
http://www.elsevier.com/locate/jcss

Journal of Computer and System Sciences 66 (2003) 244–253

Auditing Boolean attributes$

Jon Kleinberg,a,1,* Christos Papadimitriou,b,2 and Prabhakar Raghavanc

aDepartment of Computer Science, Cornell University, Ithaca, NY 14853, USA
bComputer Science Division, Soda Hall, UC Berkeley, CA 94720, USA

cVerity, 892 Ross Drive, Sunnyvale, CA 94089, USA

Received 1 October 2000; revised 1 February 2002

Abstract

We study the problem of auditing databases which support statistical sum queries to protect the security
of sensitive information; we focus on the special case in which the sensitive information is Boolean.
Principles and techniques developed for the security of statistical databases in the case of continuous
attributes do not apply here. We prove certain strong complexity results suggesting that there is no general
efficient solution for the auditing problem in this case. We propose two efficient algorithms: The first is
applicable when the sum queries are one-dimensional range queries (we prove that the problem is NP-hard
even in the two-dimensional case). The second is an approximate algorithm that maintains security,
although it may be too restrictive. Finally, we consider a ‘‘dual’’ variant, with continuous data but an
aggregate function that is combinatorial in nature. Specifically, we provide algorithms for two natural
definitions of the auditing condition when the aggregate function is max.
r 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

The explosive increase in access to sensitive information has renewed concerns on the
compromise of individual privacy through queries about groups of people. Consider a relation
with attributes (name, age, salary) supporting statistical queries of the form ‘‘give me the sum of

$A preliminary version of this paper appears in the Proceedings of the 19th ACM Symposium on Principles of

Database Systems, 2000.

*Corresponding author.

E-mail addresses: kleinber@cs.cornell.edu (J. Kleinberg), christos@cs.berkeley.edu (C. Papadimitriou), pragh@

verity.com (P. Raghavan).
1Supported in part by a David and Lucile Packard Foundation Fellowship, an ONR Young Investigator Award,

NSF ITR/IM Grant IIS-0081334, and NSF Faculty Early Career Development Award CCR-9701399.
2Research supported by an NSF grant.

0022-0000/03/$ - see front matter r 2003 Elsevier Science (USA). All rights reserved.

PII: S 0 0 2 2 - 0 0 0 0 (0 2) 0 0 0 3 6 - 3

salaries of all individuals whose age x satisfies condition CðxÞ’’, where C is an arbitrary predicate
on the domain of age, such as 30pxp40: Assume further that the projection (name, age) is
publicly available, but the attribute salary is confidential. What measures suffice to protect the
confidentiality of the salary information?
This is the classical statistical database security problem, studied extensively since the 1970s; see

[1] for a survey. The main approaches to this problem involve perturbing the data so as to
maintain their statistical characteristics but prevent their compromise [11,13,16], to perturb the
responses for the same purpose [2,8], to restrict the size or overlap of the statistical queries [9,10],
or, finally (and closer to our concerns here), to audit the statistical queries in order to determine
when enough information has been given out so that compromise becomes possible [3–5,12].
Most of the work in this area assumes that the confidential data are real-valued and essentially

unbounded. In certain important applications, however, data may attain discrete values, or have
maximum or minimum values that are fixed a priori and frequently attainable. In these cases,
traditional methods for maintaining security are inadequate. For example, if a statistical query
only samples minimum values (e.g., if it so happens that all individuals whose age satisfies CðxÞ
are paid the minimum legal salary), then individual values are obviously compromised.
Discreteness of values has even more subtle effects. Boolean attributes, of course, combine the
problems of discrete and bounded variables; for example, consider a relation (name, age, hivpos),
where the last attribute has values restricted to 0 or 1. Sum queries are again allowed.
The mathematical roots of the problem lie in the fact that linear Diophantine equations are

more restricting—and have greater complexity—than linear equations. For example, the system

x þ y ¼ 1; ð1Þ

y þ z ¼ 1; ð2Þ

x þ z ¼ 1 ð3Þ

has a unique solution x ¼ y ¼ z ¼ 1
2
; but no 0–1 (or integer) solution. Consequently, the system

x þ y þ w ¼ 1; ð4Þ

y þ z ¼ 1; ð5Þ

x þ z ¼ 1 ð6Þ
is secure if the variables are real (because in this case it has a one-dimensional continuum of
solutions), but not if they are Boolean, because in the latter case the values of all variables are
determined. Evidently, Boolean attributes make the auditing problem much more tricky. This
added complexity of integer variables had been identified in the literature [14], albeit with no
analytical exploration of the issue.

The present work. In this paper, we explore the novel mathematical and algorithmic problems

arising when one tries to audit statistical queries on Boolean attributes. (We also study a ‘‘dual’’
situation, in which the data is continuous but the query discrete; see below.) We consider a setting
in which we have a collection of (secret) Boolean variables, and the results of some statistical
queries to this set. Each such query simply specifies a subset S of the variables; the value returned
in response to this query is the sum of the values of all variables in S:

J. Kleinberg et al. / Journal of Computer and System Sciences 66 (2003) 244–253 245

We want to decide whether the value of any of the Boolean variables is determined by the results
of these queries. In other words, the collection of responses to the queries defines a system of
equations as above, and we want to know whether there is any variable xi so that xi has the same
value in every solution to this system of equations. One can view the value of this variable as
having been compromised by the results of the queries. We call this the auditing problem. A
natural variant of this problem is to place a stronger auditing requirement on a set of queries: for
some number kX1; there is no set T consisting of at most k of the variables for which the sum of
the values has been determined. Our basic auditing problem is then simply the case k ¼ 1:

Remark. In more traditional work on auditing, there is a more subtle and generic variant of the
auditing problem, in which one asks not whether the given set of queries compromises security for
the present values of the variables, but for any values of the variables. In the case of Boolean-
valued variables—or, indeed, variables over any bounded domain—this kind of generic auditing is
impossible: For any set S of Boolean variables, there is a set of values in which all these variables
are 1. Thus, if this query S is asked to that database, an attacker would compromise all the values
in S: (This is not unlike the minimum wage example above.) Therefore, an auditing system for
Boolean attributes should, with small probability, refuse to answer any query submitted.

Our first result on the auditing problem for Boolean values is that it is coNP-complete.3 It
follows from our proof that it is even NP-hard to distinguish between a case in which no variable
is determined, and a case in which all variables are. The generalized problem in which no sum of
up to k variables is to be compromised is also NP-hard, and likewise for the variant in which we
ask whether a specific variable xp is compromised.

It is natural to ask whether these hardness results hold only for ‘‘pathological’’ sets of queries. If
we consider a collection of individuals specified by tuples of attribute values—all of the attributes
public with the exception of (one or more) secret Boolean attributes—then selecting subsets of
individuals via range queries on their public attributes is a well-defined and natural class of
‘‘reasonable’’ sets of queries. In other words, we are interested in instances of the auditing

problem in which the variables correspond to points in Rd ; and the query sets are the intersections
of these points with d-dimensional boxes. We will refer to such instances as the special case of
d-dimensional range queries.
Our next result is a simple, polynomial-time combinatorial algorithm for auditing one-dimensional

range queries, using techniques from combinatorial optimization [15]. We also show the auditing
problem is coNP-complete even for two-dimensional range queries (and hence for any dX2).
For the general Boolean case, we also describe a simple and efficient method that approximates

the auditing problem, in that it successfully preserves the security of individual values—even
though it may refuse to answer queries that could be answered without compromising security (by

3The complexity of the problem has some intriguing consequences for the issue of auditing in general. Specifically, it

is computationally infeasible for an auditor to decide whether the value of a variable will be revealed by the answers to

the a set of queries; but symmetrically, it may be infeasible for an attacker to actually compute the value of such a

variable that has been, in principle, revealed. This raises novel possibilities, such as the auditing policies allowing sets of

queries that either do not determine variables, or constitute ‘‘hard instances’’ of the auditing problem; we leave these

intriguing issues as directions for further work.

J. Kleinberg et al. / Journal of Computer and System Sciences 66 (2003) 244–253246

the remark above, this last point is inherent to the problem). Our technique is akin to the
partitioning approach to data security [6].

MAX queries. We also consider a ‘‘dual’’ variant, in which the data is continuous, but the
aggregate function is combinatorial in nature. In this variant, the sensitive data are real-valued,
and the aggregate function is max rather than summation. That is, we are given a set of real-
valued variables, and each query returns the maximum value over a designated subset of the
variables. Again, we ask: Is the value of any variable determined by the responses to these queries?
We provide a simple and efficiently implementable characterization of the auditing condition in
this case.
Recall the generic auditing condition discussed above—given a collection of query sets, does

there exist a set of values for which some variable would be determined? In contrast to the
Boolean case, this question becomes non-trivial in the case of max queries over real-valued data,
and raises issues of a technically distinct flavor from the main auditing problem we study. We
provide a characterization of query sets that are secure, in this generic sense, when the aggregate
function is max.

2. Complexity

Define the Boolean auditing problem to be the following: Given n 0–1 variables fx1;y; xng; a
family of subsets S ¼ fS1;y;Smg of f1;y; ng; and m integers b1;y; bm; is there an ipn such
that in all 0–1 solutions of the system of equations

P
iASj

¼ bj; j ¼ 1;y;m; the variable xi has the

same value?

Theorem 2.1. The Boolean auditing problem is coNP-complete.

Proof. It is well-known that determining whether a system of linear equations has a 0–1 solution
is NP-hard even if all coefficients are 1, the right-hand side of each equation is 1, and there are at
most three variables per equation. We start from this problem.
Given such a system of equations, we first replace each variable x by the expression x1 þ x2 þ

x3 � 1; and add the equations x1 þ x2 þ x3 þ x4 þ x5 ¼ 2; x1 þ x0
1 ¼ 1; x2 þ x0

2 ¼ 1; x3 þ x0
3 ¼ 1;

x0
1 þ x0

2 þ x0
3 þ x6 þ x7 ¼ 2; where xi;x

0
i are new variables. The meaning of these equations is that

x1 þ x2 þ x3 is either 1 or 2, and thus x1 þ x2 þ x3 � 1 is either 0 or 1, and therefore the latter
expression can safely replace the Boolean variable x; but the new variables are never determined as
there are always several ways to achieve the same value. Once these replacements have been made,
the right-hand side of each equation is an integer no larger than 4. We introduce now four new
variables a; b; c; d bound to be equal by the equations a þ a0 ¼ 1; a0 þ b ¼ 1; b þ b0 ¼ 1; b0 þ c ¼
1; c þ c0 ¼ 1; c0 þ d ¼ 1:We finally add to the left-hand side of each equation (except for these last
six involving a; b; c; d) a number of the a; b; c; d variables equal to the right-hand side of the
equation. This completes the construction.
Notice that now that the system always has a 0–1 solution, one obtained by setting a ¼ b ¼

c ¼ d ¼ 1 and all other variables 0. If this is the only solution, then the system is insecure, because
the values of all variables are determined. It is easy to see that the only way for another solution to

J. Kleinberg et al. / Journal of Computer and System Sciences 66 (2003) 244–253 247

exist is for the original system to have a solution; in that case, it is not hard to prove that no
variable is determined.
Notice, incidentally, that this proof also establishes that it is coNP-hard to distinguish between

the case in which all variables are determined and the case in which none is; as a consequence,
telling whether a specific variable is determined is also coNP-complete. &

Let us call a family of finite sets d-dimensional if the elements can be identified with points in Rd

so that the minimum bounding box of each set in the family contains no other element besides
those in the set. An instance of the Boolean auditing problem is d-dimensional if the family of sets
in it is. For example, any instance resulting from the (name, age, hivpos) example described in the
introduction, with conditions on the age of the form CðxÞ ¼ cpxpu; is one dimensional. The
following result suggests that the auditing problem remains intractable even in its two-
dimensional special case.

Theorem 2.2. The Boolean auditing problem is coNP-complete even if the system is restricted to be

two-dimensional.

It is clear that d-dimensional queries, with d > 2; can be no easier.

Proof. We reduce the general case to the two-dimensional one as follows: letS be a family of sets
defining an instance of the Boolean auditing problem. Arrange the sets in S in some order, and
for each consider the occurrences of each variable in it, also in some arbitrary order. Each one of
these occurrences will be a separate variable in the new instance, with the ith occurrence of x

denoted xi:
Assign now to these new variables a point in the two-dimensional plane, by assigning to the kth

such variable the point ðk; kÞ; k ¼ 1;y;
P

SiAS jSij: Notice that, this way, the equations of the
original system indeed involve a set of points whose minimum bounding rectangle contains no
other point.
All we need now is to enforce the additional constraints stating that all new variables

corresponding to the same variable in the original problem take the same value. We achieve this as
follows: suppose that ðk; kÞ and ðc; cÞ are two points corresponding to two consecutive
occurrences of the same variable, say xi and xiþ1; respectively. We then introduce a new variable
yi; with point ðk; cÞ; and equations xi þ yi ¼ 1; xiþ1 þ yi ¼ 1: Obviously, these two equations force
xi and xiþ1—and by extension all occurrences of x—to have the same value. Furthermore, the
minimum bounding rectangles involving these two equations are the line segments ½ðk; kÞ; ðk; cÞ�
and ½ðc; cÞ; ðk; cÞ�; which, indeed contain no other points corresponding to variables besides the
two endpoints.
It follows that the resulting system is two-dimensional, and equivalent, vis "a vis auditing, to the

original one. &

3. The one-dimensional case

We can, however, prove the following:

J. Kleinberg et al. / Journal of Computer and System Sciences 66 (2003) 244–253248

Theorem 3.1. The Boolean auditing problem for one-dimensional queries can be solved in polynomial

time.

Proof. We have variables x1;y; xn corresponding to points arranged in this order on a line, while
the sets in S correspond to intervals of the same line. Consider the characteristic vector ai of the
set SiAS; let A denote the matrix whose rows are equal to the vectors a1;y; am; and let b denote
the vector ðb1;y; bmÞ: Note that A has the consecutive-ones property, in that the ones in each row
are all consecutive. We let P denote the polytope

fx: Ax ¼ b; 0pxp1g:

It is well-known [15] that matrices with the consecutive ones property are totally unimodular,
that is, all their square submatrices have determinants þ1;�1; or 0. Consequently, each vertex of
the polytope P defined by

fx: Ax ¼ b; 0pxp1g

has 0–1 coordinates. Now, suppose we let Pi;c; for 1pipn and cAf0; 1g; denote the polytope

obtained by intersecting P with the hyperplane xi ¼ c: Each polytope Pi;c also has the property

that all its vertices have integer coordinates. Thus, the value of the variable xi is determined by the
results of the queries if and only if exactly one of the two polytopes Pi;0 and Pi;1 is non-empty;

indeed, each such polytope that is non-empty will have at least one vertex, and this vertex will
constitute a set of Boolean values consistent with the results of all queries.
Thus, our problem reduces to determining integer solutions to the system of equations and

inequalities

Ax ¼ b; 0pxp1;

where A has the consecutive-ones property; and the arguments above show that this can be solved
by any polynomial-time algorithm for linear programming (see e.g. [15]).
However, there is a much more direct and efficient combinatorial algorithm to determine the

solvability of this system of equations and inequalities in integers. First, we define a directed graph
G as follows.

* G has nodes 0;y; n; with arcs ai ¼ ði; i þ 1Þ and a0i ¼ ði þ 1; iÞ for each i ¼ 0; 1;y; n � 1:
* Also, suppose the block of 1’s in the jth row of A runs from column to p to column q > p; then
we add arcs ej ¼ ðp � 1; qÞ and e0j ¼ ðq; p � 1Þ:

* We assign cost 1 to each arc ai; cost 0 to each arc a0
i; cost bj to arc ej; and cost �bj to arc e0j:

Now we claim that our initial system is solvable in integers if and only if the graph G has no
negative-cost cycle; this latter condition can be tested in polynomial time via well-known
combinatorial algorithms [7]. First, suppose the system is feasible, and let ðx1;y;xnÞ be a 0–1

valued vector that satisfies Ax ¼ b: We define s0 ¼ 0 and si ¼
Pi

j¼1 xj for i ¼ 1; 2;y; n: Now

observe that for every arc ðu; vÞ in G; of cost c; we have sv � supc: Indeed, sipsiþ1psi þ 1; and if
ej ¼ ðp � 1; qÞ corresponds to a row of A; then sq � sp�1 ¼

Pq
i¼p xi ¼ bj: The numbers fsig thus

provide a certificate that G has no negative cycle.

J. Kleinberg et al. / Journal of Computer and System Sciences 66 (2003) 244–253 249

Conversely, suppose that G has no negative cycle. Then we can compute a well-defined shortest
path length s0i from node 0 to each node i: Now, for i ¼ 1; 2;y; n; define xi ¼ s0i � s0i�1: We claim

that the vector x ¼ ðx1;y; xnÞ satisfies the system Ax ¼ b; 0pxp1: First, observe that each xi is
an integer; and the sets of arcs faig and fa0

ig force s0ips0iþ1ps0i þ 1 for each i; whence xiAf0; 1g:
Second, the existence of the arcs ej and e0j imply that

Pq
i¼p xipbj and �

Pq
i¼p xip� bj; whence the

jth row of A is satisfied. &

Example. The following simple example illustrates the algorithm. Suppose the original matrix A

had only one row, consisting of n 1’s. Thus, the vector b consists of a single number. We know the
original system Ax ¼ b; 0pxp1 to be feasible if and only if 0pbpn; and we want the
construction above to capture this. The graph we construct in this case is a bi-directed cycle; it
consists of n bi-directed edges with cost 1 clockwise and 0 counter-clockwise, and a single bi-
directed edge of cost �b clockwise and b counter-clockwise. Indeed, there is now a negative cycle
in G if and only if bo0 or b > n:

We note that negative cycle detection, while solvable in polynomial time, can be
computationally intensive for large inputs. We leave the design of a one-dimensional auditing
algorithm with better running time as an interesting open question.

4. Approximate auditing

We have seen that it can be computationally infeasible to determine the safety of a collection of
arbitrary statistical queries put to a database containing secret Boolean variables. Given arbitrary
query sets arriving incrementally over time, then, how should we proceed? How long is it safe to
continue providing answers?
A promising approach is to consider relaxed versions of our basic safety predicate. Rather than

deciding precisely whether any variable’s value has been determined, we can compute a
conservative approximation to this predicate: For any collection of query sets, we only answer a
query when it is safe to do so, but we may refuse to answer a query even when the answer would
not in fact compromise safety.
We now describe a particular conservative approximation which can be implemented very

efficiently. Given a collection of Boolean variables x1;y;xn; and a sequence of query sets
S1;y;Sm; we define the trace tðxiÞ of xi to be the set fp: xiASpgDf1; 2;y;mg: In terms of

traces, one can express a relaxed safety condition as follows.

Theorem 4.1. Suppose that for every variable xi; there exists a variable xj so that xi ¼ 1� xj and

tðxiÞ ¼ tðxjÞ: Then no variable is determined by the responses to the query sets S1;y;Sm:

We can interpret the safety test implied by the theorem as maintaining a bipartite graph G

whose vertex set is the collection of variables. We join variables xi and xj by an edge if they have

opposite values but the same trace. Theorem 4.1 implies that as long as this graph has no isolated
nodes, no variable has been determined. Before any query sets have been presented, we have the

J. Kleinberg et al. / Journal of Computer and System Sciences 66 (2003) 244–253250

complete bipartite graph; with each query set Sp; we delete the edge ðxi;xjÞ if and only if

jSp-fxi; xjgj ¼ 1:
While this is a natural way to picture the safety test, it involves a representation of quadratic

size, since we begin with a complete bipartite graph. In fact, we can implement the safety test more
efficiently as follows. For each variable xi; we maintain its trace tðxiÞ as a bit vector. After each
new query, we update the traces in one pass, then sort the traces, and in a final pass identify any
trace for which all associated variables have the same value.
Note the connections between this methodology and the partitioning approach to maintaining

security [6]. Under the method we discuss here, one is essentially monitoring an adaptive partition
on the variables that is successively refined by each query response; as long as the atomic sub-
populations in this partition maintain a particular property, one can continue responding to
queries.
It would be interesting to consider generalizing our approach to a hierarchy of successively

stronger approximations to the true safety predicate; we leave this as a direction for future work.

5. Auditing max queries

We now turn to the problem of auditing max queries over real-valued data.
We have a set of variables with labels U ¼ f1;y; ng; and each variable iAU has a value yiAR:

We are also given a collection of sets S1;y;SmDU ; with each Sp; we are given the maximum

value over the variables in Sp: We will denote this maximum by f ðSpÞ:
The first problem we address is that of auditing: is the value of any of the variables in U

determined by the information fðSp; f ðSpÞÞg? We provide an efficient algorithm to compute the

set of all variables iAU that are determined.
For a variable i; let

mi ¼ minf f ðSpÞ: iASpg:

We will say that Sp is i-extreme if iASp; and mi ¼ f ðSpÞ: Note that for every variable i; there is at
least one i-extreme set. Conversely, for every set Sp; there is an i for which Sp is i-extreme—

specifically, consider a variable iASp for which yi is maximum.

Now we claim

Theorem 5.1. The value of variable i is determined if and only if there exists a set Sp that is i-

extreme, but is not c-extreme for any cai:

Proof. First, consider an arbitrary variable c; let Sp be an c-extreme set, and let Sq be any set

containing c: Then we have

ycpf ðSpÞ ¼ mcpf ðSqÞ:

Moreover, if Sq is not c-extreme, then the last inequality is strict.

Thus, if Sp is a set that is i-extreme but not c-extreme for any cai; we have ycpmcof ðSpÞ for
every ycASpWfyig: It follows that yi ¼ f ðSpÞ; and hence the value of variable i is determined.

J. Kleinberg et al. / Journal of Computer and System Sciences 66 (2003) 244–253 251

We now consider the converse direction. To begin with, note that the setting yc ¼ mc for each c
is consistent with all the values f f ðSpÞg: Indeed, mcpf ðSpÞ holds for every cASp; and the variable
c for which yc attains the maximum value in Sp has mc ¼ f ðSpÞ:
Now, suppose variable i has the property that for every i-extreme set Sp; there is a variable

cðpÞai for which Sp is also cðpÞ-extreme. Suppose we take the setting of variables fyc ¼ mcg and
then arbitrarily decrease the value of the variable i: We claim that all the values ff ðSpÞg remain

the same. Certainly, no set Sp with f ðSpÞ > mi or f ðSpÞomi will change in value; and for any set Sp

with f ðSpÞ ¼ mi; we have cðpÞASp with mcðpÞ ¼ mi; whence f ðSpÞ will retain the value mi: &

Notice that, by the above result, there is a polynomial algorithm for auditing max queries.
Generic safety. We now consider the generic notion of auditing discussed in the introduction.

Given a collection of sets S ¼ fS1;y;Smg as before, we will call this collection of sets safe if for
every setting y1;y; yn of the variables in U ; there is no yi whose value is determined by the results
of queries to S:
We now provide a characterization of safe set systems. First, consider the following property of

a set system S ¼ fS1;y;Smg:
ð*Þ There exists SpAS; and Sq1 ;y;Sqt

AS so that

Sp

[t

r

Sqr

 !- �����
����� ¼ 1:

We claim

Theorem 5.2. A set system is safe if and only if it does not have property ð*Þ:

Proof. To prove the easier direction, suppose that the set system S has property ð*Þ; and choose
Sp;Sq1 ;y;Sqt

AS and jAU so that SpWð
S

r Sqr
Þ ¼ fjg: Suppose we define values for the variables

so that yj ¼ 1 and yi ¼ 0 for all iaj: Then f ðSpÞ ¼ 1 and f ðSqr
Þ ¼ 0 for s ¼ 1;y; t; this implies

that for any ðy0
1;y; y0

nÞARn consistent with these values, y0
ip0 for iASpWfjg; whence y0j ¼ 1:

Conversely, suppose that S does not have property ð*Þ; and consider a setting y ¼
ðy1;y; ynÞARn of the variables that determines the value of some variable j: We now define a
setting y0 ¼ ðy01;y; y0nÞARn that is consistent with the answers to all queries, but for which y0jayj;

this will be a contradiction. Let Wj denote the union of all sets in S that do not contain j: First,
we set y0

j to an arbitrary value strictly less than yj: Now, consider each set SpAS on which the

value of f has changed; these are precisely the sets in which yj was the unique maximum. Since S

does not have property ð*Þ; and SpWWj is non-empty, it must have cardinality at least two, and

hence contains an element ipaj:We choose such an ip and define y0
ip
¼ yj: Finally, for any element

k which is not equal to ip for any p in the above construction, we set y0k ¼ yk:
We introduce the following additional piece of notation: for a set Sr; we use f ðyjSrÞ to denote

the value f ðSrÞ under the setting yARn; and we use f ðy0jSrÞ to denote the value f ðSrÞ under the
setting y0ARn: We claim that f ðyjSrÞ ¼ f ðy0jSrÞ for r ¼ 1; 2;y;m; this will conclude the proof.
The crucial observation here is that if yiay0

i for some iaj; then j appears in every set in which i

appears. For if yiay0i; it must be that i ¼ ip for some p in the above construction; since iASpWWj;

J. Kleinberg et al. / Journal of Computer and System Sciences 66 (2003) 244–253252

we conclude that i does not appear in any set which omits j: Note also that for such an i; y0
i > yi;

since yj was the unique maximum in this set Sp: Now, suppose by way of contradiction that

f ðyjSrÞaf ðy0jSrÞ for some r: It follows that jASr; and hence f ðyjSrÞXyj: If f ðyjSrÞ > yj or

f ðy0jSrÞ > yj; then the maximum in Sr must be attained by an element whose value did not change,

and so f ðyjSrÞ ¼ f ðy0jSrÞ: Thus, suppose f ðyjSrÞ ¼ yj > f ðy0jSrÞ: But in this case, yj must have

been the unique maximum in Sr; and so there is an element irASrWfjg for which we set y0
ir
¼ yj;

this contradicts our supposition that f ðy0jSrÞoyj: &

We note that property ð*Þ—and therefore safety—can be tested in polynomial time, as follows:
For each variable j; we form the set Wj consisting of the union of all sets inS that do not contain

j: Then, for each set Sp; and each jASp; we determine whether SpWWj ¼ f jg:

References

[1] N. Adam, J. Wortman, Security-control methods for statistical databases: a comparative study, ACM Comput.

Surveys 21 (4) (1989) 515–556.

[2] L. Beck, A security mechanism for statistical databases, ACM TODS 5 (3) (1980) 316–338.

[3] F. Chin, Security in statistical databases for queries with small counts, ACM TODS 3 (1) (1978) 92–104.

[4] F. Chin, G. .Osoyoglu, Statistical database design, ACM TODS 6 (1) (1981) 113–139.

[5] F. Chin, G. .Osoyoglu, Auditing and inference control in statistical databases, IEEE SE-8 1 (1982) 574–582.

[6] F. Chin, G. .Osoyoglu, Security in partitioned dynamic statistical databases, Proceedings of IEEE COMPSAC,

Chicago, 1979, pp. 594–601.

[7] T. Cormen, C. Leiserson, R. Rivest, Introduction to Algorithms, McGraw-Hill, Boston, 1990.

[8] T. Dalenius, A simple procedure for controlled rounding, Statistik Tidsktift 3 (1981) 202–208.

[9] D. Dobkin, A. Jones, R. Lipton, Secure databases: protection against user influence, ACM TODS 4 (1) (1979)

97–106.

[10] A. Friedman, L. Hoffman, Towards a fail-safe approach to security and privacy, Proceedings of IEEE Symposium

on Security and Privacy, Oakland, CA, 1980.

[11] C. Liew, W. Choi, C. Liew, Data distortion by probability distribution, ACM TODS 10 (3) (1985) 395–411.

[12] G. .Osoyoglu, F. Chin, Enhancing the security of statistical databases with a question-answering system and a

kernel, IEEE SE-8 3 (1982) 223–234.

[13] S. Reiss, Practical data swapping: the first steps, ACM TODS 9 (1) (1984) 20–37.

[14] N. Rowe, Diophantine inference from statistical aggregates on few-valued attributes, Proceedings of IEEE

Conference on Data Engineering, Los Angeles, CA, 1984, pp. 107–110.

[15] A. Schrijver, Theory of Linear and Integer Programming, Wiley, New York, 1986.

[16] J. Traub, Y. Yemini, H. Wozniakowksi, The statistical security of a statistical database, ACM TODS 9 (4) (1984)

672–679.

J. Kleinberg et al. / Journal of Computer and System Sciences 66 (2003) 244–253 253

	Auditing Boolean attributes
	Introduction
	Complexity
	The one-dimensional case
	Approximate auditing
	Auditing max queries
	References

