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Abstract

The involvement of accelerators is becoming widespread in the field of heterogeneous processing,
performing computation tasks through a wide range of applications. With the advent of the
various computing architectures existing currently, the need for a system-wide multitasking
environment is increasing. Therefore, we present an OpenCL-based scheduler that is designed
as a multi-user computing environment to make use of the full potential of available resources
while running as a daemon. Multiple tasks can be issued by means of a C++ API that relies on
the OpenCL C++ wrapper. At this point, the daemon takes over the control immediately and
performs load scheduling. Due to its implementation, our approach can be easily applicable
to a common OS. We validate our method through extensive experiments deploying a set of
applications, which show that the low scheduling costs remain constant in total over a wide
range of input size. Besides the different CPUs, a variety of modern GPU and other accelerator
architectures are used in the experiments.
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1 Introduction

In high performance computing, today’s supercomputers' are clusters of machines consisting
of CPUs, GPUs and other modern accelerators. These accelerators are either connected as
PCle devices to a host system, or on-board integrated in modern general purpose platforms [3].
Thus, an efficient and autonomous administration unit is more and more needed to facilitate
the access to the accelerators as shared devices in a multi-user environment. In particular, when
considering the utilization problem indicated in past work [1, 5, 12], an autonomous scheduling
unit might be required to exploit the computation power of accelerator resources. OpenCL
with its key features including the portability and low level access, establishes a foundation
for such a unit. Besides being an open standard for parallel programming, OpenCL provides
a unique benefit due to its ability to target a variety of devices. Each OpenCL capable device
(e.g. CPUs, GPUs and generic accelerators) in a computing system interacts with the host
through a unified model [11]. In other words, OpenCL is tailored to operate on heterogeneous
systems, abstracting different computing architectures. There exist OpenCL runtime libraries
for a variety of hardware platforms including: GPUs, CPUs, Intel Xeon Phi and digital signals
processors (DSPs).

This paper presents a scheduling mechanism OCLSched for common computation tasks on
heterogeneous computing systems. Our scheduler provides for a multi-user functionality by
means of the well established server-client model. It runs in background and manages the
distribution and execution of tasks centrally, exhausting the available computing units. Its
core functionality is inherited from GPUSched [16], a shared CUDA-based library for load
scheduling on NVIDIA GPUs. CUDA was originally chosen as it was and still is the only
computing architecture that supports concurrent execution on GPUs. In theory, concurrency is
also supported by OpenCL through the Device Fission Extension from version OpenCL 1.1 as
well as the Device Partitioning feature introduced in version 1.2 of the standard?, but in fact,
only OpenCL implementations for CPUs support it up to this point in time. In this regard,
we patched the open source graphics driver RadeonSI Gallium with the intention to provide
this standard’s feature in our scheduler. This is the reason why we discuss both closed source
and open source drivers. While we use the closed source AMD graphics driver fglrz in the
experimental part of our approach to evaluate the scheduling model, the open source driver
Mesa is used in the context of improving the OpenCL support.

A further possible candidate for an accelerator-based heterogeneous cluster is the Intel Xeon
Phi accelerator with its Many Integrated Cores (MIC) architecture. Compared to modern
multi-core CPUs, MIC provides a large number of x86-CPU cores supporting the concurrent
execution of multiple threads on the basis of common programming models [9]. Intel extensions
like AVX and SSE were omitted in MIC to save space and power to the favor of similar SIMD,

Lhttp://www.top500.org/lists/2013/11/
2www.khronos. org/assets/uploads/developers/library/2011_GDC_OpenCL/AMD-0penCL-Device-Fission_
GDC-Mar11.pdf
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which makes the new accelerator rather similar to GPUs than CPUs in this regard. In the
context of this study, we perform a few tests on the new Intel architecture, in accordance with
the aim of further developing our approach to meet its special requirements in future work.

1.1 Motivation

This is the first study to our knowledge, that investigates the possibility to integrate a schedul-
ing process for different accelerators in a common operating system. Analogous to currently
existing multithreading mechanisms for multi-core processors in traditional operating systems,
similar mechanisms are required to perform complex tasks on available accelerators and treat
with high levels of structural heterogeneity. A variety of multithreading applications are nowa-
days routinely used for achieving certain goals, however, system-wide automated mechanisms
for processing such applications on accelerator-based systems are still lacking. We introduce an
OpenCL-based scheduling framework, with which only basic skills with the OpenCL program-
ming model would be sufficient to submit any given application for execution, sharing OpenCL
processing devices with other users.

In a relevant context [17], we also introduced a static technique for predicting the suitability
of a given computation task to be run on a selective device in a heterogeneous computing
environment, based on code features extracted at compile time. Its major function is to achieve
task-device matching in a system-wide view. By means of a machine-learning technique that
uses a statistical model, performance predictions are systematically created. A combination of
such a feature-based predictor with the load scheduler presented in this paper, would provide
a comprehensive unit that runs in background and manages the distribution and execution of
tasks centrally, exhausting the available computing units in any accelerator-based heterogeneous
system. Further, due to the technical details defined in such a combination of procedures,
simultaneous involvement of multiple OpenCL devices would be valuable for a more effective use
of computing resources. Thus, this issue will represent a major part of the intended functionality
of OCLSched in future developments.

A potential scenario will be the use of OCLSched (in connection with the static predic-
tor) by several users over network accessing a workstation that includes GPUs and other co-
processors. Deploying OCLSched in such a scenario can be beneficial for programmatic access
provider in insuring enhanced resource utilization and managing the execution of many tasks on
accelerators-based machines simultaneously. Further, the use of such an autonomous schedul-
ing unit that takes the responsibility of matching and distributing computation load among
multiple devices might be advantageous for high performance machines’ user, where a previ-
ous knowledge and likely understanding of the heterogeneity of accelerator architectures is not
necessarily required.

1.2 Related Work

Many scheduling algorithms targeting a variety of GPU architectures have been proposed re-
cently. To increase resource utilization, the so-called elastic kernels were presented in a schedul-
ing mechanism [12], in which fine-grained control was allowed over the execution of CUDA
kernels on GPUs. For the same purpose and in a similar study [1], the spatial partitioning of
GPU applications was also suggested as an alternative through multitasking on GPUs. How-
ever, both approaches focused on concurrent execution on NVIDIA’s devices, and moreover,
numerous restrictions were placed on written CUDA kernels in most cases. Similarly, a more
recent work [13] proposed a hybrid MPI-CUDA preemption method for scheduling applications
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Figure 1: User-server interaction flowchart within the OCLSched’s multi-user environment.

on GPUs. Its goal was to allow an efficient scheduling of entire tasks on CUDA-supporting
devices, using CPU-threads that perform GPU-related calls.

Also in the CPU-GPU heterogeneous computing era, many efforts have been taken to provide
robust and efficient computing environments. For instance, StarPu [2] presented an execution
model that unifies all computing units in a heterogeneous system. Using a co-scheduling strat-
egy, it models operations and functions at run time to choose the execution on CPU, GPU
or both of them. Similarly, resource sharing among OpenCL kernels was investigated through
merging two kernels and running them by a special scheduler on a GPU [5]. In the devel-
oped scheduler, the focus was on kernel concurrency to improve the GPU throughput. In the
same way, other studies have shown that under-utilization of GPU resources can be avoided
by merging tasks statically before execution [6, 7]. But, launching big kernels suffers a lot on
resources, especially registers and shared memory, as they need to be allocated for all (virtual)
sub-kernels. Also barriers, which are permanently required by that concept are unfavorable.
As a result, the concept did not scale well as the device was not designed for such kernels.

To the best of our knowledge, we present the first study that investigates the possibility to
integrate a scheduling process for different accelerators in a common OS. In contrast to batch
scheduling used by most of well-known cluster scheduler such as TORQUE?, our preemptive
scheduling method can utilize the computing resources of any existing OpenCL device as soon
as they become available, even in case of tasks’ load-imbalance [16]. Its major function is to
manage the execution of multiple tasks on different OpenCL devices in a system-wide view.
Further, it provides for a multi-user functionality by means of the well established server-client
model. For achieving these goals, our study covers some kind of a combination of traditional
CPU multithreading (POSIX threads and OpenMP) and GPGPU programming methods.

2 Methodology and Implementation
2.1 Design of OCLSched

Our approach provides an autonomous multi-tasking and multiprocessing environment for a
system-wide view in a heterogeneous system. The computation workload of each newly issued
task is scheduled on the execution units of the used device at run time. This is handled
autonomously by a daemon, which can receive and manage tasks from multiple processes (users).
The scheduling procedure is hidden from the user and all calls to the scheduler are executed
transparently. Further, the user does not need to establish a context on an OpenCL device,

3www.adaptivecomputing.com/products/open-source/torque
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since it is accomplished by the scheduler implicitly. OCLSched primarily manages the operative
parts of each computing device. In the case of a GPU, these parts are the shader processors, the
DMA engines and the execution queues, whose number varies according to the device model.

The core functionality of OCLSched is inherited from the CUDA-based scheduler GPUSched
[16], which has shown that preemption and context funneling can increase the utilization and
thus the performance of GPUs and hide the idle time of their resources. However, in contrast
to the original work:

e First, the parallel computing architecture of the originally developed scheduler is changed
from CUDA to OpenCL in order to exceed NVIDIA’s GPUs and support different OpenCL
capable devices.

e Then, we redesigned the scheduler to meet the requirements of a client-server model (see
fig. 1), supporting multiple users in a multitasking heterogeneous thread-safe environment.

e In the current state, OCLSched is implemented as a daemon that runs in background and
manages the execution of tasks transparently, while the user can perform other common
computations at the same time.

e We also extended the task-management functionality to support advanced features cov-
ering a wide range of processing policies.

In due consideration of the conceptual issues involved in achieving all objectives mentioned
above, OCLSched can be easily applicable to a common OS. During the design stage, a number
of disciplinary aspects that are necessary to enable the implementation of a daemon into the OS
have been considered. Further, since OCLSched must run autonomously, it has been necessary
during the implementation stage to lay down specific rules concerning system calls, input and
output operations and process- and session management. One of the many advantages offered
by this implementation is that, the user is not required to establish a context on any OpenCL
device, as this is autonomously achieved by the scheduler. This will reduce the time to dispatch
multiple kernels to the accelerator.

Towards a better integration of modern accelerators into the operating system, OCLSched
allows the programmer to formulate different tasks, but then it takes over and manages the
execution in a multi-tasking environment. In the sense of sharing the coprocessor efficiently, our
scheduler pursues a higher utilization of processing resources inherently, manages the operative
parts of the coprocessor, and improves the task parallelism by deploying a special task farm
model [16]. Further, multiple users are able to submit their computations to the scheduler
simultaneously. FEach user can continue his main thread performing other tasks while the
scheduler runs transparently.

OCLSched provides a C++ API that relies on the OpenCL C++ wrapper, through which the
control flow can be described as follows:

1. The user encapsulates the assignments consisting of an unmodified OpenCL kernel and
copy operations within a task.

2. The task is enqueued within the internal structure of OCLSched, in which lists of subtasks
are generated for optimal and less costly scheduling.

3. OCLSched enqueues the prepared assignments through the accelerator’s API on the de-
vice. The issuing order is such that the device is forced to adopt it.

4. The native device scheduler dispatches the operations on the actual compute units (CUs).
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2.2 Scheduling Strategy

One of the main concepts of OCLSched is context funneling [19]. Managing all streams of
tasks in form of subtasks’ arrangements within one context has great advantages, these include
basically the achievement of higher utilization of resources [16] and the realization of an intel-
ligent multitasking and multiprocessing model. The complete execution time is divided into
time slots, whose length may change in each execution cycle. The subtasks to be dispatched
in the next time slice are planned in advance, whose length is determined by the duration of
the subtasks. The next time slice is launched as soon as the previous operations have been ter-
minated. In order to execute kernels’ subtasks concurrently, the execution time of each kernel
has to be known a priori. Therefore, they are estimated by the measurement of a dedicated
execution of each kernel. This information is then used to fill the time slices with subtasks.
However, we have shown in past work [16] that in the case of the unpredictability in terms of
the execution time, the issue order in the single compute queue (in older GPU architectures)
will be impaired. With modern accelerators, this problem is resolved by providing multiple
compute queues, thus, the runtime unpredictability of some algorithms has less impact on the
overall resource utilization. OCLSched also allows prioritization, thus, while planning the next
time slice, the subtasks will be considered for scheduling in respect to their priorities. By means
of a special combination of various lists, in which the tasks are stored depending on the current
scheduling stage, the scheduler can exploit pipelining and reduce the costs.

Besides the innovative technical solutions used by OCLSched for achieving its objectives, it
also provides for a high level of user convenience. Advanced task-management functionality is
provided by our approach in its current state, this comprises among others:

e Memory allocation by chunks: Besides the number of bytes to be transferred to the
device, an additional offset can be specified allowing to modify a specific part of the
device memory buffer after each execution. Especially in the field of data mining, several
applications can gain profit from this feature, when modifications of calculations’ inputs
are continuously required [15]. We have already conducted several experiments on well
established data mining algorithms using OCLSched, running them in conjunction with
other common computation tasks [8]. Such tests ensure the adaptivity of our approach
to a wide range of real-world applications.

e Asynchronous operation: The user may issue several tasks to be processed on the accel-
erator by means of OCLSched and return immediately continuing the main context to
perform other tasks. This point will be discussed in more details in section 3.

e It is possible to stop a running task: Use cases are for example, if the user aborts a
running application, or if a heuristic for prefetch processing failed and the scheduled
task became obsolete. In such cases, stopping the task before its termination allows the
scheduler to free resources for other tasks in the queue. In contrast to native GPGPU
programming, wasting resources might be avoided by means of our strategy in such use
cases. The execution of a task can be paused and then pursued by means of special
functions; block() and unblock().

e Revoking resources allocated by tasks: This feature might be an advantageous for iter-
ative algorithms as well as for cases, in which subsequent kernel invocations access the
same data. For this purpose, the most OCLSched components including cl :: programs,
OCLSchedT asks, device- and host buffers have been made reusable. Special remote calls
are used to access such objects by the client, however, a more thorough explanation of
this important design issue is provided in the coming sections.
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2.3 Daemon

OCLSched is implemented as a daemon, approaching the objective of a standalone system-
wide scheduling. Users communicate with the daemon in order to post requests and receive
answers. In general, a daemon process performs routine tasks in background and listens for
requests transmitted via an interface. Its autonomous design requires to obey specific rules
and methods to detach its execution from its parent process [10]. In our case, the OCLSched
daemon schedules user defined tasks to a device, which could be a CPU, a GPU, Xeon Phi or
any OpenCL device. The requests of the users are passed on to OCLSched via shared memory.

2.4 Multi-User Environment

OCLSched should be accessible by independent users (processes or threads) at the same time.
For this purpose, a facility to provide for different users’ accesses is established in the scheduler.
A local client-server model is applied as illustrated in fig. 1. When intending to submit a
task for execution, the user deploys a client to communicate with the server, which is a part
of OCLSched. The inter-process communication in our client-server model is realized via a
combination of two different IPC' objects; Message passing and shared memory.

Each user communicates via IPC with the daemon. The communication to each user is
handled by private ClientHandles (CH) within the server part of OCLSched. For every of n
clients a ClientHandle serves as a communicator. The core functionality of OCLSched consists
of the scheduling algorithm and the encapsulation of meta-data for each task. From the user’s
point of view, the execution of tasks submitted to the scheduler is performed transparently.
While user’s computations are running on the OpenCL device, the user can continue with its
control thread (non-blocking).

2.4.1 TIPC Objects

Inter-process communication can be implemented by deploying IPC objects, which are classified
in the following categories: Message passing, shared memory and synchronization means. Mes-
sage passing, in particular, employs operating system calls, these require to copy the message
into a dedicated buffer. Some examples for message passing objects are pipes, FIFOs and mes-
sage queues. Contrary to message passing, deploying shared memory for passing data between
different processes does not imply system calls . Instead, a memory space is mapped page-wise
by all affiliated processes into their own address space. In order to avoid conflicting accesses,
explicit synchronization is required in this case.

OCLSched’s multi-user model deploys shared memory and message queues merging the best
of both worlds. On the one hand, tasks following the stream computing programming paradigm
often have arguments and result structures, which are so large that the performance matters.
Shared memory offers the best performance to share such large data sets between client and
server. Message queues, on the other hand, are used to transfer small messages between client
and server and to implicitly coordinate the accesses to the shared memory objects. In our
model, we deploy shared memory for large data sets and message queues for small data sets
and synchronization. In order to implement both IPC-objects, we use the platform-independent
Boost inter-process library with its C++ API [14].

2.4.2 Communication Modules

The communication interface is designed in hierarchically arranged modules. The symmetrical
layout of these modules is illustrated in fig. 2. Remote accesses to tasks and the scheduler
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Figure 2: OCLSched’s communication-interface based on a client-server model. Remote proce-
dure calls are based on message queues.

are encapsulated within the user process. The methods deployed by these modules provide
for creating tasks and manipulating their scheduling. These modules in turn deploy a Client
that is connected to its respective ClientHandle on the server side, whereby the connection
takes place via message queues. The application of such structured modules supports the
interchangeability of the deployed IPC objects (i.e. the communication protocol).

2.4.3 Communication Protocol

In OCLSched’s multi-user environment, conflicting accesses are prevented by strictly applying
a communication protocol, when shared memory is used for the communication (in the case
of large data sets). The used protocol defines the sequential order of messages between the
user and OCLSched, and hence the messages coordinate the access to the shared memory. An
example setup is shown in fig. 3.

In addition to the message queues, inter-process mutexes are used by the clients to wait for
the termination of tasks. The task-scheduling procedure takes place asynchronously to the user,
which results in the advantage for the user-thread of being not blocked. In order to minimize
the probability of stalling, one client at most is processed in each iteration.

To sum up, tasks for the accelerator are passed on to the OCLSched server through message
queues in a non-blocking fashion (from a user perspective). Potentially larger data volumes
(e.g. kernel arguments) are put in shared memory for optimization purposes. Synchronization
with the termination of tasks is done via special inter-process mutexes.

2.4.4 Temporal Execution

The task definitions and meta information are stored by OCLSched in so called management
data. These data are used by the scheduling algorithm, the ClientHandles and the server.
Running such procedures in separate threads would cause conflicting access attempts, which
would result in stalling all but one accessor. Stalling the dispatch of tasks to the OpenCL
device by OCLSched directly impairs the device utilization and thus the performance. To avoid
that, the scheduling thread is given a permanent access to the management data. In addition,
no other thread is created, this prevents locking the data for a unique or shared access by
other threads. Instead, OCLSched’s only thread processes the server execution in the duration
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Figure 3: Inter-process communication model in OCLSched runtime.

between preparing the tasks for the next time slice and the termination of the previous one. As
a result, the fixed sequence of procedures is of advantage for minimizing stalling periods.

The client-server interaction in our approach can be summarized as follows: A user employs
a client to create and manage tasks for the OpenCL device, this might be encapsulated in a
single thread using OpenMP (Open Multi-Processing) as an explicit programming model (as
will be seen in section 3). Then, the client establishes a connection to the server and forwards
the user requests via IPC. The server interprets and executes the requests as remote procedure
calls to the OCLSched core. In analogy, the client-side representations of OCLSched’s core
entities will be referenced as remote. In this way, it is possible to schedule multiple tasks
within one accelerator context autonomously and without user’s intervention. Several clients
can be distributed on an arbitrary number of processes, all accessing one server and therefore
sharing a common accelerator context. Thus, with at least the server and one or more user
processes and threads, this model depicts a multitasking environment.

3 CPU-Assisted GPGPU

In case the user’s calculations involve divisible CPU and GPU load, computations should be
split between both devices, in particular, when code fractions with low compute memory ratio
exist. Another reason would be the control flow divergence. Due to the SIMD character of
GPUs, programs that diverge a lot gain more advantage on CPUs. In such scenarios, the user
can exploit the benefits of multiple core machines by internally multithreading. A simple and
flexible interface like OpenMP can be used to facilitate the encapsulation of different calculation
parts within multiple threads. OpenMP is a well established API for parallelizing fractions of
code with preprocessor directives [4].

Within the parts parallelized by means of OpenMP, the user can issue tasks with high
compute-memory ratio to the accelerator using OCLSched. Listing 1 gives an example on
how OCLSched and OpenMP can work together, in which the Euclidean distance is calculated
between two n-dimensional vectors. In this example, the number of CPU cores is maxT=4 and
every thread calculates a part of size = (where n = 1024). Both vectors are filled with
random values and the calculation is started asynchronously by means of OCLSched. While the
calculation is running on the accelerator, the same calculation will be executed concurrently on
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the CPU to serve as a comparative value. At the end of the calculation, OpenMP will reduce
the partial sums, this is achieved by including a reduction inside the OpenMP pragma directive.
In order to obtain the Euclidean distance, the square root has to be taken from the sum, which
is simply a scalar operation omitted in this example.

# pragma omp parallel for reduction (+:deviceRes , hostRes)

for (cl_ushort i=0; i < maxT; ++i)

{
EuclideanDistance :: fillVector (&(vecA[ixpart]) ,part);
EuclideanDistance :: fillVector (&(vecB[ixpart]) ,part);
OCLSchedRemote remote_scheduler ;
EuclideanDistance partialDist(&remote_scheduler ,part,vecA 6 vecB);
partialDist .startGPUTask(); //asynchronous
hostRes += partialDist.hostResult(); //concurrent
deviceRes += partialDist.deviceResult (); //blocks

Listing 1: Example of an OpenMP application using OCLSched.

Our initial results concerning the use of OpenMP with OCLsched are promising, and further
possibilities in this regard are currently in development. This will be the focus of future work.

4 Improvements of OpenCL Support

The goals outlined in the design of OCLSched include: Ensuring an efficient deployment of
all computing units in a versatile system, supporting a broad set of processing devices, and
considering the characteristics of different real-world computation problems. Different vendors
supply and maintain their own OpenCL drivers, which are mostly closed source. However, there
exist an open source driver Mesa that supports the main GPU architecture used in this work
with the RadeonSI driver. A special designed software stack is provided in its infrastructure
providing developers with a complete suite of software tools which includes the OpenCL com-
piler, OpenCL run time and performance libraries for optimized algorithms. The open source
graphics stack consists of multiple levels defining the interaction between the user and the ker-
nel space in Linux operating systems. The clover state tracker that implements the OpenCL
API represents an important core component in Mesa with regard to GPGPU computing. We
patched the clover state tracker in order to support special features of OCLSched and fulfill the
demands of many real-world applications. We also modified LLVM’s R600 back-end? in order
to support the missing features in the used open source driver. Patches that accomplished their
goal (Double-precision Floating Point Support, Profiling Support) have been merged upstream
in the corresponding implementation.

4.1 Double-precision Floating Point and Profiling Support

Double-precision instructions that are required by scientific applications were missing in the
R600 back-end. We developed a patch® that was merged into LLVM supporting additional
double-precision instructions for the RadeonSI (e.g. V_SQRT_F64, V_SUB_F64). Further, we

4lists.cs.uiuc.edu/pipermail /llvmdev/2012-March /048404.html
5lists.freedesktop.org/archives/mesa-dev/2013-July/041341.html
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added the support for 64 bit floating point kernel arguments and constants, by splitting them
into 32 bit floats.

Profiling is also an important component of the OpenCL API for evaluation purposes
(e.g. Event: :getProfilingInfo<T>()). Originally, its implementation was missing in Mesa’s
Clover, therefore, we added the support® for time-stamp queries in the clover state tracker of
Mesa.

4.2 Multiprocessing on GPUs

Overlapping computation and memory operations when using GPUs lead to better utilization of
resources. Additionally, overlapping computation operations provide further benefits enabling
thread-level parallelism. This multiprocessing feature is implemented using OpenCL’s Device
Partitioning, which is only supported by CPUs and Cell devices currently. OpenCL’s Dewice
Partitioning feature allows to divide one computing device into multiple sub-devices. FEach
of the sub-devices is responsible for the execution of a sequence of commands and runs asyn-
chronously to other sub-devices. In order to enable the multiprocessing feature in our scheduler
also for GPUs, we modified the driver infrastructure so that sub-devices could be created and
used independently for the execution.

In the well established design of the AMD’s GCN (Graphics Core Next) architecture (South-
ern Islands), two Asynchronous Compute Engines (ACEs) are controlling the access to the hard-
ware, scheduling tasks and generating compute task graphs. Our implementation sets registers
to configure the mapping of compute units (CUs) to an ACE. The hereby created sub-devices
are then filled by OCLSched, whereas the tasks are distributed dynamically. The newer version
(Sea Islands) provides up to 8 ACEs supporting better scheduling possibilities and thus a higher
level of multi-processing on GPUs. Currently however, all compute commands are submitted
to the graphics ring”. The reason for this workaround is that when the clover state tracker
flushes its queues, everything is submitted to the graphics ring. The desired functionality will
be achievable as soon as this problem has been fixed, we let this for future work.

5 Experimental Evaluation

A major goal of our approach has been the integration of an intelligent scheduler in a common
OS, with the purpose of managing the execution of common applications on existing accelerators
autonomously. To demonstrate this capability in purposeful tests, we use a variety of well
established OpenCL applications, which implement common algorithms from mathematics and
physics (as listed in table 1).

In this paper, the main part of our tests—the first experiment—is carried out on FirePro
S7000, which is based on the AMD GCN® architecture and consists of 20 compute units (64
processing elements for each) and 4 GB global memory. The card is installed and connected
through a PCI Express 3.0 to a quad-core IntelCPU (i5-3550). The other devices used in the
second experiment are all listed in table 2, whereby the device-system affiliation of each test
platform is included in the first column.

Unavoidable costs of the scheduling method must be expected, especially when considering
the unavailability of concurrency on GPUs. Thus, we focus in the fist experiment on measuring
the overhead caused by our scheduling scheme and comparing it against the native OpenCL

6lists.freedesktop.org/archives/mesa-dev/2013- August /043003.html
Tlists.freedesktop.org/archives/mesa-commit/2013- August /044780.html
8developer.amd.com/wordpress/media/2013/06/2620_final .pdf
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Application Dim sizeA sizeB sizeC' sizeD sizeF
Matrix-Matrix mult. 2 256 512 1024 2048 4096
Matrix-Vector mult. 2 512 1024 2048 4096 8192
Mandelbrot Set 2 256 512 1024 2048 4096
Laplace 2 64 128 256 512 1024
Convolution 1 1280 2560 5120 10240 20480
Electrical Field 3 4 8 16 32 64
MergeSort 1 4096 8192 16384 32768 65536
Euclidean Distance 2 512 1024 2048 4096 8192
N-body 1 10 100 1000 10000 100000

Table 1: List of OpenCL benchmarks used for experiments on OCLSched. The input size of
each application is represented as a number of double floating point elements in each dimension.

‘ Computer ‘ Device / Host ‘ CUs ‘ Device ‘ CUs ‘
System 1 Intel Core 15-2520M CPU 4 - -
System 2 AMD Opteron 2382 8 NVIDIA Tesla C2050 14
System 3 Intel Core i5-3550 CPU 4 AMD FirePro S7000 20
System 4 Intel Xeon E5-2650 32 Intel Xeon Phi 5110P | 236
System 5 Intel Xeon E5-2650 32 AMD FirePro S10000 28

Table 2: Device equipment of test platforms. The scheduler was hosted on each computer’s CPU
listed here during the experiments. CU: number of compute units.

implementation. In this experiment, we consider all applications that are listed in table 1. The
run times of a variety of applications submitted to execution by means of OCLSched are depicted
in fig. 4a. Multiple users were created during this experiment in order to verify the OCLSched’s
capability to handle computations by different users sharing a single GPU. The x-axis marks the
different sizes of applications used in this experiment. Since the input size has a great influence
on the run time behavior in general, we vary the input size in each step of the evaluation. The
used input sizes of the different test computations are also illustrated in table 1. With just a
single queue (no kernel concurrency), the scheduler enables only multitasking and asynchronous
memory transfers. As shown in the run-time diagram, the overhead of our scheduler remains
constant independent of the input size.

During the second experiment carried out on a variety of devices, we want to proof the gen-
eral concept of our approach on a selection of devices. We are measuring the turnaround time
within OCLSched, when executing a single kernel submitted by a single user each time. Due to
its objective, two simple applications are used in this experiment: Matrix-Vector multiplication
and Laplace. As depicted in fig. 4b, this experiment clearly shows that our approach is applica-
ble to the most processing devices that support OpenCL. However, a performance comparison
of the different platforms has not been an objective of this experiment, due to many factors
including the exclusive access to the platforms and the inconsistencies of the different OpenCL
drivers. Especially when considering the performance of AMD S10000, an exclusive access to
the machine would be required if a fair and reliable comparison with other platforms is desired.
However, it must be noted that except system 5, the test platforms were reserved exclusively
for our tests.
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Figure 4: Performance comparison of multiple applications (as listed in table 1) when using
OCLSched. All computations except Electrical Field are performed on double precision floats.
(a) is performed on the AMD GPU S7000, while applications sets have been issued by multiple
users. This depicts a comparison of native OpenCL versus OCLSched. (b) is performed on
different platforms and shows the execution time measured when running a single kernel from
a single user by means of OCLSched each time, whereby the input size: Matrix-Vector= 2048,
Laplace = 1024 x 1024. (b) verifies the applicability of OCLSched to the multiple OpenCL
processing devices.

Since Opteron 2382 belongs to a relatively older CPU generation, its relatively long run times
in comparison to the other devices is not surprising. Also, Xeon Phi exhibits relatively long
execution times, particularly in the case of Laplace. The cause is assumed to be the OpenCL
driver which is still in the early stages of development and not specially designed for this
architecture. Instead, Intel propagates its language extension for ofload (LEO)?. Among the
considered GPUs, Tesla C2050 shows relatively low performance, in particular when processing
the matrix-vector multiplication (low computation-communication ratio).

In course of our experiments, inconsistencies in the behavior of different OpenCL drivers and
devices caused troubles. This and other developments with OCLSched have experienced that
the particularities of the manufacturers’ drivers need to be studied in-depth. Not only to achieve
a good performance but also in order to prevent some drivers to crash. Especially when it comes
to the support of device partitioning, future work may analyze the architectures in order to boost
OCLSched’s performance on those devices. An extensive study about the run-time behavior of
different modern accelerators using OpenCL is presented in a related context [18]. The run-
time analysis of several OpenCL devices might help us to extend our knowledge concerning the
different devices’ characteristics and to further develop our scheduling approach, in accordance
with the different particularities of modern accelerators and coprocessors.

9software.intel.com /sites/default/files /article/326701 /heterogeneous-programming-model.pdf
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6 Conclusion and Future Work

Due to the currently increasing heterogeneity in modern systems, the support of multiple com-
puting devices is becoming more attractive for many researchers and programmers in the field
of high performance computing. For this reason, we developed OCLSched, an OpenCL-based
scheduler for heterogeneous parallel systems. By means of OCLSched, computation tasks gen-
erated by different users can be executed on different devices in a multi-threaded client-server
processing environment. The benefits of such a system-wide scheduling process that is eas-
ily integrated in a common OS, can reduce power consumption and leverage the combined
capabilities of multi-core CPUs, many-core GPUs and other accelerators.

OCLSched’s functionality has been successfully verified on CPUs and GPUs and evaluated
by numerous tests when multiple users dispatched OpenCL applications for execution at the
same time. Also, initial tests have been introduced comparing the IntelXeon Phi accelerator
with the other devices when deploying OCLSched. In future work, we plan to develop and
optimize our scheduler to execute tasks on different coprocessors (including Xeon Phi) simul-
taneously. This would open a new horizon in involving accelerators and co-processors in high
performance machines, as well as modern desktop computers. We believe that building a base
for executing programs on heterogeneous devices autonomously could create an evolutionary
path for the deployment of accelerators in the field of general purpose computing.
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