
ELSEVIER Computational Geometry 7 (1997) 3-23

Computational
Geometry

Theory and Applications

Towards exact geometric computation"

Chee-Keng Yap 1

Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA

Communicated by Anna Lubiw and Jorge Urrutia; submitted 27 November 1993; accepted 10 October 1994

Abstract

Exact computation is assumed in most algorithms in computational geometry. In practice, implementors per-
form computation in some fixed-precision model, usually the machine floating-point arithmetic. Such imple-
mentations have many well-known problems, here informally called "robustness issues". To reconcile theory
and practice, authors have suggested that theoretical algorithms ought to be redesigned to become robust under
fixed-precision arithmetic. We suggest that in many cases, implementors should make robustness a non-issue
by computing exactly. The advantages of exact computation are too many to ignore. Many of the presumed
difficulties of exact computation are partly surmountable and partly inherent with the robustness goal.

This paper formulates the theoretical framework for exact computation based on algebraic numbers. We then
examine the practical support needed to make the exact approach a viable alternative. It turns out that the exact
computation paradigm encompasses a rich set of computational tactics. Our fundamental premise is that the
traditional "BigNumber" package that forms the work-horse for exact computation must be reinvented to take
advantage of many features found in geometric algorithms. Beyond this, we postulate several other packages to
be built on top of the BigNumber package.

1. Introduction

In recent years, there has been considerable interest in "robust" geometric algorithms. In practical
terms, an algorithm is termed nonrobust if it can precipitate unpredictable failures during execution.
It is clear that such failures occur with a sufficiently high probability to cause widespread concem.
This phenomenon is reflected in diverse communities, and various approaches and special solutions
have been proposed. The unexamined premise in many of these solutions is the commitment to fixed-
precision computation. Our general theme is that the alternative approach based on exact computation
has a much larger role to play than currently practiced or suspected. In any case, the goal of reliable

* Work on this paper is supported by NSF grant #CCR-90-02819. A preliminary version appeared as an invited paper
in the proceedings of the 5th Canadian Conference on Computational Geometry, University of Waterloo, August 5-9, 1993
(pp. 405--419).

E-mail: yap@cs.nyu.edu.

0925-7721/97/$17.00 © 1997 Elsevier Science B.V. All rights reserved
SSDI 0925-7721 (95)00040-2

4 C.-K. Yap / Computational Geometry 7 (1997) 3-23

computation is better served when both approaches are well-represented. Of course, we are partisan
in this quest, and this paper only hopes to contribute to the development of exact computation.

Exact computation is the computing standard in the field of computer algebra (a.k.a. symbolic
computation). Most problems of computer algebra have little use for fixed-precision arithmetic--a
floating-point calculation usually cannot shed light on whether an integer is prime. In some sense,
we are just advocating a wider role for this computing standard. What makes the new role for exact
computation interesting is that (as we hope to demonstrate) it raises uniquely geometric issues. Al-
though we address ourselves to geometric algorithms, it will be clear that many of our ideas apply to
related fields. For instance, it is somewhat surprising that entire areas of "scientific computing" that
are concerned about robust algorithms simply overlook the use exact computation techniques. But that
goes beyond our present scope. This paper outlines some thoughts on a research agenda that forms
the basis of ongoing research with Tom Dub6 [11]:
• In Section 2, we describe the two approaches to geometric computing: fixed-precision versus exact

computing, emphasizing special features of "geometric" computing.
• Section 3 expands on our concept of exact computation, basically identifying current problems in

computational geometry with the class of algebraic problems.
• Section 4 identifies a subclass of the algebraic problems called "rational bounded-depth problems"

(RBD) for which exact computing seems to be promising.
• In Section 5, we discuss the "BigNumber package", the traditional piece of software for achieving

exact computation. Using two published work on exact computation as anecdotal evidence, we
suggest that practical goals for revising this piece of software.

• Section 6 argues the need to go beyond a number package. It postulates some software infrastructure
("beyond BigNumber") for exact computation: BigFloats, expressions, geometric objects.

• We conclude in Section 7.

2. Two approaches to numerical computing

2.1. Fbced-precision computation

The root cause of nonrobustness2 seems clear: whereas algorithms are described in exact terms,
their implementations replaces exact arithmetic with fixed-precision arithmetic. Floating-point arith-
metic is the usual example of fixed-precision arithmetic. The nontrivial probability of catastrophic loss
of significance in such computations in practice is confirmed in theoretical models (e.g., [14]). More
powerful fixed-precision models (e.g,, level-index arithmetic [7]) may be useful but only in delaying the
onset of nonrobustness problems. Similarly, the growing acceptance of the IEEE standard 754-1985 in
computer architecture 3 should not obscure the fact that its main purpose is to make floating point errors
predictable and architecture-independent. But it does not make the nonrobustness of floating-point com-
putation disappear. So the logical step is to work towards standards for exception handling (cf. [21]).

2 The term "robust" in this paper will be an informal catch-all term for all the difficulties of fixed-precision computation.
Technical definitions of robustness come in several flavors and are model-dependent. But a precise definition is irrelevant for
us as we are ultimately interested in exact computation where all these concepts disappear. For this reason, the term "robust
algorithm" is only applied to algorithms that are based on fixed-precision arithmetic.

3 See [26, Appendix A] for a description of the IEEE standard.

C.-K. Yap / Computational Geometry 7 (1997) 3-23 5

In practice, nonrobustness in algorithms is frequently corrected using some ad-hoc method that,
at best, decreases the failure probability. It often amounts to what is known in the trade as "epsilon
tweaking" (choosing the right constant for some epsilon parameter in the code). Observe that robustness
issues already appear in purely numerical computation (this is really a trite observation nowadays).
For relatively simple numerical problems, the difficulties can be analyzed and kept under control;
embedded in larger problems, it becomes a matter of educated guesses. But our main interest is in
geometric computing which has an additional dimension: its essence may be captured in the aphorism,

Geometric Computing = Numerical + Combinatorial Computing.

Numerical computing is exemplified by the problem of solving linear systems of equations; graph
searching is a typical problem of combinatorial computing. The convex hull problem for a set of
points is a canonical example of geometric computing: the points are specified by numbers but the
convex hull is essentially a combinatorial structure (a labeled graph). Linear programming counts as
geometric computing but solving linear systems does not qualify. We justify this exclusion on grounds
that the combinatorial structure in geometric computing ought to be implicitly determined by the
numerical data. We similarly exclude the usual problems of shortest paths or minimum spanning tree
on weighted graphs. But there are "geometric versions" of shortest paths and minimum spanning trees
(see Section 3.1).

With these clarifications then, the extra of difficulty of geometric problems arises because it is
not just numerical outputs we seek, but the associated combinatorial structure must somehow be
consistent with the computed numbers. Robustness issues arising this interplay between numerical and
combinatorial elements of geometric algorithms is treated in the survey of Fortune [17] (see also [19]).
To address this problem, some have insisted that algorithmic design should take account the use of
fixed-precision arithmetic. This has led to the following difficulties:
• Robust algorithms are unknown for many basic and even conceptually simple problems. For in-

stance, Yu [41, p. 110] concluded that robust algorithms for performing Boolean operations on
solids lie in the distant future. Yet such algorithms are fundamental in the field of solid modeling.
Even in the plane, the complexity of a solution proposed by Milenkovic [23] suggests that there is
more work to be done. '

• When robust algorithms are achievable, they seem to require inordinate effort relative to the known
exact algorithms. Moreover, the techniques do not easily generalize. As a consequence, only a
handful of certifiably robust algorithms are known.

• Fixed-precision geometric models to approximate the original continuous models are invariably hard
to work with, and retain very few of desired properties. For instance, the concept of an "approx-
imate line" has variously been modeled by (i) using a suitable set of pixels [computer graphics],
(ii) fattening the line into a tubular region [Milenkovic], (iii) a suitably "monotone" polygonal path
[Greene-Yao], or (iv) an actual line whose equation has bounded coefficient sizes [Sugihara]. Beside
losing many desirable properties of lines, these models give rise to complicated algorithms. We refer
to Fortune's survey [17] for a more detail description.

• A more basic approach is to go back to the arithmetic model and to introduce uncertainty there.
Logically, this means we have at least a third truth value corresponding to "not-sure". Interval arith-
metic is a well-known version of this approach. Symptomatic of this general approach, we find that
the intervals in interval arithmetic can quickly grow into fairly worthless bounds in the course of a
geometric computation (although such intervals seem usefuI in some purely numerical computation).

6 C.-K. Yap / Computational Geometry 7 (1997) 3-23

Some examples of recent work are: epsilon geometry (Salesin, Stolfi and Guibas), backward er-
ror analysis (Fortune), approximate combinatorial consistency (Milenkovic; Hopcroft, Hoffmann and
Karasick), randomization and sampling (Dobkin, Silver). The optimist might say that we need more
time to resolve these difficulties. But perhaps the difficulty is intrinsic: there will be no satisfactory so-
lution until we confront the "specter" of exact computation and understand what is inherently involved
there.

2.2. Exact computation

We switch to a discussion of exact computation. For now, we simply say that "exact computation"
means that numerical values are computed exactly in a suitable sense and only error-free decisions
are made.
• The foremost advantage of exact computation is that "robustness" is a non-issue! (A "robust exact

algorithm" is an oxymoron.)
• All classical geometric concepts are preserved.
• In contrast to the obscure 4 theories of approximate geometry, classical geometries (Euclidean or

otherwise) have a wealth of theorems and many important cases (planar geometry!) are relatively
well-understood. So we can reason with classical objects with relative confidence.

• Practically all geometric algorithms in the literature pertain to classical geometries. This means we
avoid the daunting prospect of trying of "robustify" all known geometric algorithms.

• Sometimes we can use symbolic perturbation methods to automate the handling of degeneracies,
thus simplifying our coding of algorithms (cf. [13,40]). These methods are meaningful only with
exact computation.

• There are applications that simply require exact computation. Examples include geometric theorem
proving, checking geometric conjectures or checking topological properties of specific geometric
configurations. Often such applications are one-shot deals and one is willing to devote considerable
time to their (off-line) computation.

Thus, exact computation is a "generic" solution (cf. [39]) to the robustness issue. Given these advan-
tages, why is exact computation almost never used in practice? We suggest that misconception and
culture each plays a role. Many authors simply assume that, except for very special domains such
as number theory and algebra, all continuous domain computations are necessarily approximate. This
surprisingly common misconception is easy to dispose of. The claim that exact computation is too
inefficient seems harder to counter. The floating point culture enjoys so much 5 infrastructnral support
(hardware or otherwise) that such claims are partly self-perpetuating. Goldberg [26, p. A-12] con-
cludes that "given the predominance of the floating-point representation, it appears unlikely that any
other representation will come into widespread use". It is true in some sense that exact computation
is inherently slower than floating point. But by the same token, one can claim that floating-point is
inherently nonrobust. Then it is up to the user to decide which horn of this dilemma to choose. (Of
course the truth is somewhere between these two positions.) While we cannot make that decision for
any user, we believe that the user should be presented with viable alternatives. It is the starting point

4 As in "unfamiliar", not in the sense of being imprecise.
5 For instance, on CRAY systems and some RISC machines, floating-point multiply is faster than integer multiply! The

latter is emulated in software.

C.-K. Yap / Computational Geometry 7 (1997) 3-23 7

of this research that the true viability of exact computation has not been well-represented. So this is
our first goal:

(G1) To improve the practical cost of exact computation.

The emphasis here is on "practical", although we indicate interesting theoretical issues as well. For
now, we just note that what makes (G1) interesting is the fact that exact computation turns out to be
extremely rich--i t is not just a matter of carrying out each arithmetic operation without error (which
would be boring indeed).

With respect to the user dilemma above, it is clear that certain users are unwilling to pay the inherent
cost of exact computation. For instance, [41] concluded that "exact computation is not feasible for
the problem of point classification". But surely if robustness is important enough (say, it relates to the
success of a mission into space), then exact computation may well be the only choice. The literature
contains many such claims about the infeasibility of exact computation which need not have universal
validity. We need some theoretical framework to mediate the true differences between exact and
finite-precision computation. This is motivation for our second goal:

(G2) To study the inherent tradeoffs between speed and precision,

between fixed-precision and exact computation.

This is a more abstract goal, involving the construction of theoretical models and posing paradigmatic
problems, we may recall the conceptual framework that complexity theory provides for the entire field
of algorithms. We shall not have more to say for this goal in this paper.

Varieties of precision. We should acknowledge that any simple characterization of exact versus fixed-
precision approaches will run into gray areas. For instance, we may distinguish between degrees of
fixed-precision: the most restrictive form of fixed-precision prevails in practice, where there is a
universal precision (depending on the machine word-size) for all computations. A local form of fixed-
precision is where each variable carries its own precision which is fixed throughout the computation.
As we will show, many exact algorithms can be carried out using this local version of fixed precision.
Exact computations may use internal approximations. Other variations are possible: for example the
language Numerical Turing [20] developed at the University of Toronto for numerical computation
has the concept of a precision block, which is syntactically like a do-loop. The computation of such
a block is iterated with increasing precision until some desired goal is attained.

Remark . There are genuine problems of rounding or approximation. That is to say, there are rounding
questions that are inherent in the problem formulation, not just artifacts of using fixed-precision
arithmetic for approximating exact arithmetic. An example is the problem of transforming a simple
polygon so that it remains a simple polygon but such that each vertex is "snapped" to one of the four
comers of the unit square of the integer lattice that contains the vertex. Milenkovic and Nackman [24]
has shown that such problems can be NP-hard. Another class of examples is where the input is an
approximation to some ideal data. For instance, the input may be visual data collected by a camera.
We may want to do various feature extractions on this imperfect data. Such problems are outside our
scope.

8 C.-K. Yap / Computational Geometry 7 (1997) 3-23

3. What is exact computation?

We clarify our use of the term: by an "exact computation", we mean a computational process that
(i) represents the underlying mathematical objects in an exact manner, and

(ii) in the course of computation, never makes an error in its decisions.
Of course, exactitude and error are relative to the underlying mathematical model. In computational
geometry, the mathematical model is usually (but not necessarily) Euclidean geometry.

We understand in (i) that mathematical objects are characterized by suitable numerical parameters.
To say that the parameters "exactly" represent an object means that we can decide whether or not
two such objects are equal from these parameters. The representation (i.e., parameters) need not
be unique. In applications where the input values are approximations to unknown values, we must
nevertheless treat these approximations as exact. If this is not possible, we face a bona-fide problem
of approximation which, as noted before, is outside the present scope.

3.1. Algebraic numbers

These concepts are illustrated by the representation and manipulation of algebraic numbers. By
definition, an algebraic number is the root of an univariate polynomial with integer coefficients. For
instance, the number v ~ is an algebraic number as it is a root of X 2 - 5. We know that there is no finite
representation of v'~ = 2.236068... in positional notation. But v'~ can be represented exactly as the
pair (X 2 - 5, [1,4]), interpreted as the unique root of the polynomial X 2 - 5 lying in interval [1,4]. This
is called the isolating interval representation of real algebraic numbers. Of course, (X 3 - 5X, [2, 3])
would represent the same number exactly, while (X 2 - 5, [-3 , 3]) represents no number because the
range [-3 , 3] does not contain a unique root of X 2 - 5.

Clearly the precision of numbers used in such representations must be arbitrarily large. The fact that
we can represent ~ exactly suggests that in some sense, we have infinite precision. However, the
terms "arbitrary precision computation" or "infinite precision computation" are inadequate substitutes
for "exact computation", since neither entails exact computation. In some sense, the interval [1,4] is
an approximation to v~, and [2, 3] is an even better approximation. But our representation of x/~ itself
is no approximation.

We understand in part (ii) of our characterization of exact computation that, with respect to the
representation of objects, there are effective procedures to compute and make decisions about these
objects. In the context of algebraic numbers, this means that we can perform the usual arithmetic
operations (+ , - , x , -) and can determine the sign of real algebraic numbers. For our purposes,
we focus only on real algebraic numbers since the complex ones can be represented as a pair of real
algebraic numbers. It is well-known that the set of real algebraic numbers is closed under the arithmetic

~--]i=o c i X , then - a and 1/a (respectively) are roots of operations. For instance, if a is a root of n

n n

~-~(-1)ic~X i and X ~ - ~ c i X -i.
i = 0 i = 0

If a, fl are roots of P(X), Q(X) (respectively) then a +/3 and a/3 are roots of

resy (P(Y) , Q(X - Z)) , resy (P(Y), YnQ(X/Y)) ,

C.-K. Yap / Computational Geometry 7 (1997) 3-23 9

where r e s y (P (Y) , Q(Y)) denotes the classical resultant of two polynomials in Y. Since a resultant is
a determinant, and using some classical bounds on the separation of roots, we conclude that the basic
arithmetic operations and the sign of algebraic numbers can be effectively computed. For instance,
we should be able to give the isolating interval representation of ~ - v ~ and determine the sign of
2v3-Zv - 1.

Algebraic numbers have another important closure property: the root of a polynomial with algebraic
coefficients is algebraic. In addition to the above operations, we shall also include in the set of algebraic
operations the root extraction operation, which, given the coefficients ao, al,. • •, an of a polynomial

n

P (X) = Z aiXi '
i=0

extracts a root of P(X) . Depending on the context and application, this can be variously interpreted
to mean one of the following: any root, any real root, or all roots. Note that division and subtraction
can be viewed as root extractions of linear polynomials. For more details on computing with algebraic
numbers, see for instance [9,38].

3.2. Algebraic problems

Our example of algebraic numbers is felicitous 6 because almost all contemporary problems in com-
putational geometry can be computed exactly, via a reduction to exact algebraic number computations.
Of course, it must be assumed that the inputs to a problem are algebraic numbers. We informally call
such problems algebraic. We can be slightly more precise, using Tarski's language which is the first
order language of the real closed fields. Briefly, a predicate P (x l , . . . , x~) in this language may be
assumed to have the form

Q lylQ2y2"" QkYk [M(yI,..., Yk, Xl,..., Xn)],
where the Qi's are quantifiers (V or 3) and M is a Boolean combination of polynomial inequalities of
the type P (Y l , . . . , Yk, x l, . . . , xn) = 0 or P (Y l , . . . , Yk, x l , . . . , Xn) > O. Here xi, yj are real variables.
A semi-algebraic is the set definable by such a Tarski predicate. An algebraic decision problem is
given by a sequence of Tarski predicates,

~ 1 , ~ 2 , . - • , (1)

where ~On is a predicate on the appropriate number of variables for describing an input instance of "size
n". For instance, if the input instance are points in d-space, then there are dn real variables for inputs
of size n. To formulate algebraic construction problems, first assume that the output size is a function
of the input size. Then such a problem is again given by the sequence (1) where each ~n involves both
the input and output variables. In case the output size is not a function of the input size, we replace CPn
by a set of predicates, one for each output size. To state complexity results for algebraic problems, we
need to place suitable complexity restrictions on the sequence (1); for instance, that they be constructed
in logarithmic space. This definition of algebraic problems is simple but serves our purposes v.

6 We do not know of any counterexample in the standard computational geometry literature. No doubt, as the field expands,
we will see some exceptions.

7 A less artificial way to formulate problems in natural domains of computation is to introduce "object logic" to represent
the natural objects (hyperplanes, points, segments, etc.). This is basically a typed logic with functions to extract the real

10 C.-K. Yap / Computational Geometry 7 (1997) 3-23

Algebraic problems are essentially solved by reduction to two related general results: algebraic
decision problems can be solved using a decision procedure for Tarski's language, and algebraic
construction problems can be reduced to the construction of suitable algebraic cell complexes. The
cylindrical cell decomposition of Collins [8] is the most notable method for constructing cell com-
plexes, and it also solves the decision problem. The general upper bound for both these problems has
seen great progress in recent years, and lead us to the following important metaresult: most problems
in computational geometry can be computed exactly in a single-exponential space complexity. The su-
perpolynomial complexity is inevitable because some of these problems are provably intractable--by
a reduction from the decision theory of real addition (which Fischer and Rabin [15] have shown to be
nondeterministic exponential-time hard).

Let us illustrate the above by considering three problems in Ra:
(i) Euclidean minimum spanning tree (EMST): given a set of points in R a, find the minimum

spanning tree connecting these points.
(ii) Euclidean traveling salesman problem (ETSP): given a set of points in R a, find a tour of these

points of minimum length.
(iii) Shortest path amidst polyhedral obstacles (ESP): given a set E of polyhedral obstacles and points

s, t, find the shortest path from s to t which avoids E.
It is not hard to see that the first two problems can be reduced to determining the signs of a finite

set of algebraic numbers. For instance, for ETSR there are finitely many tours and for any two tours
rrl, 7rz, it suffices to determine the sign of L(Trl) - L(Tr2), where L(Tr) is the Euclidean length of the
tour 7r. (A tour is a polygonal path rr = (so , . . . , Sm) where so = Sm and L(Tr) is the sum of the
Euclidean distances between consecutive points si-1 and s~.) So L(Tr) is a sum of square-roots and it
is not hard to determine the sign of L(rq) - L(Tr2) (but the obvious method takes double exponential
time). With a bit of care, we can do this in single exponential space, but not much better is known. In
the case of EMST, the argument 8 is even simpler: because of the matroid properties of forests, the
EMST problem can be reduced to comparing distances between pairs of points. But comparing two
such distances is trivial and can be done efficiently. So that EMST is exactly solvable in polynomial
time (as is well-known).

But let us argue the exact solvability of ETSP in another way: note that the length function
L(so, . . . , sin) is an algebraic function, meaning that there is a polynomial R(z, So,. . . , Sm) with
integer coefficients such that R(L(so, . . . , sin), so , . . . , sin) = 0 is valid. Hence, if the points si are
algebraic (meaning that its coordinates are algebraic numbers), then the length L(so, . . . , sin) is also
an algebraic number. In the case of ETSR we only need consider L(so, . . . , sin), where si are input
points. So L(so, . . . , sin) are algebraic. Since we know how to compute and compare algebraic num-
bers we again conclude that ETSP can be solved exactly. For shortest paths in the plane, a similar
remark is true. But for d > 2, it is not so clear that the problem can be exactly solvable. A first step
would be to show that the problem is algebraic. By definition, this means the set of shortest paths is a
semi-algebraic set; it need not imply that all shortest paths must be algebraic. This is because algebraic
sets of positive dimension contain non-algebraic points. This is not really a problem because Collin's

parameters characterizing the objects. For instance, we can have "point variables" P and functions to extract the coordinates
of P (in dot-notation, P.x, P.y, etc.).

8 We are thankful to Edelsbrunner for this remark.

C.-K. Yap / Computational Geometry 7 (1997) 3-23 11

decomposition procedure can return an algebraic point (called a "sample point") in any semi-algebraic
set. But in the case of ESP, every shortest path is algebraic. We show this in Appendix A.

Disguised algebraic problems. Some problems that apparently involve transcendental functions are
actually algebraic problems in disguise. For instance, in the so-called motion planning problem [30]
where the robot and the obstacles have piecewise algebraic boundaries, we seek the feasibility of an
obstacle-avoiding motion between two positions. Since the robot may rotate, we might generally expect
that the calculations would involve trigonometric functions. It turns out that we can exploit the algebraic
relations among trigonometric functions and avoid making transcendental decisions. For instance, we
view may sin x and cos x as two algebraic quantities connected by the relation sin 2 x + cos 2 x = 1.

3.3. Approximation problems

One approach to the intrinsically difficult algebraic problems is to modify the problem into an ap-
proximation problem. That is, we modify the problem to accept a prescribed amount of approximation
in its solution. It is not a self-contradiction to speak of "the exact solution of approximation problems".
It is best to clarify this via an example. Canny and Reif [5] have shown that shortest paths (ESP)
in 3-dimensions is NP-hard. The corresponding approximation problem can be defined to take inputs
as in the original problem, plus an additional e > 0 parameter. The output is to be a path that is at
most (1 + e) longer than the shortest path. On the other hand, Papadimitrou [25] has shown that the
approximation version of the problem is polynomial time in the size of the original input and in 1/c.
Algorithms that drive computer graphic displays can use such approximation algorithms since there
is only a bounded resolution in displays. The possibility of approximation problems is an indication
of the richness of what can come under the exact computation paradigm.

4. Rational bounded-depth problems

Since algebraic problems are intractable in general, we seek tractable subclasses. Many problems do
not require the full power of algebraic computation, but can be solved using only 9 the four arithmetic
operations but not root extraction. We call such problems rational, provided the inputs only involve
rational numbers. Linear programming and constructing hyperplane arrangements [12] are examples
of rational problems.

Another important subclass of algebraic problems comes from the concept of depth of derivation
(cf. [40]): relative to a set U of numbers, a number x is of depth 0 if x E U; x is of depth at most
d + 1 if x is obtained by one of the rational operations applied to numbers of depth at most d, or
by root extraction from a degree k polynomial where each coefficient of the polynomial has depth
at most d - k + 1. An algorithm has depth at most d if there is a finite set K of numbers (i.e., the
constants in the algorithm) such that on any input whose numerical parameters form the set X, all
intermediate values computed by the algorithm are of depth at most d relative to U = K U X.

9 Other simple but non-algebraic functions such as computing the sign of a number or taking the floor of a number may
be needed. In the context of the rational functions, these are reasonable operations.

12 C.-K. Yap / Computational Geometry 7 (1997) 3-23

A problem is bounded-depth if it can be solved by an exact algorithm of at most some fixed depth.
Suppose c~ is a number that arises in a bounded-depth computation. Then o~ satisfies a polynomial
P (X) whose degree m is bounded. If the input numbers have bit sizes at most s, then the coefficients
of the P (X) have O(s) bits. It is shown in [38] that if ~ satisfies

1
[~ - ~[< Kin----- ~

(for a suitable constant K), then applying Newton's approximation to ~ is guaranteed to converge
to ~. Using known techniques, we can obtain an initial approximation ~ satisfying this bound. But
subsequent refinements can use Newton's method which is known to be very efficient. This can be
the basis for using lazy evaluation techniques in exact computation.

A problem is rational bounded-depth (RBD, for short) if it can be solved by an algorithm of
bounded-depth that performs only rational operations. Of course, the (actual) depth of an algorithm
or problem is the least d such that it is of depth at most d. The class of RBD problems includes the
majority of problems in contemporary computational geometry (say, as treated in the standard texts
[12,28]). The following is an obvious but key property of RBD algorithms:

(P) There is a constant D such that if the input instance to the algorithm involves rational numbers of
size (at most) s, then the intermediate computation involves only rational numbers of size D s + O (l).

Here, the size of a rational number p/q is just the maximum of the bit sizes of the integers p and q.
To state a consequence of (P), let us define the algebraic complexity of an algorithm to be the

function T(n) where T(n) is the worst case number of arithmetic or root-extraction operations used
by the algorithm on inputs of size n. Now assume that the numbers in the inputs fit into the machine
word size. Then we can implement exact arithmetic by representing each integer using D words, and
hence:for any RBD algorithm with algebraic complexity T(n), there is a constant C > 0 such that the
algorithm can be implemented in time C . T(n) using exact computation. Note that T(n) is the usual
accounting function used for measuring complexity of geometric algorithms. So the theoretical time
bounds for RBD algorithms do reflect the running times of exact implementations of these algorithms.

Clearly, the above constant C depends on D. Using classical algorithms for arithmetic, we have
C = O(D2). The constants C and D are crucially important to our goal (G1). Note that we are outside
the realm of asymptotics when we discuss these constants. We can take D -- 2 4 if the RBD algorithm
has depth d. This 2 a bound can often be improved.

Example. Say an algorithm is of type Ak,b if its numerical computations consist only of repeated
evaluations of k × k determinants. Moreover, the determinants are evaluated on values of depth ~< b. It
is well known that convex hulls of point sets in dimensions k - 1 can be solved by such an algorithm
with b = 0. Such algorithms can also solve convex hulls in dimension k with b = 1. Again, it can
solve Voronoi diagrams in k - 1 dimensions, but with b = O(log k) which comes from the use of the
lifting map. The depth of the algorithm depends on how one implements the determinant computation.
For instance, using standard Gaussian elimination or the division-free version due to Bareiss (e.g., see
[38]), the depth is d = O(k 3) but we can take D = k (not 2 a) and C = O(k2).

Remark. As Sch6nhage [29] pointed out, root finding for bounded degree algebraic numbers has the
same asymptotic complexity as integer multiplication. So bounded-depth problems are, in principle,

C.-K. Yap / Computational Geometry 7 (1997) 3-23 13

not much harder than RBD problems. But the implicit constants may make such problems somewhat
less attractive than RBD.

4.1. Unbounded-depth problems

It is rare to find a problem in traditional computational geometry that is rational but not bounded-
depth. But imagine a solid polyhedral modeler in which we can do rational transformations of solids
and perform Boolean operations on solids. This is not a "computational problem" as usually under-
stood in algorithmics, with well-defined inputs and outputs. Each transformation and operation on
these solids increases the depth of derivation. It is not surprising that fixed-precision fails notoriously.
It would be interesting to show that this must be so (goal (G2)).

An artificial form of this iteration phenomenon which is useful for numerical experimentation was
invented by Dobkin and Silver [10]: it is based on repeated application of two operations (going-in,
going-out) on an initial pentagon, and on the fact that in the exact world, going-in and going-out are
inverses. Another variant is as follows: suppose that we have just points and lines, and we are allowed
to construct a new point P as intersection of two prior lines, P +-- intersect(L, L~); similarly, we
can construct a new line L through two prior points, L +-- span(P, P~). To see the kind of precision
needed, suppose we start out with a set of points in the plane, and in each iteration, we form all
possible lines from the points at the start of the iteration, followed by forming all possible lines from
these constructed lines. After i iterations, the coordinates of the points have size 4 i(n + 1) assuming
the initial data uses n-bit integers. Thus exponential behavior apparently occurs with iterated rational
operations, but we have no proof that ~ (c i) is necessary.

4.2. Some robust algorithms

There are some successes in achieving robust algorithms using fixed-precision. For instance, a sys-
tematic approach to robustness has been outlined by Sugihara and Iri in several papers (e.g., see
[35,34,36,37]). They propose to view geometric algorithms as constructing combinatorial structures
guided by numerical computations. If we can structure such algorithms so that no redundant combina-
torial decisions are made, then the algorithm can be made robust. More generally, we may say that the
philosophy is to give priority to combinatorial data over numerical data. The Sugihara-Iri approach has
been applied to several examples such as Delaunay triangulations and the gift-wrapping 3-dimensional
convex hull algorithms. "Robustness" in Sugihara-Iri approach means that certain (problem dependent)
combinatorial properties hold; this is distinct from the "stability" concept which roughly says that the
output is correct for some small perturbation of the input. It seems that stability is not easy to achieve
with their method [37]. On the other hand, Fortune [16] described two robust O(n 2) algorithms for
planar Delaunay triangulation which are stable.

It turns out that these success stories all fall under the RBD class. So we could solve these problems
exactly, at the cost of some multiplicative constant C. Why would one exchange a Cn log n exact
algorithm for a Crn e stable approximate algorithm for Delaunay triangulation problem? This depends
on C and C . It is believable that with fine-tuning, one can make this C competitive, even assuming
C ~ -~ 1. One of our goals is to achieve this using techniques that are general, rather than just special
to, say, Delaunay triangulations.

14 C.-K. Yap / Computational Geometry 7 (1997) 3-23

So the RBD class is ideal for comparing these two competing approaches: for fixed-precision, be-
cause that is where robust algorithms have been successfully constructed, and for exact computation,
because our observations suggest that it will be especially effective here. Unfortunately, the next two
sections suggest that the necessary software infrastructure for exact computation is not quite ready for
this exercise.

5. Reinventing BigNumbers

We now address research goal (G1), which seeks to reduce the cost of using exact computation. Just
as a floating-point package is the engine of most fixed-precision computation, a "BigNumber package"
is the basis of exact computation. Naturally this must be the first place to begin our investigation.

BigNumber packages, although widely available, have no hardware support (and barely a priority
for software support). A notable attempt to put large integer multiplication in hardware is reported in
[2,32] using the concept of programmable active memories. Their hardware multiplies 512-bit inte-
gers; when coupled to low-end workstations, it apparently outperforms the fastest computers of its day
(circa 1990). One should note that the motivation there is cryptography, which has different concerns
than us. Still, such a piece of hardware would go a long way towards making exact solution of RBD
problems competitive and practical. While this is surely an avenue for more work, we will focus on
software solutions below.

First, we can simply try to improve on traditional BigNumber packages. One attempt is reported by
Vuillemin, Herv6 and Serpette [31]. They suggested that any BigNumber package written in a high
level language stands to gain a factor of 4--10 when hand-crafted code is employed. This improvement
alone is insufficient in view of the anecdotes next.

Some anecdotes. The first reality we face when using BigNums is not encouraging: off-the-shelf use
of such packages incurs a tremendous overhead. For instance, in the case of exact integer computa-
tions, Fortune and Van Wyk [18] said that the geometric primitives in their program becomes slower
by a factor of 40-140. Their programs spend only between 20% and 50% of the running time on such
primitives. Note that the comparison is made against a floating-point implementation. This methodol-
ogy seems standard and we will keep it for this discussion. If exact rational number computations are
used off-the-shelf, Karasick, Lieber and Nackman [22] reported an initial slowdown factor of 10,000.
The good news is that in both cited papers, careful fine-tuning eventually reduces these factors to a
small constant factor (less than 10).

What is the significance of this "anecdotal number 10"? Note that a factor of 10 in the numerical
part of an algorithm would only slow the overall algorithm down by a factor of 3 if the algorithm
uses (say) 25% of its time in number crunching. For certain applications, such a small penalty tilts the
balance in favor of exact computation. To be sure, we do not claim that this penalty is tolerable for all
applications. In any case, comparing an exact algorithm against an approximate algorithm (assuming
that robustness has been achieved) which is thrice faster must come down to user priorities. But more
can be said. For the sake of argument, let us assume that the anecdotal number 10 is technology-
independent, that is, it will not change with improving hardware. In a world where machine speed
doubles every other year, a small technology-independent constant seems negligible, l0 Again, with the

H)Just wait a few years instead of doing any research. : -)

C.-K. Yap / Computational Geometry 7 (1997) 3-23 15

increasing commercial availability of medium-scale parallel computers (of a dozen nodes, say), small
technology-independent constants will be even less significant. 11 These remarks about technology-
independent gaps should be understood as follows: in many application areas, there is a lower threshold
on the acceptable computation speed. Once machine speeds exceed this threshold, other factors such
as robustness and user-friendliness become increasingly important. As we believe that such thresholds
are being crossed for a growing number of problems, the advantage of fixed-precision over exact
computation will correspondingly diminish.

It is not hard to identify some sources of inefficiency with standard BigNum packages. One pays a
large overhead for its generality; in particular, its space management facilities and possibly its pointer
structures. The heritage of "BigNumber packages" seems to come from computer algebra applications.
It is a reasonable assumption in computer algebra that we cannot predict the precision needed during a
computation. But we have indicated that in computational geometry, the opposite assumption usually
holds. One approach is to build a poor-man's BigNum package to exploit just this property, avoiding
the overhead of generality. In other words, we wish the constant factor C to approach 1 • D 2. In fact,
more sophisticated o(D 2) techniques seems possible with hand-coding for small D. Such a poor-man's
package may be useful for demonstration but the real goal is to achieve such performances in a general
package that can adapt to the application. As a concrete target, we want C' to approach the anecdotal
number "10" in some reasonably general setting.

6. Beyond BigNumbers

To fully exploit geometry, we must go beyond numbers. In this section, we outline some general
features of geometric computing that can be exploited. Each of these features could be incorporated
into a software package, built on top of BigNum (or any substitute number package). We envision a rich
environment where exact geometric computing is achieved with relative efficiency and convenience.
Perhaps this convenience, rather than achieving the ultimate efficiency, is key to encouraging more
exact computation.

Before leaving the subject of number packages, we mention that there are packages for multiprecision
arithmetic that seems to be very good in pure number crunching. A well-known system is from Brent
[3] (see also Bailey [1]). It is possible that some of these packages, properly retargeted for geometric
computing, may be useful as a basis for building other packages.

Although we have focused on general packages below, it is also very interesting to design packages
for subdomains of geometric computation. For instance, exact computation of determinants or their
signs would constitute an important software package--i t can be viewed as a subpackage of the
"BigExpression package" below. Clarkson [6] has shown an interesting approach for building such a
determinant sign evaluator.

6.1. BigFloats

It is often assumed that exact computation entails computing with integers or rationals. But we
have indicated that approximate number have a role. The theoretical basis for this is the concept of

~1 Just throw some $$$ at the problem instead of waiting. : - 0

16 C.-K. Yap / Computational Geometry 7 (1997) 3-23

root-separation bounds for algebraic numbers (see [11]). We need a package for computing of each
variable xi up to some prescribed precision Pi- In the usual fixed-precision, there is a fixed p for
the entire computation, but here Pi is localized to each xi. In general, Pi may change dynamically.
The basic principle of exact computation is preserved if we ensure that Pi is sufficient to make the
necessary error-free decisions. For instance, in problems where we only need the sign of a determinant,
not its value, some low precision computation may suffice.

So we want a number representation with arbitrarily specified precision. Moreover, it is desirable to
decouple this precision from the magnitude of the number. This decoupling is, of course, embodied in
the idea of floating numbers. To describe this, let us fix any integer d > 1 (the base), and any integer
in the range [0, d - 1] is called a digit. Usually d = 10 or a power of 2. For any integer f , let (f)d
(or, simply (f)) denote the number which in d-ary notation is sign(f)O.flf2.. , fk where f l f 2 " " fk
is the standard d-ary notation for f . Thus with d -- 10 and f = -123, we have (-123)10 = -0.123
and (-123)2 = -0.1111011. We call (f) the normalization of f (to base d). Afloating number is
a pair (e, f)a (or, simply (e, f)) of integers representing the number (f)a" de. Here f carries the
precision while e indicates the magnitude. Since e, f will be represented by BigNums, we call such
representations BigFloats. We are currently developing a BigFloat package [11].

Each BigFloat carries an error bound. Since BigFloats are approximations even for rational num-
bers (e.g., it cannot represent 1/(d + 1) exactly), errors are inevitable. Of course, a straightforward
implementation need not include any explicit error information, just that the last digit is uncertain.
This is reasonable when d = 2 but for large d, this loses too much information. We keep track of an
error that ranges between 1 and d - 1. Below, we describe another notion of error bound that is under
user-control.

6.2. Expression package

The basis of this package is the observation that individual arithmetic operations in geometric
algorithms are not completely random. Rather, they usually exhibit well-defined local structures. For
instance, a convex hull algorithm may perform all its arithmetic operations only in the context of
computing determinants, which has a well-defined structure. We want to exploit such local structures.

These structures are captured in suitable classes of "expressions", the most important of which is
the class of multivariate polynomials. We envision the following use of the package: before the actual
computation begins, the algorithm constructs the expressions that it will need. Often, only a single
expression, e.g., a determinant, is needed. Then it calls the package to preprocess each expression: the
result is, for lack of a better word, a "compiled expression". During the actual computation, we make
repeatedly calls to a functor BigEval to apply a compiled expression to specific arguments. In our work
on data degeneracies [40], we have already postulated the existence of such an evaluator (albeit with
additional properties to allow symbolic perturbation). A form of such an evaluator was implemented
by Fortune-Van Wyk [18]. With BigEval, the user never need to directly call the BigNumber package.

It is important to understand why the use of BigEval can be a major advance over BigNumber
package: traditionally, the algorithm calls the BigNumber package for each arithmetic operation. The
number package, having no idea how these calls are interrelated, must forgo any possible optimizations
across calls. In contrast, BigEval has opportunity for
• Preprocessing of the expression: compilation of expression, global analysis of the expression in-

cluding static error bounds, restructuring of the expression.

C.-K. Yap / Computational Geometry 7 (1997) 3-23 17

• Run-time tactics: floating point filter, dynamic error bounds, incremental and/or lazy evaluation
methods.

Many of these ideas are discussed in [18].
In the vanilla version of polynomial expressions, we have the usual arithmetic operators with

constant or variable operands. But there is opportunity to improve the evaluation process if we allow
generalizations of these operators: product operator I'Ii~l, summation operator ~-]~i~l, multiplication
by a constant, addition by a constant, and raising to a constant power. In the summation operator,
it may make sense to classify the arguments according to their signs (if they can be determined). It
seems that the design of this package can use many ideas from classic compiler technology.

Expression Variables. In general, we expect to evaluate expressions only up to some prescribed
precision, using BigFloats. Since our users (we may suppose) intend to compute exactly, we expect
to maintain some error bounds on these approximate values. This gives rise to the concept of an
expression variable (or E-variable for short). An E-variable is essentially an object with three associated
components: defining expression E (as above), an error bound ~ (below), and an approximate value ~.
The leaves of E can be explicit values or, recursively, E-variables. The (exact) value of the E-variable
is defined to be the value v(E) of E provided the expression, upon recursive expansion of E-variables
at the leaves of E, is ultimately well-founded in explicit values. The approximate value ~ is a BigFloat,
guaranteed to be approximate v(E) to within the error bound ~.

The error bound ~ is given by a pair of integers ~ = [a, r]. We say that a real number x is
approximated by another real number 3 with composite error [a, r] if either the absolute error Ix - 3 I
is at most 2 -a or the relative error I(x - 3)Ix I is at most 2 -r . This is denoted

x ~ 3 e r r [a , , -] .

The expression "3 err[a,r]" is be viewed as an approximation to some unknown x. Given any
3 err[a, r], we can essentially decide whether the approximation is in the absolute error regime or
the relative error regime. By decreasing the error bound (by increasing a and/or r) of an E-variable
we are in effect asking for a possible reevaluation of the expression. One motivation for using com-
posite error is that as the alternatives (relative or absolute errors) are less flexible: relative errors
are gracefully maintained when we multiply approximate numbers but not when we add. Similarly,
absolute errors are gracefully maintained during addition but not during multiplication.

6.3. Geometric objects

It is an obvious remark that geometric computation involves geometric objects which can be viewed
as aggregates of numbers with associated object operations. There ought to be packages to encapsulate
such object classes. The simplest of these objects are points and hyperplanes (both can be viewed
as types of vectors). The natural operations (intersection of hyperplanes, point-hyperplane incidence
predicates, etc.) on these objects can be implemented as part of the package. Beyond convenience,
the fact that the nature of these objects are known to the packages means more opportunity for
optimization.

Common representation of vectors. We give one example where dealing with vectors rather than
individual numbers can be exploited. This is through the use of homogeneous coordinates. Indeed,

18 C.-K. Yap / Computational Geometry 7 (1997) 3-23

(
Hence

rational numbers ("BigRat") can be viewed as homogeneous 2-vectors of integers. In general, each
n-vector (a l , . . . , an) of rational numbers can be represented as the (n + 1)-vector of integers

(m0 : m l : ' ' ' : 7/~n),

where ai = rni/mo and the colon separators suggest equivalence up to proportionality. So m0 is the
common denominator and we call this the common representation of rational n-vectors. We take the
bit size of a vector (in common representation or not) to be the maximum of the bit sizes of its entries.
Suppose Hi (i = 1,2,3) is the plane with equation aix + biy + ciz = di. We want to compute their
common intersection point (x, y, z) T, where

l

a2 b2 c2 " ~- d2 •

a3 b3 c3 d3

1
x = ~ ~ d~bj ck,

where A is the determinant of the system. We consider several scenarios:
• Assume that the coefficients of Hi are rational numbers of bit size at most s. Then we see that

~i,j,k dibjck has bit size at most 18s, and so x has bit size at most 36s.
• If the coefficients of Hi are integers of bit size at most s, then x has bit size at most 3s + log 2 6.
• If the coefficients are rational numbers but we first convert Hi, viewed as the vector (ai, bi, ci, di),

into the common representation (Ei : Ai : Bi : Ci : D~) where Ei is the common denominator, then
the integer Ai has bit size at most 4s. Ignoring the component E~, we can compute (z, y, z) whose
bit size is at most 12s + log 2 6.

In all three cases, the output point (z, y, z) can be in the common representation (U : X : Y : Z), for
no additional cost.

This analysis can be carried out in any dimension as well. It suggests that we should 12 try to convert
rational vectors into the common representation. To estimate the cost of this conversion, consider
the rational k-vector (a l , . . . , a k) of bit size s. Let ai = ni/di, Do = ~ i k l di and Di = Do/di
(i = 1 , . . . ,k). So one common representation is (Do : nlD1 : ".. : nkDk). We can compute Do
using k - 1 multiplications. Using a balanced binary tree T to compute Do, we can extend this to
the computation of D 1 , . . . , Dk: let each node u of the tree store a value V(u) equal to the product
of the the di's stored in leaves below u. These values are computed in a bottom-up fashion to obtain
Do. Now, in the top-down fashion, let each nonroot u compute the product W(u) := W(p)V(s)
where p, s (respectively) are the parent and sibling of node u. By definition, W(u) ---- 1 if u is the
root of T. Our desired values D~ are obtained as W(u) where the u are leaves. The total number of
multiplications to obtain the common representation from T is thus 2k - 2. Note that we have avoided
GCD computations in this conversion process, as this could be expensive. By the same token, we do
not assume that rational numbers are automatically in reduced form.

12 In computer graphics it has been suggested that homogeneous coordinates is mainly a mathematical device which, in
practice, is a needless extra dimension.

C.-K. Yap / Computational Geometry 7 (1997) 3-23 19

6.4. Heterogeneous representations

The traditional BigNums assume a homogeneous internal representation, usually the positional
notation. It is sometimes useful to allow other internal representations: for instance, the number ex-
pression 2 l°°° - 1 may be superior to an explicit binary notation using 999 bits. Of course, allowing
number expressions destroys the unique representation property and makes the equality testing or sign-
determination highly nontrivial. We must also provide conversion routines. This idea applies equally
to other domains such as BigFloats. This is not so much another package as the idea that there may
be many flavors of packages, and these should be tied together in a seamless way. Object oriented
languages can be effectively used here.

7. Summary

1. Exact computation is not much used despite the promise of many benefits. Perhaps the most
compelling reason for exact computation is that the fixed-precision alternative is even less hopeful if
we are serious about robustness.

2. We described a framework for exact geometric computation. General results related to Tarski's
decision problems imply that most problems in computational geometry can be solved exactly. We
identified the pervasive class of rational bounded-depth (RBD) problems for which exact computation
seems particularly promising. Known robust algorithms also fall under this class, so it is a good place
to compare the two approaches.

3. Exact computation embraces a broad range of computational tactics and includes approximation
problems. We must rethink the traditional BigNumber package to fit the needs of geometric compu-
tation. Beyond this, we need additional layers to be added on top of BigNumber. With such software
infrastructure, we believe more users will migrate to exact computation.

4. Although there ought to be hardware support for exact computation, this is unlikely in the near
future. Impetus for its development may have to come from successful software exploitation first.

5. It may be appropriate to end with a perspective of the floating-point culture. The debate over
the viability or nonviability of exact computation is an issue of comparative advantages. There is no
inherent reason against exact computation, only that the fixed-precision approach is more efficient. But
efficiency is not the only issue. How do we account for the historical ascendency of the floating-point
culture from 1950-1990 (see [27, p. 249ff])? After all, it started ignominously when Von Neumann
rejected floating-point numbers for being too complicated. If floating-point computation became less
exotic and understood, it is mainly due to the influence of Wilkinson and his influential error analysis of
floating-point calculations. But the importance of floating-point arithmetic derives from an era where
computing cycles is the main bottleneck of most applications. In the world of rapidly increasing
computing power, with no end in sight, a growing number of applications is no longer cycle-critical.
For such problems, other factors (robustness, adaptability, etc.) begin to weigh in more. These factors
seem to favor exact computation. We imagine many applications to move from being cycle-critical to
being noncycle-critical. To be sure, cycle-critical problems will always be around. It is possible that
just as the floating-point culture reached its current (apparently unassailable) ascendant position, new
technological advances may work to subvert it.

20 C.-K. Yap / Computational Geometry 7 (1997) 3-23

Acknowledgements

I would like to thank my colleague and collaborator Tom Dub6 for many discussions on these
issues. His insights into implementations and number packages have been invaluable. The comments
of Steven Fortune, Christopher Van Wyk, Herbert Edelsbrunner are greatfully acknowledged, having
helped in weeding out some wishful thinking.

Appendix A

We show that the set of solutions to the Euclidean shortest path (ESP) problem is a finite semial-
gebraic set. In particular, this shows that every shortest path is algebraic.

Initially, let us fix the lines L I , . . . , Lk in I~ d and points s, t ERa. By an (s, L l , . . . , Lk, t)-path we
mean a polygonal path 7r = (so, 8 1 , - . • , 8 k + l) from s = so to t = sk+l such that si C Li (i = 1 , . . . , k).
The only restriction we have on L l , . . . , Lk is that L i ¢ Li+l for i = 1, . . . , k - 1. In our application,
Li and Li+l may not be skew and possibly Li = Lj provided li - Jl > 1.

We make each line Li directed by picking an arbitrary vector ui parallel to Li and let 13 the angles
o f incidence and reflection at si to be ai = Z(ui , si - si-1) and fli = g(u i , Si+l - si) (respectively).
The angle (~i is undefined if si = si-1 and similarly for fli. The following is well-known (cf. [33,
Lemma 3.1]):

(Snell's law) I f 7r is a shortest path and (~i, fli are defined ~then (~ ~- /3i.

Let / C_ ~1 , . . . , k} and consider the predicate 4) i (8 1 , . . . , 8k) given by

k
A (si Li)/ A (si = 8i+1 v = 8i -1) A =
i=1 iEI i([_I

[The symbol " / ~ " denotes the "anadic logical-and", used analogously to the summation ~ i ~ / x i
notation.] It is easy to rewrite 4)/as a Tarski predicate involving kd real variables (s, t, L 1 , . . . , Lk are
held constant).

Lemma 1. I f 4)1 is satisfiable then it has a unique solution.

Proof. Suppose S l , . . . , sk is a solution. Then st is uniquely determined whenever e E I. It remains
to consider g ~ I. It is enough to consider a maximal subsequence si, s i + l , . . . , Sj- l , sj such that
{i + 1,i + 2 , . . . , j - 1} fq I = 0. Then s~,sj is uniquely determined. To see that each st (i < ~ < j)
is also uniquely determined, we may proceed as in [33, Lemma 3.3]. Basically their argument is valid
in any dimension provided ae, fie are well-defined). []

Let 4)L, L k (S l , . . . , sk) be the disjunction of 4)z(s l , . . . , sk), ranging over all I c_ { 1 , . . . , k). It is
not hard to see that every shortest path (s, L1 , . . . , Lk, t)-path satisfies 4)L1 Lk. So far, we have not
taken into account the obstacles.

13 For nonzero vectors u, v E R d, we define Z(u, v) := cos-l((u, v)/llull" Ilvll), where (u, v) denotes the scalar product
and Ilul[the Euclidean length.

C.-K. Yap / Computational Geometry 7 (1997) 3-23 21

Now we fix the input to ESP, namely, s, t E R d and a set E of polyhedral obstacles. We can think
of E as a union of simplices where the simplices are given explicitly. If S1, • . . , Sk are edges in E, an
(8, S 1 , . . . , Sk, t)-path is any path (s, 8 1 , . . . , 8k, t) where si C Si. In analogy to Cf)LI,...,L k above, we
can construct a Tarski predicate q~st,...,sk (S l , . . . , sk) defining a finite set of (s, S l , . . . , S/c, t)-paths. It
is easy to conclude from Lemma 1 that ~Sl,...,Sk (S l , . . . , Sk) has only finitely many solutions, provided
Si, Si÷l are non-collinear (i = 1 , . . . , k - 1). If we ignore obstacles, then all shortest (s, $ 1 , . . . , Sk, t)-
paths will be included in this finite set.

To account for the obstacles, we write a Tarski predicate FREE(s0, Sl) that asserts that the path
segment (so, Sl) avoids the relative interior of the polyhedral obstacles E. Also let F R E E (s l , . . . , sk)
be the conjunction of FREE(si_I, si) for i = 1 , . . . , k + 1 where s = so, t = Sk+l.

Define PATHk(s l , . . . , sk) to be disjunction of ~&,...,sk (s l , . . . , sk)'s, varying over all S1, . . . , Sk.
Although we do not know the number k of intermediate edges that a shortest path goes through, we
can easily bound k by the total number n of edges in the obstacles. Let

n

PATH(sl , . . . , sn) := ~v / (PATHk(sl , . . . ,s/c)A sk = sk+l sn).
k=0

Thus, there is again only a finite set of solutions to PATH(s l , . . . , sn), and all shortest paths that avoid
obstacles is among this set.

Let D(s l , . . . ,sk) denotes the Euclidean length of the path (s, S l , . . . , sk, t). The assertion "z =
D (s l , . . . , sk)" can be written as the Tarski formula

(V v o , . . . , vk) v, = Ilsi+t - sill 2 A v~ /> 0) . ~ .z = ~ vi • (2)
i=0

Notice that we can as well replace the universal quantifiers in (2) by existential quantifiers. Finally
the Tarski predicate SHORTEST(s l , . . . , sn) that asserts that (s, S l , . . . , sm t) is a shortest path that
avoids E is given by

P A T H (s l , . . . , Sn) A F R E E (s l , . . . , sn)A
(Vs~, Jn) [PATH(s'l,.. s' , . . s' • " , ", n) A F R E E (s ~ , ' " , s ~) ~ D (s l .,Sn) ~ D (s ' I , . . . , n)]"

The result that the set of shortest paths is a finite semi-algebraic set follows from the following lemma.

Lemma 2. S H O R T E S T (s l , . . . , Sn) has finitely many solutions and represents the set of all shortest
paths from s to t avoiding obstacles E.

This construction yields other information: since PATH(s l , . . . , sn) is quantifier-free, and (2) uses
universal quantifiers only, we see that SHORTEST(s l , . . . , sn) is a universal formula.

References

[1] D.H. Bailey, MPFUN: a portable high performance multiprecision package, Technical Report RNR-90-022,
NASA Ames Research Center, 1990.

[2] P. Bertin, D. Roncin and J. Vuillemin, Introduction to programmable active memories, Research Report 3,
Digital Paris Research Laboratory, June, 1989.

22 C.-K. Yap / Computational Geometry 7 (1997) 3-23

[3] R.E Brent, A Fortran multiple-precision arithmetic package, ACM Trans. Math. Software 4 (1978) 57-70.
[4] J. Canny, Some algebraic and geometric configurations in PSPACE, in: Proc. 20th ACM Symp. Theory

Comput. (1988) 460-467.
[5] J. Canny and J.H. Reif, New lower bound techniques for robot motion planning problems, IEEE Found.

Comput. Sci. 28 (1987) 49--60.
[6] K.L. Clarkson, Safe and effective determinant evaluation, IEEE Found. Comput. Sci. 33 (1992) 387-395.
[7] C.W. Clenshaw, F.W.J. Olver and P.R. Turner, Level-index arithmetic: an introductory survey, in: P.R.

Turner, ed., Numerical Analysis and Parallel Processing, Lecture Notes in Mathematics 1397 (Springer,
Berlin, 1987) 95-168.

[8] G.E. Collins, Quantifier elimination for real closed fields by cylindrical algebraic decomposition, in: 2nd
GI Conf. on Automata Theory and Formal Languages, Lecture Notes in Computer Science 33 (Springer,
Berlin, 1975) 134-183.

[9] J.H. Davenport, Y. Siret and E. Tournier, Computer Algebra: Systems and Algorithms for Algebraic
Computation (Academic Press, New York, 1988).

[10] D. Dobkin and D. Silver, Recipes for geometry and numerical analysis, I: an empirical study, ACM Symp.
Comput. Geom. 4 (1988) 93-105.

[11] T. Dub6 and C. Yap, A basis for implementing exact geometric algorithms, September, 1993, Extended
Abstract.

[12] H. Edelsbrunner, Algorithms in Combinatorial Geometry (Springer, Berlin, 1987).
[13] H. Edelsbrunner and E.P. Mticke, Simulation of simplicity: a technique to cope with degenerate cases in

geometric algorithms, ACM Symp. Comput. Geom. 4 (1988) 118-133.
[14] A. Feldstein and P.R. Turner, Overflow, underflow, and severe loss of significance in floating-point addition

and subtraction, IMA J. Numer. Anal. 6 (1986) 241-251.
[15] M.J. Fischer and M.O. Rabin, Superexponential complexity of presburger arithmetic, in: R.M. Karp, ed.,

Complexity of Computations, Vol. 7 (1974), Proceedings SIAM-AMS Symp. on Applied Mathematics.
[16] S. Fortune, Numerical stability of algorithms for 2-d Delaunay triangulations and Voronoi diagrams, in:

Proc. 8th ACM Symp. Comput. Geom. (1992) 83-92.
[17] S. Fortune, Progress in Computational Geometry, in: R. Martin, ed., Information Geometers, 1993, Chapter 3,

81-127.
[18] S. Fortune and C. van Wyk, Efficient exact arithmetic for computational geometry, ACM Symp. Comput.

Geom. 9 (1993) 163-172.
[19] C.M. Hoffman, Geometric and Solid Modeling: An Introduction (Morgan Kaufmann, San Mateo, 1989).
[20] T.E. Hull, A. Abraham, M.S. Cohen, A.EX. Curley, C.B. Hall, D.A. Penny and J.T.M. Sawchuk, Numerical

Turing, ACM SIGNUM Newsletter 20(3) (July 1985) 26-34.
[21] T.E. Hull, M.S. Cohen, J.T.M. Sawchuk and D.B. Wortman, Exception handling in scientific computing,

ACM Trans. Math. Software 14(3) (1988) 201-217.
[22] M. Karasick, D. Lieber and L.R. Nackman, Efficient Delaunay triangulation using rational arithmetic, ACM

Trans. Graphics 10 (1991) 71-91.
[23] V. Milenkovic, Robust polygon modeling, Computer-Aided Design, to appear, fall 1993. (Special issue on

Uncertainties in Geometric Computations.)
[24] V. Milenkovic and L. Nackman, Finding compact coordinate representations for polygons and polyhedra,

ACM Symp. Comput. Geom. 6 (1990) 244-252.
[25] C.H. Papadimitriou, An algorithm for shortest-path motion in three dimensions, Inform. Process. Lett. 20

(1985) 259-263.
[26] D.A. Patterson and J.L. Hennessy, Computer Architecture: A Quantitative Approach (Morgan Kaufmann,

San Mateo, CA, 1990) (with an appendix on Computer Arithmetic by D. Goldberg).

C.-K. Yap / Computational Geometry 7 (1997) 3-23 23

[27] D.A. Patterson and J.L. Hennessy, Computer Organization and Design: The Hardware/Software Interface
(Morgan Kaufmann, San Mateo, CA, 1994).

[28] EP. Preparata and M.I. Shamos, Computational Geometry (Springer, New York, 1985).
[29] A. Schrnhage, The fundamental theorem of algebra in terms of computational complexity (1985).
[30] J.T. Schwartz and M. Sharir, On the piano movers' problem: II. General techniques for computing topological

properties of real algebraic manifolds, Adv. Appl. Math. 4 (1983) 298-351.
[31] B. Serpette, J. Vuillemin and J.C. Herv6, BigNum: a portable and efficient package for arbitrary-precision

arithmetic, Research Report 2, Digital Paris Research Laboratory, May 1989.
[32] M. Shand, P. Bertin and J. Vuillemin, Hardware speedups in long integer multiplication, 2nd Annual ACM

Symposium on Parallel Algorithms and Architectures, Crete, 1990.
[33] M. Sharir and A. Schorr, On shortest paths in polyhedral spaces, SIAM J. Comput. 15 (1986) 193-215.
[34] K. Sugihara and M. Iri, Two design principles of geometric algorithms in finite precision arithmetic, Appl.

Math. Lett. 2 (1989) 203-206.
[35] K. Sugihara and M. Iri, Geometric algorithms in finite-precision arithmetic, Research Memorandum RMI

88-10, Dept. of Math. Engineering and Instrumentation Physics, Faculty of Engineering, University of
Tokyo, September, 1988; 13th International Symposium on Mathematical Programming, Tokyo (29 August-
2 September 1988).

[36] K. Sugihara and M. Iri, A numerically stable method for Voronoi diagram construction, Proc. 1988 Fall
Conference of the Operations Research Society of Japan, Tokyo (28-29 September 1988) 20-21.

[37] K. Sugihara, Robust gift-wrapping for the three-dimensional convex hull, J. Comput. System Sci., 1993, to
appear.

[38] C.K. Yap, Fundamental Problems in Algorithmic Algebra (Princeton University Press, Princeton, NJ), to
appear. Available on request from author and from the URL ftp://cs.nyu.edu/pub/local/yap/Algebra.

[39] C.K. Yap, A geometric consistency theorem for a symbolic perturbation scheme, J. Comput. System Sci.
40(1) (1990) 2-18.

[40] C.K. Yap, Symbolic treatment of geometric degeneracies, J. Symbolic Comput. 10 (1990) 349-370; Proc.
International IFIPS Conference on System Modelling and Optimization, Tokyo (1987), Lecture Notes in
Control and Information Science 113 348-358.

[41] J. Yu, Exact arithmetic solid modeling, Ph.D. dissertation, Department of Computer Science, Purdue
University, West Lafayette, IN 47907, June 1992; Technical Report No. CSD-TR-92-037.

