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Abstract

The con4uent Cauchy and Cauchy–Vandermonde matrices are considered, which were studied earlier by various authors
in di5erent ways. In this paper, we use another way called displacement structure approach to deal with matrices of this
kind. We show that the Cauchy and Cauchy–Vandermonde matrices satisfy some special type of matrix equations. This
leads quite naturally to the inversion formulas and fast algorithms for matrices of this kind. c© 2002 Elsevier Science
B.V. All rights reserved.
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1. Introduction and preliminaries

Let

c = (c1; : : : ; cn) and d= (d1; : : : ; dk) (1.1)

be two arrays of nodes with all ci and dj distinct pairwise. Associated with c and d the (simple)
Cauchy matrix is de@ned as

C(c; d) =
[

1
ci − dj

]n;k
i; j=1

; (1.2)
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and the Cauchy–Vandermonde (CV) matrix is de@ned as

Cm(c; d) = [C(c; d) Vm(c)]; (1.3)

where

Vm(c) =



1 c1 · · · cm−11

1 c2 · · · cm−12

...
... · · · ...

1 cn · · · cm−1n


 ∈ Cn×m (1.4)

is the (simple) Vandermonde matrix corresponding to c.
One of the most important properties of Cauchy–Vandermonde matrices is their application to

rational interpolation with @xed poles. For a given array of interpolation data (ci; �i); we want to
@nd a proper rational function f(x) = q(x)=p(x) (deg q(x)¡ degp(x)) with p(x) =

∏k
j=1(x − dj)

such that

f(ci) = �i; (i = 1; : : : ; n): (1.5)

Let f(x) have a partial fraction decomposition of the form f(x)=
∑k

j=1 �j=(x−dj); then, the above
problem is equivalent to solving the following system of equations:

C(c; d)�= �; (1.6)

with �= (�1; : : : ; �k)T and �= (�1; : : : ; �n)T.
If f(x) is not proper, then the Euclidean algorithm yields

f(x) =
k∑

j=1

�j
x − dj

+ �k+1 + �k+2x + · · ·+ �k+mxm−1

and the above interpolation problem is equivalent to solving the linear system of equations

Cm(c; d)�= � (1.7)

with �= (�1; : : : ; �k+m)T and � as above.
Cauchy and Cauchy–Vandermonde matrices appeared in a sequence of recent papers [9–11,1,3].

In [10,9] MKuhlbach derived the determinant and inverse representations and the Lagrange–Hermite
interpolation formula for Cauchy–Vandermonde matrix. In [11] VavLrMNn gave the factorization and
inversion formulas for Cauchy and CV matrices in another way. The method in [10] is direct
computation and seems to be rather complicated. Although in [11] the relations between Cauchy–
Vandermonde matrices and rational interpolation problems were pointed out, the algorithm process
for interpolants was not given.
In the present paper we make use of another method called displacement structure approach to

deal with Cauchy and CV matrices. We point out that con4uent Cauchy and CV matrices satisfy
some of the special matrix equations and deriving their inverses is equivalent to solving only two
linear systems of equations with Cauchy and CV matrices as coePcient matrices, and we also give
the fast algorithms for solving such kinds of linear systems.
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The concept of displacement structure was @rst introduced by Kailath et al. [5,6] for Toeplitz and
Hankel matrices using the Stein-type operator �(·) given by

�(R) = R− FRA: (1.8)

For details of displacement structure theory we refer the reader to the survey article of Kailath and
Sayed [7]. In general, the generalized displacement operator is de@ned by

�{�;�;F;A}(R) = �R�− FRA; (1.9)

where �;�; F and A are speci@ed matrices such that �{�;�;F;A}(R) has low rank, say r; independent
of n. Then R is said to be a structured or a displacement structure matrix with respect to the
displacement operator de@ned by (1.9), and r is referred to as the displacement rank of R. A
special case of (1.9) will have a more simple form called an equation of Sylvester-type

�{�;A}(R) = �R− RA (1.10)

which was @rst studied by Heinig [4] for Cauchy-like matrices.
Indeed, the Cauchy matrix C(c; d) is the unique solution of the following Sylvester-type matrix

equation:

D(c)C(c; d)− C(c; d)D(d) =



1
1
...
1


 [1 1 · · · 1]; (1.11)

where D(c) = diag(ci)ni=1 and D(d) = diag(dj)kj=1 are the diagonal matrices corresponding to c and
d; respectively.
Eq. (1.11) implies that the Cauchy matrix C(c; d) has displacement rank 1 with respect to the op-

erator �{D(c);D(d)}(·). When n=k; multiplying Eq. (1.11) by C(c; d)−1 from both left- and right-hand
sides we get

D(d)C(c; d)−1 − C(c; d)−1D(c) =−C(c; d)−1



1
1
...
1


 [1 1 · · · 1]C(c; d)−1: (1.12)

If we denote by u= (u1; : : : ; un)T and v= (v1; : : : ; vn)T the solutions of the following two equations:

C(c; d)u= [1 · · · 1]T and vTC(c; d) = [1 · · · 1]; (1.13)

then Eq. (1.12) by elementwise comparison shows that

C(c; d)−1 =−
[

uivj
di − cj

]n
i; j=1

=−D(u)C(d; c)D(v); (1.14)
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where D(u) = diag(ui)ni=1 and D(v) = diag(vj)nj=1; which implies that computation of the inverse of
the Cauchy matrix C(c; d) is equivalent to solving only two systems of equations and one system
in the symmetric case.

2. Con�uent Cauchy and Cauchy–Vandermonde matrices: displacement structures and inversion
formulas

In this section, we shall derive the displacement structures and fast inversion formulas for con4uent
Cauchy and CV matrices. Let us begin by recalling the de@nitions of con4uent Cauchy and Cauchy–
Vandermonde matrices. Our de@nitions are in accordance with those in [11] and di5er slightly from
those in [10]. Let

c = (c1; : : : ; c1︸ ︷︷ ︸
n1

; c2; : : : ; c2︸ ︷︷ ︸
n2

; : : : ; cp; : : : ; cp︸ ︷︷ ︸
np

) (2.1)

and

d= (d1; : : : ; d1︸ ︷︷ ︸
k1

; d2; : : : ; d2︸ ︷︷ ︸
k2

; : : : ; dq; : : : ; dq︸ ︷︷ ︸
kq

) (2.2)

be two sequences of interpolation nodes with all ci; dj distinct pairwise and
∑p

i=1 ni=n;
∑q

j=1 kj=k.
With c and d we associate two classes of matrices.

De�nition 1. We call the n× k block matrix

C(c; d) = (Cij)
p;q
i; j=1 (2.3)

con4uent Cauchy matrix corresponding to c and d; where

Cij = (Cst
ij )

ni−1; kj−1
s=0; t=0 ∈ Cni×kj

and

Cst
ij =

1
s!t!

@s+t

@xs@yt

[
1

x − y

]x=ci
y=dj

=
(
s+ t
s

)
(−1)s

(ci − dj)s+t+1
:

De�nition 2. We call the n× (k + m) block matrix

Cm(c; d) = [C(c; d); Vm(c)] (m¿ 0) (2.4)

con4uent Cauchy–Vandermonde matrix corresponding to c and d; where

Vm(c) =


 Vm(c1)

...
Vm(cp)


 ; with Vm(ci) =

[(
t
s

)
ct−s
i

]ni−1;m−1
s=0; t=0

; (2.5)

is the con4uent Vandermonde matrix of size n× m corresponding to c.
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When m= 0 we assume that C0(c; d) = C(c; d).
As in the simple case, con4uent Cauchy and CV matrices correspond to rational interpolation

problems with prescribed possibly repeated poles. Indeed, let p(x) =
∏q

j=1(x − dj)kj and

f(x) =
q(x)
p(x)

=
q∑

j=1

kj−1∑
t=0

�jt
(x − dj)t+1

+
m∑
j=1

�jxj−1:

Then the interpolation problem

1
s!
dsf(x)
dxs

∣∣∣∣
x=ci

= �is

(i = 1; : : : ; p; s= 0; : : : ; ni − 1) is reduced to solve the following system:
Cm(c; d)�= � (2.6)

where

�=


 col(col(�jt)kj−1t=0 )

q
j=1

col(�j)mj=1


 and �= col[col(�is)

ni−1
s=0 ]

p
i=1:

Hereafter, col(ai) denotes the column vector with ai as components.

2.1. Displacement structures

In this subsection we derive the displacement structures for con4uent Cauchy and CV matrices.
Our starting point is the following Lemma.

Lemma 3. Suppose that J (#) and J ($) are the m × m and n × n lower triangular Jordan blocks
with # �= $; respectively; and

% = (%st)
m−1; n−1
s=0; t=0

is any m× n matrix. Then the Sylvester matrix equation

J (#)X − XJ ($)T = % (2.7)

has the unique solution X = (Xst)
m−1; n−1
s=0; t=0 given by

Xst =
s∑

'=0

t∑
(=0

%s−'; t−(

(
'+ (
'

)
(−1)'

(#− $)'+(+1
: (2.8)

Note that when # �= $, the uniqueness of the solution of Eq. (2.7) is a well-known fact since
J (#) and J ($) have disjoint spectra. If # and $ have negative and positive real parts, respectively,
then the solution of Eq. (2.7) is explicitly given by

X =−
∫ +∞

0
eJ (#)t%e−J ($)Tt dt (2.9)
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(see, e.g., [8, Theorem 12:3:3]). In this case, straightforward calculation shows that the X in (2.9)
is the same as in (2.8). But here we point out that the assertion is also true for any pair of # �= $.

Proof of Lemma 3. Denoting by Sk the k × k lower shift matrix

Sk =



0 0 · · · · · · 0
1 0 · · · · · · 0
...

. . . . . .
...

0 0 · · · 1 0


 ; (2.10)

we then have J (#) = #I + Sm; J ($) = $I + Sn, and Eq. (2.7) is equivalent to (# − $)Xst + Xs−1; t
− Xs; t−1 = %st(s= 0; : : : ; m− 1; t = 0; : : : ; n− 1). Therefore, we have recursive relations

Xst = (#− $)−1(%st + Xs; t−1 − Xs−1; t)

with initial conditions X−1; t = Xs;−1 = 0. On the other hand, Xst in (2.8) can be rewritten as

Xst = (#− $)−1%st +
s∑

'=0

t∑
(=1

%s−'; t−((−1)'
(
'+ (
'

)
(#− $)−'−(−1

+
k∑

'=1

%s−'; t(−1)'(#− $)−'−1:

Therefore, it is suPcient to prove that Xst in (2.8) satis@es the following equality:

s∑
'=0

t∑
(=1

%s−'; t−((−1)'
(
'+ (
'

)
(#− $)−'−(

+
s∑

'=1

%s−'; t(−1)'(#− $)−' + Xs−1; t − Xs; t−1 = 0: (2.11)

If s resp. t in (2.8) be replaced by s− 1 resp. t − 1, we obtain

Xs−1; t =
s∑

'=1

s∑
(=0

%s−'; t−((−1)'−1
(
'+ ( − 1
'− 1

)
(#− $)−'−(;

Xs; t−1 =
s∑

'=0

s∑
(=0

%s−'; t−((−1)'
(
'+ ( − 1

'

)
(#− $)−'−(:
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Substituting this into (2.11) shows that it is suPcient to prove the equality
s∑

'=1

t∑
(=1

%s−'; t−(

{
(−1)'

(
'+ (
'

)
+ (−1)'−1

(
'+ ( − 1
'− 1

)
− (−1)'

(
'+ ( − 1

'

)}

×(#− $)−'−( +
s∑

'=1

%s−'; t{(−1)' + (−1)'−1}(#− $)−'

+
t∑

(=1

(%s; t−( − %s; t−()(#− $)−( = 0: (2.12)

The last two terms in (2.12) are obviously equal to zero, and the basic combinatorial equality(
'+ (
'

)
=
(
'+ ( − 1
'− 1

)
+
(
'+ ( − 1

'

)
implies that the @rst term in (2.12) is also zero. This completes the proof.

Let Z be a column vector of length n and let Z be partitioned in accordance with the sequence
of nodes c in (2.1) as Z = col(Zi)

p
i=1 with Zi = col(Zis)

ni−1
s=0 ; Similarly, let Y ∈ Ck be partitioned

in accordance with d in (2.2) as Y = col(Yj)
q
j=1 with Yj = col(Yjt)

kj−1
t=0 . Also, let z = col(zi)

p
i=1 with

zi = [1 0 · · · 0]T ∈ Cni and y = col(yj)
q
j=1 with yj = [1 0 · · · 0]T ∈ Ckj be two @xed vectors. With

Z and Y we associate block diagonal matrices

L(Z) = diag[L(Zi)]
p
i=1; (2.13)

where

L(Zi) =




Zi0 0 · · · 0

Zi1 Zi0
. . .

...
...

. . . . . . 0

Zi;ni−1 · · · Zi1 Zi0


 ∈ Cni×ni

is the lower triangular Toeplitz matrix with Zi as its @rst column and L(Y )=diag[L(Yj)]
q
j=1 is de@ned

similarly. Following [2], we de@ne the generalized Vandermonde matrix by

Vm(c; Z) = [Z; J (c)Z; : : : ; J (c)m−1Z]; (2.14)

where J (c) = diag[J (ci)]
p
i=1 and J (ci) is the lower Jordan block of size ni × ni corresponding to ci;

J (d) is de@ned similarly. It can be easily shown that

Vm(c) = Vm(c; z) = [z; J (c)z; : : : ; J (c)m−1z]: (2.15)

As an application of Lemma 3 we obtain the following theorem, which is very useful in the
analysis below.
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Theorem 4. Let Z and Y be given as above. Then the matrix equation

J (c)X − XJ (d)T = ZY T (2.16)

has the unique solution

X = L(Z)C(c; d)L(Y )T: (2.17)

Proof. Indeed, if X is partitioned as X = (Xij)
p;q
i; j=1 with Xij = (X st

ij )
ni−1; kj−1
s=0; t=0 , then Eq. (2.16) is

equivalent to the following series of equations:

J (ci)Xij − XijJ (dj)T = ZiY Tj ; (2.18)

(i = 1; : : : ; p; j = 1; : : : ; q). Applying Lemma 3 to Eq. (2.18) we obtain

X st
ij =

s∑
'=0

t∑
(=0

Zi; s−'

(
'+ (
'

)
(−1)'

(ci − dj)'+(+1
Yj; t−(:

Rewritten in matrix form, this leads to

Xij = L(Zi)CijL(Yj)T;

which is equivalent to formula (2.17). This completes the proof.

Corollary 5. The con<uent Cauchy matrix C(c; d) de=ned as in De=nition 1 satis=es the Sylvester-
type matrix equation

J (c)C(c; d)− C(c; d)J (d)T = zyT: (2.19)

In other words; the con<uent Cauchy matrix C(c; d) has displacement rank 1 with respect to
�{J (c); J (d)T}(·).

Proof. The proof is trivial since L(z)=diag(L(zi))
p
i=1=diag(Ini)

p
i=1= In, and L(y)=diag(L(yj))

q
j=1=

diag(Ikj)
q
j=1 = Ik .

By introducing the matrix of order k + m

Jm(d; y) =

[
J (d) yeT−
O STm

]
; (2.20)

where e− = [1 0 · · · 0]T ∈ Cm and y; Sm are de@ned as above, we are led to the following.

Theorem 6. The con<uent CV matrix Cm(c; d) de=ned as in De=nition 2 satis=es the Sylvester-type
matrix equation

J (c)Cm(c; d)− Cm(c; d)Jm(d; y)T = J (c)mzeT+; (2.21)

where e+ = [0 · · · 0 1]T ∈ Ck+m.
In other words, Cm(c; d) had displacement rank 1 with respect to �{J (c); Jm(d;y)T}(·).
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Proof. Indeed,

J (c)Cm(c; d)− Cm(c; d)Jm(d; y)T

= [J (c)C(c; d)− C(c; d)J (d)T − Vm(c)e−yT; J (c)Vm(c)− Vm(c)Sm]: (2.22)

Since Vm(c)e−yT = zyT, then by Theorem 5; the @rst term in (2.22) is equal to zero, and also
according to (2.15) the second term

J (c)Vm(c)− Vm(c)Sm = [0 · · · 0 J (c)mz]:

Summing up, the assertion follows immediately.

2.2. Inversion formulas

Let J1 = diag(Jni)
p
i=1, where

Jni =



0 · · · · · · 1
0 · · · 1 0
...

...
1 0 · · · 0




is the ni × ni antiidentity matrix. In the same way, J2 = diag(Jkj)
q
j=1 is de@ned. Note that

J1J (c)J1 = J (c)T; JT1 = J−11 = J1;

and similarly, J2J (d)J2 = J (d)T; JT2 = J−12 = J2.

Theorem 7. Let C(c; d) be the con<uent Cauchy matrix in De=nition 1 and n= k; and let x; ! be
the solutions of equations

[C(c; d)J2]x = z and !T[J1C(c; d)] = yT; (2.23)

respectively. Then the inverse of C(c; d) is given by

C(c; d)−1 =−J2L(x)C(d; c)L(!)TJ1: (2.24)

where L(x) and L(!) are de=ned as in (2:13).

Proof. Multiplying Eq. (2.19) by J1 from the left and by J2 from the right, we get

J (c)T[J1C(c; d)J2]− [J1C(c; d)J2]J (d) = (J1z)(J2y)T:
Hence,

J (d)[J1C(c; d)J2]−1 − [J1C(c; d)J2]−1J (c)T

=− [J2C(c; d)−1z][yTC(c; d)−1J1] =−x!T:
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Then by Theorem 4 we have

[J1C(c; d)J2]−1 =−L(x)C(d; c)L(!)T

or equivalently,

C(c; d)−1 =−J2L(x)C(d; c)L(!)TJ1:
This completes the proof.

Remark 1. Theorem 7 shows that the inverse of a con4uent Cauchy matrix is almost of the same
type of matrix (up to two block diagonal factors), and that it can be reduced to solve only two
fundamental systems of linear equations with C(c; d) as coePcient matrix. Therefore, inversion
formula (2.24) yields a fast inverse.
Following [3], for convenience by C(d; c; x; !) we denote the matrix as

C(d; c; x; !) = L(x)C(d; c)L(!)T: (2.25)

Theorem 8. Let Cm(c; d) be de=ned as in De=nition 2 and n= k + m; and let

x =
[
x′

x′′
]

and ! ∈ Cn

(x′ ∈ Ck; x′′ = col(Xj)mj=1 ∈ Cm) be the solutions of the following two equations:

Cm(c; d)x = J (c)mz and !TCm(c; d) = eT+; (2.26)

respectively. Then the inverse of Cm(c; d) is given by

Cm(c; d)−1 =

[−J2C(d; c; J2x′; J1!)J1
HVm(c; J1!)TJ1

]
(2.27)

where Vm(c; J1!) and C(d; c; J2x′; J1!) are de=ned as in (2:14) and (2:25); and

H =



−X2 · · · −Xm 1
...

...

−Xm
...

1 · · · · · · 0


 :

Proof. Multiplying Eq. (2.21) by Cm(c; d)−1 from the left and right, we obtain

Jm(d; y)TCm(c; d)−1 − Cm(c; d)−1J (c)

=− [Cm(c; d)−1J (c)mz][eT+Cm(c; d)−1] =−x!T: (2.28)
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Let Cm(c; d)−1 be partitioned into the form

Cm(c; d)−1 =
[
B′

B′′
]
; (2.29)

where B′ ∈ Ck×n and B′′ ∈ Cm×n; then

J (d)TB′ − B′J (c) =−x′!T

and by the same way as in Theorem 7 we get

B′ =−J2C(d; c; J2x′; J1!)J1: (2.30)

Moreover, according to Eq. (2.28) we have

e−yTB′ + SmB′′ − B′′J (c) =−x′′!T

and hence

e−yT(B′J1) + Sm(B′′J1)− (B′′J1)J (c)T =−x′′(J1!)T: (2.31)

Let Bj denote the jth row of B′′J1, then Eqs. (2:31) gives us the recurrence relations

Bj−1 = BjJ (c)T − Xj(J1!)T; j = 2; : : : ; m: (2.32)

From (2.29) and the second of Eqs. (2:26) it follows that Bm = !TJ1. Taking this into account,
Eq. (2.32) leads to

B′′J1 = col(Bj)mj=1 = HVm(c; J1!)T

or equivalently,

B′′ = HVm(c; J1!)TJ1: (2.33)

Substituting B′ in (2.30) and B′′ in (2.33) into (2.29) completes the proof.

3. Fast algorithms for solving Cauchy–Vandermonde systems

As we have seen in Sections 2 and 3, we have to solve two systems of equations with CV
coePcient matrices [see, Eqs. (1.6), (1.7), (2.6), (2.23) and (2.26)] when we want to solve rational
interpolation problems, thus deriving their inversion formulas. Since Cauchy and CV matrices satisfy
a class of displacement structure equations [see, Eqs. (1.11), (2.19) and (2.21)], these equations are
special cases of the following general Sylvester displacement equation:

�{�1 ;A1}(R1) = �1R1 − R1A1 = G1B1; (3.1)

where �1 and A1 are lower and upper triangular matrices, G1 ∈ Cn×1 and B1 ∈ C1×n. We may use
the fast algorithm given in [2] to solve these linear systems. The idea of the algorithm is to derive
the LU factorization quickly by using the displacement equations, which, therefore, is a generalized
Gaussian elimination.
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Lemma 9. [2] Let the matrix

R1 =

[
r1 u1

l1 R(1)22

]

satisfy Eq. (3:1). If r1 �= 0, then the Schur complement R2 =R(1)22 − (1=r1)l1u1 satis=es the following
equation:

�2R2 − R2A2 = G2B2; (3.2)

where �2 and A2 are obtained from �1 and A1 by deleting the =rst row and column, respectively,
and

[
0
G2

]
= G1 −


 1
1
r1
l1


 g1; [0 B2] = B1 − b1

[
1

1
r1
u1

]
; (3.3)

where g1 and b1 are the =rst row of G1 and the =rst column of B1, respectively.

Since R1 has the triangular factorization of the form

R1 =

[
r1 u1

l1 R(1)22

]
=


 1 0

1
r1
l1 I


[

r1 u1

0 R2

]
= LU;

applying Lemma 9 we may write down an implementation of LU factorization for R1 as below:

1. Compute the =rst row [r1 u1] and the =rst column [ r1l1 ] of R1, respectively, which is equivalent
to solving two triangular linear systems

[r1 u1](!11I − A1) = g1B1; (�1 − a11I)
[
r1
l1

]
= G1b1;

(!11 and a11 are the (1; 1) entry of �1 and A1, respectively).

2. Write down the =rst column
[

1
1
r1
l1

]
of L and =rst row [r1 u1] of U.

3. Compute the generator {G2; B2} for the Schur complement R2 by using (3.3).
4. Repeat processes 1–3 for the displacement equation (3.2) R2 satisfying.

The overall complexity of the above algorithm is O(n2) arithmetic operations. Finally, we point
out that we may consider block LU factorization when c or d has multiple nodes. In this case, the
@rst step of the above algorithm is modi@ed to solve two block triangular linear systems; accordingly,
the second step is modi@ed to write down the @rst n1 columns of L and @rst n1 rows of U .
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4. Example

In the simple nodes case: ni = 1; c = (c1; : : : ; cn) and kj = 1; d= (d1; : : : ; dn)

C(c; d) =



(c1 − d1)−1 (c1 − d2)−1 · · · (c1 − dn)−1

(c2 − d1)−1 (c2 − d2)−1 · · · (c2 − dn)−1

...
... · · · ...

(cn − d1)−1 (cn − d2)−1 · · · (cn − dn)−1


 :

According to the algorithm given in Section 3, we may write down the kth column Lk of L and
the kth row Uk of U in the LU decomposition of C(c; d):

Lk =




0
...
0
1∏k

j=1

ck − dj
ck+1 − dj

∏
i¡k

ck+1 − ci
ck − ci

...∏k

j=1

ck − dj
cn − dj

∏
i¡k

cn − ci
ck − ci



;

Uk =
[
0 · · · 0 1

ck − dk

∏
i¡k

(ck − ci)(dk − di)
(ck − di)(dk − ci)

· · · 1
ck − dn

∏
i¡k

(ck − ci)(dn − di)
(ck − di)(dn − ci)

]
and the generators of Schur complement Rk :

Gk =




∏
i¡k

ck − ci
ck − di
...
...∏

i¡k

cn − ci
cn − di



∈ Cn+1−k ;

Bk =
[∏

i¡k

dk − di
dk − ci

· · ·
∏

i¡k

dn − di
dn − ci

]
:

Here we assume that
∏

i¡k =1 when k = 1.
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