be solved in polynomial time. For the former, we analogously branch
on v w and on uw , resulting in a graph where all three non- or zero-edges have been set to forbidden. Now, solving this
instance requires us to solve the integer-weighted Multiway Cut problem (also known as Multiterminal Cut problem) for
three terminals, see below, which is NP-hard [6]. It turns out that these two problems can be transformed into each other
with polynomial blowup. This shows that not all graph types in Lemma 4 can be solved in polynomial time.

Lemma 7. Integer-Weighted Cluster Editing is NP-hard for graphs of the type Kq ∗ (K1 + K1 + K1), q � 1.

We use reduction from the unweighted Multiway Cut problem with K = 3 terminals:

Multiway Cut. Given an unweighted graph G and K terminals, find a minimum set of edges that separate the terminals.

Proof. Proof of Lemma 7 Given an instance G = (V , E) of the unweighted Multiway Cut problem with K = 3 and terminals
u, v , w . Set n := |V |. We first note that edges uv , uw , and v w are irrelevant and can be ignored: If they are present, they
have to be cut in the solution. We can transform the instance G into a weighted instance G ′ = (V ,

(V
2

)
) that is a complete

graph. Here, an edge e of G ′ with e /∈ E receives weight 1, whereas an edge e of G ′ with e ∈ E receives weight n2. One can
easily see that this weighted instance of the Multiway Cut problem has essentially the same solution as its unweighted
counterpart G: We may have to delete some of the edges with weight 1 in G ′ , but the total weight of these edges is less
than n2. In contrast, a single additional deletion of an edge with weight n2 must result in a suboptimal solution. Hence,
the solutions will agree on all edges with weight n2 that have to be deleted.

We now remove edges uv , uw , and v w from G ′ , and assign insertion cost n4 to these non-edges. Deletion costs of the
remaining edges are the weights in G ′ . Now, G ′ forms an Integer-Weighted Cluster Editing instance of graph type Kq ∗
(K1 + K1 + K1), q � 1. In this instance, a solution that inserts an edge cannot be optimal, as the cost exceed that of cutting
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all edges in the instance. Hence, we have to delete edges until u, v , w are in separated cliques. But as G ′ is a clique minus
three edges, this is equivalent to a 3-way cut of G ′ . We infer that an optimal solution of the Integer-Weighted Cluster

Editing instance G ′ is also an optimal solution of the unweighted Multiway Cut instance G . As computing an optimal 3-way
cut is NP-hard [6], this also holds for the Integer-Weighted Cluster Editing problem for graph type Kq ∗ (K1 + K1 + K1). �

From the proof, it is obvious that Lemma 7 also holds for Integer-Weighted Cluster Deletion, where we are not allowed
to insert any edges. In general, Integer-Weighted Cluster Deletion is a special case of Integer-Weighted Cluster Editing

if we choose all insertion costs sufficiently large.

8. Conclusion

We have presented a parameterized algorithm for the Cluster Editing problem, that reaches the golden ratio as the
base for the exponential growth of the running time. It is noticeable that search tree approaches plus additional structural
observations still have a lot of potential to yield better FPT algorithms for well-known problems, even without extensive
case handling. Note that the underlying edge branching is also very swift in practice, and can usually process instances with
thousands of edge modifications in a matter of minutes [2].

The base ϕ = 1+√
5

2 = 1.61803 . . . , resulting from branching vector (2,1), appears repeatedly in the analysis of advanced
algorithms for the Cluster Editing problem [1,3]. Hence, it is an interesting question for the future if we can get beyond the
O ∗(ϕk) barrier. One possible extension lies in the split-off technique introduced in [3] for Cluster Deletion, even though it
cannot be directly applied, as branching on a C4 results in branching vector (1,1) for Cluster Editing.

The even more interesting question is whether a parameterized algorithm with subexponential running time exists for
Cluster Editing, as conjectured by Cao and Chen [4]. Unfortunately, Komusiewicz [17] and Fomin et al. [9] independently
showed that under the exponential time hypothesis, no such algorithm can exist.

Improving upon the running time should not be problematic for the rather technical Lemma 5. Here, the open ques-
tion is: Which of the special cases are polynomial-time solvable (such as Kq ∗ (K1 + K1)) and which are not (such as
Kq ∗ (K1 + K1 + K1)), and what FPT algorithms can be derived for the hard ones.

On the technical side, it will be interesting if vertex parities can be applied in the analysis of other (graph modification)
problems. Keeping track not only of vertex parities but of the number of vertices hat have been merged during the course
of branching and data reduction, may be even more powerful for an improved analysis.
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