
The Journal of Logic and
Algebraic Programming 64 (2005) 157–188

��� �����	
��

��
� 	��
	
����	
�
�����	��
��

www.elsevier.com/locate/jlap

Unifying simulatability definitions in cryptographic
systems under different timing assumptions�

Michael Backes
IBM Zurich Research Laboratory, Rüschlikon, Switzerland

Abstract

The cryptographic concept of simulatability has become a salient technique for faithfully
analyzing and proving security properties of arbitrary cryptographic protocols. We investigate the
relationship between simulatability in synchronous and asynchronous frameworks by means of
the formal models of Pfitzmann et al., which are seminal in using this concept in order to bridge the
gap between the formal-methods and the cryptographic community. We show that the synchronous
model can be seen as a special case of the asynchronous one with respect to simulatability, i.e.,
we present an embedding from the synchronous model into the asynchronous one that we show
to preserve simulatability. We show that this result allows for carrying over lemmas and theorems
that rely on simulatability from the asynchronous model to its synchronous counterpart without any
additional work, hence future work on enhancing simulatability-based models can concentrate on the
more general asynchronous case.
© 2004 Elsevier Inc. All rights reserved.

Keywords: Probabilistic systems;Security;Simulatability;Cryptography;Synchronous/asynchronous

1. Introduction

In recent times, the analysis of cryptographic protocols has been getting more and more
attention, and the demand for general frameworks for representing cryptographic protocols
and the security requirements of cryptographic tasks has been rising. Existing framework
are either motivated by the complexity-theoretic view on cryptography, which aims at
proving cryptographic protocols with respect to the cryptographic semantics, or they are
motivated by the view of the formal-methods community, which aims at capturing abstrac-
tions of cryptography in order to make such protocols accessible for formal verification.

� An extended abstract of this work appeared in Proc. 14th international conference on concurrency theory
(CONCUR 2003).
E-mail address: mbc@zurich.ibm.com

1567-8326/$ - see front matter � 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jlap.2004.09.002

www.elsevier.com/locate/jlap
mailto:mbc@zurich.ibm.com

158 M. Backes / Journal of Logic and Algebraic Programming 64 (2005) 157–188

Frameworks built on abstractions of cryptography will be further dealt with in the related
literature along with a discussion on the cryptographic justification of these abstractions.

For living up to the probabilistic nature of cryptography, a framework for dealing
with actual cryptography necessarily has to be able to deal with probabilistic behaviors.
The standard understanding in well-known, non-security-specific probabilistic frameworks
like [1,2] is that the order of events is fixed by means of a probabilistic scheduler that has
full information about the system. In contrast to that, the standard understanding in crypto-
logy (closest to a rigorous definition in [3]) is that the adversary schedules everything,
but only with realistic information. This corresponds to making a certain subclass of
schedulers explicit for the model from [1]. However, if one splits a machine into local
submachines, or defines intermediate systems for the purposes of proof only, this may
introduce many schedules that do not correspond to a schedule of the original system
and therefore just complicate the proofs. The typical solution is a distributed definition of
scheduling which allows machines that have been scheduled to schedule certain (statically
fixed) other machines themselves.

Based on these requirements, several general definitions of secure protocols were de-
veloped over the years, e.g., [4,5,6,7,8,9,10,11,12,13], which are all potential candidates
for such a framework. To allow for a faithful analysis of cryptographic protocols, it is
well-known that such models not only have to capture probabilistic behaviors, but also
complexity-theoretically bounded adversaries as well as a reactive environment of the pro-
tocol, i.e., continuous interaction with the users and the adversary. Unfortunately, most of
the above work does not live up to these requirements in spite of its generality, mainly since
it concentrates on the task of secure function evaluation, which does not capture a reactive
environment. Currently, the models of Pfitzmann et al. [8,11,13] and Canetti [12], which
have been developed concurrently but independently, seem to be establishing themselves
as the standard models for sound protocol analysis and design.

Regarding the underlying definition of time, such models can be split into synchronous
and asynchronous ones. In synchronous models [8], time is assumed to be expressible in
rounds, whereas asynchronous scenarios [11,12,13] do not impose any assumption on time.
This makes asynchronous scenarios attractive since no assumption is made about network
delays and the relative execution speed of the parties. Moreover, the notion of rounds is
difficult to justify in practice as it seems to be very difficult to establish them for the Internet
for example. This attractiveness is substantiated by a large body of literature on asynchronous
cryptographic protocols, e.g., [14,15]. However, time guarantees are sometimes explicitly
desired, e.g., on when a process can abort. Hence assumptions have to be made in this case,
which induce a certain amount of synchrony again. This sometimes makes a synchronous
assumption of time nevertheless necessary in practice, e.g., in Kerberos [16].

Hence researchers usually restrict their attention to one definition of time, or they are
driving double-tracked by maintaining two separate models which, however, presupposes
proving every theorem for both models. This is not nice. An alternative approach, taken in
this work, is to show that the synchronous model can be regarded as a special case of an
asynchronous one, and hence does not have to be further advanced separately, but still can
be used to conveniently express synchronous protocols.

Although this idea might not be surprising, it is very difficult to achieve since it turns
out that carrying over general results from the asynchronous to the embedded synchronous
model presupposes the possibility of (at least partially) reversing the considered embed-
ding. Recall that suitable frameworks, especially the framework of Pfitzmann et al., have a
distributed scheduling which significantly complicates this reversion.

M. Backes / Journal of Logic and Algebraic Programming 64 (2005) 157–188 159

Formally, a special case means that there is an embedding from the synchronous model
into the asynchronous model that preserves a desired property. Which property has to be
preserved depends on the goals to strive for. For cryptographic protocols, the property of
simulatability stands out. Simulatability captures the notion of a cryptographically secure
implementation and serves as a link to the formal-methods community, which typically
only hold a top-level view of cryptography, where cryptographic primitives are replaced
by deterministic abstractions. A more comprehensive discussion of simulatability and its
relationship to protocol verification work done by the formal-methods community is given
in the paragraph on related literature below.

In the following, we investigate the synchronous and asynchronous models of Pfitzmann
et al. [8,11,13], which are seminal in using the concept of simulatability to bridge the
gap between the formal-methods and the cryptographic community. We show that the
synchronous model can be embedded in the asynchronous model such that simulatability
is preserved by this embedding, i.e., if two systems fulfill the simulatability relation in the
synchronous model, their respective images fulfill the relation in the asynchronous model
and vice versa. We show that this result allows for carrying over lemmas and theorems
from the asynchronous case to the synchronous case without proving them twice, hence
future work on enhancing simulatability-based models can concentrate on the more general
asynchronous case. We are confident that this result helps to make future protocol analysis
in these models more convenient and more efficient.

Moreover, we believe that our approach for establishing the embedding and its prop-
erties can be successfully used for other models with only minor changes. Especially the
asynchronous model of Canetti is surely worth to be investigated. However, his correspond-
ing synchronous model [10] is still specific for secure function evaluation; hence adopting
it to a reactive environment is a necessary prerequisite for this future work. The lack of
such a reactive synchronous model was—besides the fact that the models of Pfitzmann
et al. are more rigorously defined than the one of Canetti—our main reason why we decided
to base our work on the model of Pfitzmann et al.

Related literature

If cryptographic protocols should be verified using formal methods, some kind of ab-
straction is needed as the underlying reduction proofs of cryptography are still out of
scope of current verification techniques.1 This abstraction is usually based on the so-
called Dolev–Yao abstraction [20], which considers cryptographic primitives, e.g., E for
encryption and D for decryption, as operators in a free algebra where only predefined
cancellation rules hold. For instance, twofold encryption of a message m does not yield an-
other message from the basic message space but the term E(E(m)). A typical cancellation
rule is D(E(m)) = m. This abstraction simplifies proofs of larger protocols consider-
ably, and it gave rise to a large body of literature on analyzing the security of protocols
using techniques for formal verification of computer programs (a very partial list of work
includes [21,22,23,24,25,26,27,28,29,30]).

1 Efforts are also under way to formulate syntactic calculi for dealing with probabilism and polynomial-time
considerations, in particular [17,7,18,19] and, as a second step, to encode them into proof tools. However, this
approach can not yet handle protocols with any degree of automation. Generally it should be seen as complement-
ary to, rather than competing with, the approach of getting simple deterministic abstractions of cryptography and
working with those wherever cryptography is only used in a blackbox way.

160 M. Backes / Journal of Logic and Algebraic Programming 64 (2005) 157–188

Since this line of work turned out to be very successful, the interesting question arose
whether these abstractions are indeed justified from the view of cryptography, i.e., whether
properties proved for the abstractions are still valid for the cryptographic implementa-
tion. Such cryptographic underpinnings of a Dolev–Yao model were first addressed by
Abadi and Rogaway in [31]. However, they only handled passive adversaries and sym-
metric encryption. The protocol language and security properties handled were extended
in [32,33], but still only for passive adversaries. This excludes most of the typical ways
of attacking protocols, e.g., man-in-the-middle attacks and attacks by reusing a message
part in a different place or a concurrent protocol run. A full cryptographic justification
for a Dolev–Yao model, i.e., for arbitrary active attacks and within arbitrary surrounding
interactive protocols, was first given in [34]. Based on the specific Dolev–Yao model whose
soundness was proven in [34], the well-known Needham–Schroeder–Lowe protocol was
proved in [35]. This shows that in spite of adding certain operators and rules compared
with simpler Dolev–Yao models (in order to be able to use arbitrary cryptographically
secure primitives without too many changes in the cryptographic realization), such a proof
is possible in the style already used in automated tools, only now with a sound crypto-
graphic basis. Another cryptographically sound proof of this protocol was concurrently
developed by Warinschi [36]. The proof establishes a stronger security property but is
conducted from scratch in the cryptographic approach which takes it out of the scope of
formal proof tools. In [37,38] it was shown how the library, in other words the term algebra
and rules, can be modularly extended by additional cryptographic primitives, using the
example of symmetric authentication and symmetric encryption. Laud [39] has presented a
cryptographic underpinning for a Dolev–Yao model of symmetric encryption under active
attacks. His work enjoys a direct connection with a formal proof tool, but it is specific
to certain confidentiality properties, restricts the surrounding protocols to straight-line pro-
grams in a specific language, and does not address a connection to the remaining primitives
of the Dolev–Yao model. Herzog et al. [40,41] and Micciancio and Warinschi [42] have
recently also given a cryptographic underpinning under active attacks. Their results are
considerably weaker than the one in [34] since they are specific for public-key encryption;
moreover, the former relies on a stronger assumption whereas the latter severely restricts
the classes of protocols and protocol properties that can be analyzed using this primitive.
Section 6 of [42] further points out several possible extensions of their work which all
already exist in the earlier work of [34]. Guttman et al. [43] show that the probability of
two executions of the same protocol—either executed in a Dolev–Yao-like framework or
using real cryptographic primitives—may deviate from each other at most for a certain
bound. However, their results are specific for the Wegman-Carter system so far. Moreover,
as this system is information-theoretically secure, its security proof is much easier to handle
than primitives with security guarantees only against computationally bounded adversaries
since no reduction proofs against underlying number-theoretic assumptions have to be
made. Some further approaches for special security goals or primitives are [44,33].

The first full justification of a Dolev–Yao model presented in [34] was achieved by
exploiting the concept of simulatability, which serves as a cryptographically sufficient
relationship between abstract specifications and cryptographic implementations, i.e., ab-
stractions which can be shown to simulate a given implementation in a particular sense are
known to be sound with respect to the security definitions of cryptography. Simulatability
was first invented for multi-party function evaluation [45,4,6,5,10], i.e., systems with only
one initial input set and only one output set. An extension to a reactive scenario, where
participants can make new inputs many times, e.g., start new sessions like key exchanges,

M. Backes / Journal of Logic and Algebraic Programming 64 (2005) 157–188 161

was first fully defined in [46], with extensions to asynchronous systems in [11,12,13]. Each
of the three considered models was already successfully used to built up sound abstractions
of various cryptographic primitives like secure channels [11,12], certified mail [47], or key
exchange [48,49].

Comparing the models of Canetti and Pfitzmann et al., we can first state that both models
enjoy very general composition theorems (where the first composition theorems in [50,11]
were superseded by the theorem in [12], and again by the one in [51]). Now on the one
hand, Canetti’s model has been used to address more abstractions of stand-alone crypto-
graphic primitives so far like secure multi-party computation [52] or commitments [53].
On the other hand, the asynchronous model of Pfitzmann et al. was used to solve the
long-standing open problem of justifying a Dolev–Yao type model of cryptography as
used in virtually all automated protocol provers: the aforementioned cryptographic library
from [34]. This library is a flexible toolbox for constructing abstract nested cryptographic
terms and for using them in arbitrary protocols, together with a cryptographic realization
provably secure under arbitrary active attacks in the standard model of cryptography. To-
gether with composition and preservation theorems of the underlying model, the library
serves as the foundation for machine-assisted reasoning about cryptographic protocols
while nevertheless providing a provably secure implementation. Furthermore, the models
of Pfitzmann et al. are more rigorously defined and early examples of tool-supported proofs
in their models exist [54,55], using PVS [56].

Outline

In Section 2 we review the reactive models for synchronous and asynchronous time. In
Section 3, we explain how the embedding works and give a rigorous definition. Starting
with a proof sketch of the first embedding theorem in Section 4 (there will be two of
them) and some lemmas capturing essential steps in the theorem’s proof, we fade to the
embedding theorems in Section 5. In conjunction, both theorems allow for carrying over
theorems from the asynchronous to the synchronous case, which is shown in Section 6 by
means of an example.

2. Review of the reactive models in synchronous and asynchronous networks

In this section we review the synchronous and the asynchronous model for probabilistic
reactive systems as introduced in [8] and [11,13], respectively. Several definitions are only
sketched, whereas those that are essential for understanding our upcoming results are given
in full detail. To simplify the basic understanding of these models, we start with an informal
overview of the more complex asynchronous model and the distributed scheduling scheme.

2.1. Informal overview of the asynchronous model

We consider sets of asynchronously communicating probabilistic state machines; such
sets are called collections of machines. The left-hand side of Fig. 1 sketches a collection of
three machines connected via channels represented by solid arrows. To model asynchron-
ous timing, messages sent between the machines stay on their respective channel until they
are scheduled. Technically, each channel contains an additional machine called a buffer,

162 M. Backes / Journal of Logic and Algebraic Programming 64 (2005) 157–188

M2 M3

M1

M2

M3

Fig. 1. A collection of three machines is shown on the left. Solid arrows represent channels. The dashed arrow
depicts that M1 schedules messages on the channel from M2 to M3. Each channel implicitly contains a buffer for
storing messages in transit, shown on the right.

which stores messages in transit. This is shown on the right-hand side of Fig. 1. When M2
sends a message to M3, this message is stored in the buffer. An incoming message at a clock
channel for the buffer, represented by the dashed arrow, is interpreted as a number i, and
the ith message in the buffer is removed and output to M3. Buffers need not be specified
explicitly; a completion operator adds all necessary buffers to a collection of normal
machines.

A distributed scheduling scheme that allows for expressing all realistic scenarios is
achieved by allowing a machine that has been scheduled to schedule certain other machines
itself. This is done by giving the machine the control over the clock channels of certain
buffers. In Fig. 1, the machine M1 can schedule messages sent from M2 to M3, while the
channels between M1 and M2 show procedure-call-style local interaction. Where one wants
to express that an adversary schedules everything, one simply gives the adversary all the
scheduling rights. Problems with purely adversarial scheduling were already noted in [57];
hence they schedule secure channels with uniform probability before adversary-chosen
events. However, that introduces a certain amount of global synchrony. Furthermore, the
considered model does not require local scheduling for all secure channels; they may be
blindly scheduled by the adversary (i.e., without even seeing if there are messages on the
channel). For instance, this models cases where the adversary has a global influence on
relative network speed.

Probability spaces for runs are defined in detail for such collections of machines, as
well as the view of a subset of the machines. These definitions are useful beyond the more
security-specific system classes considered later. Further, the Turing-machine realization
and runtime considerations are defined in this generality.

Security-specific structures are defined as collections of machines with distinguished
service ports for the honest users. Such structures are augmented by arbitrary machines H
and A representing the honest users and the adversary, who can interact. One then speaks
of a configuration. In the presence of adversaries, the structure of correct machines running
may not be the intended structure that the designer originally planned. For instance, some
machines might have been corrupted; hence they are missing from the actual structure and
the adversary took over their connections. This is modeled by defining a system as a set of
possible actual structures.

2.2. General system model

In the following we consider a finite alphabet � and some special symbols !, ?,↔ ,� �∈ �

that will be used to express different ports of machines. For s ∈ �∗ and l ∈ N0, we define
s�l to be the l-letter prefix of s.

M. Backes / Journal of Logic and Algebraic Programming 64 (2005) 157–188 163

Machines can exchange messages with each other via ports. Intuitively, a port is a
possible attachment point for a channel when a machine of Fig. 1 is considered in isolation.
As in many other models, channels in collections of machines are specified implicitly by
naming conventions on the ports. Fig. 2 gives an overview of the naming scheme; it can
be seen as a yet more detailed view of the right-hand side of Fig. 1. The name of a port
(here q) serves as an identifier and will later be used to define which ports are connected
to each other. Inspired by the CSP-notation [58], input and output ports are represented by
the symbols ? and !, respectively. These ports are used for “usual” message transmission,
whereas the ports q↔?, q↔!, q�?, and q�! are used for the distributed scheduling. In the
following, we call the port q�! the clock-out port for buffer q. In the synchronous model,
buffers do not exist nor do the “scheduling” ports q↔?, q↔!, q�?, and q�!.

As the low-level complement qc of a port q (either in- or output port) we denote the port
with which it connects according to Fig. 2, i.e., q�!c := q�?, q!c := q↔?, q↔!c := q?, and
vice versa. The high-level complement qC of a port q denotes the connecting port without
the buffer, i.e., q!C = q? and vice versa. For a set or a sequence P of ports, let in(P) and
out(P) denote the subset or subsequence of P consisting of the input ports or the output
ports of P, respectively.

After introducing ports, we now define machines. The primary machine model is prob-
abilistic state-transition machines, similar to probabilistic I/O automata as in [59,60]. Other
terms for such machines are extended finite-state automata or state-transition machines.
For the computational complexity aspects, implementations of such machines are defined
by probabilistic interactive Turing machines. Turing machines are not used as the sole
or primary model, in contrast to prior cryptographic literature, because the I/O automata
allows for expressing non-cryptographic protocol parts and abstractions from cryptography
in a well-defined way unencumbered with Turing-machine details. This is important for
the desired accessibility of the resulting model to existing theorem provers and model
checkers. The model makes one addition to individual machines compared with other I/O
automata models, in order to enable machines to have polynomial runtime independent of
their environment without being automatically vulnerable to denial-of-service attacks by
long messages: It allows state-dependent length bounds on the inputs that a machine will
read from each channel.

A machine has a sequence of ports, containing both input ports and output ports, and a
set of states, comprising sets of initial and final states. If a machine is switched, it receives
an input tuple at its input ports and performs its transition function yielding a new state and
an output tuple in the deterministic case, or a finite distribution over the set of states and
possible outputs in the probabilistic case. Furthermore, each machine has state-dependent
bounds on the length of the inputs accepted at each port to enable flexible enforcement of

Receiving
machine

Sending
machine

Scheduler for
buffer q~

q!

q !

q?

Buffer q
~

q ?

q !

q↔?

1↔

Fig. 2. Ports and buffers.

164 M. Backes / Journal of Logic and Algebraic Programming 64 (2005) 157–188

runtime bounds. The parts of an input that are beyond the length bound are ignored. The
value ∞ denotes that arbitrarily long inputs are accepted.

Definition 1 (Machines). A machine is a tuple

M = (nameM,PortsM, StatesM, δM, lM, IniM,FinM)

of a name nameM ∈ �+, a finite sequence PortsM of ports, a set StatesM ⊆ �∗ of
states, a probabilistic state-transition function δM, a length function lM : StatesM →
(N ∪ {∞})|in(PortsM)|, and sets IniM,FinM ⊆ StatesM of initial and final states. Its input set
is IM := (�∗)|in(PortsM)|; the ith element of an input tuple denotes the input at the ith input
port. Its output set is OM := (�∗)|out(PortsM)|. The empty word, ε, denotes no in- or output at
a port. δM maps each pair (s, I) ∈ StatesM ×IM to a finite distribution over StatesM × OM.
If s ∈ FinM then lM(s) = (0, . . . , 0); if I = (ε, . . . , ε) then δM(s, I) = (s, (ε, . . . , ε)) de-
terministically. Inputs are ignored beyond the length bounds, i.e., δM(s, I) = δM(s, I�lM(s))
for all I ∈ IM, where (I�lM(s))i := Ii�lM(s)i for all i.

In the text, we often write “M” also for nameM. For a set M of machines, let ports(M)

denote the set of ports of all machines M ∈ M. We call a machine M a black-box subma-
chine of a machine M′ if the machine M′ has access to the state-transition function δM of
M, i.e., it can execute δM for the current state of the machine and arbitrary inputs. In order
to concisely denote specific input and output tuples of a machine M, we introduce some
additional notation. Let (p1?, . . . , pn?) := in(PortsM), let P := (pi1 ?, . . . , pij ?) denote a
subsequence of (p1?, . . . , pn?), and let (vi)i∈{1,... ,j} ∈ (�∗)j . If the sequence of input ports
of M is clear from the context, we define Ipi1 ?=v1,... ,pij ?=vj to be the tuple I of length n

with Iil = vl for all l ∈ {1, . . . , j} and Il = ε for all l ∈ {1, . . . , n} \ {i1, . . . , ij }. In the
special case P = () or vi = ε for all i, i.e., in case of an all-empty input, we write Iε .
Outputs are defined similarly.

For computational aspects, a machine M is regarded as implemented by a probabilistic
interactive Turing machine as introduced in [61]. We refer to [13] for the precise definition
of the implementation. The main reason to introduce a Turing-machine realization of the
machine model is to define complexity notions. A machine is called polynomial-time if its
Turing machine implementation only needs time polynomial in its initial worktape content,
independent of all inputs on communication tapes, i.e., if there exists a polynomial Q such
that all possible runs of the Turing machine are of length at most Q(k), where k is the
length of the initial worktape content.

After introducing individual machines, we now focus on collections of finitely many
machines, with the intuition that these machines interact. A collection C of machines is
a finite set of machines with pairwise different machine names and disjoint sets of ports.
A port of a collection is called free if its connecting port is not in the collection. The
free ports of a collection C are denoted as free(C). Given a collection of machines in
the asynchronous model, we want to add buffers for all channels to model asynchronous
timing. This is modeled by the completion [C] of a collection C. The completion is the
union of all machines of C and the buffers needed for every channel. In the asynchronous
model, a collection C is called closed if its completion [C] has no free ports except a special
master clock-in port clk�?, i.e., free([C]) = {clk�?}. When we define the interaction of
several machines, the master clock-in port will belong to a distinguished machine called the
master scheduler which is used to resolve situations where the interaction cannot proceed.
In the synchronous case, we demand free(C) = ∅.

M. Backes / Journal of Logic and Algebraic Programming 64 (2005) 157–188 165

For security purposes, special collections are needed, because an adversary may have
taken over parts of the initially intended system, e.g., different situations have to be
captured depending on which and how many users are considered as being malicious.
Therefore, a system consists of several possible remaining structures.

Definition 2 (Structures and systems). A structure is a pair struc = (M, S) where M is
a collection of non-buffer machines called correct machines, and S ⊆ free(M) is called
specified ports. If M is clear from the context, let S̄ := free(M) \ S. We call forb(M, S) :=
ports(M) ∪ S̄C the forbidden ports, i.e., those ports that the honest user is forbidden to
have. A system Sys is a set of structures. It is polynomial-time iff all machines in all its
collections M are polynomial-time.

The separation of the free ports into specified ports and others is an important feature of
the upcoming security definitions. The specified ports are those where a certain service is
guaranteed. Concretely, specified ports will later be used to connect a user machine to the
structure.

Note that this definition is valid for both the synchronous and the asynchronous case.
In particular, buffers do not have to be explicitly included in the specification of a system,
e.g., in the specification of a cryptographic protocol that one wants to analyze, but the
completion operator will be used instead. The different timing assumptions stem from the
different definitions of runs which we will introduce in the following.

A structure can be completed to a configuration by adding machines H and A, modeling
the joint honest users and the adversary, respectively. The machine H is restricted to the
specified ports S, A connects to the remaining free ports of the structure and both machines
can interact, e.g., in order to model active attacks. In the asynchronous case, buffers are
additionally added to close the collection. Moreover, the initial state of all machines is
isomorphic to the natural numbers which allows for letting the machines run on input the
same security parameter in the subsequently described run algorithm.

Definition 3 (Configurations). A configuration of a system Sys is a tuple conf = (M, S,
H,A) where (M, S) ∈ Sys is a structure, M ∪ {H,A} is a closed collection, ports(H) ∩
forb(M, S) = ∅, and IniM = {1}∗ for all M ∈ M ∪ {H,A}. The set of configurations is writ-
ten Conf(Sys). The set of configurations of Sys with polynomial-time user H and adversary
A is called Confpoly(Sys). The index poly is omitted if it is clear from the context.

2.3. Capturing asynchronous runs

For a configuration, both models define a probability space of runs (sometimes called
traces or executions). In the asynchronous model, the collection contains a unique master
scheduler X since the collection is closed. Machines switch sequentially, i.e., we have
exactly one active machine M at any time. If this machine has clock-out ports, it can select
the next message to be delivered by scheduling a buffer via one of these clock-out ports.
If a message exists at the respective position of the buffer’s internal queue, it is delivered
by the buffer and the unique receiving machine is the next active machine. If M tries to
schedule multiple messages, only one is taken, and if it schedules none or the message
does not exist, the master scheduler X becomes active.

166 M. Backes / Journal of Logic and Algebraic Programming 64 (2005) 157–188

Definition 4 (Asynchronous runs and views). For a given configuration conf = (M, S,
H,A) with master scheduler X (which is uniquely determined by having the master-clock
in-port clk�?), set C := [M ∪ {H,A}]. Runs and their probability spaces are defined in-
ductively by the following algorithm for each tuple ini ∈ {(1k)M∈M∪{H,A}} ⊂ ×M∈CIniM of
initial states of the machines of C.

The probability space of runs is defined inductively by the following algorithm. It has
a variable r for the resulting run, an initially empty list, a variable MCS (“current sched-
uler”) over machine names, initially MCS := X, and treats each port as a variable over �∗,
initialized with ε except for clk�? := 1. Probabilistic choices only occur in Phase (1).

(1) Switch current scheduler: Switch machine MCS, i.e., set (s′,O) ← δMCS(s, I) for its
current state s and input port values I . Then assign ε to all input ports of MCS.

(2) Termination: If X is in a final state, the run stops.
(3) Buffer messages: For each simple output port q! of MCS, in their given order, switch

buffer q with input q↔? := q!, cf. Fig. 2. Then assign ε to all these ports q! and q↔?.
(4) Clean up scheduling: If at least one clock-out port of MCS has a value /= ε, let q�!

denote the first such port and assign ε to the others. Otherwise let clk�? := 1 and
MCS := X and go back to Phase (1).

(5) Scheduled message: Switch q with input q�? := q�! (cf. Fig. 2), set q? := q↔! and
then assign ε to all ports of q and to q�!. Let MCS := M′ for the unique machine M′
with q? ∈ ports(M′). Go back to Phase (1).

Whenever a machine (this may be a buffer) with name nameM is switched from (s, I)

to (s′,O), we add a step (nameM, s, I
′, s′,O) with I ′ := I�lM(s) to the run r , except if s

is final or I ′ = (ε, . . . , ε). This gives a random variable for each tuple ini, i.e., for each
value k of the security parameter denoted as runconf ,k . Hence we obtain a family of random
variables

runconf = (runconf ,k)k∈N.

The view of a subset M ⊂ C in a run r is the restriction of r to M, i.e., the subsequence of
all steps (nameM, s, I, s

′,O), where nameM is the name of a machine M ∈ M. This gives a
family of random variables

viewconf (M) = (viewconf ,k(M))k∈N.

For a singleton M = {H} we write viewconf (H) instead of viewconf ({H}).

This still rather informal definition of runs can naturally be formalized using transition
probabilities, which induce probability spaces over the finite sequences of steps similar
to Markov Chains. The extension to infinite sequences can then be achieved using well-
established results of measure theory and probability theory, cf. Section 5 of [62]. It is
further easy to show that views of polynomial-time machines are of polynomial size,
i.e., that the length of any trace that occurs with non-zero probability according to the
considered view is bounded by a polynomial in the security parameter.

2.4. Capturing synchronous runs

In the synchronous model, ports, machines, collections, structures, and systems are
defined similar to the asynchronous model. The only exception is that there are no clock
ports and no buffers, which have only been included to model asynchronous timing, i.e.,

M. Backes / Journal of Logic and Algebraic Programming 64 (2005) 157–188 167

corresponding ports p? and p! are directly connected. The main difference is the definition
of runs. Instead of our asynchronous run algorithm (cf. Definition 4), runs are defined
using rounds which is the usual concept in synchronous scenarios. Every global round is
again divided into n so-called subrounds, and there is a mapping κ , called clocking scheme,
from the set {1, . . . , n} into the powerset of considered machines, i.e., the machines of the
structure, the user, and the adversary. κ(i) denotes which machines switch in subround
i. After finishing the nth subround, the run starts the first subround of the next global
round. At the beginning of each subround, all messages from the previous subround are
transported from the output ports to the connected input ports. After that, each machine of
κ(i) switches with its current inputs yielding a finite distribution over the set of states and
the set of possible outputs.

Definition 5 (Clocking scheme). A clocking scheme κ for a configuration (M, S,H,A) and
n ∈ N is a mapping from the set {1, . . . , n} to the powerset of M ∪ {H,A}, i.e., it assigns
each number a subset of the machines.

Definition 6 (Synchronous runs and views). Given a configuration conf = (M, S,H,A)
along with a clocking scheme κ for n ∈ N, runs are defined as follows: Each global round i
has n subrounds, where we denote the j th subround of global round i by [i.j]. In subround
j ∈ {1, . . . , n} all machines M ∈ κ(j) switch simultaneously, i.e., each state-transition
function δM is applied to M’s current input yielding a new state and output (probabilist-
ically). The output at a port p! is available as input at p? until the machine with port p?
is switched. If several inputs arrive until that time, they are concatenated. Similar to the
asynchronous case, this gives a family of random variables

runconf ,κ = (runconf ,κ,k)k∈N.

More precisely, each run is a function mapping each triple (M, i, j) ∈ M ∪ {H,A} × N ×
{1, . . . , n} to a quadruple (s, I ′, s′,O) of the old state, inputs (with I ′ := I�lM(s) again),
new state, and outputs of machine M in subround [i.j], with I ′ ≡ ε, O ≡ ε, and s = s′ if
M is not switched in this subround. The view of a subset M ⊂ M ∪ {H,A} in a run r is the
restriction of r to M × N × {1, . . . , n}. This gives a family of random variables

viewconf ,κ (M) = (viewconf ,κ,k(M))k∈N,

and we omit the subscript κ if it is clear from the context.

Again, the view of a polynomial-time machine can easily be shown to be of polynomial
size.

Remark 7. Alternatively, we can consider runs as a sequence of seven-tuples
(M, i, j, s, I ′, s′,O) for ascending values of i and j . More formally, we first have all tuples
(M, 1, 1, s, I ′, s′,O) for M ∈ κ(1). The order of these tuples can be chosen arbitrary since
they switch simultaneously and do not influence each other. After that, we have the steps
(M, 1, 2, s, I ′, s′,O) for all M ∈ κ(2) and so on, until we finally have steps of the form
(M, 1, n, s, I ′, s′,O) for all M ∈ κ(n). We then continue with (M, 2, 1, s, I ′, s′,O) etc.
Obviously, this characterization of runs is equivalent to the original one (we just expanded
the function), but it is better suited for relating synchronous runs and “corresponding”
asynchronous runs, which we will do in our upcoming proofs.

168 M. Backes / Journal of Logic and Algebraic Programming 64 (2005) 157–188

Instead of arbitrary clocking schemes as in the above definition of runs, the authors
of [8] focus on only one special clocking scheme κ , given by (M ∪ {H}, {A}, {H}, {A}).
Clocking the adversary between the correct machines is the well-known model of “rushing
adversaries”, where [63] is the earliest reference that we are aware of. In [8], it has been
shown that this clocking scheme does not restrict the possibilities of the adversary, hence
we can use it without loss of generality. Moreover, we restrict ourselves to those configur-
ations where the honest user and the adversary are only connected via one duplex channel.
This is indeed no restriction to generality in the synchronous model, because outputs at
several ports to the same machine can simply be concatenated using a separation symbol
and decomposed again, respectively. In the following, we give these two channels fixed
names pA_H and pH_A, i.e., pA_H! sends messages from A to H and vice versa.

2.5. Simulatability

The definition of one system securely implementing another one is based on the
common concept of simulatability. Simulatability essentially means that whatever might
happen to an honest user in a real system Sysreal can also happen in an ideal (abstract)
system Sysid: For every structure struc1 ∈ Sysreal, every user H, and every adversary A1,
there exists an adversary A2 on a corresponding ideal structure struc2 such that the view
of H is indistinguishable in the two configurations. Indistinguishability (“≈”) is a well-
defined cryptographic notion from [64]. We only give the definition of computational
indistinguishability; a more comprehensive definition is given in the Appendix A.

Definition 8 (Computational indistinguishability). Two families (vark)k∈N and (var′k)k∈N

of random variables (or probability distributions) on common domains Dk are compu-
tationally indistinguishable (“≈”) if for every algorithm Dis (the distinguisher) that is
probabilistic polynomial-time in its first input,

|P(Dis(1k, vark) = 1)− P(Dis(1k, var′k) = 1)| ∈ NEGL.2

Intuitively, given the security parameter and an element chosen according to either vark or
var′k , Dis tries to guess which distribution the element came from.

Corresponding structures in the simulatability definition are designated by a function f

from Sysreal to the powerset of Sysid. The function f is called valid if it maps structures
with the same set of specified ports, so that the same user can connect. For many systems
there is only one possible mapping that meets this requirement, because the service ports
of the structures correspond one-to-one to different sets of non-corrupted machines. This
mapping is then called canonical. We only give the definition of simulatability based on
computational indistinguishability, which captures the most common case when applying
simulatability to cryptographic protocols. A more comprehensive definition based on the
remaining notions of indistinguishability is again postponed to the Appendix A; our results
hold as well for this more general definition.

2 The class NEGL denotes the set of all negligible functions, i.e., g : N → R�0 ∈ NEGL if for all positive
polynomials Q, ∃k0∀k � k0 : g(k) � 1/Q(k).

M. Backes / Journal of Logic and Algebraic Programming 64 (2005) 157–188 169

H

A1

S

M1

H

A2
M2

S

Fig. 3. Overview of the simulatability definition.

Definition 9 (Simulatability). Let systems Sys1 and Sys2 with a valid mapping f be
given. We say Sys1 �f Sys2 (at least as secure as) if for every polynomial-time config-
uration conf 1 = (M1, S,H,A1) ∈ Conf(Sys1), there exists a polynomial-time configuration
conf 2 = (M2, S,H,A2) ∈ Conf(Sys2) with (M2, S) ∈ f (M1, S) (and the same H) such that
viewconf 1

(H) ≈ viewconf 2
(H).

This is shown in Fig. 3. In the following, we augment � with a subscript sync or async

to distinguish the definition of the synchronous and asynchronous case. In a typical ideal
system, each structure contains only one machine TH called trusted host, which serves as an
ideal functionality of the real system. The machine TH is usually deterministic and main-
tains a very simple transition function, hence validation based on this ideal functionality is
in scope of current verification techniques.

3. Idea and definition of the embedding

The informal idea of the embedding ϕSys is to add an explicit master scheduler that
should simulate the synchronous run induced by the given clocking scheme. However,
due to the general distributed scheduling (cf. Definition 4), leaving the actual machines
unmodified leads to non-simulatable situations, as these machines can clock themselves
without ever giving control to this explicit master scheduler.

Hence, we first define a mapping ϕM from “synchronous” machines, i.e., from machines
that do not have any of the scheduling ports but only ports for usual message transmission,
to “asynchronous” machines, i.e., to machines which might additionally have clock-out
ports.

Intuitively, this mapping surrounds single synchronous machines with an “asynchronous
coat”. More precisely, if a synchronous machine makes a transition, it obtains all inputs at
once that arrived since its last scheduling, whereas in asynchronous scenarios, these inputs
come one by one and have to be processed in several transitions. Thus, the surrounding
asynchronous machine stores all inputs internally, until it is asked to perform the transition
of its synchronous submachine. It then schedules this submachine with the collected inputs
and forwards its outputs. As these asynchronous machines do not produce any clock out-
puts, the master scheduler can try to simulate the synchronous time by a suitable scheduling
strategy.

Definition 10 (Mapping ϕM). ϕM is a mapping on single synchronous machines that as-
signs every machine Msync an asynchronous machine Masync := ϕM(Msync) by the following
rules:
• The ports of Masync are given by PortsMasync := PortsMsync ◦ (pMsync ?), where ◦ denotes

concatenation of sequences.

170 M. Backes / Journal of Logic and Algebraic Programming 64 (2005) 157–188

• Internally, Masync maintains arrays (input_storeMsync,p?)p?∈in(PortsMsync)
over �∗ initial-

ized with ε everywhere, which are used for storing incoming messages at each port of
Msync.

• Masync has the machine Msync as a blackbox submachine, i.e., it has its transition function
δMsync .

• Internally, Masync maintains a superset of the states of Msync (the additional states are
only used to model appropriate length functions). Moreover, the initial and final states
of both machines are equal.

• On input i at p? /= pMsync ?: It concatenates i to the element of input_storeMsync,p?, i.e.,
it stores all inputs until the machine Msync is eventually switched. The length func-
tion for such a port p? is defined as lMsync(s)p? − |input_storeMsync,p?|, where lMsync(s)p?
is the length function of the machine Msync at port p? in its current state s and
|input_storeMsync,p?| is the number of elements in input_storeMsync,p?.

• On input i at pMsync ?: It applies the state-transition function δMsync on the con-
tents of the arrays input_storeMsync,p? yielding a tuple (s′,O). Masync now assigns
ε to input_storeMsync,p? for all p? ∈ in(PortsMsync), switches to the state s′ and out-
puts the tuple O. The length function for this port is defined to be zero if the lists
input_storeMsync,p? are empty for all ports p?; otherwise it is the runtime of Msync. This
case corresponds to the scheduling of the synchronous machine; the port pMsync ? will be
connected to the explicit master scheduler.
For a set M of synchronous machines, we define ϕM(M) := ⋃

Msync∈M ϕM(Msync).

Masync is polynomial-time by construction iff Msync is polynomial-time, since the
machine Masync only performs a polynomially bounded number of steps between two
transitions of Msync (which is especially ensured by the used length functions), since both
machines always stay in the same state after a transition of the blackbox submachine, and
finally since their final states are equal. We stress that making the outer machine Msync

polynomial-time for a polynomial submachine is not as easy as one might expect, e.g., as
the outer machine may be triggered exponentially often at one port without causing the
submachine to switch. Note further that the length functions of Masync are always large
enough by construction that inputs of Masync are not ignored respectively truncated if they
would be fully read by the machine Msync.

Based on this definition, we now formalize the desired mapping ϕSys on synchronous
systems.

Definition 11 (Mapping ϕSys). Let an arbitrary synchronous system Syssync =
{(Msync, Ssync) | sync ∈ I} for a finite index set I and a clocking scheme κ be given. We
then define

ϕSys(Syssync) := {(ϕM(Msync) ∪ {Xsync,κ}, Ssync) | sync ∈ I}.

The machine Xsync,κ is an explicit master scheduler that has to be added to the considered
structure to model the synchronous clocking scheme κ in the asynchronous system. Its
ports are given by
• {clk�?}: The master clock-in port.
• {p�! | p! ∈ PortsMsync}: Ports for clocking all output ports of the given structure.
• {p�! | p? ∈ free(Msync)}: Ports for clocking inputs of the systems (either made by H or

A).

M. Backes / Journal of Logic and Algebraic Programming 64 (2005) 157–188 171

• {pA_H
�!, pH_A

�!}: Ports for clocking the connection between A and H.3

• {pM!, pM
�! | M ∈ (Msync ∪ {H,A})}: Ports for clocking, i.e., giving control to, each

machine.
The length functions are always set to infinity for all ports. Internally, it maintains a

variable local_rnd over {1, . . . , n} and a variable global_rnd over N both initialized with
1. For the sake of readability, we describe the behavior of Xsync,κ using “for”-loops. This
is just a notational convention that should be understood as follows: every time Xsync,κ is
scheduled, it performs the next step of the loop.

(1) Schedule current machines: For all machines M ∈ κ(local_rnd) output
(global_rnd, local_rnd) at pM!, 1 at pM

�!. The order of the switched machines
can be chosen arbitrary.

(2) Schedule outgoing buffers: For all M ∈ κ(local_rnd) output 1 at every port p�! with
p! ∈ PortsM. Here, the order of the switched machines can only be chosen arbit-
rary with the restriction that output ports of the adversary are scheduled first if
A ∈ κ(local_rnd).4

(3) Switch to next round: Set local_rnd := local_rnd + 1. If local_rnd > n, set
global_rnd := global_rnd + 1 and local_rnd := 1. Go to Phase (1).

To put it all into a nutshell, the specific master scheduler simulates the clocking scheme
κ by first scheduling the machines that ought to switch in the particular subround (Step 1)
and afterwards scheduling all buffers that could be influenced by outputs of these machines
(Step 2). Finally, it switches to the next subround (Step 3) and continues with the first step
again.

Moreover, we define a mapping ϕconf on synchronous configurations of a system Sys,
i.e., configurations which consist of synchronous machines only, by

ϕconf (Msync, Ssync,H,A) := (ϕM(Msync) ∪ {Xsync,κ}, Ssync, ϕM(H), ϕM(A)),

with Xsync,κ given as in ϕSys for the particular structure. We will in the following simply
write ϕ instead of ϕSys, ϕM, and ϕconf if its meaning is clear from the context.

4. Preliminary work for the embedding theorems

We now have to prove that the function ϕ has the desired properties with respect to
simulatability, i.e.,

ϕSys(Syssync,1) �async ϕSys(Syssync,2) ⇒ Syssync,1 �sync Syssync,2.

This captures the content of our first embedding theorem. Unfortunately, the converse
direction does not hold, but our second embedding theorem will state a weaker version
that is still sufficient for our purpose.

3 Note, that Xsync,κ is defined independent from the honest user H and the adversary A, so it cannot know their
ports. We therefore restricted the configuration to a fixed number and fixed names of ports between H and A (cf.
Section 2.4).

4 Without this restriction, the behavior of the adversary at its switching time could depend on outputs of
machines scheduled in the same subround, which would lead to non-simulatable situations.

172 M. Backes / Journal of Logic and Algebraic Programming 64 (2005) 157–188

Fig. 4. Synchronous simulatability derived by asynchronous simulatability.

4.1. Proof overview

Before we turn our attention to the auxiliary lemmas for the embedding theorems we
exemplarily present an informal description of the proof of the first embedding theorem.
The proof consists of four steps. A graphical illustration is given in Fig. 4.

(1) Starting with a synchronous configuration confsync,1 ∈ Conf(Syssync,1), we apply our
embedding function ϕconf which yields an asynchronous configuration confasync,1 ∈
Conf(ϕSys(Syssync,1)). We now define a mapping σ on the runs of the asynchron-
ous system yielding runs of the synchronous system. Intuitively, σ “compresses” an
asynchronous run to its synchronous counterpart, which consists of fewer steps. We
then show in Theorem 14 that

viewconfsync,1(Hsync) = σ(viewconfasync,1(ϕ(Hsync))).

(2) We now apply our precondition ϕSys(Syssync,1) �f
async ϕSys(Syssync,2) yield-

ing an indistinguishable configuration confasync,2 ∈ Conf(ϕSys(Syssync,2)), i.e.,
viewconfasync,1(ϕ(Hsync)) ≈ viewconfasync,2(ϕ(Hsync)). We then show that

σ(viewconfasync,1(ϕ(Hsync))) ≈ σ(viewconfasync,2(ϕ(Hsync))).

(3) We finally reverse the function ϕ by removing the coating of the user and that of the
machines of the structure. Since we do not know anything about the newly derived
adversary Aasync,2, i.e., in particular it is not required that it fits the structure imposed
by the mapping ϕ, we define a new adversary Async,2 using Aasync,2 as a black-box
submachine, and we will show in Theorem 15 that

σ(viewconfasync,2(ϕ(Hsync))) = viewconfsync,2(Hsync).

M. Backes / Journal of Logic and Algebraic Programming 64 (2005) 157–188 173

(4) Altogether, transitivity of the relation ≈ implies

viewconfsync,1(Hsync) ≈ viewconfsync,2(Hsync).

We first take a look at the runs in a synchronous system Syssync and in its asynchronous
counterpart Sysasync := ϕ(Syssync).

In the following, we will simply write S instead of Ssync, because the set of specified
ports is not influenced by the mapping ϕ.

4.2. Compressing asynchronous runs to synchronous counterparts

In the following, let an arbitrary synchronous system Syssync with a clocking scheme
κ and an arbitrary configuration confsync = (Msync, S,Hsync,Async) ∈ Conf(Syssync) be
given. Moreover, let an asynchronous configuration confasync be given which fits the form
confasync = (ϕ(Msync) ∪ {Xsync,κ}, S, ϕ(Hsync),A′) (i.e., ϕ(confsync) but with an arbitrary
adversary).5

First of all, note that runs of confasync always have a prescribed structure induced
by the behavior of the master scheduler Xsync,κ : they are built by “blocks”. The steps
(Msync, i, j, s,I, s′,O) of the machines Msync ∈ Msync ∪ {Hsync} switched in round [i.j]
in the synchronous run are represented by the following two blocks in the asynchronous
run.

(1) The first block consists of the steps induced by clocking the machines ϕ(Msync) with
Msync ∈ κ(j) and A′ if Async ∈ κ(j), i.e., Step (1) in the definition of Xsync,κ . More
precisely, the block is built by |κ(j)| sub-blocks, one for every switched machine.
Every sub-block is built by the following steps.

• The first step of the sub-block is always of the form (Xsync,κ , s1,Iclk�?=1, s
′
1,

OpMsync !=(i,j),pMsync
�!=1) for two arbitrary states s1, s

′
1 of Xsync,κ , i.e., the master

scheduler schedules the machine ϕ(Msync) respectively A′.
• After that, we have the transition of the scheduled buffer.
• We now have to distinguish the following two cases:

� If Msync /= Async, there is a step (ϕ(Msync), s,IpMsync ?=(i,j), s′,
δMsync(input_storeMsync

)) and steps for the receiving buffers.
� If Msync = Async, we have a step (A′, s,IpAsync ?=(i,j), s′,O). If O /= Oε we have

steps for the receiving buffers. If there are non-empty outputs at ports p! and
p�! (which has to be a self-loop because there are no free clock-in ports in the
system), there is furthermore a clocking step for this particular buffer. In this
case, the adversary is scheduled again, so this sub-point of the block is repeated
until the self-loop of the adversary either ends or it is repeated forever in case
of divergence, i.e., we obtain a step (A′, s′,I′, s′′,O) where I′ is now given by
I′ := Ip?=Op! and so on.

(2) The second block consists of the steps induced by clocking the outgoing messages
of the switched machines, i.e., Step (2) in the definition of Xsync,κ . Now the buffers of
the output ports are switched by the master scheduler. This is done similar as in the
first part with the restriction that output ports of A′ are clocked first if Async ∈ κ(j).
The block again has |κ(j)| sub-blocks built by the following steps.

5 Note that we investigate the more general case here that A′ can be chosen arbitrarily instead of being the
embedded adversary ϕM(A). This generality will be helpful during the upcoming proofs.

174 M. Backes / Journal of Logic and Algebraic Programming 64 (2005) 157–188

• The first step of the sub-block is given by (Xsync,κ , s1,Iclk�?=1, s
′
1,Op�!=1) for the

first output port p! ∈ ports(Msync) and two arbitrary states s1, s
′
1 of Xsync,κ .

• The step of the clocked buffer.
• In case of a non-empty output let M′ denote the unique machine with p? ∈ ports(M′).

We now have to distinguish two cases:
� If M′ /= A′, there is a step (M′, s,I′, s′,Oε), where I′ consists of the output of
ϕ(Msync) at p!.

� If M′ = A′, we obtain a step (A′, s,I′, s′,O), where I′ consists of the output of
ϕ(Msync) respectively A′ at p!. If O /= Oε we have steps for the receiving buffers.
If O has a clocked self-loop, we proceed identical to the first block.

• The three previous steps are repeated for every output port of every machine Msync ∈
κ(j).

After this detailed description of the run, (i.e., its blocks) the mapping σ can be defined.
Informally, it combines the blocks of all machines Msync ∈ κ(j) yielding the synchronous
steps of every machine Msync that switches in the j th subround of the particular global
round.

Definition 12 (Mapping σ). Let an arbitrary synchronous system Syssync with a clocking
scheme κ and an arbitrary configuration confsync = (Msync, S,Hsync,Async) ∈ Conf(Syssync)

be given. For a given asynchronous configuration confasync which fits the form confasync =
(ϕ(Msync) ∪ {Xsync,κ}, S, ϕ(Hsync),A′), we define the mapping σ on the runs of confasync by
the following algorithm. The algorithm has internal arrays (inputsM,p?) for M ∈ ϕ(Msync) ∪
{ϕ(Hsync),A′} and p? ∈ in(PortsM). It goes from block to block modifying them as follows.

(1) Every step of a buffer is deleted from the run.
(2) The two remaining steps of the first block are modified as follows. If

the scheduled machine is ϕ(Msync) /= A′, then the block is replaced by
(Msync, i, j, s, inputsMsync

, s′, δMsync(inputsMsync
)). If A′ is scheduled, the block is re-

placed by (A′, i, j, s, inputsAsync
, s′,OA′). Here, s denotes the state of A′ when it is

switched by Xsync,κ , and s′ and OA′ are the state and the output of the last step of the
block, respectively (In case of divergence, the algorithm for defining the mapping σ

diverges, too.).
(3) The algorithm starts searching through the second block doing the following. If a

machine M′ receives a message i at p? in the second block, i is concatenated to the
array inputsM′,p?.

(4) Finally, every step of the second block is deleted from the run.

Note that all necessary information (e.g., Msync, i, j, s, s
′ etc.) is already given by the

block except for the inputs of each machine in the synchronous case. At this point, it also
becomes clear why we defined the master scheduler to schedule each machine specifically
with a tuple (i, j) indicating the current global and local round, since this information
would otherwise not be contained in the asynchronous run.

To overcome the absence of the gathered inputs in the run, the algorithms has to collect
all “partial” inputs itself in its third step, and it can use this information to calculate the
outputs of each machine (although for this, it could as well use the information contained
in the run). Moreover, the new blocks built by the mapping σ in one particular subround do
not depend on the second block of this subround. The mapping σ is obviously also defined
on the view of arbitrary subsets of machines, because the step in the first block, carrying

M. Backes / Journal of Logic and Algebraic Programming 64 (2005) 157–188 175

the information of the step, and the message-receiving steps in the second block will also
be part of the view of the considered machine. Furthermore, note that the mapping σ is
explicitly defined for arbitrary adversaries A′ (not only for ϕ(Async)) which we will need in
Theorem 15. Furthermore, the following lemma establishes a computational bound on the
mapping σ in polynomial-time configurations:

Lemma 13. If confasync is a polynomial-time configuration that fits the form required by
Definition 12, then σ applied to the view of the honest user and the adversary is computable
in polynomial-time.

Proof. In case of a polynomial configuration, especially the adversary has to be
polynomial-time. This implies that there cannot be any infinite successive clocked self-
loops, so the steps of every sub-block are bounded by a polynomial in the security
parameter k. Moreover, both the adversary and the honest user will reach final state after
a polynomial number of blocks, so the algorithm for σ applied to the view either of the
honest user or the adversary only makes a polynomial number of transition, each one with
a polynomial number of steps. This implies that σ is computable in polynomial-time when
applied to the view of the honest user and the adversary if it is used in a polynomial-time
configuration. �

4.3. Auxiliary theorems

The following theorem captures the first step of our proofsketch of Section 4.1.

Theorem 14. Let a synchronous system Syssync, a clocking scheme κ, and a config-
uration confsync = (Msync, S,Hsync,Async) ∈ Conf(Syssync) be given, and set confasync :=
ϕ(confsync). Then

viewconfsync(Msync) = σ(viewconfasync(ϕ(Msync)))

for every Msync ∈ (Msync ∪ {Hsync,Async}). confasync is polynomial-time iff confsync is
polynomial-time.

Proof. Note that the view of ϕ(Msync) only contains the steps of its internal blackbox
function-call after being modified by the mapping σ . Thus, it is sufficient to show that
the inputs of the blackbox call in confasync and the original inputs of Hsync in confsync

are equal. It is quite easy to see that the arrays input_storeMsync
and inputsMsync

are al-
ways equal if the machine Msync is switched. This can easily be proven by induction
over the number of (sub-)rounds. In the first round, both arrays are empty yielding
a correct start of the induction. Starting with the second round, the contents of these
arrays are totally determined by the inputs at the ports of Msync. However, these inputs
only depend on prior outputs of other machines M. Moreover, these outputs have to be
equal because these machines used the same input tuple in both configurations, since we
have input_storeM = inputsM for all M ∈ M by induction hypothesis. Therefore, the arrays
inputsMsync

and input_storeMsync
must be equal at replacing the block by construction of the

algorithm, so δMsync(s, inputsMsync
) = δMsync(s, input_storeMsync

) also holds. We do not have
to worry about the arrangement of the blocks because of the following reasons. First of all,

176 M. Backes / Journal of Logic and Algebraic Programming 64 (2005) 157–188

note that we first switch all machines in a subround and schedule the outgoing messages
afterwards. Moreover, messages sent by the adversary are always scheduled first if the ad-
versary is scheduled in the considered subround. This prevents that machines which should
switch simultaneously in the synchronous system influence each other in the asynchronous
system in the same subround. If we did not consider this restriction, the adversary would
be able to create a message that is scheduled in this particular subround, but nevertheless
depends on inputs arriving in this subround.

Putting it all together, the runs induced by the mapping σ in confasync and the original
runs are equal by definition of σ , so we finally obtain

viewconfsync(Msync) = σ(viewconfasync(ϕ(Msync)))

for an arbitrary configuration confsync ∈ Conf(Syssync), confasync := ϕ(confsync), and an
arbitrary Msync ∈ (Msync ∪ {Hsync,Async}). As a special case, this implies

viewconfsync(Hsync) = σ(viewconfasync(ϕ(Hsync)))

which finishes our proof. �

After performing this first step of the proof, asynchronous simulatability can now be
applied. In order to convert the derived asynchronous configuration into a synchronous
configuration again (cf. Step 3 of our proofsketch), we present the following theorem.

Theorem 15. Let an arbitrary synchronous system Syssync and a clocking scheme
κ be given such that every machine and the honest user are clocked at most once
between two successive clockings of the adversary. Furthermore, let an arbitrary con-
figuration confasync ∈ Conf(ϕ(Syssync)) of the form confasync = (ϕ(Msync) ∪ {Xsync,κ}, S,
ϕ(Hsync),Aasync) be given. Then there exists an adversary Async using Aasync as a blackbox
such that for confsync := (Msync, S,Hsync,Async), it holds

viewconfsync(Msync) = σ(viewconfasync(ϕ(Msync)))

for every Msync ∈ (Msync ∪ {Hsync}). confasync is polynomial-time iff confsync is polynomial-
time.

Note, that the standard clocking scheme (M ∪ {H}, {A}, {H}, {A}) fulfills the postu-
lated requirement. The proof of Theorem 15 is quite technical and hence postponed to
Appendix B for the sake of readability.

5. The embedding theorems

This section contains our two main theorems. We start with a lemma capturing some
simple properties of indistinguishable random variables. The lemma is well-known and
easily proved.

Lemma 16. Indistinguishability of two families of random variables implies indis-
tinguishability of any function σ of them. For the polynomial case, the function σ

has to be polynomial-time computable. Moreover, identically distributed variables are
indistinguishable and indistinguishability is an equivalence relation.

M. Backes / Journal of Logic and Algebraic Programming 64 (2005) 157–188 177

Theorem 17 (First Embedding Theorem). Let two arbitrary synchronous systems Syssync,1
and Syssync,2 with clocking schemes κ1 and κ2 be given such that κ2 fulfills the property that
every machine of the system and the user is clocked at most once between two successive
clockings of the adversary. Furthermore, ϕ(Syssync,1) �f

async ϕ(Syssync,2) should hold for
a valid mapping f. Then

Syssync,1 �f ′
sync Syssync,2,

where f ′ is derived from f by (M2, S2) ∈ f ′(M1, S1) ⇔ ϕ(M2, S2) ∈ f (ϕ(M1, S1)).

Using the result of the previous theorems, the proof will be rather simple, cf. the
illustration in Fig. 4.

Proof. Let an arbitrary configuration confsync,1 = (Msync,1, S,Hsync,Async,1) ∈
Conf(Syssync,1) be given.

(1) We apply ϕconf on confsync,1 which yields a configuration confasync,1 = (ϕ(Msync,1) ∪
{Xsync,1,κ1}, S, ϕ(Hsync), ϕ(Async,1)) ∈ Conf(Sysasync,1). According to Theorem 14,
applying the mapping σ to the runs of confasync,1 yields

viewconfsync,1(Hsync) = σ(viewconfasync,1(ϕ(Hsync))). (1)

Moreover, if confsync,1 is polynomial-time then confasync,1 is also polynomial-time,
and the mapping σ is polynomial-time computable.

(2) Thus, the precondition ϕ(Syssync,1) �f
async ϕ(Syssync,2) can be applied which yields

a configuration confasync,2 = (ϕ(Msync,2) ∪ {Xsync,2,κ2}, S, ϕ(Hsync),Aasync,2) ∈
Conf(Sysasync,2) with

viewconfasync,1(ϕ(Hsync)) ≈ viewconfasync,2(ϕ(Hsync))

and ϕ(Msync,2, S) ∈ f (ϕ(Msync,1, S)). Moreover, in the computational case,
confasync,2 is polynomial-time, so the mapping σ is polynomial-time computable.
Using Lemma 16, this yields

σ(viewconfasync,1(ϕ(Hsync))) ≈ σ(viewconfasync,2(ϕ(Hsync))). (2)

(3) We now apply Theorem 15 to the configuration confasync,2, which yields a configur-
ation confsync,2 = (Msync, S,Hsync,Async,2) ∈ Conf(Syssync,2) with

σ(viewconfasync,2(ϕ(Hsync))) = viewconfsync,2(Hsync). (3)

According to Theorem 15, confsync,2 is a polynomial-time configuration iff
confasync,2 is polynomial.

(4) Now Eqs. (1)–(3) together with Lemma 16 imply viewconfsync,1(Hsync) ≈
viewconfsync,2(Hsync). Hence, confsync,2 is an indistinguishable configuration for
confsync,1. Moreover, we have ϕ(Msync,2, S) ∈ f (ϕ(Msync,1, S)), i.e., (Msync,2, S) ∈
f ′(Msync,1, S) which yields the desired result Syssync,1 �f ′

sync Syssync,2. �

178 M. Backes / Journal of Logic and Algebraic Programming 64 (2005) 157–188

Note that the theorem is applicable to the standard clocking scheme. So far, we have
shown that asynchronous simulatability among these asynchronous representations implies
synchronous simulatability, i.e.,

ϕSys(Syssync,1) �async ϕSys(Syssync,2) ⇒ Syssync,1 �sync Syssync,2.

We already briefly stated in the previous section that the converse implication does not hold
in general. We had to show that for each configuration confasync,1 ∈ Conf(ϕSys(Syssync,1))

there exists an indistinguishable configuration confasync,2 ∈ Conf(ϕSys(Syssync,2)) provided
that Syssync,1 �sync Syssync,2.

However, both the honest user and the adversary may have clock-out ports and they
can alternately schedule each other (and also the system erratically), which we cannot
capture by a fixed synchronous clocking scheme, so we cannot exploit our assumption
Syssync,1 �sync Syssync,2.

Anyhow, it is sufficient for our purpose to show that the claim holds for at least those
configurations where the honest user Hasync fits the form ϕM(Hsync) for a synchronous
machine Hsync. We denote this version of simulatability for the restricted class of users by
�async,H in the sequel. Looking at the proof of the first embedding theorem, it is immedi-
ately clear that the theorem also holds for the weaker precondition ϕSys(Syssync,1) �async,H

ϕSys(Syssync,2), since we only need to derive an indistinguishable configuration for users
of the special form ϕ(Hsync), and the user remains unchanged at simulatability.

We can now capture the content of the second embedding theorem as

Syssync,1 �sync Syssync,2 ⇒ ϕSys(Syssync,1) �async,H ϕSys(Syssync,2).

Theorem 18 (Second Embedding Theorem). Let two arbitrary synchronous systems
Syssync,1 and Syssync,2 with clocking schemes κ1 and κ2 be given such that κ1 fulfills the
property that every machine of the system and the user is clocked at most once between two
successive clockings of the adversary. Furthermore, Syssync,1 �f

sync Syssync,2 should hold
for a valid mapping f. Then

ϕ(Syssync,1) �f ′
async,H ϕ(Syssync,2),

where f ′ is derived from f by ϕ(M2, S2) ∈ f ′(ϕ(M1, S1)) :⇔ (M2, S2) ∈ f (M1, S1).

Before we turn our attention to the actual proof, we state the following lemma which
captures that we can “locally reverse” the function σ for the honest user.

Lemma 19. Let a synchronous system Syssync, a clocking scheme κ and a configuration
confsync = (Msync, S,Hsync,Async) ∈ Conf(Syssync) be given. Let confasync = (ϕ(Msync) ∪
{Xsync,κ}, S, ϕ(Hsync),A′) be an arbitrary asynchronous configuration. If we now have
given σ(viewconfasync(ϕ(Hsync))) then we can “locally reverse” the function σ for the view

of the user, i.e., we can define a function σ−1
H on the runs of the synchronous configuration,

such that

viewconfasync(ϕ(Hsync)) = σ−1
H

(
σ(viewconfasync(ϕ(Hsync)))

)

holds. If confasync is polynomial-time, then σ−1
H is polynomial-time computable.

M. Backes / Journal of Logic and Algebraic Programming 64 (2005) 157–188 179

The proof of the lemma is postponed to Appendix B.

Proof of Theorem 18. For readability, we again set Sysasync,1 := ϕ(Syssync,1) and
Sysasync,2 := ϕ(Syssync,2). Let now an arbitrary configuration confasync,1 = (ϕ(Msync,1) ∪
{Xsync,1,κ1}, S, ϕ(Hsync),Aasync,1) ∈ Conf(Sysasync,1) be given.

(1) We apply Theorem 15 on confasync,1 which yields a synchronous configuration
confsync,1 = (Msync,1, S,Hsync,Async,1) ∈ Conf(Syssync,1) with

σ(viewconfasync,1(ϕ(Hsync))) = viewconfsync,1(Hsync).

Moreover, if confasync,1 is polynomial-time then confsync,1 is also polynomial-time,
and the mapping σ is polynomial-time computable.

(2) Now the precondition Syssync,1 �sync Syssync,2 can be applied yielding a configura-
tion confsync,2 = (Msync,2, S,Hsync,Async,2) ∈ Conf(Syssync,2) with

viewconfsync,1(Hsync) ≈ viewconfsync,2(Hsync)

and (Msync,2, S) ∈ f (Msync,1, S). Moreover, in the computational case, confsync,2 is
polynomial-time.

(3) We now apply Theorem 14 to the configuration confsync,2 which yields a configura-
tion confasync,2 = (ϕ(Msync,2) ∪ {Xsync,2,κ2}, S, ϕ(Hsync), ϕ(Async,2)) with

viewconfsync,2(Hsync) = σ(viewconfasync,2(ϕ(Hsync))).

Moreover, confasync,2 is a polynomial configuration iff confsync,2 is polynomial,
according to Theorem 14.

(4) Putting it all together, we have
• σ(viewconfasync,1(ϕ(Hsync))) = viewconfsync,1(Hsync).
• viewconfsync,1(Hsync) ≈ viewconfsync,2(Hsync).
• viewconfsync,2(Hsync)) = σ(viewconfasync,2(ϕ(Hsync))).
Using Lemma 16, we obtain

σ(viewconfasync,1(ϕ(Hsync))) ≈ σ(viewconfasync,2(ϕ(Hsync))).

We now finally apply our “reversing” function σ−1
H (cf. Lemma 19) on the above

equation. Together with Lemma 16, we obtain

viewconfasync,1(ϕ(Hsync)) ≈ viewconfasync,2(ϕ(Hsync)),

i.e., confasync,2 is an indistinguishable configuration for confasync,1. Moreover,
we have (Msync,2, S) ∈ f (Msync,1, S), i.e., ϕ(Msync,2, S) ∈ f ′(ϕ(Msync,1, S)), which

yields the desired result ϕ(Syssync,1) �f ′
async,H ϕ(Sysasync,2). �

6. Deriving synchronous theorems from asynchronous ones

Recall that our long-term goal is to avoid proving each and every theorem and lemma
for both models. We now briefly show how our two embedding theorems can be used

180 M. Backes / Journal of Logic and Algebraic Programming 64 (2005) 157–188

for circumventing this problem. One of the most important theorems of both models is
transitivity of the relation �.

Lemma 20 (Transitivity). If Sys1 �f1 Sys2 and Sys2 �f2 Sys3 , then Sys1 �f3 Sys3 , where
f3 := f2 ◦ f1 is defined as f3(M1, S) being the union of the sets f2(M2, S) with (M2, S) ∈
f1(M1, S).

This has been proven in [8] for the synchronous and in [11] for the asynchronous model.
We now exemplarily show how to derive the synchronous version from the asynchronous
one using our previous results.

Lemma 21. Assume that the asynchronous version of the transitivity lemma (Lemma 20)
has already been proven, then the synchronous version holds as well.

Proof. We omit the superscripts fi for the sake of readability. Let arbitrary synchron-
ous systems Sys1, Sys2, and Sys3 be given such that Sys1 �sync Sys2 and Sys2 �sync Sys3.
We have to show that Sys1 �sync Sys3 holds, provided that asynchronous transitivity has
already been proven. According to our second embedding theorem, we know that

ϕ(Sys1) �async,H ϕ(Sys2) and ϕ(Sys2) �async,H ϕ(Sys3).

Obviously, the asynchronous version of transitivity is applicable to the relation �async,H

instead of �async as well, since it is a special case only, and the honest user remains
unchanged at simulatability. Thus, we can apply our (already proven) asynchronous version
of the transitivity lemma, which yields

ϕ(Sys1) �async,H ϕ(Sys3).

Now, we use our first embedding theorem in conjunction with its subsequent remarks
(stating that the theorem holds as well for the restricted version �async,H of simulatability)
yielding Sys1 �sync Sys3. �

This proof technique is applicable to almost all theorems that rely on simulatability. As
the most important example, we name the preservation theorem [50,55], which states that
integrity properties expressed in linear-time logic are preserved under simulatability. The
proof of this theorem is difficult and comprises several pages for both models. Using our
work, the synchronous proof could as well be omitted.

Acknowledgements

This work benefited from fruitful discussions with Dennis Hofheinz, Birgit Pfitzmann,
and Michael Waidner.

Appendix A. Postponed definitions

The following definition for indistinguishability of random variables is essentially
from [64].

M. Backes / Journal of Logic and Algebraic Programming 64 (2005) 157–188 181

Definition 22 (Indistinguishability). Two families (vark)k∈N and (var′k)k∈N of random
variables (or probability distributions) on common domains Dk are

(a) perfectly indistinguishable (“=”) if for each k, the two distributions vark and var′k
are identical.

(b) statistically indistinguishable (“≈SMALL”) for a suitable class SMALL of functions
from N to R�0 if the distributions are discrete and their statistical distances

$(vark, var′k) :=
∑

d∈Dk

|P(vark = d)− P(var′k = d)| ∈ SMALL

(as a function of k). SMALL should be closed under affine addition, and with a
function g also contain every function g′ � g.

(c) computationally indistinguishable (“≈poly”) if for every algorithm Dis (the distin-
guisher) that is probabilistic polynomial-time in its first input,

|P(Dis(1k, vark) = 1)− P(Dis(1k, var′k) = 1)| ∈ NEGL.

Intuitively, given the security parameter and an element chosen according to either
vark or var′k , Dis tries to guess which distribution the element came from. The class
NEGL denotes the set of all negligible functions, i.e., g : N → R�0 ∈ NEGL if for
all positive polynomials Q, ∃k0∀k � k0 : g(k) � 1/Q(k).
We write ≈ if we want to treat all three cases simultaneously.

For reasons of completeness, we now present the extended definition of simulatability,
based on the three different kinds of indistinguishability. Definition 9 was simplified in the
sense that only computational indistinguishability of views was covered, which represents
the most common case when applying simulatability to cryptographic protocols.

Definition 23 (Simulatability, extended version with three variants). Let systems Sys1 and
Sys2 with a valid mapping f be given.

(a) We say Sys1 �f,perf
sec Sys2 (perfectly at least as secure as) if for every configuration

conf 1 = (M1, S,H,A1) ∈ Conf(Sys1), there exists a configuration conf 2 = (M2, S,
H,A2) ∈ Conf(Sys2) with (M2, S) ∈ f (M1, S) (and the same H) such that

viewconf 1
(H) = viewconf 2

(H).

(b) We say Sys1 �f,SMALL
sec Sys2 (statistically at least as secure as) for a class SMALL if

the same as in (a) holds with viewconf 1,l(H)≈SMALL viewconf 2,l(H) for all polynomials
l, i.e., statistical indistinguishability of all families of l-step prefixes of the views.

(c) We say Sys1 �f,poly
sec Sys2 (computationally at least as secure as) if the same as in (a)

holds with configurations from Confpoly(Sys1) and Confpoly(Sys2) and computational
indistinguishability of the families of views.

In all cases, we call conf 2 an indistinguishable configuration for conf 1. Where the
difference between the types of security is irrelevant, we simply write �f

sec, and we omit
the indices f and sec if they are clear from the context.

182 M. Backes / Journal of Logic and Algebraic Programming 64 (2005) 157–188

Appendix B. Postponed proofs

Proof of Theorem 15. We first reverse our function ϕ on the structure (ϕ(Msync) ∪
{Xsync,κ}, S) and on the user ϕ(Hsync) yielding the structure (Msync, S) of Syssync,2 and the
original honest user Hsync. Note, that we cannot reverse the function ϕ on the new adversary
Aasync in the same way, because we did not demand it to have a similar internal structure,
so we construct a new adversary Async for the synchronous configuration as follows. The
ports of Async are given by

{p | pC ∈ (ports(Msync) ∪ ports(Hsync)) ∧ p �∈ (ports(Msync) ∪ ports(Hsync))},

i.e., it connects to all remaining free ports of Msync and Hsync. Internally, Async maintains
an array (output_storep!)p!∈out(ports(Aasync)) of lists over �∗ all initially empty.

Async has the adversary Aasync as a blackbox submachine and its behavior is defined
as follows. If Async is clocked in the synchronous system, it gets an input tuple I =
(Ip?)p?∈in(ports(Async)). It now tries to restore the order in which these messages would have
arrived in the asynchronous system. More precisely, it knows the clocking scheme κ , so
it know which machines have been clocking after the last clocking of Async. Moreover, it
knows the order in which machines are switched by Xsync,κ in one particular subround.
Using the order on the ports of the asynchronous machines, it can finally decide in which
order messages sent by one machine on different ports would have arrived in the asyn-
chronous system. The only problem which might arise is that a machine has been clocked
more then once since the last clocking of the adversary. This might result in two inputs at
the same port of Async which would be concatenated without any separation symbol. Such
an input would not be restorable into its original form, so we had to include the restriction
to the considered clocking scheme that every machine and the user are at most clocked once
between two successive clockings of the adversary. Note, that our usually used clocking
scheme (M ∪ {H}, {A}, {H}, {A}) fulfills this requirement.

After restoring both the usual messages and their order, Async uses the blackbox function
δAasync on the first input yielding an output tuple O. This tuple O is appended to the array
output_store, i.e., each component Op! is appended to output_storep!. If there is a non-
empty output c at a clock-out port p�!, we would have a clocked self-loop in confasync if
output_storep![c] /= ε. In this case, this component is removed from the array and δAasync is
called again with the new state and I := Ip?=output_storep![c] and so on.

The above steps are repeated with the second input and the new state of Aasync and
so on until all inputs have been considered. Finally, the blackbox function is used with
IpAsync ?=(i,j) where i denotes the global round and j denotes the subround the adversary
is clocked in. (The adversary obviously knows both i and j because he knows the clocking
scheme κ , so he may simply maintain two counters that he adapts every time he is clocked.)
This correspond to the clocking signal of Xsync,κ in the asynchronous system. The output
tuple is again concatenated to the same array and possible clocked self loops are considered
again. Finally, Async outputs the first elements of each list of output_storep! with p!C ∈
ports(Msync ∪ {Hsync}) as its output tuple O and removes these elements from the lists.

Note, that this newly defined adversary Async is polynomial iff Aasync is polynomial by
construction. Thus, if the original configuration confasync has been polynomial-time (i.e.,
the user ϕ(Hsync) and the adversary Aasync must be polynomial-time) then the configuration
confsync = (Msync, S,Hsync,Async) will also be polynomial-time, since the runtime of Hsync

is always bounded by ϕ(Hsync).

M. Backes / Journal of Logic and Algebraic Programming 64 (2005) 157–188 183

Fig. B.1. Overview of the proof of Lemma 24.

Async “reverse” the function ϕ by construction. The asynchronous adversary would re-
ceive many single inputs, and it would produce outputs every time which would be stored
in the outgoing buffers. Possible clocked self-loops are handled by repeated calls of the
transition function with correct inputs. If Aasync is scheduled by Xsync,κ it again performs an
arbitrary transition and the first element of its outgoing buffer would be clocked. The syn-
chronous adversary first splits its input messages into their original order and uses the black-
box function one by one storing the outputs in output_store. The split inputs correspond to
the original inputs of the asynchronous system, so the output tuples are also equal after every
step. Therefore, the contents of output_store always correspond to the outgoing buffers in the
asynchronous system after a clocking step of Aasync. If the synchronous adversary is clocked
it again calls its blackbox function with the correct input and stores the output in the array.
After that, it outputs the first element of each list of the array and removes these elements from
the lists. In the asynchronous system messages stored in the outgoing buffers are treated in the
same way. More formally we can show the following lemma.

Lemma 24. We denote this “reversion” of ϕM by ϕ̄M and the reversion of the whole
configuration by ϕ̄conf for the moment. Then for an arbitrary configuration confasync =
(ϕ(Msync) ∪ {Xsync,κ}, S, ϕ(Hsync),Aasync) we have

viewϕconf (ϕ̄conf (confasync))(ϕ(M)) = viewconfasync(ϕ(M))

for every M ∈ (Msync ∪ {Hsync}) and

viewϕconf (ϕ̄conf (confasync))(Aasync) = viewconfasync(Aasync),

where the view of Aasync in the first configuration is given as a submachine of
ϕM(ϕ̄M(Aasync)).

Proof of Lemma 24. The proof is illustrated in Fig. B.1 We first show that A′
async :=

ϕM(ϕ̄M(Aasync)) behaves exactly as Aasync, i.e., both machines are perfectly indistinguish-
able for their environment. This is already sufficient to show that the views of ϕ(M) for
every M ∈ (Msync ∪ {Hsync}) are equal in both configurations because they remain un-
changed. We will also show that the view of Aasync is equal in both configurations which
finishes our proof.

184 M. Backes / Journal of Logic and Algebraic Programming 64 (2005) 157–188

We show that both adversaries A′
async and Aasync behave identically between two suc-

cessive clockings. Moreover, we show that the content of array output_storep! of A′
async

always equal the outgoing buffers p in the corresponding asynchronous configuration at
every clocking of Aasync as a submachine of A′

async if we identify clockings of Aasync in both
configurations in the natural way. More precisely, this means that we identify the ith clock-
ing of Aasync in confasync with the ith call of δAasync by A′

async in ϕconf (ϕ̄conf (confasync)).
Furthermore, we show that outputs made by the adversary are always equal in both
configurations.

At the start of the run both buffers and arrays are empty which fulfills our claim. Now as-
sume that A′

async receives an arbitrary input at p? /= pAsync ?. It stores the message in its array
input_storep? and gives the control to the master scheduler. If A′

async receives a non-empty
input at pA? it applies the state-transition function δϕ̄M(Aasync) on the arrays input_store.
Now, the arrays input_store are decomposed into single inputs again preserving their ori-
ginal order, and the function δAasync is applied to every such input. Since the inputs are
obviously equal in both configuration, we obtain identical outputs, and moreover identical
views for Aasync. By precondition, the arrays output_store are mapped to the outgoing
buffers. After one call of δAasync , every output at p! is stored either in output_storep! or in
p at the same position, so they remain validly mapped. Now, either the first component of
output_storep! or the first entry of p for p!C ∈ (ports(Msync) ∪ {Hsync}) are output yielding
identical outputs and therefore identical views for the environment in both configurations,
i.e.,

viewϕconf (ϕ̄conf (confasync))(ϕ(M)) = viewconfasync(ϕ(M))

for M ∈ (Msync ∪ {Hsync}). We already showed that the views of Aasync are equal in both
configurations which finishes our proof. �

According to Lemma 24, the function ϕconf ◦ ϕ̄conf yields identical views for ϕ(M) for
every M ∈ (Msync ∪ {Hsync}) and the asynchronous adversary, i.e.,
• viewϕconf (ϕ̄conf (confasync))(ϕ(M)) = viewconfasync(ϕ(M)) and
• viewϕconf (ϕ̄conf (confasync))(Aasync) = viewconfasync(Aasync).

We already showed in Theorem 14 that viewconfsync(M) = σ(viewϕ(confsync)(ϕ(M))) holds
for every synchronous configuration confsync = (Msync, S,Hsync,Async) and for every
machine M ∈ (Msync ∪ {Hsync,Async}). If we now set confsync := ϕ̄conf (confasync), we
obtain
• viewconfsync(M) = σ(viewϕconf (ϕ̄conf (confasync))(ϕ(M)))

Moreover, this implies
• viewconfsync(Async) = σ(viewϕconf (ϕ̄conf (confasync))(Aasync)))

since the views of Aasync and ϕ(ϕ̄(Aasync)) are identical. We apply the mapping σ on the
first two equations and, using Lemma 16, we obtain
• σ(viewϕconf (ϕ̄conf (confasync))(ϕ(M))) = σ(viewconfasync(ϕ(M))) and
• σ(viewϕconf (ϕ̄conf (confasync))(Aasync)) = σ(viewconfasync(Aasync))

Note, that σ is in fact defined on runs of these configuration because both the ma-
chines of the structure and the honest user have the prescribed form. Using transitivity, we
immediately obtain the desired result

viewconfsync(M) = σ(viewconfasync(ϕ(M)))

M. Backes / Journal of Logic and Algebraic Programming 64 (2005) 157–188 185

and

viewconfsync(Async) = σ(viewconfasync(Aasync)).

As a special case we set M := Hsync which yields

viewconfsync(Hsync) = σ(viewconfasync(ϕ(Hsync))). �

Proof of Lemma 19. In order to prove the claim, we present an algorithm which undoes
the changes of the algorithm for deriving the mapping σ : It has an internal list over �+ ini-
tially empty, which will be used to construct the desired view. For every subround j , it goes
through all tuples (Msync, i, j, s,I, s′,O′) modifying them as follows: If Msync = Hsync for
one machine of this subround, it appends (ϕ(Hsync), s,IpHsync ?=(i,j), s′,O′) to its internal
list. Note that this tuple precisely matches the original asynchronous tuple for switching
the honest user ϕ(Hsync) by the master scheduler. After that, it proceed through all tuples of
this subround in precisely the same order they have been scheduled by the master scheduler
(the algorithm is surely allowed to know the clocking scheme). For a given tuple of the form
(Msync, i, j, s,I, s′,O′), it checks, whether there is a non-empty output at a port p! in O′
with p? ∈ ports(ϕ(Hsync)). In this case, the honest user would be clocked in the second
asynchronous block, so we use the state-transition function δϕ(Hsync) on the current state s
of ϕ(Hsync) and input Ip?=O′p! which yields a new state s′ and an (all-empty) output Oε . We

then add a step (ϕ(Hsync), s,Ip?=O′p! , s
′,Oε). This is done for all ports of Msync according

to their order and for all machines that switch in the consider subround. Obviously, this al-
gorithm reverses the mapping σ for the honest user by construction. In case of a polynomial
configuration, especially the adversary has to be polynomial-time. This implies that there
cannot be any infinite successive clocked self-loops. Moreover, both the adversary and the
honest user will reach final state after a polynomial number of blocks, so the algorithm
for σ−1

H applied to the view of the honest user will only makes a polynomial number of
transition, each one with a polynomial number of steps. This implies that σ is computable
polynomial-time applied to the view of the honest user if it is used in a polynomial-time
configuration. �

References

[1] R. Segala, N. Lynch, Probabilistic simulation for probabilistic processes, Nordic Journal of Computing, 2
(2) (1995) 250–273.

[2] S.-H. Wu, S.A. Smolka, E.W. Stark, Composition and behaviors of probabilistic I/O automata, Theoretical
Computer Science 176 (1–2) (1997) 1–38.

[3] R. Canetti, Studies in secure multiparty computation and applications, Department of Computer Science
and Applied Mathematics, The Weizmann Institute of Science, revised March 1996 (June 1995).

[4] S. Goldwasser, L. Levin, Fair computation of general functions in presence of immoral majority, Advances
in Cryptology: CRYPTO’90, Lecture Notes in Computer Science, vol. 537, Springer, 1990, pp. 77–93.

[5] S. Micali, P. Rogaway, Secure computation, Advances in Cryptology: CRYPTO’91, Lecture Notes in
Computer Science, vol. 576, Springer, 1991, pp. 392–404.

[6] D. Beaver, Secure multiparty protocols and zero knowledge proof systems tolerating a faulty minority,
Journal of Cryptology 4 (2) (1991) 75–122.

[7] P. Lincoln, J. Mitchell, M. Mitchell, A. Scedrov, A probabilistic poly-time framework for protocol analysis,
in: Proc. 5th ACM Conference on Computer and Communications Security, 1998, pp. 112–121.

186 M. Backes / Journal of Logic and Algebraic Programming 64 (2005) 157–188

[8] B. Pfitzmann, M. Schunter, M. Waidner, Secure reactive systems, Research Report RZ 3206, IBM Research,
May 2000. Available from <http://www.semper.org/sirene/publ/PfSW1_00ReactSimulIBM.ps.gz>.

[9] M. Hirt, U. Maurer, Player simulation and general adversary structures in perfect multiparty computation,
Journal of Cryptology 13 (1) (2000) 31–60.

[10] R. Canetti, Security and composition of multiparty cryptographic protocols, Journal of Cryptology 3 (1)
(2000) 143–202.

[11] B. Pfitzmann, M. Waidner, A model for asynchronous reactive systems and its application to secure message
transmission, in: Proc. 22nd IEEE Symposium on Security & Privacy, 2001, pp. 184–200.

[12] R. Canetti, Universally composable security: a new paradigm for cryptographic protocols, in: Proc. 42nd
IEEE Symposium on Foundations of Computer Science (FOCS), 2001, pp. 136–145, extended version in
Cryptology ePrint Archive, Report 2000/67. Available from <http://eprint.iacr.org/>.

[13] M. Backes, B. Pfitzmann, M. Waidner, Secure asynchronous reactive systems, IACR Cryptology ePrint
Archive 2004/082, March 2004.

[14] M. Bellare, R. Canetti, H. Krawczyk, A modular approach to the design and analysis of authentication and
key exchange protocols, in: Proc. 30th Annual ACM Symposium on Theory of Computing (STOC), 1998,
pp. 419–428.

[15] C. Dwork, M. Naor, A. Sahai, Concurrent zero-knowledge, in: Proc. 30th Annual ACM Symposium on
Theory of Computing (STOC), 1998, pp. 409–418.

[16] B. Neuman, T. Ts’o, Kerberos: an authentication service for computer networks, IEEE Communications
Magazine 32 (9) (1994) 33–38.

[17] J. Mitchell, M. Mitchell, A. Scedrov, A linguistic characterization of bounded oracle computation and prob-
abilistic polynomial time, in: Proc. 39th IEEE Symposium on Foundations of Computer Science (FOCS),
1998, pp. 725–733.

[18] J. Mitchell, M. Mitchell, A. Scedrov, V. Teague, A probabilistic polynominal-time process calculus for
analysis of cryptographic protocols (preliminary report), Electronic Notes in Theoretical Computer Science
47 (2001) 1–31.

[19] R. Impagliazzo, B.M. Kapron, Logics for reasoning about cryptographic constructions, in: Proc. 44th IEEE
Symposium on Foundations of Computer Science (FOCS), 2003, pp. 372–381.

[20] D. Dolev, A.C. Yao, On the security of public key protocols, IEEE Transactions on Information Theory 29
(2) (1983) 198–208.

[21] J.K. Millen, The interrogator: a tool for cryptographic protocol security, in: Proc. 5th IEEE Symposium on
Security & Privacy, 1984, pp. 134–141.

[22] C. Meadows, Using narrowing in the analysis of key management protocols, in: Proc. 10th IEEE Symposium
on Security & Privacy, 1989, pp. 138–147.

[23] R. Kemmerer, Analyzing encryption protocols using formal verification techniques, IEEE Journal on
Selected Areas in Communications 7 (4) (1989) 448–457.

[24] M. Burrows, M. Abadi, R. Needham, A logic for authentication, Technical Report 39, SRC DIGITAL, 1990.
[25] C. Meadows, Formal verification of cryptographic protocols: a survey, in: Proc. ASIACRYPT’94, Lecture

Notes in Computer Science, vol. 917, Springer, 1994, pp. 135–150.
[26] R. Kemmerer, C. Meadows, J. Millen, Three systems for cryptographic protocol analysis, Journal of

Cryptology 7 (2) (1994) 79–130.
[27] G. Lowe, Breaking and fixing the Needham–Schroeder public-key protocol using FDR, in: Proc. 2nd In-

ternational Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
Lecture Notes in Computer Science, vol. 1055, Springer, 1996, pp. 147–166.

[28] L. Paulson, The inductive approach to verifying cryptographic protocols, Journal of Cryptology 6 (1) (1998)
85–128.

[29] F.J. Thayer Fabrega, J.C. Herzog, J.D. Guttman, Strand spaces: why is a security protocol correct? in: Proc.
19th IEEE Symposium on Security & Privacy, 1998, pp. 160–171.

[30] M. Abadi, A.D. Gordon, A calculus for cryptographic protocols: the spi calculus, Information and
Computation 148 (1) (1999) 1–70.

[31] M. Abadi, P. Rogaway, Reconciling two views of cryptography: the computational soundness of formal
encryption, in: Proc. 1st IFIP International Conference on Theoretical Computer Science, Lecture Notes in
Computer Science, vol. 1872, Springer, 2000, pp. 3–22.

[32] M. Abadi, J. Jürjens, Formal eavesdropping and its computational interpretation, in: Proc. 4th International
Symposium on Theoretical Aspects of Computer Software (TACS), 2001, pp. 82–94.

[33] P. Laud, Semantics and program analysis of computationally secure information flow, in: Proc. 10th
European Symposium on Programming (ESOP), 2001, pp. 77–91.

M. Backes / Journal of Logic and Algebraic Programming 64 (2005) 157–188 187

[34] M. Backes, B. Pfitzmann, M. Waidner, A composable cryptographic library with nested operations
(extended abstract), in: Proc. 10th ACM Conference on Computer and Communications Security, 2003,
pp. 220–230, full version in IACR Cryptology ePrint Archive 2003/015, January 2003. Available from
<http://eprint.iacr.org/>.

[35] M. Backes, B. Pfitzmann, A cryptographically sound security proof of the Needham–Schroeder–Lowe
public-key protocol, in: Proc. 23rd Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), 2003, pp. 1–12, full version in IACR Cryptology ePrint Archive 2003/121,
June 2003. Available from <http://eprint.iacr.org/>.

[36] B. Warinschi, A computational analysis of the Needham–Schroeder–(Lowe) protocol, in: Proc. 16th IEEE
Computer Security Foundations Workshop (CSFW), 2003, pp. 248–262.

[37] M. Backes, B. Pfitzmann, M. Waidner, Symmetric authentication within a simulatable cryptographic lib-
rary, in: Proc. 8th European Symposium on Research in Computer Security (ESORICS), Lecture Notes in
Computer Science, vol. 2808, Springer, 2003, pp. 271–290. extended version in IACR Cryptology ePrint
Archive 2003/145, July 2003. Available from <http://eprint.iacr.org/>.

[38] M. Backes, B. Pfitzmann, Symmetric encryption in a simulatable Dolev–Yao style cryptographic library, in:
Proc. 17th IEEE Computer Security Foundations Workshop (CSFW), 2004, full version in IACR Cryptology
ePrint Archive 2004/059, February 2004. Available from <http://eprint.iacr.org/>.

[39] P. Laud, Symmetric encryption in automatic analyses for confidentiality against active adversaries,
manuscript, 2004.

[40] J. Herzog, Computational soundness of formal adversaries, Ph.D. thesis, MIT, 2002.
[41] J. Herzog, M. Liskov, S. Micali, Plaintext awareness via key registration, Advances in Cryptology: CRYPTO

2003, Lecture Notes in Computer Science, vol. 2729, Springer, 2003, pp. 548–564.
[42] D. Micciancio, B. Warinschi, Soundness of formal encryption in the presence of active adversaries, in: Proc.

1st Theory of Cryptography Conference (TCC), Lecture Notes in Computer Science, vol. 2951, Springer,
2004, pp. 133–151.

[43] J.D. Guttman, F.J. Thayer Fabrega, L. Zuck, The faithfulness of abstract protocol analysis: message
authentication, in: Proc. 8th ACM Conference on Computer and Communications Security, 2001, pp.
186–195.

[44] D. Volpano, G. Smith, Verifying secrets and relative secrecy, in: Proc. 27th Symposium on Principles of
Programming Languages (POPL), 2000, pp. 268–276.

[45] A.C. Yao, Protocols for secure computations, in: Proc. 23rd IEEE Symposium on Foundations of Computer
Science (FOCS), 1982, pp. 160–164.

[46] B. Pfitzmann, M. Schunter, M. Waidner, Cryptographic security of reactive systems, Presen-
ted at the DERA/RHUL Workshop on Secure Architectures and Information Flow, 1999,
Electronic Notes in Theoretical Computer Science (ENTCS), March 2000. Available from
<http://www.elsevier.nl/cas/tree/store/tcs/free/noncas/pc/menu.htm>.

[47] B. Pfitzmann, M. Schunter, M. Waidner, Provably secure certified mail, Research Report RZ 3207, IBM
Research, August 2000. Available from <http://www.semper.org/sirene/publ/PfSW2CertMail.ps.gz>.

[48] M. Steiner, Secure group key agreement, Ph.D. thesis, Universität des Saarlandes, 2002. Available from
<http://www.semper.org/sirene/publ/Stei_02.thesis-final.pdf>.

[49] R. Cancetti, H. Krawczyk, Universally composable notions of key exchange and secure channels (extended
abstract), Advances in Cryptology: EUROCRYPT 2002, Lecture Notes in Computer Science, vol. 2332,
Sprinter, 2002, pp. 337–351.

[50] B. Pfitzmann, M. Waidner, Composition and integrity preservation of secure reactive systems, in:
Proc. 7th ACM Conference on Computer and Communications Security, 2000, pp. 245–254, exten-
ded version (with Matthias Schunter) IBM Research Report RZ 3206, May 2000. Available from
<http://www.semper.org/sirene/publ/PfSW1_00ReactSimulIBM.ps.gz>.

[51] M. Backes, B. Pfitzmann, M. Waidner, A general composition theorem for secure reactive systems, in: Proc.
1st Theory of Cryptography Conference (TCC), Lecture Notes in Computer Science, vol. 2951, Springer,
2004, pp. 336–354.

[52] R. Canetti, Y. Lindell, R. Ostrovsky, A. Sahai, Universally composable two-party and multi-party secure
computation, in: Proc. 34th Annual ACM Symposium on Theory of Computing (STOC), 2002, pp. 494–503.

[53] D. Hofheinz, J. Müller-Quade, Universally composable commitments using random oracles, in: Proc. 1st
Theory of Cryptography Conference (TCC), Lecture Notes in Computer Science, vol. 2951, Springer, 2004,
pp. 58–76.

188 M. Backes / Journal of Logic and Algebraic Programming 64 (2005) 157–188

[54] M. Backes, C. Jacobi, B. Pfitzmann, Deriving cryptographically sound implementations using composition
and formally verified bisimulation, in: Proc. 11th Symposium on Formal Methods Europe (FME 2002),
Lecture Notes in Computer Science, vol. 2391, Springer, 2002, pp. 310–329.

[55] M. Backes, C. Jacobi, Cryptographically sound and machine-assisted verification of security protocols, in:
Proc. 20th Annual Symposium on Theoretical Aspects of Computer Science (STACS), Lecture Notes in
Computer Science, vol. 2607, Springer, 2003, pp. 675–686.

[56] S. Owre, N. Shankar, J.M. Rushby, PVS: a prototype verification system, in: Proc. 11th International Con-
ference on Automated Deduction (CADE), Lecture Notes in Computer Science, vol. 607, Springer, 1992,
pp. 748–752.

[57] P. Lincoln, J. Mitchell, M. Mitchell, A. Scedrov, Probabilistic polynomial-time equivalence and security
analysis, in: Proc. 8th Symposium on Formal Methods Europe (FME 1999), Lecture Notes in Computer
Science, vol. 1708, Springer, 1999, pp. 776–793.

[58] C.A.R. Hoare, Communicating Sequential Processes, International Series in Computer SPrentice Hall,
Prentice Hall, Hemel Hempstead, 1985.

[59] N. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers, San Francisco, 1996.
[60] R. Segala, N. Lynch, Probabilistic simulation for probabilistic processes, in: Proc. 5th International Confer-

ence on Concurrency Theory (CONCUR), Lecture Notes in Computer Science, vol. 836, Springer, 1994,
pp. 481–497.

[61] S. Goldwasser, S. Micali, C. Rackoff, The knowledge complexity of interactive proof systems, SIAM
Journal on Computing 18 (1) (1989) 186–207.

[62] J. Neveu, Mathematical Foundations of the Calculus of Probability, Holden-Day, 1965.
[63] A.Z. Broder, D. Dolev, Flipping coins in many pockets (byzantine agreement on uniformly random values),

in: Proc. 16th Annual ACM Symposium on Theory of Computing (STOC), 1984, pp. 157–170.
[64] A.C. Yao, Theory and applications of trapdoor functions, in: Proc. 23rd IEEE Symposium on Foundations

of Computer Science (FOCS), 1982, pp. 80–91.

	Introduction
	Review of the reactive models in synchronous and asynchronous networks
	Informal overview of the asynchronous model
	General system model
	Capturing asynchronous runs
	Capturing synchronous runs
	Simulatability

	Idea and definition of the embedding
	Preliminary work for the embedding theorems
	Proof overview
	Compressing asynchronous runs to synchronous counterparts
	Auxiliary theorems

	The embedding theorems
	Deriving synchronous theorems from asynchronous ones
	References

