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Abstract

The sharp Satisfiability threshold is well known for randomk-SAT formulas and is due to certain
minimality and monotonic properties mentioned in this manuscript and reported in Chandru and
Hooker [J. Assoc. Comput. Mach. 38 (1991) 205–221]. Whereas the Satisfiability threshold is on the
probability that a satisfying assignment exists, we find that sharp thresholds also may be determined
for certain formula structures, for example, the probability that a particular kind of cycle exists in a
random formula. Such structures often have a direct relationship on the hardness of a formula because
it is often the case that the presence of such a structure disallows a formula from a known, easily
solved class of Satisfiability problems. We develop tools that should assist in determining threshold
sharpness for a variety of applications. We use the tools to show a sharp threshold for the q-Horn and
renameable-Horn properties.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The Satisfiability problem (SAT) is the problem of determining whether there exists an
assignment of values to the variables of a given Boolean formula (an instance) which causes
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it to evaluate totrue (a solution). The problem appears in numerous engineering, scientific,
and operation research applications such as VLSI testing, design and verification, artificial
intelligence, and decision analysis, to name a few. Unfortunately SAT is NP-complete. But,
as a result of many advancements over the last decade, many instances previously considered
prohibitively difficult are now being solved in a reasonable amount of time. In fact, so much
progress has been made that it is sometimes better to translate an NP-complete problem to
SAT and solve it in that domain.

However, there remain many hard instances of SAT, for example, in the area of bounded
model checking[2,11]. Modern SAT solvers achieve success when they are able to detect
and exploit structure in a given instance. But, in bounded model checking, the nature of the
instances tends to blur the distinction between variables. In other words, such instances,
which are often hard, tend to look like random formulae.

Hence, in order to better understand the nature of instances that are hard for current
SAT solvers, it seems reasonable to study the relationship between hardness and ran-
dom formulae. There has been much work on this subject in recent years (see, for ex-
ample,[17] for a bibliography), mostly focusing on random instances ofk-SAT: a con-
junction ofm disjunctions (clauses) of widthk, chosen uniformly at random among the
2k( n

k
) k-clauses onn Boolean variables and their negations. Asm andn tend to infin-

ity with limiting ratio m/n → �, average case analysis and experimental results have
provided evidence for the existence of a phase transition at some valuerk of the param-
eter�. Friedgut[20], with an appendix by Bourgain, proved thatk-SAT exhibits a sharp
threshold fork�2 but without specifying its location. While the associated critical ratio
has been identified fork = 2 (r2 = 1, [10,23]), specifying it fork�3 remains a chal-
lenging problem. Fork = 3, the best upper bound isr3�4.506 [16] and the best lower
bound isr3�3.41[27]. For everyk�3, rk�2k−2/k [10] and it is known thatrk∼k→∞2k/
ln 2 [1].

It has also been observed that random instances become harder for SAT solvers when
generated with values ofmandn, where the ratiom/n is close tork and easier whenm/n
is distant fromrk: the more distant being easier.

These results and observations have suggested a relationship between hardness and
threshold. Further investigation has identified long “backbones,” or chains of inferences,
to be a good candidate for the underlying cause of the sharp thresholds and poor algorithm
performance near the thresholds since it appears to be the high density of well-separated
“almost solutions” induced by the backbones that lead to thrashing in search algorithms[9].
In [32] and other articles it has been suggested that there is a strong connection between
the “order” of threshold sharpness and hardness.

But thresholds can exist for other properties. Two significant ones are: (1) the property that
a particular polynomial-time incomplete algorithm finds a satisfying assignment; and (2) the
property that a randomk-CNF formula is a member of a well-known class of polynomial-
time solvable formulas. Little has been done to explain the impact of such thresholds or
even to find them. It is known that a sharp threshold exists atm/n ≈ 1.63 for an incomplete
algorithm that applies the pure literal rule to near exhaustion on 3-CNF formulas[7,30].
But there are coarse transitions for non-backtrack DPLL variants, spanning, for example,
approximately 2.1<m/n<3.7 when unit clauses are always satisfied and variables are
otherwise picked according to the Johnson Heuristic[22,26]. In fact, all studied variants
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using the unit clause rule seem to have coarse transitions, even when the pure literal rule is
added.

For succinctly defined classes ofk-CNF that are solved in polynomial time even less
is known. Notable examples are Horn[15,25], renameable-Horn[28], q-Horn [5,6], ex-
tended Horn[8], SLUR [33], balanced[12], and matched[19], to name a few. These
classes have been studied partly in the belief that they will yield some distinction be-
tween hard and easy problems. For example, in[5] a satisfiability index is presented such
that a class with index greater than 1+ �, for any positive constant�, is NP-complete
but the q-Horn class has satisfiability index 1. Thus, it seems that q-Horn is situated
right at the point delineating hard and easy satisfiability problems. This hypothesis has
been tested somewhat usingm/n as a scale for determining the boundaries, in a prob-
abilistic sense, of q-Horn and other classes; it has been found that a randomk-CNF
formula is q-Horn with probability tending to 0 ifm/n>2/k(k − 1) and that the
probability that a randomk-CNF formula is q-Horn is bounded away from 0 ifm/n<1/k(k−
1) [19]. Similar results have been obtained for other polynomial-time solvable classes.
They illuminate the fact that most instances of such classes are satisfiable since their
extent on them/n scale is far below therk satisfiability threshold. Since their bound-
aries, in a probabilistic sense, are so distant from the threshold, all the polynomial-time
classes mentioned above may be consideredextremelyeasy, especially when compared
to the good probabilistic performance shown for polynomial-time incomplete algorithms
in the rangem/n< 3

8(2
k/k) [10]. Why are so many succinctly defined polynomial-time

solvable classes so weak and do there exist polynomial-time classes that are more of a
challenge (that is, harder or having probabilistic boundaries closer to the satisfiability
threshold) and are good candidates for revealing the distinction between hard and easy
problems?

Surprisingly, this question seems to have a connection to thresholds of the second kind
mentioned above. The classes above, including q-Horn, are “vulnerable” to cyclic clause
structures, any one of which prevents a formula containing such a structure from being a
member of the class. These structures have the recently discovered minimality and mono-
tonic properties which are necessary for sharp thresholds and are defined in[13] and again
in this manuscript. So, it seems to find challenging polynomial-time solvable classes it is
advisable to look for classes which are not so vulnerable: that is, those for which formulas
cannot be excluded by adding certain minimal monotonic structural components. The tools
presented in this manuscript represent the beginning of a collection that may assist in doing
so as they make the investigation of thresholds easier. Although the results here are derived
specifically for the q-Horn class, similar results undoubtedly may be obtained for other
classes as well.

In Section 2, we show how the class of q-Horn formulas can be seen as a non-Boolean CSP.
Random CSPs have already been studied by various authors (see[13,31]) and
q-Horn appears as a challenging property for proving sharpness. In Section 3, we recall
a sharpness criterion[14] deduced from the well-known Friedgut’s one[20] and well suited
for random CSPs of fixed arity. In Section 4, in using this criterion and a nice result on
supersaturated hypergraphs[18] (which has already been used for proving sharpness of
threshold for Ramsey properties on random graphs[21]) we prove that q-Horn exhibits a
sharp transition.
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2. The renameable-Horn and the q-Horn properties

Let k�3. We considerk-CNF formulas,F = ∧L
i=1Ci over the set of variablesV =

{x1, . . . , xn}, where each clauseCi is a disjunction ofk literals. The satisfiability problem
k-SAT is to decide whether such a formula is satisfiable, that is, whether there exists a truth
assignment to the variables that evaluatesF true. Thek-SAT problem is the prototypical
NP-complete problem. Here, we recall two well-known classes of formulas for which
satisfiability can be decided in polynomial time, namely renameable-Horn and q-Horn
formulas.

Definition 2.1. A formulaF isHorn if each clause ofF has at most one posistive literal.

Horn formulas can be solved in linear time by unit resolution[15,34].

Definition 2.2. Renaming a variablexi corresponds to mappingxi into x̄i and vice
versa.

Definition 2.3 (Lewis[28]). A formulaF is renameable-Hornif renaming each of some
subset of variables ofF yields to a Horn formula.

Renameable-Horn formulas can also be solved in linear time[24].
Observe that deciding whether a formulaF is renameable-Horn can be seen as a Boolean

constraint satisfaction problem. Indeed, for every truth assignment to the variables� : V −
→ {0,1}, extended to literals by�(x̄i)= 1 − �(xi), and every clauseC = (l′ ∨ · · · ∨ lk),
let us set�(C) := (�(l1), . . . ,�(lk))= 1 if and only if at most one of the literals fromC is
assigned true by�. Let us denoteSn(C)={� such that�(C)=1}. Then, it is easy to see that
F is renameable-Horn if and only if

⋂L
i=1 Sn(Ci) �= ∅. A certificate thatF is renameable-

Horn (or a “satisfying assignment” with respect to the property of being renameable-Horn)
is given by a truth assignment� such that for everyi, �(Ci)=1. Intuitively this assignment
identifies the variables that have to be renamed, namely renaming each of the subset of
variables{xi ∈ V/�(xi) = 0} yields to a Horn formula. Such an assignment� is called a
renameable-Horn-certificatefor F.

Note that in the terminology of[14] the renameable-Horn property corresponds to the
symmetric Boolean CSP generated by the constraint functionf defined byf (a1, . . . , ak)=1
if and only if at most one of theai ’s is equal to 1.

The class q-Horn was developed by Boros et al.[5,6]. Recognition of q-Horn formulas
can be done in linear time and satisfiability of q-Horn formulas can be decided in linear
time. The q-Horn property can be defined as follows[19, Lemma 3.1, p. 8, 5].

The letterD stands for decomposition,E for east,W for west,W+ for west with positive
polarization (in the matrix representation when the column is multiplied by+1),W− for
west with negative polarization (in the matrix representation when the column is multiplied
by −1).

We say thatF is q-Horn if there exists a decompositionD : {x1, . . . , xn}−→{W+,W−, E}
which extends to literals byD(x̄)=E if D(x)=E,D(x̄)=W+ if D(x)=W− andD(x̄)=W−
if D(x)=W+, such that for each clauseCi = (l1 ∨ · · · ∨ lk):
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1. either none of the literalsli is assigned valueE, and in this case at most one of them is
assigned valueW+,

2. or one or two of the literals are assigned valueE, and then all of the others are assigned
valueW−.

This formulation has the advantage that in this way the q-Horn property appears as a
satisfiability property. Each clause can be seen as a constraint, a satisfying assignment for
the formula (a set of constraints) is a decompositionD as described above. Thus, the q-
Horn property appears as a constraint satisfaction problem over the three-element domain
{W+,W−, E}. For instance, deciding whether the formula(w∨x∨y)∧ (w̄∨ x̄∨ ȳ)∧ (x̄∨
y ∨ z) ∧ (w̄ ∨ ȳ ∨ z) is q-Horn comes down to deciding whether the following collection
of constraintsf0(w, x, y) ∧ f3(w, x, y) ∧ f1(x, y, z) ∧ f2(w, y, z) is satisfiable, where
thefi ’s are constraint functions over the domain{W+,W−, E} such thatf0(a, b, c)= 1 if
and only if {a, b, c} ∈ {{W−,W−,W−}, {W+,W−,W−}, {E,W−,W−}, {E,E,W−}},
and f1(x1, x2, x3)(respectively,f2(x1, x2, x3), f3(x1, x2, x3)) encodes the constraintf0
(x̄1, x2, x3) (respectively,f0(x̄1, x̄2, x3), f3(x̄1, x̄2, x̄3)).

Notation. In the sequel, in order to deal with monotone increasing properties, we denote
by R (resp.,H) the property for ak-CNF formula of NOT being renameable-Horn (of
NOT being q-Horn). If a formulaF is not inR, i.e. if F is renameable-Horn, thenF has a
renameable-Horn-certificateas defined above. If a formulaF is not inH, i.e. ifF is q-Horn,
thenF has aq-Horn-certificateD : Var(F ) −→ {W+,W−, E} that verifies the conditions
described above.

3. Probabilistic tools

As we noted in the previous section, the number,N, of k-clauses one can build fromn
variables, and that are of interest in our study is:N = 2k( n

k
). The propertiesR (resp.,H)

are monotone increasing in the sense that ifs is a set of clauses verifying such a property,
then so does any sets′ of clauses containings.

When eachk-clause appears independently with probabilityp, the probability for a set of
clauses to verifyR (resp.,H) can be nicely evaluated in a probabilistic model analogous
to the well-knownGn(p) model for random graphs. For anyp in [0,1], and all subsetA
of k-CNF-formulas we will denote:�p(A) =

∑
s∈A (1 − p)N−w(s)pw(s), wherew(s), the

size ofs, is the number of clauses ins. In this model, the average size of a set of clauses is
p · N . Then greater isp, greater is the probability�p(R) (resp.,�p(H)), which evaluates
the probability for a set of clauses of verifyingR (resp.,H)

In this paper, we will establish a sharp transition, in the sense of Friedgut–Bourgain
[20]: �p(H) (resp.,�p(R)) increases in a small interval from near 0 to near 1. More
precisely, for each of these properties and for anyc ∈ (0,1), let pc(N) be defined by
�pc (H) = c (resp.,�pc (R) = c). Thus, we will show that for anyε ∈]0,1/2] the ratio
(p1−ε(N)−pε(N))/p1/2(N) tends to 0 asN tends to infinity. For this we will use a criterion
for sharpness, given in[14], deduced from Friedgut–Bourgain’s one[20] and dedicated to
random CSPs of fixed arityk over a finite domainDom.
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In the previous section, we have shown thatRandH can be seen as constraint satisfaction
problems, with, respectively,Dom = {0,1} andDom = {W+,W−, E}. ThusR, (resp.,H)
falls in the scope of application of Creignou–Daudé’s criterion[14, Theorem 3.4], which
tells us that the three following conditions are sufficient to prove sharpness.

(D0) For eachc ∈ (0,1), pc(n)= O(n1−k).
(D1) For everymminimal forR (resp., forH), #Var(m)�(k − 1)w(m)− 1.
(D2) For eachc ∈ (0,1), for eacht, for all � = (�1, . . . , �t ) ∈ Domt , and all�>0

�pc(n)(s /∈Q�,#A�(s)�� · nk−1)= o(1),

Q� denoting the property for a set of clausess of having no renameable-Horn-
certificate (resp., no q-Horn-certificate) withx1 = �1, . . . , xt = �t ,
A�(s) denoting, fors /∈Q�, the set of clausesC having at least one variable in
{x1, . . . , xt } and such thats ∪ {C} ∈ Q�.

4. Sharp threshold results

It turns out that the sharpness of the transition associated toR can be proved in using
the classification theorem on the nature of the threshold for symmetric Boolean CSPs
established in[14].

Theorem 4.1. The propertyR exhibits a sharp threshold and the scale for the transition is
of order n.

Proof. In Section 2, we noticed thatR = UNSAT({f }) with

f−1(1)= {(0, . . . ,0), (0, . . . ,0,1), . . . , (0,1, . . . ,0), (1,0, . . . ,0)},
in the symmetric model of[14]. It is clear that the functionf has no unary clause as an
implicate nor a 2-XOR-clause as an implicate (since for anyε = 0 or 1,f (a1, . . . , ak)= 1
does not implyai = ε for any 1� i�k, norai ⊕ aj = ε for any 1� i �= j�k). Therefore,
the result follows from the application of the classification theorem given in[14]. �

The sharpness for the transition of propertyH is a more challenging task. This property
deals with a non-Boolean CSP and therefore does not fall into the scope of application
of the classification theorem in[14], moreover it does not verify the sufficient condition
for sharpness of random CSPs identified in[31]. We will prove the sharpness in using the
criterion recalled in Section 3 and a nice combinatorial tool coming from supersaturated
hypergraphs theory[18].

Theorem 4.2. The propertyH exhibits a sharp threshold and the scale for the transition
is of order n.

As we have seen in Section 2 the q-Horn property can be seen as a CSP,H=UNSAT({f0,

f1, f2, f3}) in the non-symmetric model defined in[13]. Thus, according to the previous
section, the proof of Theorem 4.2 follows from the three following propositions.
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Proposition 4.3.

1. Foreveryr >2/(k(k−1)), ifNp�rn, then�p(H) −→ 1,inparticularpc(n)=O(n1−k).
2. Foreveryr <1/(k(k−1)), ifNp�rn, then�p(H) −→ 0,inparticularpc(n)=�(n1−k).

Proof. In a slightly different probabilistic model, Franco and Gelder[19] obtained upper
and lower bounds for the scale at which the transition occurs forH. These bounds corre-
spond to those given here modulo a change of probability model analogous to the one from
G(n,M) toGn(p) in random graph theory.�

Observe that the first assertion shows that (D0) holds, and that the two bounds together
make precise the scale of the transition, which occurs whenNpc(n)= �(n).

Proposition 4.4. For every k-CNF formula m minimal forH we have

#Var(m)�(k − 1)w(m)− 1.

Proof. The proof is similar to the one used in[13, Proposition 3.6]for minimal unsatisfiable
formulas. Observe that a minimal non-q-Horn formulam cannot have anyfreeclause, that is
a clause with(k−1) variables occurring only once. Indeed, by contradiction suppose thatm
contains a free clauseC. Then, let us consider the formulam′ obtained frommby removing
C. By minimality ofm,m′ is q-Horn. Let� be a q-Horn certificate form′. One can extend
� in assigning the literals fromC occurring only once toW−, thus, obtaining a q-Horn
certificate form, a contradiction. This is sufficient to prove that #Var(m)�(k − 1)w(m).
Now, let us consider formulasmverifying #Var(m)= (k−1)w(m). Then, eitherw(m)=2,
orw(m)>2 andmcan be described as a cycle of the form(l1 ∨ · · · ∨ l2)∧ (l2 ∨ · · · ∨ l3)∧
· · · ∧ (lw(m) ∨ · · · ∨ l1), where literals with distinct indices refer to distinct variables and
the literals not specified correspond to variables occurring only once. But such formulas
are always q-Horn since it suffices to assign the literals occurring twice toE and the ones
occurring only once toW−. This concludes the proof.�

Proposition 4.5. For eachc ∈ (0,1), for each t, for all (�1, . . . , �t ) ∈ {W+,W−, E}t ,
and all �>0

�pc(n)(s /∈Q�,#A�(s)��nk−1)= o(1),

Q� denoting the property for a k-CNF formula s of having no q-Horn certificate with
x1 = �1, . . . , xt = �t ,
A�(s)denoting, for s /∈Q�, thesetof clausesChavingat leastonevariable in{x1, . . . , xt }

and such thats ∧ C ∈ Q�.

Proof. For more readability we will perform the proof in the special casek = 3, it will be
clear that it is extendable to anyk�3.

For s /∈Q�, #A�(s) is the number of ways one can reach the propertyQ� from s by
adding a clause having at least one variable in{x1, . . . , xt }. Observe that there are�(nk−1)

such clauses. Therefore, the proposition says that fors /∈Q�, A�(s) is negligible.
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The strategy will be as follows. First, fors /∈Q�, let us consider the following set:

B�(s)= {(l′ ∨ l′′ ∨ l′′′) ∧ (liv ∨ lv ∨ lvi) such thats ∧ (l′ ∨ l′′ ∨ l′′′)
∧ (liv ∨ lv ∨ lvi) ∈ Q�}.

We know that the probability thatB�(s) is dense in the set of conjunctions of two clauses
is negligible (see[14, Lemma 5.2]):

For all �>0, �pc(n)(s /∈Q�,#B�(s)��n6)= o(1).

Therefore, in order to prove our proposition we will prove that there exists some�>0
such that for all�:

�pc(n)(s /∈Q�,#A�(s)��n2)��pc(n)(s /∈Q�,#B�(s)��n6), (1)

thus proving the proposition.
Hence, the trick is to provide a relationship between the cardinality ofA�(s) and the one

of B�(s). So, fors /∈Q�, suppose that there exists�>0 such that #A�(s)��n2

A�(s)= {C = (li1 ∨ li2 ∨ li3)/ li1 ∈ {x1, . . . , xt } ∪ {x̄1, . . . , x̄t } such that

s ∧ C has no q-Horn-certificate withx1 = �1, . . . , xt = �t }
with A�(s) we associate a graphG�(s): the set of vertices is{x1, . . . , xn} ∪ {x̄1, . . . , x̄n},
and for each clause(li1 ∨ li2 ∨ li3) ∈ A�(s) we create the edge{li2, li3}. By assumption
G�(s) is dense, i.e. its number of edges is greater than or equal to�′n2 for some�′>0.
Following the result from Erdös and Simonovits on supersaturated graphs[18, Corollary
2, p. 184], there exists�>0 such thatG�(s) contains at least�n6 copies of the complete
bipartite graphK3,3. Consider such a copy whose bipartition is{l′, l′′, l′′′} ∪ {liv, lv, lvi}.
Then, we claim that(l′ ∨ l′′ ∨ l′′′) ∧ (liv ∨ lv ∨ lvi) ∈ B�(s).Indeed, in order to get a
contradiction suppose thats′ = s ∧ (l′ ∨ l′′ ∨ l′′′) ∧ (liv ∨ lv ∨ lvi) /∈Q�. Then,s′ has a
q-Horn-certificateD with x1 = �1, . . . , xt = �t . By definition of a q-Horn-certificate,D
assigns at least one of the literals from the clause(l′ ∨ l′′ ∨ l′′′) toW−, w.l.o.g let us suppose
thatD(l′) = W−. In the same way we can suppose thatD(liv) = W−. Thus, for every
literal l, the decompositionD is also a q-Horn-certificate for the formulas ∧ (l ∨ l′ ∨ liv).
But by assumption{l′, liv} is an edge ofG�(s), which means that there exists some literal
l ∈ {x1, . . . , xt } ∪ {x̄1, . . . , x̄t } such thats ∧ (l ∨ l′ ∨ liv) has no q-Horn-certificate with
x1 = �1, . . . , xt = �t , a contradiction.

The one-to-one correspondence we have established between the copies ofK3,3 inG�(s)

andB�(s) proves that if #A�(s)��n2, then #B�(s)��n6. Therefore, we have proved (1),
the desired inequality.

The proof can be extended to anyk�3. In the general case,B�(s) is formed with con-
junctions of(k−1) k-clauses. The graphG�(s)will be a(k−1)-uniform hypergraph which
contains at least�nk−1 hyperedges. The central result from Erdös and Simonovits actu-
ally holds for such supersaturated(k − 1)-uniform hypergraphs and says that there exists
�>0 such thatG�(s) contains at least�n(k−1)k copies of the generalization of the complete
(k − 1)-partite graphK(k−1)

k−1 (k, . . . , k) (see[18, p. 184]), thus concluding the proof.�
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5. Conclusion

We have found a sharp threshold for the q-Horn property which defines, in some proba-
bilistic sense, the boundary of the q-Horn class on them/n scale. The sharp threshold is due
to minimality and monotonic properties which characterize quite a few polynomial-time
solvable classes of CNF satisfiability problems and significantly limit their extent.

The sharpness of the well-studied satisfiability threshold is thought to be related to prob-
lem hardness. The sharpness of the q-Horn threshold similarly seems to keep many formulas
out of the q-Horn class and, therefore, perhaps harder than otherwise.

The results here emphasize the need to look for polynomial-time solvable classes that do
not have the minimality and monotonic properties discussed here. We expect such classes
are good candidates for delineating easy and hard satisfiability problems.
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