
Electronic Notes in Theoretical Computer Science 44 No. 4 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume44.html 13 pages

Specifying and Implementing Visual Process
Modeling Languages with DiaGen �

Mark Minas a Berthold Hoffmann b

a Lehrstuhl für Programmiersprachen, Universität Erlangen-Nürnberg,
Martensstr. 3, D-91058 Erlangen, Germany 1

b Technologiezentrum Informatik, Universität Bremen,
Postfach 330 440, D-28334 Bremen, Germany 2

Abstract

This paper describes how a diagram language can be specified, based on graphs,
graph grammars, and transformation rules, and how the diagram editor generator
DiaGen generates a diagram editor from such a specification. DiaGen can be ap-
plied to practically every visual language, and to visual process modeling languages
in particular. This is demonstrated with an editor and animator for statecharts.

Key words: visual language, diagram editor, diagram animation,
graph grammar, graph transformation

Visual languages are more and more popular for modeling software in gen-
eral, like Uml[1], and for process modeling in particular: Statecharts, for
instance, are well-accepted for modeling reactive systems [2,3] and have be-
come part of Uml. Petri nets, another visual notation for process modeling,
lend themselves to proving lifeness or deadlock-freedom by model checking.
However, it is still far from easy to implement tools for visual languages from
scratch, and statecharts and Petri nets are no exception with this respect.

It has already been shown that both statecharts and Petri nets can be
modelled by graph transformation systems [4,5]. Here we show that graph
transformation systems can be useful for more than just conceptual meta
modeling: Graphs, graph grammars, and graph transformations may be used
to define visual (process modeling) languages, and this forms the basis for
generating tools that implement such languages. This is demonstrated by
specifying and implementing a statechart editing and animation tool with the
diagram editor generator DiaGen.

� Support by the Esprit Working Group AppliGraph is gratefully acknowledged.
1 E-mail: minas@informatik.uni-erlangen.de
2 E-mail: hof@tzi.de

c©2001 Published by Elsevier Science B. V.

67

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

Minas, Hoffmann

Fig. 1. Snapshot of the statechart editor and animator

Fig. 1 shows a snapshot of this tool. The window consists of a canvas on
which a statechart is drawn, a control panel for displaying the status of the
chart, and menu entries for operations. 3

Fig. 1 and the simpler statechart in Fig. 2 show the main features of state-
charts [2]: Each statechart is a hierarchical finite state machine where each
state (or-state) may contain a statechart of its own. A state which does
not contain another statechart is called basic. So-called and-states consist
of several compartments which are separated by dashed lines. Each of these
compartments contains a statechart, and they are all active simultaneously
if the and-state is active. Initial states are drawn as black bullets. Transi-
tions between states have annotations e/f , indicating that they will consume
the input events e, and signal the output events f . 4 Transitions may cross
hierarchy borders, as Fig. 2 shows.

The rest of this paper is organized as follows: The next section briefly intro-
duces the diagram editor generator DiaGen. Section 2 surveys hypergraphs
and hypergraph transformation systems as they are used by DiaGen, and
Section 3 summarizes the specification of the statechart editing tool, and the
major steps of diagram analysis. Section 4 describes how the editor has been
extended by an animation that models the semantics of statecharts. Section 5
reports on related work, and section 6 concludes the paper.

3 An online version of this statechart editing and animation tool can be tried at
http://www2.cs.fau.de/DiaGen/statecharts/.
4 Conditional transitions of the form e[c]/f have not yet been implemented.

68

Minas, Hoffmann

Fig. 2. A sample statechart with
cross-hierarchy transitions.

DiaGen
editor

framework

generator
Program

Specification

code

Generated
program

code
program
specific
Editor

IAGEND

Editor developer

Diagram editor

Fig. 3. Generating diagram editors with
DiaGen.

1 DiaGen

DiaGen provides an environment for the rapid development of diagram ed-
itors. This section outlines this environment, and how it is used for creating
a diagram editor that is tailored to a specific diagram language. DiaGen
can be used to create editors for a wide variety of diagram languages, e.g., fi-
nite automata, control flow diagrams, Nassi-Shneiderman diagrams, message
sequence charts, visual expression diagrams, sequential function charts, and
ladder diagrams [6,7,8,9]. Actually we are not aware of a diagram language
that cannot be specified so that it can be processed with DiaGen.

DiaGen is completely implemented in Java and consists of an editor frame-
work and a program generator. 5 Fig. 3 illustrates the structure of DiaGen,
and how it is used for developing diagram editors. The DiaGen editor frame-
work, as a collection of Java classes, provides the generic functionality needed
for editing and analyzing diagrams. In order to create an editor for a specific
diagram language, the editor developer supplies a textual specification for the
syntax and semantics of a diagram language. Additional program code which
is written “manually” can be supplied too. This may be necessary for the
visual representation of special diagram components on the screen, and for
processing objects of the problem domain, e.g., for semantic processing when
the editor is used as a component in another software system. The specifica-
tion is then translated into Java classes by the program generator.

The generated classes, together with the editor framework and the man-
ually written code, implement an editor for the specified diagram language.
This editor can be used as a stand-alone program, but also as a software com-
ponent since the editor framework and the generated program code conform
with the JavaBeans standard, the software component model for Java.

Diagram editors which have been developed using DiaGen (which are
called “DiaGen editors” in the following) provide the following features:

5 DiaGen is free software, available from http://www2.cs.fau.de/DiaGen.

69

Minas, Hoffmann

• DiaGen editors always support free-hand editing so that the editor user can
arbitrarily create, delete, and modify diagram components (states, transi-
tions, and annotation text for statecharts), as with an off-the-shelf drawing
tool. After each editing operation, the editor analyzes the “drawing” ac-
cording to the syntax of the diagram language, and informs the user about
syntax errors.

• Well-formed diagrams can be translated into a semantic representation, e.g.,
a statechart could be translated into program code which implements the
statechart specification. This process is driven by the syntactic analysis and
makes use of the editor specific program code appearing in Fig. 3. However,
this feature is not used in our example.

• The developer of a DiaGen editor may also specify compound operations
for syntax-directed editing. Each of these operations is geared to modify the
meaning of the diagram (e.g. for statecharts, a state could be deleted, with
all its incoming and outgoing transitions).

• Automatic layout is another optional feature of DiaGen editors. It is oblig-
atory when syntax-directed editing operations are specified. The automatic
layout mechanism adjusts the layout of a diagram (i.e., position, size etc.
of its components) after any modification. Automatic layout also assists
free-hand editing: After each layout modification by the user, the layout
mechanism updates the diagram so that its structure remains unchanged.
DiaGen offers constraints for specifying the layout mechanism in a declar-
ative way [9], and a programming interface for plugging in other layout
mechanisms.

The following sections briefly survey the main concepts of DiaGen, and
explain the statecharts editor which has been generated with DiaGen.

2 Hypergraphs and Grammars

DiaGen editors use hypergraphs as internal diagram models and hypergraph
grammars as a means for syntax specification. This section briefly surveys
these concepts.

Each graph consists of a set of labeled nodes and a set of labeled edges.
Each edge visits two nodes which need not be different. Hypergraphs are a
generalization of directed graphs: They consist of a set of labeled nodes and
a set of labeled hyperedges. Each hyperedge has a fixed number of labeled
tentacles which is determined by the hyperedge’s label. Tentacles connect the
hyperedge with nodes visited by the hyperedge. A regular directed graph is
a hypergraph where each hyperedge has two tentacles with labels source and
target. Nodes will be represented by black dots, directed edges by arrows,
and hyperedges by boxes containing the hyperedge label. Thin lines are used
to represent tentacles connecting the hyperedge with visited nodes. Tentacle
labels are omitted in figures if this does not cause confusion.

70

Minas, Hoffmann

Hypergraph grammars are similar to string grammars. Each hypergraph
grammar consists of two sets of terminal and nonterminal hyperedge labels
and a starting hypergraph which contains nonterminally labeled hyperedges
only. Syntax is described by a set of productions of the form L ::= R with L
(left-hand side, LHS) and R (right-hand side, RHS) being hypergraphs. L ::=
R1| · · · |Rn is used as an abbreviation for n productions L ::= R1, . . . , L ::= Rn.
A production L ::= R is applied to a (host) hypergraph H by finding L as a
subgraph of H and replacing this match by R obtaining hypergraph H ′. We
say, H ′ is derived from H (written H → H ′) in one step. The grammar’s
language is then defined by the set of terminally labeled hypergraphs which
can be derived from the starting hypergraph in a finite number of steps.

There are different types of hypergraph grammars which impose restric-
tions on a production’s LHS and RHS as well as the allowed sequence of
derivation steps. Context-free hypergraph grammars are the simplest ones:
each LHS has to consist of a single nonterminally labeled hyperedge together
with the appropriate number of nodes. Application of such a production re-
moves the LHS hyperedge and replaces it by the RHS. Matching node labels
of LHS and RHS determine how the RHS has to fit in after removing the
LHS hyperedge. All but the last two productions of Fig. 7 are context-free.
Context-free hypergraph grammars with embeddings are more expressive than
context-free ones. They additionally allow embedding productions which con-
sist of the same LHS and RHS, but with an additional (“embedded”) hyper-
edge on the RHS, i.e., this hyperedge is embedded into the context provided
by the LHS when applying such a production (the last two productions of
Fig. 7). Parsing algorithms and a more detailed description of both grammar
types can be found in [7,10].

DiaGen uses hypergraphs as diagram representations and hypergraph
grammars for specifying syntactically correct diagrams. The following sec-
tion describes how these concepts are used by the statecharts editor which
has been generated with DiaGen. That section shows also how grammar
productions may be annotated by additional application conditions that re-
strict their application during the parsing process (like the path expressions p1

and p2 in Fig. 7). Whereas “pure” context-free hypergraph grammars cannot
describe the syntax of every diagram language [10], context-free hypergraph
grammars with embeddings and application conditions have proven to be a
suitable means for diagram syntax specification.

3 Statechart Editing

The statechart modeling tool mainly consists of a free hand diagram editor
that translates drawings into a hypergraph model, creates its syntactic struc-
ture and thus checks its syntactic correctness with respect to the statechart
syntax. As a result of this process, the editor has to provide visual feedback
to the editor user if the drawing contains errors. The editor performs this

71

Minas, Hoffmann

task in a sequence of four steps after each editing operation: scanning, re-
duction, parsing, and attribute evaluation. These steps are illustrated for the
statechart in Fig. 2.

Scanning step: Diagram components (e.g., states, transitions, text which is
used as transition annotation, and dashed lines which divide and-states into
simultaneously active compartments) have attachment areas, i.e., the parts of
the components that are allowed to connect to other components (e.g., start
and end of a transition). The most general and yet simple formal descrip-
tion of such a component is a hyperedge which connects to the nodes which
represent the attachment areas of the diagram components. These nodes and
hyperedges first make up an unconnected hypergraph. The scanner connects
nodes by additional edges if the corresponding attachment areas are related
in a specified way, which is described in the specification. The result of this
scanning step is the spatial relationship hypergraph (SRHG) of the diagram.
Fig. 4 shows the SRHG of the simple statechart shown in Fig. 2. Nodes
are represented by black dots, hyperedges either by gray arrows (relation-
ships between attachment areas) or by rectangles (diagram components) that
are connected to their nodes (“attachment areas”) by thin lines. Unary hy-
peredges stateFrame represent or-states, and-states, or basic states, whereas
initState represents initial states. Transitions are represented by arrow hy-
peredges which visit three nodes: two of them are the ends of the arrow, the
third represents the attachment area which is related to annotating text (hy-
peredge text). Relation proximity indicates that a text is positioned near an
arrow. Fig. 4 shows that proximity does not unambiguously assign text to
arrows. DiaGen offers special support for dealing with this ambiguity: As-
signment is represented by additional hyperedges of type assigned which are
not generated in the scanning step, but during the following reduction step
as discussed later. Finally, contains and attachs relation edges represent

text

assig
n

edp
ro

x
im

it
ytext

assig
n

edp
ro

x
im

it
y

arrow

arrow

arrow arrow

stateFrame

stateFrame

text

text

stateFrame

at
ta

ch
s

at
ta

ch
s

attachs

at
ta

ch
s

at
ta

ch
s

at
ta

ch
s

attachs

proximity

proxim
ity

attach
s

contains

co
nt

ai
ns

attachsattachs

p
ro

x
im

it
y assig

n
ed

assig
n

ed

stateFrame

attachs

at
ta

ch
s

p
ro

x
im

it
y

Fig. 4. SRHG of the statechart of Fig. 2.

72

Minas, Hoffmann

orState

orState

1

2

1

2

2

2

orState orState

transition

transition

transition transition

annotation

annotation

annotation

annotation

nested

nested

3

1

3

2

1

1

1

2

3

3

Fig. 5. HGM of the statechart of Fig. 2.

states which contain other states or arrows which attach to states.

Reduction step: SRHGs tend to be quite large even for small diagrams (see
Fig. 4). In order to allow for efficient parsing, a reduced hypergraph model
(HGM) is created from the SRHG first. The reducer is specified by some
transformations that identify those sub-hypergraphs of the SRHG which carry
the information of the diagram and build the HGM accordingly. This step is
similar to the lexical analysis step of traditional compilers. Fig. 5 shows the
HGM for the statechart of Fig. 2. Please note the similarity to the original
diagram.

Fig. 6 shows four of the total number of 13 reduction rules for statecharts.
The two rules on the left show that stateFrame hyperedges are “reduced” to
or-state edges if they do not contain a dashed line that would indicate an
and-state. The crossed-out sub-hypergraph represents a negative application
context, i.e., a context which must not occur if the corresponding transfor-
mation rules shall be applied. Analogously, a nested edge is produced if an
or-state directly contains another state.

The two rules on the right are somewhat special since they create assigned
hyperedges which do not belong to the HGM, but to the SRHG again: They
act as a memory for remembering which text has been uniquely assigned to
which arrow. Text is assigned to an arrow if either the arrow is the only one
which is positioned near the text (top rule) or if there was already a unique
assignment in the previous analysis phase, indicated by the already existing
assigned edge (lower rule).

Parsing step: The syntax of the hypergraph models of the diagram language—
and thus the syntax of the language—is defined by a hypergraph grammar.
Fig. 7 shows a context-free hypergraph grammar with embeddings 6 for state-

6 Please note that the production with the NestedStateSet hyperedge on its LHS allows
an arbitrary number of nested states, represented by nested/State hyperedges. This more
readable notation can be regarded as a shorthand for recursive productions. However, this is
actually a special kind of production which allows for more efficient parsing, but a discussion

73

Minas, Hoffmann

a b
a

b

a b a

b

a b

1 2
a b

a a

assigned

text

as
si

gn
ed

proximity

assigned

annotation

text proximity

assigned assigned

annotation

ha
sL

in
e

contains

containscontains
nested

stateFrame
hasLine

orState

Fig. 6. Four of the 13 reduction rules of the statechart editor.

Next

Lanes

andState
orState orState

Next

Lanes
Next

Lanes

next

next

transition

annotation

transition
Trans

Trans Trans

initState

NonInitState

NonInitState NonInitState

NonInitState NonInitState
initState NonInitState

NonInitStateinitState

State NonInitState

nested nested

State State

Nested

StateSet

a
a a

Nested

StateSet

a

a

Nested

StateSet

a

Nested

StateSet

a

a b
a b

a b

a b
a b

p
1

a b
p

2

a b

State

Chart

Nested

StateSet

root

State

a a a

Nested

StateSet

a

a

Fig. 7. Hypergraph grammar for statecharts resp. their hypergraph models. Ter-
minal hyperedges are represented by shaded oval boxes whereas nonterminal ones
are shown as rectangles. Path expressions p1 and p2 are explained in the text.

charts. The starting hypergraph of the grammar consists of a StateChart

hyperedge which does not visit any node. Please note the implicit represen-
tation of and-states which have not been mentioned in the paragraph on the
reduction step: Each of the parallel compartments of an and-state is repre-
sented by a NestedStateSet hyperedge, and all these hyperedges are linked
by next hyperedges. It is the task of the reduction step to create this HGM
structure from the SRHG. But this is beyond the scope of the paper. More-
over, note the special arrows which are labelled with p1 resp. p2 which are
actually path expressions similar as in Progres [11]. They are necessary
for preventing transitions from connecting two states which must not be con-
nected in statecharts. p1 requires that the first state does not contain the other
and and vice versa, whereas p2 requires that both states are direct sub-states
of the same super-state.

Similar to compilers for (textual) programming languages, a hypergraph

on this topic is beyond the scope of this paper.

74

Minas, Hoffmann

parser which is built-in into each DiaGen editor is used for creating the
syntactic structure of the HGM of the diagram, i.e., for finding a derivation
sequence from the starting hypergraph to the HGM. The parser is capable of
identifying syntax errors which are then visualized to the editor user. 7

Attribute evaluation step: The final step of the translation process creates
the semantic representation of the diagram by some kind of syntax-directed
translation based on a attribute grammar as it is also used in compilers for
(textual) programming languages [12]: terminal and nonterminal hyperedges
are augmented by attributes, and hypergraph grammar productions by evalu-
ation rules.

No real attribute evaluation has been specified for the statecharts editor.
However, which has not been discussed in this paper, attribute evaluation is
used for providing structural information on the statechart being edited to
the automatic layout algorithm which takes care of beautifying the statechart
diagram [13].

4 Statechart Animation

DiaGen has mainly been designed to generate editors, i.e. tools that handle
the syntax of a diagram language. The attribute evaluation mechanism of
DiaGen can then be used to produce an intermediate representation for a
diagram that can be read by another tool that models the semantics of the
diagram language. However, DiaGen’s powerful instructions for generating
compound syntax-oriented editing commands can be used to implement simple
semantic properties of a diagram language as well.

The tool shown in Fig. 1 does not only allow to edit statecharts, but an-
imates their behaviour too. The status of a statechart is given by its active
states (highlighted by thick borders), together with the external and internal
events that occurred (which are shown on the control panel left to the draw-
ing canvas). Two operations trigger the animation: Start (the icon with the
standing man) initializes the status of a chart by activating its top-level initial
states, and signalling some external events; Step (the icon with the walking
man) performs all transitions from active states whose input events have oc-
curred, consumes these events, deactivates their source states, activates their
target states, and signals their output events.

The operations have been programmed as compound “editing” transfor-
mations that apply basic graph transformation rules, controlled by path-
expressions. For simple semantic operations this is quite convenient. For more
complex semantic operations, e.g. for detection of anomalies in statecharts, or
optimization, this would be a tedious exercise.

7 Currently, well-formed diagram parts are highlighted. Missing highlighting therefore
indicates erroneous diagram parts.

75

Minas, Hoffmann

5 Related Work

DiaGen is related to other approaches for specifying and generating graphical
editors. These approaches can be classified according to their supported edit-
ing modes: As mentioned in section 1, diagram editors may support free-hand
editing or syntax-directed (or structured) editing. Free-hand editing allows
to create and modify diagrams unrestrictedly, but these diagrams may con-
tain errors; syntax-directed editing provides a set of editing operations which
transform correct diagrams into other correct diagrams. However, the user
is restricted to these operations and the way of editing as it is defined by
these operations. Most tools for creating free-hand editors analyze diagrams
directly and avoid to create an internal model like a graph. Typical exam-
ples are Vlcc and Penguins. The first utilizes Positional Grammars and
an LALR(1)-like parser [14] for specifying resp. checking diagram syntax, the
latter Constraint Multiset Grammars and a Prolog-like parser [15]. Graph
transformation systems, however, are a popular formalism for creating syntax-
directed editors. Two of the more recent tools are GenGEd which allows to
visually specify editing operations by graph transformation rules [16] and Vis-
Pro which uses special graph grammars for syntax specification [17]. There
are many other approaches for specifying visual languages and creating ed-
itors for them (for a survey see [18]), but DiaGen is the only tool which
supports free-hand editing as well as syntax-directed editing in the same ed-
itor although combining both modes combines their benefits, too. The only
similar approach which is based on connected graph grammars has not been
realized [19,20].

Recently, there has been some other work which integrates approaches for
specifying and generating visual editors with animation concepts. Bardohl et
al. have proposed an idea of using graph transformation rules of the GenGEd
tool not only as specifications of editing operations, but also of animation
steps [21]. This approach is of course quite similar to the one described in
this paper. However, GenGEd editors are syntax-directed whereas DiaGen
editors are free-hand as well as syntax-directed.

6 Conclusions

In this paper we have demonstrated, by an editor and animator of state-
charts, that DiaGen may generate tools for modeling syntax and semantics
of visual process modeling languages, from abstract specifications based on
hypergraphs, hypergraph grammars, and hypergraph transformation. See [22]
for a full description of DiaGen’s concepts and implementation, and [23] for
an editor for another visual process management language (signal-interpreted
Petri nets) that has been generated with DiaGen.

Two further aims of our work lie close at hand:

• So far, DiaGen accepts only textual editor specifications as input. Ob-

76

Minas, Hoffmann

viously, diagrammatic specifications similar to those used in Fig. 6 and 7
would be easier to use. It should come to no surprise that we intend to use
DiaGen itself for constructing an editor for such a visual notation.

• We are now designing DiaPlan, a diagram programming language that
is visual, rule-based, and object-oriented. DiaPlan shall allow to specify
more complex animations for diagrams that can then be smoothly integrated
into diagram tools. (See [24,25] for details.) The language has still to
be defined precisely, and then a compiler into instructions of DiaGen’s
transformation engine shall be implemented.

References

[1] UML documentation, Rational Software Corporation,
[http://www.rational.com/uml].

[2] D. Harel, Statecharts: A visual formalism for complex systems, Science of
Computer Programming 8 (1987) 231–274.

[3] D. Harel, A. Naamad, The Statemate semantics of statecharts, ACM
Transactions on Software Engineering and Methodology 5 (4) (1996) 293–333.

[4] H.-J. Schneider, Describing systems of processes by means of high-level
replacement, in: Ehrig et al. [31], Ch. 7, pp. 402–450.

[5] H. Ehrig, M. Gajewsky, F. Parisi-Presicce, High-level replacement systems
applied to algebraic specifications and Petri nets, in: Ehrig et al. [31], Ch. 6,
pp. 341–399.

[6] M. Minas, G. Viehstaedt, DiaGen: A generator for diagram editors providing
direct manipulation and execution of diagrams, in: VL’95 [26], pp. 203–210.

[7] M. Minas, Diagram editing with hypergraph parser support, in: Proc. 1997
IEEE Symp. on Visual Languages, Capri, Italy, IEEE Computer Society Press,
1997, pp. 230–237.

[8] M. Minas, Creating semantic representations of diagrams, in: Nagl and Schürr
[27], pp. 209–224.

[9] O. Köth, M. Minas, Generating diagram editors providing free-hand editing
as well as syntax-directed editing, in: Proc. International Workshop on Graph
Transformation (GraTra 2000), Berlin, 2000.

[10] R. Bardohl, M. Minas, A. Schürr, G. Taentzer, Application of graph
transformation to visual languages, in: Ehrig et al. [28], pp. 105–180.

[11] A. Schürr, A. Winter, A. Zndorf, Progres: Language and environment, in: Ehrig
et al. [28], Ch. 13, pp. 487–550.

[12] A. V. Aho, R. Sethi, J. D. Ullman, Compilers – Principles, Techniques, and
Tools, Addison-Wesley, 1986.

77

Minas, Hoffmann

[13] S. S. Chok, K. Marriott, T. Paton, Constraint-based diagram beautification, in:
Proc. 1999 IEEE Symp. on Visual Languages, Tokyo, Japan, IEEE Computer
Society Press, 1999.

[14] G. Costagliola, A. De Lucia, S. Orefice, G. Tortora, A parsing methodology
for the implementation of visual systems, IEEE Transactions on Software
Engineering 23 (12) (1997) 777–799.

[15] S. S. Chok, K. Marriott, Automatic construction of user interfaces from
constraint multiset grammars, in: VL’95 [26], pp. 242–249.

[16] R. Bardohl, GenGEd: A generic graphical editor for visual languages based on
algebraic graph grammars, in: VL’98 [30], pp. 48–55.

[17] D.-Q. Zhang, K. Zhang, VisPro: A visual language generation toolset, in: VL’98
[30], pp. 195–201.

[18] K. Marriott, B. Meyer, K. B. Wittenburg, A survey of visual language
specification and recognition, in: Marriott and Meyer [29], Ch. 1, pp. 5–85.

[19] M. Andries, G. Engels, J. Rekers, How to represent a visual specification, in:
Marriott and Meyer [29], Ch. 8, pp. 245–260.

[20] J. Rekers, A. Schürr, A graph based framework for the implementation of
visual environments, in: Proc. 1996 IEEE Symp. on Visual Languages, Boulder,
Colorado, IEEE Computer Society Press, 1996, pp. 148–155.

[21] R. Bardohl, C. Ermel, L. Ribeiro, Towards visual specification and animation
of petri net based models, in: Proc. International Workshop on Graph
Transformation (GraTra 2000), Berlin, 2000.

[22] M. Minas, Specifying and generating diagram editors, Habilitationsschrift,
Universität Erlangen, Germany, [In German] (To appear 2001).

[23] G. Frey, M. Minas, Editing, visualizing, and implementing signal interpreted
petri nets, in: Proc. 7. Workshop Algorithmen und Werkzeuge fr Petrinetze
(AWPN’2000), no. TR 2/2000 in Fachberichte Informatik, Universität Koblenz-
Landau, 2000, pp. 57–62.

[24] B. Hoffmann, From graph transformation to rule-based programming with
diagrams, in: Nagl and Schürr [27], pp. 165–180.

[25] B. Hoffmann, M. Minas, A generic model for diagram syntax and semantics, in:
J. D. P. Polim, A. Z. Broder, A. Corradini, R. Gorrieri, R. Heckel, J. Hromkovic,
U. Vaccaro, J. B. Wells (Eds.), ICALP Workshops 2000, no. 8 in Proceedings in
Informatics, Carleton Scientific, Waterloo, Ontario, Canada, 2000, pp. 443–450.

[26] Proc. 1995 IEEE Symp. on Visual Languages, Darmstadt, Germany, IEEE
Computer Society Press, 1995.

[27] M. Nagl, A. Schürr (Eds.), Int. Workshop on Applications of Graph
Transformations with Industrial Relevance (Agtive’99), Selected Papers, Vol.
1779 of Lecture Notes in Computer Science, Springer, 2000.

78

Minas, Hoffmann

[28] H. Ehrig, G. Engels, H.-J. Kreowski, G. Rozenberg (Eds.), Handbook of Graph
Grammars and Computing by Graph Transformation. Vol. II: Applications,
Languages and Tools, World Scientific, Singapore, 1999.

[29] K. Marriott, B. Meyer (Eds.), Visual Language Theory, Springer, New York,
1998.

[30] Proc. 1998 IEEE Symp. on Visual Languages, Halifax, Canada, IEEE Computer
Society Press, 1998.

[31] H. Ehrig, H.-J. Kreowski, U. Montanari, G. Rozenberg (Eds.), Handbook
of Graph Grammars and Computing by Graph Transformation, Vol. II:
Concurrency, Parallelism, and Distribution, World Scientific, Singapore, 1999.

79

