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Abstract 

Exact computation is assumed in most algorithms in computational geometry. In practice, implementors per- 
form computation in some fixed-precision model, usually the machine floating-point arithmetic. Such imple- 
mentations have many well-known problems, here informally called "robustness issues". To reconcile theory 
and practice, authors have suggested that theoretical algorithms ought to be redesigned to become robust under 
fixed-precision arithmetic. We suggest that in many cases, implementors should make robustness a non-issue 
by computing exactly. The advantages of exact computation are too many to ignore. Many of the presumed 
difficulties of exact computation are partly surmountable and partly inherent with the robustness goal. 

This paper formulates the theoretical framework for exact computation based on algebraic numbers. We then 
examine the practical support needed to make the exact approach a viable alternative. It turns out that the exact 
computation paradigm encompasses a rich set of computational tactics. Our fundamental premise is that the 
traditional "BigNumber" package that forms the work-horse for exact computation must be reinvented to take 
advantage of many features found in geometric algorithms. Beyond this, we postulate several other packages to 
be built on top of the BigNumber package. 

1. Introduction 

In recent years, there has been considerable interest in "robust" geometric algorithms. In practical 
terms, an algorithm is termed nonrobust if it can precipitate unpredictable failures during execution. 
It is clear that such failures occur with a sufficiently high probability to cause widespread concem. 
This phenomenon is reflected in diverse communities, and various approaches and special solutions 
have been proposed. The unexamined premise in many of  these solutions is the commitment  to fixed- 
precision computation. Our general theme is that the alternative approach based on exact computation 
has a much larger role to play than currently practiced or suspected. In any case, the goal of  reliable 
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computation is better served when both approaches are well-represented. Of course, we are partisan 
in this quest, and this paper only hopes to contribute to the development of exact computation. 

Exact computation is the computing standard in the field of computer algebra (a.k.a. symbolic 
computation). Most problems of computer algebra have little use for fixed-precision arithmetic--a 
floating-point calculation usually cannot shed light on whether an integer is prime. In some sense, 
we are just advocating a wider role for this computing standard. What makes the new role for exact 
computation interesting is that (as we hope to demonstrate) it raises uniquely geometric issues. Al- 
though we address ourselves to geometric algorithms, it will be clear that many of our ideas apply to 
related fields. For instance, it is somewhat surprising that entire areas of "scientific computing" that 
are concerned about robust algorithms simply overlook the use exact computation techniques. But that 
goes beyond our present scope. This paper outlines some thoughts on a research agenda that forms 
the basis of ongoing research with Tom Dub6 [11 ]: 
• In Section 2, we describe the two approaches to geometric computing: fixed-precision versus exact 

computing, emphasizing special features of "geometric" computing. 
• Section 3 expands on our concept of exact computation, basically identifying current problems in 

computational geometry with the class of algebraic problems. 
• Section 4 identifies a subclass of the algebraic problems called "rational bounded-depth problems" 

(RBD) for which exact computing seems to be promising. 
• In Section 5, we discuss the "BigNumber package", the traditional piece of software for achieving 

exact computation. Using two published work on exact computation as anecdotal evidence, we 
suggest that practical goals for revising this piece of software. 

• Section 6 argues the need to go beyond a number package. It postulates some software infrastructure 
("beyond BigNumber") for exact computation: BigFloats, expressions, geometric objects. 

• We conclude in Section 7. 

2. Two approaches to numerical computing 

2.1. Fbced-precision computation 

The root cause of nonrobustness2 seems clear: whereas algorithms are described in exact terms, 
their implementations replaces exact arithmetic with fixed-precision arithmetic. Floating-point arith- 
metic is the usual example of fixed-precision arithmetic. The nontrivial probability of catastrophic loss 
of significance in such computations in practice is confirmed in theoretical models (e.g., [14]). More 
powerful fixed-precision models (e.g,, level-index arithmetic [7]) may be useful but only in delaying the 
onset of nonrobustness problems. Similarly, the growing acceptance of the IEEE standard 754-1985 in 
computer architecture 3 should not obscure the fact that its main purpose is to make floating point errors 
predictable and architecture-independent. But it does not make the nonrobustness of floating-point com- 
putation disappear. So the logical step is to work towards standards for exception handling (cf. [21]). 

2 The term "robust" in this paper will be an informal catch-all term for all the difficulties of fixed-precision computation. 
Technical definitions of robustness come in several flavors and are model-dependent. But a precise definition is irrelevant for 
us as we are ultimately interested in exact computation where all these concepts disappear. For this reason, the term "robust 
algorithm" is only applied to algorithms that are based on fixed-precision arithmetic. 

3 See [26, Appendix A] for a description of the IEEE standard. 
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In practice, nonrobustness in algorithms is frequently corrected using some ad-hoc method that, 
at best, decreases the failure probability. It often amounts to what is known in the trade as "epsilon 
tweaking" (choosing the right constant for some epsilon parameter in the code). Observe that robustness 
issues already appear in purely numerical computation (this is really a trite observation nowadays). 
For relatively simple numerical problems, the difficulties can be analyzed and kept under control; 
embedded in larger problems, it becomes a matter of educated guesses. But our main interest is in 
geometric computing which has an additional dimension: its essence may be captured in the aphorism, 

Geometric Computing = Numerical + Combinatorial Computing. 

Numerical computing is exemplified by the problem of solving linear systems of equations; graph 
searching is a typical problem of combinatorial computing. The convex hull problem for a set of 
points is a canonical example of geometric computing: the points are specified by numbers but the 
convex hull is essentially a combinatorial structure (a labeled graph). Linear programming counts as 
geometric computing but solving linear systems does not qualify. We justify this exclusion on grounds 
that the combinatorial structure in geometric computing ought to be implicitly determined by the 
numerical data. We similarly exclude the usual problems of shortest paths or minimum spanning tree 
on weighted graphs. But there are "geometric versions" of shortest paths and minimum spanning trees 
(see Section 3.1). 

With these clarifications then, the extra of difficulty of geometric problems arises because it is 
not just numerical outputs we seek, but the associated combinatorial structure must somehow be 
consistent with the computed numbers. Robustness issues arising this interplay between numerical and 
combinatorial elements of geometric algorithms is treated in the survey of Fortune [17] (see also [19]). 
To address this problem, some have insisted that algorithmic design should take account the use of 
fixed-precision arithmetic. This has led to the following difficulties: 
• Robust algorithms are unknown for many basic and even conceptually simple problems. For in- 

stance, Yu [41, p. 110] concluded that robust algorithms for performing Boolean operations on 
solids lie in the distant future. Yet such algorithms are fundamental in the field of solid modeling. 
Even in the plane, the complexity of a solution proposed by Milenkovic [23] suggests that there is 
more work to be done. ' 

• When robust algorithms are achievable, they seem to require inordinate effort relative to the known 
exact algorithms. Moreover, the techniques do not easily generalize. As a consequence, only a 
handful of certifiably robust algorithms are known. 

• Fixed-precision geometric models to approximate the original continuous models are invariably hard 
to work with, and retain very few of desired properties. For instance, the concept of an "approx- 
imate line" has variously been modeled by (i) using a suitable set of pixels [computer graphics], 
(ii) fattening the line into a tubular region [Milenkovic], (iii) a suitably "monotone" polygonal path 
[Greene-Yao], or (iv) an actual line whose equation has bounded coefficient sizes [Sugihara]. Beside 
losing many desirable properties of lines, these models give rise to complicated algorithms. We refer 
to Fortune's survey [17] for a more detail description. 

• A more basic approach is to go back to the arithmetic model and to introduce uncertainty there. 
Logically, this means we have at least a third truth value corresponding to "not-sure". Interval arith- 
metic is a well-known version of this approach. Symptomatic of this general approach, we find that 
the intervals in interval arithmetic can quickly grow into fairly worthless bounds in the course of a 
geometric computation (although such intervals seem usefuI in some purely numerical computation). 
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Some examples of recent work are: epsilon geometry (Salesin, Stolfi and Guibas), backward er- 
ror analysis (Fortune), approximate combinatorial consistency (Milenkovic; Hopcroft, Hoffmann and 
Karasick), randomization and sampling (Dobkin, Silver). The optimist might say that we need more 
time to resolve these difficulties. But perhaps the difficulty is intrinsic: there will be no satisfactory so- 
lution until we confront the "specter" of exact computation and understand what is inherently involved 
there. 

2.2. Exact computation 

We switch to a discussion of exact computation. For now, we simply say that "exact computation" 
means that numerical values are computed exactly in a suitable sense and only error-free decisions 
are made. 
• The foremost advantage of exact computation is that "robustness" is a non-issue! (A "robust exact 

algorithm" is an oxymoron.) 
• All classical geometric concepts are preserved. 
• In contrast to the obscure 4 theories of approximate geometry, classical geometries (Euclidean or 

otherwise) have a wealth of theorems and many important cases (planar geometry!) are relatively 
well-understood. So we can reason with classical objects with relative confidence. 

• Practically all geometric algorithms in the literature pertain to classical geometries. This means we 
avoid the daunting prospect of trying of "robustify" all known geometric algorithms. 

• Sometimes we can use symbolic perturbation methods to automate the handling of degeneracies, 
thus simplifying our coding of algorithms (cf. [13,40]). These methods are meaningful only with 
exact computation. 

• There are applications that simply require exact computation. Examples include geometric theorem 
proving, checking geometric conjectures or checking topological properties of specific geometric 
configurations. Often such applications are one-shot deals and one is willing to devote considerable 
time to their (off-line) computation. 

Thus, exact computation is a "generic" solution (cf. [39]) to the robustness issue. Given these advan- 
tages, why is exact computation almost never used in practice? We suggest that misconception and 
culture each plays a role. Many authors simply assume that, except for very special domains such 
as number theory and algebra, all continuous domain computations are necessarily approximate. This 
surprisingly common misconception is easy to dispose of. The claim that exact computation is too 
inefficient seems harder to counter. The floating point culture enjoys so much 5 infrastructnral support 
(hardware or otherwise) that such claims are partly self-perpetuating. Goldberg [26, p. A-12] con- 
cludes that "given the predominance of the floating-point representation, it appears unlikely that any 
other representation will come into widespread use". It is true in some sense that exact computation 
is inherently slower than floating point. But by the same token, one can claim that floating-point is 
inherently nonrobust. Then it is up to the user to decide which horn of this dilemma to choose. (Of 
course the truth is somewhere between these two positions.) While we cannot make that decision for 
any user, we believe that the user should be presented with viable alternatives. It is the starting point 

4 As in "unfamiliar", not in the sense of being imprecise. 
5 For instance, on CRAY systems and some RISC machines, floating-point multiply is faster than integer multiply! The 

latter is emulated in software. 
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of this research that the true viability of exact computation has not been well-represented. So this is 
our first goal: 

(G1) To improve the practical cost of exact computation. 

The emphasis here is on "practical", although we indicate interesting theoretical issues as well. For 
now, we just note that what makes (G1) interesting is the fact that exact computation turns out to be 
extremely rich--i t  is not just a matter of carrying out each arithmetic operation without error (which 
would be boring indeed). 

With respect to the user dilemma above, it is clear that certain users are unwilling to pay the inherent 
cost of exact computation. For instance, [41] concluded that "exact computation is not feasible for 
the problem of point classification". But surely if robustness is important enough (say, it relates to the 
success of a mission into space), then exact computation may well be the only choice. The literature 
contains many such claims about the infeasibility of exact computation which need not have universal 
validity. We need some theoretical framework to mediate the true differences between exact and 
finite-precision computation. This is motivation for our second goal: 

(G2) To study the inherent tradeoffs between speed and precision, 

between fixed-precision and exact computation. 

This is a more abstract goal, involving the construction of theoretical models and posing paradigmatic 
problems, we may recall the conceptual framework that complexity theory provides for the entire field 
of algorithms. We shall not have more to say for this goal in this paper. 

Varieties of  precision. We should acknowledge that any simple characterization of exact versus fixed- 
precision approaches will run into gray areas. For instance, we may distinguish between degrees of 
fixed-precision: the most restrictive form of fixed-precision prevails in practice, where there is a 
universal precision (depending on the machine word-size) for all computations. A local form of fixed- 
precision is where each variable carries its own precision which is fixed throughout the computation. 
As we will show, many exact algorithms can be carried out using this local version of fixed precision. 
Exact computations may use internal approximations. Other variations are possible: for example the 
language Numerical Turing [20] developed at the University of Toronto for numerical computation 
has the concept of a precision block, which is syntactically like a do-loop. The computation of such 
a block is iterated with increasing precision until some desired goal is attained. 

Remark .  There are genuine problems of rounding or approximation. That is to say, there are rounding 
questions that are inherent in the problem formulation, not just artifacts of using fixed-precision 
arithmetic for approximating exact arithmetic. An example is the problem of transforming a simple 
polygon so that it remains a simple polygon but such that each vertex is "snapped" to one of the four 
comers of the unit square of the integer lattice that contains the vertex. Milenkovic and Nackman [24] 
has shown that such problems can be NP-hard. Another class of examples is where the input is an 
approximation to some ideal data. For instance, the input may be visual data collected by a camera. 
We may want to do various feature extractions on this imperfect data. Such problems are outside our 
scope. 
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3. What is exact computation? 

We clarify our use of the term: by an "exact computation", we mean a computational process that 
(i) represents the underlying mathematical objects in an exact manner, and 

(ii) in the course of computation, never makes an error in its decisions. 
Of course, exactitude and error are relative to the underlying mathematical model. In computational 
geometry, the mathematical model is usually (but not necessarily) Euclidean geometry. 

We understand in (i) that mathematical objects are characterized by suitable numerical parameters. 
To say that the parameters "exactly" represent an object means that we can decide whether or not 
two such objects are equal from these parameters. The representation (i.e., parameters) need not 
be unique. In applications where the input values are approximations to unknown values, we must 
nevertheless treat these approximations as exact. If this is not possible, we face a bona-fide problem 
of approximation which, as noted before, is outside the present scope. 

3.1. Algebraic numbers 

These concepts are illustrated by the representation and manipulation of algebraic numbers. By 
definition, an algebraic number is the root of an univariate polynomial with integer coefficients. For 
instance, the number v ~  is an algebraic number as it is a root of X 2 - 5. We know that there is no finite 
representation of v'~ = 2.236068... in positional notation. But v'~ can be represented exactly as the 
pair (X 2 - 5, [1,4]), interpreted as the unique root of the polynomial X 2 - 5 lying in interval [1,4]. This 
is called the isolating interval representation of real algebraic numbers. Of course, (X 3 - 5X, [2, 3]) 
would represent the same number exactly, while (X 2 - 5, [ -3 ,  3]) represents no number because the 
range [ -3 ,  3] does not contain a unique root of X 2 - 5. 

Clearly the precision of numbers used in such representations must be arbitrarily large. The fact that 
we can represent ~ exactly suggests that in some sense, we have infinite precision. However, the 
terms "arbitrary precision computation" or "infinite precision computation" are inadequate substitutes 
for "exact computation", since neither entails exact computation. In some sense, the interval [1,4] is 
an approximation to v~,  and [2, 3] is an even better approximation. But our representation of x/~ itself 
is no approximation. 

We understand in part (ii) of our characterization of exact computation that, with respect to the 
representation of objects, there are effective procedures to compute and make decisions about these 
objects. In the context of algebraic numbers, this means that we can perform the usual arithmetic 
operations ( + , - ,  x , - )  and can determine the sign of real algebraic numbers. For our purposes, 
we focus only on real algebraic numbers since the complex ones can be represented as a pair of real 
algebraic numbers. It is well-known that the set of real algebraic numbers is closed under the arithmetic 

~--]i=o c i X ,  then - a  and 1/a (respectively) are roots of operations. For instance, if a is a root of n 

n n 

~-~(-1)ic~X i and X ~ - ~ c i X  -i. 
i = 0  i = 0  

If a, fl are roots of P(X), Q(X) (respectively) then a +/3  and a/3 are roots of 

resy (P(Y) ,  Q(X - Z)) ,  resy (P(Y), YnQ(X/Y)) ,  
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where r e s y ( P ( Y ) ,  Q(Y))  denotes the classical resultant of two polynomials in Y. Since a resultant is 
a determinant, and using some classical bounds on the separation of roots, we conclude that the basic 
arithmetic operations and the sign of algebraic numbers can be effectively computed. For instance, 
we should be able to give the isolating interval representation of ~ - v ~  and determine the sign of 
2v3-Zv - 1. 

Algebraic numbers have another important closure property: the root of a polynomial with algebraic 
coefficients is algebraic. In addition to the above operations, we shall also include in the set of algebraic 
operations the root extraction operation, which, given the coefficients ao, al,.  • •, an of a polynomial 

n 

P ( X )  = Z aiXi '  
i=0 

extracts a root of P(X) .  Depending on the context and application, this can be variously interpreted 
to mean one of the following: any root, any real root, or all roots. Note that division and subtraction 
can be viewed as root extractions of linear polynomials. For more details on computing with algebraic 
numbers, see for instance [9,38]. 

3.2. Algebraic problems 

Our example of algebraic numbers is felicitous 6 because almost all contemporary problems in com- 
putational geometry can be computed exactly, via a reduction to exact algebraic number computations. 
Of course, it must be assumed that the inputs to a problem are algebraic numbers. We informally call 
such problems algebraic. We can be slightly more precise, using Tarski's language which is the first 
order language of the real closed fields. Briefly, a predicate P ( x l , . . . ,  x~) in this language may be 
assumed to have the form 

Q lylQ2y2"" QkYk [M(yI,..., Yk, Xl,..., Xn)], 
where the Qi's are quantifiers (V or 3) and M is a Boolean combination of polynomial inequalities of 
the type P ( Y l , . . . ,  Yk, x l, . . . ,  xn) = 0 or P ( Y l , . . . ,  Yk, x l , . . . ,  Xn) > O. Here xi, yj are real variables. 
A semi-algebraic is the set definable by such a Tarski predicate. An algebraic decision problem is 
given by a sequence of Tarski predicates, 

~ 1 ,  ~ 2 , .  - • , (1) 

where ~On is a predicate on the appropriate number of variables for describing an input instance of "size 
n". For instance, if the input instance are points in d-space, then there are dn real variables for inputs 
of size n. To formulate algebraic construction problems, first assume that the output size is a function 
of the input size. Then such a problem is again given by the sequence (1) where each ~n involves both 
the input and output variables. In case the output size is not a function of the input size, we replace CPn 
by a set of predicates, one for each output size. To state complexity results for algebraic problems, we 
need to place suitable complexity restrictions on the sequence (1); for instance, that they be constructed 
in logarithmic space. This definition of algebraic problems is simple but serves our purposes v. 

6 We do not know of any counterexample in the standard computational geometry literature. No doubt, as the field expands, 
we will see some exceptions. 

7 A less artificial way to formulate problems in natural domains of computation is to introduce "object logic" to represent 
the natural objects (hyperplanes, points, segments, etc.). This is basically a typed logic with functions to extract the real 
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Algebraic problems are essentially solved by reduction to two related general results: algebraic 
decision problems can be solved using a decision procedure for Tarski's language, and algebraic 
construction problems can be reduced to the construction of suitable algebraic cell complexes. The 
cylindrical cell decomposition of Collins [8] is the most notable method for constructing cell com- 
plexes, and it also solves the decision problem. The general upper bound for both these problems has 
seen great progress in recent years, and lead us to the following important metaresult: most problems 
in computational geometry can be computed exactly in a single-exponential space complexity. The su- 
perpolynomial complexity is inevitable because some of these problems are provably intractable--by 
a reduction from the decision theory of real addition (which Fischer and Rabin [15] have shown to be 
nondeterministic exponential-time hard). 

Let us illustrate the above by considering three problems in Ra: 
(i) Euclidean minimum spanning tree (EMST): given a set of points in R a, find the minimum 

spanning tree connecting these points. 
(ii) Euclidean traveling salesman problem (ETSP): given a set of points in R a, find a tour of these 

points of minimum length. 
(iii) Shortest path amidst polyhedral obstacles (ESP): given a set E of polyhedral obstacles and points 

s, t, find the shortest path from s to t which avoids E. 
It is not hard to see that the first two problems can be reduced to determining the signs of a finite 

set of algebraic numbers. For instance, for ETSR there are finitely many tours and for any two tours 
rrl, 7rz, it suffices to determine the sign of L(Trl) - L(Tr2), where L(Tr) is the Euclidean length of the 
tour 7r. (A tour is a polygonal path rr = ( so , . . . ,  Sm) where so = Sm and L(Tr) is the sum of the 
Euclidean distances between consecutive points si-1 and s~.) So L(Tr) is a sum of square-roots and it 
is not hard to determine the sign of L(rq) - L(Tr2) (but the obvious method takes double exponential 
time). With a bit of care, we can do this in single exponential space, but not much better is known. In 
the case of EMST, the argument 8 is even simpler: because of the matroid properties of forests, the 
EMST problem can be reduced to comparing distances between pairs of points. But comparing two 
such distances is trivial and can be done efficiently. So that EMST is exactly solvable in polynomial 
time (as is well-known). 

But let us argue the exact solvability of ETSP in another way: note that the length function 
L(so, . . . ,  sin) is an algebraic function, meaning that there is a polynomial R(z, So,. . . ,  Sm) with 
integer coefficients such that R(L(so, . . . ,  sin), so , . . . ,  sin) = 0 is valid. Hence, if the points si are 
algebraic (meaning that its coordinates are algebraic numbers), then the length L(so, . . . ,  sin) is also 
an algebraic number. In the case of ETSR we only need consider L(so, . . . ,  sin), where si are input 
points. So L(so, . . . ,  sin) are algebraic. Since we know how to compute and compare algebraic num- 
bers we again conclude that ETSP can be solved exactly. For shortest paths in the plane, a similar 
remark is true. But for d > 2, it is not so clear that the problem can be exactly solvable. A first step 
would be to show that the problem is algebraic. By definition, this means the set of shortest paths is a 
semi-algebraic set; it need not imply that all shortest paths must be algebraic. This is because algebraic 
sets of positive dimension contain non-algebraic points. This is not really a problem because Collin's 

parameters characterizing the objects. For instance, we can have "point variables" P and functions to extract the coordinates 
of P (in dot-notation, P.x, P.y, etc.). 

8 We are thankful to Edelsbrunner for this remark. 
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decomposition procedure can return an algebraic point (called a "sample point") in any semi-algebraic 
set. But in the case of ESP, every shortest path is algebraic. We show this in Appendix A. 

Disguised algebraic problems. Some problems that apparently involve transcendental functions are 
actually algebraic problems in disguise. For instance, in the so-called motion planning problem [30] 
where the robot and the obstacles have piecewise algebraic boundaries, we seek the feasibility of an 
obstacle-avoiding motion between two positions. Since the robot may rotate, we might generally expect 
that the calculations would involve trigonometric functions. It turns out that we can exploit the algebraic 
relations among trigonometric functions and avoid making transcendental decisions. For instance, we 
view may sin x and cos x as two algebraic quantities connected by the relation sin 2 x + cos 2 x = 1. 

3.3. Approximation problems 

One approach to the intrinsically difficult algebraic problems is to modify the problem into an ap- 
proximation problem. That is, we modify the problem to accept a prescribed amount of approximation 
in its solution. It is not a self-contradiction to speak of "the exact solution of approximation problems". 
It is best to clarify this via an example. Canny and Reif [5] have shown that shortest paths (ESP) 
in 3-dimensions is NP-hard. The corresponding approximation problem can be defined to take inputs 
as in the original problem, plus an additional e > 0 parameter. The output is to be a path that is at 
most (1 + e) longer than the shortest path. On the other hand, Papadimitrou [25] has shown that the 
approximation version of the problem is polynomial time in the size of the original input and in 1/c. 
Algorithms that drive computer graphic displays can use such approximation algorithms since there 
is only a bounded resolution in displays. The possibility of approximation problems is an indication 
of the richness of what can come under the exact computation paradigm. 

4. Rational bounded-depth problems 

Since algebraic problems are intractable in general, we seek tractable subclasses. Many problems do 
not require the full power of algebraic computation, but can be solved using only 9 the four arithmetic 
operations but not root extraction. We call such problems rational, provided the inputs only involve 
rational numbers. Linear programming and constructing hyperplane arrangements [12] are examples 
of rational problems. 

Another important subclass of algebraic problems comes from the concept of depth of derivation 
(cf. [40]): relative to a set U of numbers, a number x is of depth 0 if x E U; x is of depth at most 
d + 1 if x is obtained by one of the rational operations applied to numbers of depth at most d, or 
by root extraction from a degree k polynomial where each coefficient of the polynomial has depth 
at most d - k + 1. An algorithm has depth at most d if there is a finite set K of numbers (i.e., the 
constants in the algorithm) such that on any input whose numerical parameters form the set X, all 
intermediate values computed by the algorithm are of depth at most d relative to U = K U X. 

9 Other simple but non-algebraic functions such as computing the sign of a number or taking the floor of a number may 
be needed. In the context of the rational functions, these are reasonable operations. 
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A problem is bounded-depth if it can be solved by an exact algorithm of at most some fixed depth. 
Suppose c~ is a number that arises in a bounded-depth computation. Then o~ satisfies a polynomial 
P ( X )  whose degree m is bounded. If the input numbers have bit sizes at most s, then the coefficients 
of the P ( X )  have O(s) bits. It is shown in [38] that if ~ satisfies 

1 
[~ - ~[ < Kin----- ~ 

(for a suitable constant K), then applying Newton's approximation to ~ is guaranteed to converge 
to ~. Using known techniques, we can obtain an initial approximation ~ satisfying this bound. But 
subsequent refinements can use Newton's method which is known to be very efficient. This can be 
the basis for using lazy evaluation techniques in exact computation. 

A problem is rational bounded-depth (RBD, for short) if it can be solved by an algorithm of 
bounded-depth that performs only rational operations. Of course, the (actual) depth of an algorithm 
or problem is the least d such that it is of depth at most d. The class of RBD problems includes the 
majority of problems in contemporary computational geometry (say, as treated in the standard texts 
[12,28]). The following is an obvious but key property of RBD algorithms: 

(P) There is a constant D such that if the input instance to the algorithm involves rational numbers of 
size (at most) s, then the intermediate computation involves only rational numbers of size D s + O ( l  ). 

Here, the size of a rational number p/q is just the maximum of the bit sizes of the integers p and q. 
To state a consequence of (P), let us define the algebraic complexity of an algorithm to be the 

function T(n) where T(n) is the worst case number of arithmetic or root-extraction operations used 
by the algorithm on inputs of size n. Now assume that the numbers in the inputs fit into the machine 
word size. Then we can implement exact arithmetic by representing each integer using D words, and 
hence:for any RBD algorithm with algebraic complexity T(n), there is a constant C > 0 such that the 
algorithm can be implemented in time C .  T(n) using exact computation. Note that T(n) is the usual 
accounting function used for measuring complexity of geometric algorithms. So the theoretical time 
bounds for RBD algorithms do reflect the running times of exact implementations of these algorithms. 

Clearly, the above constant C depends on D. Using classical algorithms for arithmetic, we have 
C = O(D2). The constants C and D are crucially important to our goal (G1). Note that we are outside 
the realm of asymptotics when we discuss these constants. We can take D -- 2 4 if the RBD algorithm 
has depth d. This 2 a bound can often be improved. 

Example. Say an algorithm is of type Ak,b if its numerical computations consist only of repeated 
evaluations of k × k determinants. Moreover, the determinants are evaluated on values of depth ~< b. It 
is well known that convex hulls of point sets in dimensions k - 1 can be solved by such an algorithm 
with b = 0. Such algorithms can also solve convex hulls in dimension k with b = 1. Again, it can 
solve Voronoi diagrams in k - 1 dimensions, but with b = O(log k) which comes from the use of the 
lifting map. The depth of the algorithm depends on how one implements the determinant computation. 
For instance, using standard Gaussian elimination or the division-free version due to Bareiss (e.g., see 
[38]), the depth is d = O(k 3) but we can take D = k (not 2 a) and C = O(k2). 

Remark.  As Sch6nhage [29] pointed out, root finding for bounded degree algebraic numbers has the 
same asymptotic complexity as integer multiplication. So bounded-depth problems are, in principle, 
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not much harder than RBD problems. But the implicit constants may make such problems somewhat 
less attractive than RBD. 

4.1. Unbounded-depth problems 

It is rare to find a problem in traditional computational geometry that is rational but not bounded- 
depth. But imagine a solid polyhedral modeler in which we can do rational transformations of solids 
and perform Boolean operations on solids. This is not a "computational problem" as usually under- 
stood in algorithmics, with well-defined inputs and outputs. Each transformation and operation on 
these solids increases the depth of derivation. It is not surprising that fixed-precision fails notoriously. 
It would be interesting to show that this must be so (goal (G2)). 

An artificial form of this iteration phenomenon which is useful for numerical experimentation was 
invented by Dobkin and Silver [10]: it is based on repeated application of two operations (going-in, 
going-out) on an initial pentagon, and on the fact that in the exact world, going-in and going-out are 
inverses. Another variant is as follows: suppose that we have just points and lines, and we are allowed 
to construct a new point P as intersection of two prior lines, P +-- intersect(L, L~); similarly, we 
can construct a new line L through two prior points, L +-- span(P, P~). To see the kind of precision 
needed, suppose we start out with a set of points in the plane, and in each iteration, we form all 
possible lines from the points at the start of the iteration, followed by forming all possible lines from 
these constructed lines. After i iterations, the coordinates of the points have size 4 i(n + 1) assuming 
the initial data uses n-bit integers. Thus exponential behavior apparently occurs with iterated rational 
operations, but we have no proof that ~ ( c  i) is necessary. 

4.2. Some robust algorithms 

There are some successes in achieving robust algorithms using fixed-precision. For instance, a sys- 
tematic approach to robustness has been outlined by Sugihara and Iri in several papers (e.g., see 
[35,34,36,37]). They propose to view geometric algorithms as constructing combinatorial structures 
guided by numerical computations. If we can structure such algorithms so that no redundant combina- 
torial decisions are made, then the algorithm can be made robust. More generally, we may say that the 
philosophy is to give priority to combinatorial data over numerical data. The Sugihara-Iri approach has 
been applied to several examples such as Delaunay triangulations and the gift-wrapping 3-dimensional 
convex hull algorithms. "Robustness" in Sugihara-Iri approach means that certain (problem dependent) 
combinatorial properties hold; this is distinct from the "stability" concept which roughly says that the 
output is correct for some small perturbation of the input. It seems that stability is not easy to achieve 
with their method [37]. On the other hand, Fortune [16] described two robust O(n 2) algorithms for 
planar Delaunay triangulation which are stable. 

It turns out that these success stories all fall under the RBD class. So we could solve these problems 
exactly, at the cost of some multiplicative constant C. Why would one exchange a Cn log n exact 
algorithm for a Crn e stable approximate algorithm for Delaunay triangulation problem? This depends 
on C and C .  It is believable that with fine-tuning, one can make this C competitive, even assuming 
C ~ -~ 1. One of our goals is to achieve this using techniques that are general, rather than just special 
to, say, Delaunay triangulations. 
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So the RBD class is ideal for comparing these two competing approaches: for fixed-precision, be- 
cause that is where robust algorithms have been successfully constructed, and for exact computation, 
because our observations suggest that it will be especially effective here. Unfortunately, the next two 
sections suggest that the necessary software infrastructure for exact computation is not quite ready for 
this exercise. 

5. Reinventing BigNumbers 

We now address research goal (G1), which seeks to reduce the cost of using exact computation. Just 
as a floating-point package is the engine of most fixed-precision computation, a "BigNumber package" 
is the basis of exact computation. Naturally this must be the first place to begin our investigation. 

BigNumber packages, although widely available, have no hardware support (and barely a priority 
for software support). A notable attempt to put large integer multiplication in hardware is reported in 
[2,32] using the concept of programmable active memories. Their hardware multiplies 512-bit inte- 
gers; when coupled to low-end workstations, it apparently outperforms the fastest computers of its day 
(circa 1990). One should note that the motivation there is cryptography, which has different concerns 
than us. Still, such a piece of hardware would go a long way towards making exact solution of RBD 
problems competitive and practical. While this is surely an avenue for more work, we will focus on 
software solutions below. 

First, we can simply try to improve on traditional BigNumber packages. One attempt is reported by 
Vuillemin, Herv6 and Serpette [31]. They suggested that any BigNumber package written in a high 
level language stands to gain a factor of 4--10 when hand-crafted code is employed. This improvement 
alone is insufficient in view of the anecdotes next. 

Some anecdotes. The first reality we face when using BigNums is not encouraging: off-the-shelf use 
of such packages incurs a tremendous overhead. For instance, in the case of exact integer computa- 
tions, Fortune and Van Wyk [18] said that the geometric primitives in their program becomes slower 
by a factor of 40-140. Their programs spend only between 20% and 50% of the running time on such 
primitives. Note that the comparison is made against a floating-point implementation. This methodol- 
ogy seems standard and we will keep it for this discussion. If exact rational number computations are 
used off-the-shelf, Karasick, Lieber and Nackman [22] reported an initial slowdown factor of 10,000. 
The good news is that in both cited papers, careful fine-tuning eventually reduces these factors to a 
small constant factor (less than 10). 

What is the significance of this "anecdotal number 10"? Note that a factor of 10 in the numerical 
part of an algorithm would only slow the overall algorithm down by a factor of 3 if the algorithm 
uses (say) 25% of its time in number crunching. For certain applications, such a small penalty tilts the 
balance in favor of exact computation. To be sure, we do not claim that this penalty is tolerable for all 
applications. In any case, comparing an exact algorithm against an approximate algorithm (assuming 
that robustness has been achieved) which is thrice faster must come down to user priorities. But more 
can be said. For the sake of argument, let us assume that the anecdotal number 10 is technology- 
independent, that is, it will not change with improving hardware. In a world where machine speed 
doubles every other year, a small technology-independent constant seems negligible, l0 Again, with the 

H)Just wait a few years instead of doing any research. : - )  
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increasing commercial availability of medium-scale parallel computers (of a dozen nodes, say), small 
technology-independent constants will be even less significant. 11 These remarks about technology- 
independent gaps should be understood as follows: in many application areas, there is a lower threshold 
on the acceptable computation speed. Once machine speeds exceed this threshold, other factors such 
as robustness and user-friendliness become increasingly important. As we believe that such thresholds 
are being crossed for a growing number of problems, the advantage of fixed-precision over exact 
computation will correspondingly diminish. 

It is not hard to identify some sources of inefficiency with standard BigNum packages. One pays a 
large overhead for its generality; in particular, its space management facilities and possibly its pointer 
structures. The heritage of "BigNumber packages" seems to come from computer algebra applications. 
It is a reasonable assumption in computer algebra that we cannot predict the precision needed during a 
computation. But we have indicated that in computational geometry, the opposite assumption usually 
holds. One approach is to build a poor-man's BigNum package to exploit just this property, avoiding 
the overhead of generality. In other words, we wish the constant factor C to approach 1 • D 2. In fact, 
more sophisticated o(D 2) techniques seems possible with hand-coding for small D. Such a poor-man's 
package may be useful for demonstration but the real goal is to achieve such performances in a general 
package that can adapt to the application. As a concrete target, we want C' to approach the anecdotal 
number "10" in some reasonably general setting. 

6. Beyond BigNumbers  

To fully exploit geometry, we must go beyond numbers. In this section, we outline some general 
features of geometric computing that can be exploited. Each of these features could be incorporated 
into a software package, built on top of BigNum (or any substitute number package). We envision a rich 
environment where exact geometric computing is achieved with relative efficiency and convenience. 
Perhaps this convenience, rather than achieving the ultimate efficiency, is key to encouraging more 
exact computation. 

Before leaving the subject of number packages, we mention that there are packages for multiprecision 
arithmetic that seems to be very good in pure number crunching. A well-known system is from Brent 
[3] (see also Bailey [1]). It is possible that some of these packages, properly retargeted for geometric 
computing, may be useful as a basis for building other packages. 

Although we have focused on general packages below, it is also very interesting to design packages 
for subdomains of geometric computation. For instance, exact computation of determinants or their 
signs would constitute an important software package--i t  can be viewed as a subpackage of the 
"BigExpression package" below. Clarkson [6] has shown an interesting approach for building such a 
determinant sign evaluator. 

6.1. BigFloats 

It is often assumed that exact computation entails computing with integers or rationals. But we 
have indicated that approximate number have a role. The theoretical basis for this is the concept of 

~1 Just throw some $$$ at the problem instead of waiting. : - 0  
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root-separation bounds for algebraic numbers (see [11]). We need a package for computing of each 
variable xi up to some prescribed precision Pi- In the usual fixed-precision, there is a fixed p for 
the entire computation, but here Pi is localized to each xi. In general, Pi may change dynamically. 
The basic principle of exact computation is preserved if we ensure that Pi is sufficient to make the 
necessary error-free decisions. For instance, in problems where we only need the sign of a determinant, 
not its value, some low precision computation may suffice. 

So we want a number representation with arbitrarily specified precision. Moreover, it is desirable to 
decouple this precision from the magnitude of the number. This decoupling is, of course, embodied in 
the idea of floating numbers. To describe this, let us fix any integer d > 1 (the base), and any integer 
in the range [0, d - 1] is called a digit. Usually d = 10 or a power of 2. For any integer f ,  let (f)d 
(or, simply ( f ) )  denote the number which in d-ary notation is sign(f)O.flf2.. ,  fk where f l f 2 " "  fk 
is the standard d-ary notation for f .  Thus with d -- 10 and f = -123,  we have (-123)10 = -0.123 
and (-123)2 = -0.1111011. We call ( f )  the normalization of f (to base d). Afloating number is 
a pair (e, f)a (or, simply (e, f ) )  of integers representing the number (f)a" de. Here f carries the 
precision while e indicates the magnitude. Since e, f will be represented by BigNums, we call such 
representations BigFloats. We are currently developing a BigFloat package [11]. 

Each BigFloat carries an error bound. Since BigFloats are approximations even for rational num- 
bers (e.g., it cannot represent 1/(d + 1) exactly), errors are inevitable. Of course, a straightforward 
implementation need not include any explicit error information, just that the last digit is uncertain. 
This is reasonable when d = 2 but for large d, this loses too much information. We keep track of an 
error that ranges between 1 and d - 1. Below, we describe another notion of error bound that is under 
user-control. 

6.2. Expression package 

The basis of this package is the observation that individual arithmetic operations in geometric 
algorithms are not completely random. Rather, they usually exhibit well-defined local structures. For 
instance, a convex hull algorithm may perform all its arithmetic operations only in the context of 
computing determinants, which has a well-defined structure. We want to exploit such local structures. 

These structures are captured in suitable classes of "expressions", the most important of which is 
the class of multivariate polynomials. We envision the following use of the package: before the actual 
computation begins, the algorithm constructs the expressions that it will need. Often, only a single 
expression, e.g., a determinant, is needed. Then it calls the package to preprocess each expression: the 
result is, for lack of a better word, a "compiled expression". During the actual computation, we make 
repeatedly calls to a functor BigEval to apply a compiled expression to specific arguments. In our work 
on data degeneracies [40], we have already postulated the existence of such an evaluator (albeit with 
additional properties to allow symbolic perturbation). A form of such an evaluator was implemented 
by Fortune-Van Wyk [18]. With BigEval, the user never need to directly call the BigNumber package. 

It is important to understand why the use of BigEval can be a major advance over BigNumber 
package: traditionally, the algorithm calls the BigNumber package for each arithmetic operation. The 
number package, having no idea how these calls are interrelated, must forgo any possible optimizations 
across calls. In contrast, BigEval has opportunity for 
• Preprocessing of the expression: compilation of expression, global analysis of the expression in- 

cluding static error bounds, restructuring of the expression. 
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• Run-time tactics: floating point filter, dynamic error bounds, incremental and/or lazy evaluation 
methods. 

Many of these ideas are discussed in [18]. 
In the vanilla version of polynomial expressions, we have the usual arithmetic operators with 

constant or variable operands. But there is opportunity to improve the evaluation process if we allow 
generalizations of these operators: product operator I'Ii~l, summation operator ~-]~i~l, multiplication 
by a constant, addition by a constant, and raising to a constant power. In the summation operator, 
it may make sense to classify the arguments according to their signs (if they can be determined). It 
seems that the design of this package can use many ideas from classic compiler technology. 

Expression Variables. In general, we expect to evaluate expressions only up to some prescribed 
precision, using BigFloats. Since our users (we may suppose) intend to compute exactly, we expect 
to maintain some error bounds on these approximate values. This gives rise to the concept of an 
expression variable (or E-variable for short). An E-variable is essentially an object with three associated 
components: defining expression E (as above), an error bound ~ (below), and an approximate value ~. 
The leaves of E can be explicit values or, recursively, E-variables. The (exact) value of the E-variable 
is defined to be the value v(E) of E provided the expression, upon recursive expansion of E-variables 
at the leaves of E, is ultimately well-founded in explicit values. The approximate value ~ is a BigFloat, 
guaranteed to be approximate v(E) to within the error bound ~. 

The error bound ~ is given by a pair of integers ~ = [a, r]. We say that a real number x is 
approximated by another real number 3 with composite error [a, r] if either the absolute error Ix - 3 I 
is at most 2 -a  or the relative error I(x - 3)Ix I is at most 2 -r .  This is denoted 

x ~ 3 e r r [ a , , - ] .  

The expression "3 err[a,r]" is be viewed as an approximation to some unknown x. Given any 
3 err[a, r], we can essentially decide whether the approximation is in the absolute error regime or 
the relative error regime. By decreasing the error bound (by increasing a and/or r) of an E-variable 
we are in effect asking for a possible reevaluation of the expression. One motivation for using com- 
posite error is that as the alternatives (relative or absolute errors) are less flexible: relative errors 
are gracefully maintained when we multiply approximate numbers but not when we add. Similarly, 
absolute errors are gracefully maintained during addition but not during multiplication. 

6.3. Geometric objects 

It is an obvious remark that geometric computation involves geometric objects which can be viewed 
as aggregates of numbers with associated object operations. There ought to be packages to encapsulate 
such object classes. The simplest of these objects are points and hyperplanes (both can be viewed 
as types of vectors). The natural operations (intersection of hyperplanes, point-hyperplane incidence 
predicates, etc.) on these objects can be implemented as part of the package. Beyond convenience, 
the fact that the nature of these objects are known to the packages means more opportunity for 
optimization. 

Common representation of vectors. We give one example where dealing with vectors rather than 
individual numbers can be exploited. This is through the use of homogeneous coordinates. Indeed, 
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( 
Hence 

rational numbers ("BigRat") can be viewed as homogeneous 2-vectors of integers. In general, each 
n-vector ( a l , . . . ,  an) of rational numbers can be represented as the (n + 1)-vector of integers 

( m0  : m l  : ' ' '  : 7/~n), 

where ai = rni/mo and the colon separators suggest equivalence up to proportionality. So m0 is the 
common denominator and we call this the common representation of rational n-vectors. We take the 
bit size of a vector (in common representation or not) to be the maximum of the bit sizes of its entries. 
Suppose Hi (i = 1,2,3) is the plane with equation aix + biy + ciz = di. We want to compute their 
common intersection point (x, y, z) T, where 

l 

a2 b2 c2 " ~- d2 • 

a3 b3 c3 d3 

1 
x = ~ ~ d~bj ck, 

where A is the determinant of the system. We consider several scenarios: 
• Assume that the coefficients of Hi are rational numbers of bit size at most s. Then we see that 

~i,j,k dibjck has bit size at most 18s, and so x has bit size at most 36s. 
• If the coefficients of Hi are integers of bit size at most s, then x has bit size at most 3s + log 2 6. 
• If the coefficients are rational numbers but we first convert Hi, viewed as the vector (ai, bi, ci, di), 

into the common representation (Ei : Ai : Bi : Ci : D~) where Ei is the common denominator, then 
the integer Ai has bit size at most 4s. Ignoring the component E~, we can compute (z, y, z) whose 
bit size is at most 12s + log 2 6. 

In all three cases, the output point (z, y, z) can be in the common representation (U : X : Y : Z), for 
no additional cost. 

This analysis can be carried out in any dimension as well. It suggests that we should 12 try to convert 
rational vectors into the common representation. To estimate the cost of this conversion, consider 
the rational k-vector ( a l , . . . , a k )  of bit size s. Let ai = ni/di, Do = ~ i k l  di and Di = Do/di 
(i = 1 , . . .  ,k). So one common representation is (Do : nlD1 : ".. : nkDk). We can compute Do 
using k - 1 multiplications. Using a balanced binary tree T to compute Do, we can extend this to 
the computation of D 1 , . . . ,  Dk: let each node u of the tree store a value V(u) equal to the product 
of the the di's stored in leaves below u. These values are computed in a bottom-up fashion to obtain 
Do. Now, in the top-down fashion, let each nonroot u compute the product W(u) := W(p)V(s)  
where p, s (respectively) are the parent and sibling of node u. By definition, W(u) ---- 1 if u is the 
root of T. Our desired values D~ are obtained as W(u) where the u are leaves. The total number of 
multiplications to obtain the common representation from T is thus 2k - 2. Note that we have avoided 
GCD computations in this conversion process, as this could be expensive. By the same token, we do 
not assume that rational numbers are automatically in reduced form. 

12 In computer graphics it has been suggested that homogeneous coordinates is mainly a mathematical device which, in 
practice, is a needless extra dimension. 
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6.4. Heterogeneous representations 

The traditional BigNums assume a homogeneous internal representation, usually the positional 
notation. It is sometimes useful to allow other internal representations: for instance, the number ex- 
pression 2 l°°° - 1 may be superior to an explicit binary notation using 999 bits. Of course, allowing 
number expressions destroys the unique representation property and makes the equality testing or sign- 
determination highly nontrivial. We must also provide conversion routines. This idea applies equally 
to other domains such as BigFloats. This is not so much another package as the idea that there may 
be many flavors of packages, and these should be tied together in a seamless way. Object oriented 
languages can be effectively used here. 

7. Summary 

1. Exact computation is not much used despite the promise of many benefits. Perhaps the most 
compelling reason for exact computation is that the fixed-precision alternative is even less hopeful if 
we are serious about robustness. 

2. We described a framework for exact geometric computation. General results related to Tarski's 
decision problems imply that most problems in computational geometry can be solved exactly. We 
identified the pervasive class of rational bounded-depth (RBD) problems for which exact computation 
seems particularly promising. Known robust algorithms also fall under this class, so it is a good place 
to compare the two approaches. 

3. Exact computation embraces a broad range of computational tactics and includes approximation 
problems. We must rethink the traditional BigNumber package to fit the needs of geometric compu- 
tation. Beyond this, we need additional layers to be added on top of BigNumber. With such software 
infrastructure, we believe more users will migrate to exact computation. 

4. Although there ought to be hardware support for exact computation, this is unlikely in the near 
future. Impetus for its development may have to come from successful software exploitation first. 

5. It may be appropriate to end with a perspective of the floating-point culture. The debate over 
the viability or nonviability of exact computation is an issue of comparative advantages. There is no 
inherent reason against exact computation, only that the fixed-precision approach is more efficient. But 
efficiency is not the only issue. How do we account for the historical ascendency of the floating-point 
culture from 1950-1990 (see [27, p. 249ff])? After all, it started ignominously when Von Neumann 
rejected floating-point numbers for being too complicated. If floating-point computation became less 
exotic and understood, it is mainly due to the influence of Wilkinson and his influential error analysis of 
floating-point calculations. But the importance of floating-point arithmetic derives from an era where 
computing cycles is the main bottleneck of most applications. In the world of rapidly increasing 
computing power, with no end in sight, a growing number of applications is no longer cycle-critical. 
For such problems, other factors (robustness, adaptability, etc.) begin to weigh in more. These factors 
seem to favor exact computation. We imagine many applications to move from being cycle-critical to 
being noncycle-critical. To be sure, cycle-critical problems will always be around. It is possible that 
just as the floating-point culture reached its current (apparently unassailable) ascendant position, new 
technological advances may work to subvert it. 
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Appendix A 

We show that the set of solutions to the Euclidean shortest path (ESP) problem is a finite semial- 
gebraic set. In particular, this shows that every shortest path is algebraic. 

Initially, let us fix the lines L I , . . . ,  Lk in I~ d and points s, t ERa.  By an (s, L l , . . . ,  Lk, t)-path we 
mean a polygonal path 7r = (so, 8 1 , - .  • , 8 k + l )  from s = so to t = sk+l such that si C Li (i = 1 , . . . ,  k). 
The only restriction we have on L l , . . . ,  Lk is that L i ¢  Li+l for i = 1, . . . ,  k - 1. In our application, 
Li and Li+l may not be skew and possibly Li = Lj provided li - Jl > 1. 

We make each line Li directed by picking an arbitrary vector ui parallel to Li and let 13 the angles 
o f  incidence and reflection at si to be ai = Z(ui ,  si - si-1) and fli = g(u i ,  Si+l - si) (respectively). 
The angle (~i is undefined if si = si-1 and similarly for fli. The following is well-known (cf. [33, 
Lemma 3.1]): 

(Snell's law) I f  7r is a shortest path and (~i, fli are defined ~then (~ ~- /3i. 

Let / C_ ~1 , . . . ,  k} and consider the predicate 4 ) i ( 8 1 , . . .  , 8k) given by 

k 
A (si Li)/  A (si = 8i+1 v = 8i -1)  A = 
i=1 iEI i([_I 

[The symbol " / ~ "  denotes the "anadic logical-and", used analogously to the summation ~ i ~ / x i  
notation.] It is easy to rewrite 4)/as a Tarski predicate involving kd real variables (s, t, L 1 , . . . ,  Lk are 
held constant). 

Lemma 1. I f  4)1 is satisfiable then it has a unique solution. 

Proof. Suppose S l , . . . ,  sk is a solution. Then st is uniquely determined whenever e E I. It remains 
to consider g ~ I. It is enough to consider a maximal subsequence si, s i + l , . . . ,  Sj- l ,  sj such that 
{i + 1,i + 2 , . . .  , j  - 1} fq I = 0. Then s~,sj is uniquely determined. To see that each st (i < ~ < j )  
is also uniquely determined, we may proceed as in [33, Lemma 3.3]. Basically their argument is valid 
in any dimension provided ae, fie are well-defined). [] 

Let 4)L, ..... L k ( S l , . . . ,  sk) be the disjunction of 4)z(s l , . . . ,  sk), ranging over all I c_ { 1 , . . . ,  k). It is 
not hard to see that every shortest path (s, L1 , . . . ,  Lk, t)-path satisfies 4)L1 ..... Lk. So far, we have not 
taken into account the obstacles. 

13 For nonzero vectors u, v E R d, we define Z(u, v) := cos-l((u, v)/llull" Ilvll), where (u, v) denotes the scalar product 
and Ilul[ the Euclidean length. 
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Now we fix the input to ESP, namely, s, t E R d and a set E of polyhedral obstacles. We can think 
of E as a union of simplices where the simplices are given explicitly. If S1, • . . ,  Sk are edges in E, an 
(8, S 1 , . . . ,  Sk, t)-path is any path (s, 8 1 , . . . ,  8k, t) where si C Si. In analogy to Cf)LI,...,L k above, we 
can construct a Tarski predicate q~st,...,sk ( S l , . . . ,  sk) defining a finite set of (s, S l , . . . ,  S/c, t)-paths. It 
is easy to conclude from Lemma 1 that ~Sl,...,Sk ( S l , . . . ,  Sk) has only finitely many solutions, provided 
Si, Si÷l are non-collinear (i = 1 , . . . ,  k -  1). If we ignore obstacles, then all shortest (s, $ 1 , . . . ,  Sk, t)- 
paths will be included in this finite set. 

To account for the obstacles, we write a Tarski predicate FREE(s0, Sl) that asserts that the path 
segment (so, Sl) avoids the relative interior of the polyhedral obstacles E. Also let F R E E ( s l , . . . ,  sk) 
be the conjunction of FREE(si_I,  si) for i = 1 , . . . ,  k + 1 where s = so, t = Sk+l. 

Define PATHk(s l , . . . ,  sk) to be disjunction of ~&,...,sk ( s l , . . . ,  sk)'s, varying over all S1, . . . ,  Sk. 
Although we do not know the number k of intermediate edges that a shortest path goes through, we 
can easily bound k by the total number n of edges in the obstacles. Let 

n 

PATH(sl , . . . , sn)  := ~v / (PATHk(sl , . . .  ,s/c)A sk = sk+l . . . . .  sn). 
k=0 

Thus, there is again only a finite set of solutions to PATH(s l , . . . ,  sn), and all shortest paths that avoid 
obstacles is among this set. 

Let D(s l , . . .  ,sk) denotes the Euclidean length of the path (s, S l , . . . ,  sk, t). The assertion "z = 
D ( s l , . . . ,  sk)" can be written as the Tarski formula 

( V v o , . . . ,  vk )  v, = Ilsi+t - sill 2 A v~ /> 0 ) .  ~ .z  = ~ vi • (2)  
i=0 

Notice that we can as well replace the universal quantifiers in (2) by existential quantifiers. Finally 
the Tarski predicate SHORTEST(s l , . . . ,  sn) that asserts that (s, S l , . . . ,  sm t) is a shortest path that 
avoids E is given by 

P A T H ( s l , . . . ,  Sn) A F R E E ( s l , . . . ,  sn)A 
(Vs~, Jn) [PATH(s'l,.. s' , . .  s' • " ,  ", n) A F R E E ( s ~ , ' " , s ~ )  ~ D ( s l  .,Sn) ~ D ( s ' I , . . . ,  n)]" 

The result that the set of shortest paths is a finite semi-algebraic set follows from the following lemma. 

Lemma 2. S H O R T E S T ( s l , . . . ,  Sn) has finitely many solutions and represents the set of all shortest 
paths from s to t avoiding obstacles E. 

This construction yields other information: since PATH(s l , . . . ,  sn) is quantifier-free, and (2) uses 
universal quantifiers only, we see that SHORTEST(s l , . . . ,  sn) is a universal formula. 
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