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Fibre orientation is measured from polished sections of the unidirectional plies of two industrial CFRP
components made by resin transfer moulding (RTM) or prepreg/vacuum consolidation. The image anal-
ysis technique described by Creighton et al. [Composites: Part A 2001; 32: 221–229] is used to determine
the fibre orientation over typically 5 � 5 mm sections. The standard deviation in fibre orientation angle is
in the range 0.6–1.8�, being smallest for in-plane waviness of the prepreg component. The length and
width of the waviness region along and transverse to the fibres is characterised using autocorrelation.
The length is in the range 1.1–4.4 mm, being significantly greater in the prepreg than in the RTM compo-
nent. The width is in the range 0.37–1.30 mm and is broadly similar across the sample types. It is dem-
onstrated that the image analysis method can also be applied to X-ray images, giving good agreement
with results from the polished prepreg samples.

� 2012 Elsevier Ltd. Open access under CC BY license.
1. Introduction

Compressive strength is an important property of fibre rein-
forced polymer matrix composites, but it is difficult to control
and predict. There are various competing mechanisms of compres-
sive failure, as reviewed by several authors, e.g. [1], but for stan-
dard engineering composites the governing failure mechanism is
generally agreed to be plastic microbuckling. Argon [2], observing
that fibre composites have regions of fibre misalignment, derived a
simple expression for the compressive strength rc of unnotched
material as rc ¼ k=�/ where k is the in-plane shear yield stress of
the composite and �/ is the initial misalignment angle of the uni-
formly misaligned fibres. This formula illustrates the critical role
that fibre misalignment plays in determining compressive strength
of fibre composites.

The size of the region of fibre misalignment also affects the
compressive strength. Fibre bending stiffness causes an increase
in compressive strength for small defects, but is negligible once
the wavelength is greater than around 200 times the fibre
diameter [3]. Lemanski and Sutcliffe [4] have shown that the
compressive strength is sensitive to the ratio of the width of the
wavy region to the width of a plate of finite size. Hence the spatial
distribution of fibre orientation is also important for understanding
and modelling compressive strength of fibre composites.

A variety of techniques have been developed to measure fibre
waviness. Yurgatis [5] described a sectioning method, using the
elliptical cross section of fibres cut on an oblique plane, to estimate
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fibre orientation. An automated version of this method has been
used to measure large numbers of fibres with misalignments great-
er than 40� [6]. This method has the advantage of being able to
measure orientation in two planes simultaneously, but relies on
accurate cross-sectional geometry. More recently X-ray computed
tomography has been used to measure fibre orientation. Salaberger
et al. [7] measured the orientation of glass fibres in a polypropyl-
ene matrix, showing that the quality of the results depends on
the algorithms used to derive the fibre orientation. Requena et al.
[8] use synchrotron micro-tomography to image carbon fibre rein-
forced metal and polymer matrix composites. A series of image
analysis steps is used to track the trajectory of individual fibres.
The method is effective at measuring the three-dimensional fibre
orientation field, although limited by the resources needed for such
imaging and the relatively small volumes that can be measured.
Creighton et al. [9] proposed the multiple field image analysis
(MFIA) method to analyse relatively low-resolution micrographs
of planes sectioned parallel to the nominal fibre direction. The
standard deviation in the misalignment angle of prepreg, in a pre-
liminary study, was found to be 0.7� [10]. An alternative image
analysis algorithm based on Fourier analysis was developed by
Kratmann et al. [11] and found to give an accuracy for the mean fi-
bre angle of better than 0.2�. The technique has been used to ana-
lyse prepreg and pultruded samples [12]. Changes in pultrusion
details reduced the standard deviation in the fibre misalignment
angle from 1.3� to 0.9�. While the above techniques provide meth-
odologies to measure fibre waviness, the methods have only been
systematically applied to pultruded samples or a limited range of
laboratory pre-preg samples. Wang et al. [13] present measure-
ments of tow-level misalignment in an industrial component. Their
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Fig. 1. Orientation of sections within samples.
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measurements relate to a specific defect associated with a nearby
ply drop and a lay-up defect in an adjacent ply, so is representative
of defects rather than a normal part of the sample. The paucity of
data for real components has hindered model development and
our understanding of the role of fibre waviness in compressive
strength in industrial structures.

While knowledge of spatial variations in fibre misalignment are
critically important, there is a lack of systematic measurement of
the size of misaligned regions. Kyriakides et al. [14] observed using
an optical microscope that the wavelength of fibre misalignment in
APC-2/AS4 composites ranged between 2.1 and 5.6 mm. Clarke
et al. [15,16] applied confocal laser-scanning microscopy to mea-
sure fibre waviness in a glass fibre-reinforced epoxy. They found,
in preliminary results, wavelengths in the fibre direction typically
within the range of 0.5–4 mm. This range of wavelengths was in
good agreement with that observed by Wisnom [17] for carbon fi-
bre composites. Potter et al. [18] observed a regular and systematic
waviness in carbon fibre prepreg with a mean misalignment angle
of 3.8� and a mean wavelength of 3 mm. Finally Liu et al. [10] found
from spectral analysis that wavelengths of the order of a few
100 lm were predominant in CFRP material made from prepreg.

The theoretical work described above demonstrates the impor-
tance of both the angle and the spatial variation of fibre misalign-
ment for compressive strength of long fibre composites. While
there have been a number of studies measuring the misalignment
angle of laboratory samples, relatively little research has character-
ised the spatial variation of fibre misalignment. Moreover the mea-
surements have been almost entirely for well controlled laboratory
samples which may not be typical of actual components. This
study adopts the MFIA method for measurement of fibre orienta-
tion, with relatively minor extensions to increase efficiency. The
method is used in two novel ways; as applied to industrial compo-
nents and as a means to characterise both the misalignment angle
and the spatial distribution of misalignment in fibre composite
samples. Moreover we demonstrate that the analysis method, up
to now applied to polished sections, can also be used with X-ray
images.
(a) (b) 
2. Sample details

Two industrial components with standard lay-ups and manu-
facturing routes were provided by our collaborators. Both compo-
nents had a predominantly 0� lay-up of unidirectional carbon
fibres reinforced with epoxy, although other layers were present.
One component was made from prepreg, consolidated under vac-
uum. The other was laid up as a dry preform and then resin trans-
fer moulded (RTM). These are referred to as the ‘prepreg’ and ‘RTM’
components. Samples were taken from two representative loca-
tions on the two components. Both components had a slight curva-
ture with in-plane dimensions significantly larger than the
thickness, which was between 5 and 10 mm for the RTM compo-
nent and between 10 and 30 mm for the prepreg component.
in-plane 
3. Imaging methodology

3.1. Orientation of sections

Section planes parallel and perpendicular to the surface of the
component were used to measure in-plane and out-of-plane fibre
waviness, as illustrated in Fig. 1, with corresponding in-plane
and out-of-plane waviness misalignment angles /. In all cases
1 Although non-classical formulae should strictly be used to analyse the mean and
standard deviation of angles [19], with the rather small range of angles in this study
the classical formulae will give an error which is significantly less than the
uncertainty in the measurements themselves.

out-of-
plane longitudinal 

Fig. 2. X-ray data for prepreg specimen; (a) 3D data and (b) extraction of
perpendicular slices.
the zero direction for fibre orientation was taken as the mean fibre
orientation angle in a section. The fibre angle varied as a function
of position, and a prime is used to denote the standard deviation
of the angle1. A characteristic length l and width w for the waviness
regions is also determined independently on the in-plane and out-
of-plane sections, as illustrated schematically in Fig. 1.
3.2. Polished sections

Samples cut from the components were progressively polished,
with a final polish using 3200 grit paper. Images were obtained
using an Olympus BX51 optical microscope; the magnification
was such that the pixel side length was 1.51 lm, giving adequate
resolution to identify individual fibres. The section planes were
nominally parallel to the fibres but there was inevitably some
angular offset between these planes and the fibres, so that the fi-
bres appeared as very elongated ellipses. Multiple images were ta-
ken using a motorised stage and stitched together using post-
processing software [20], to give areas of typically around
5 � 5 mm. In total 16 analysis areas were measured, spanning
the two specimens and both orientations. For the thicker prepreg
sample the analysis area was predominantly 0� fibres. For the thin-
ner RTM component the ply block thickness varied from a fraction
of a millimetre to several millimetres, so that the regions of 0�
material in the out-of-plane sections of this part necessarily cov-
ered a smaller area.
3.3. X-ray imaging

Micro-CT X-ray imaging was undertaken using a 225 kV Nikon/
Metris HMX on a sample cut from the prepreg component. The
imaging volume, obtained by concatenating images, was
4 � 7 � 12 mm3, with the longest dimension running along the fi-
bre direction. A beam energy of 65 kV and current of 770 lA was
used with a 2 s exposure. Two-dimensional radiographs were re-
corded at 2544 angular positions over 360� of rotation via a
2 � 2 k flat panel detector to give a voxel side length of 6.4 lm.
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Section planes in and out of the plane of the component were ex-
tracted from the 3D data at 100 lm intervals, as shown in Fig. 2.
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4. Image analysis methodology

This section presents details of the method used to calculate fi-
bre orientation and derive characteristic dimensions for the wavi-
ness features. A discussion of errors and sensitivity to analysis
parameters is given in Section 4.3.
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Fig. 4. Typical variation of correlation function with trial angle from a polished
micrograph section. When a large number of angles are used spurious perturbations
are introduced. Evaluation only at selected ‘nodes’ avoids these perturbations to
give a smooth function which is fitted at the minimum by a quadratic.
4.1. Estimate of fibre orientation angles

The MFIA method [9] is used to extract the fibre orientation from
images of the polished and X-ray samples. There are many methods
available for identification of orientation features, for example an
FFT approach [11] or Hough transforms [21]. However the MFIA
method was chosen as experience showed that this algorithm per-
forms well for the given application. The method works by calculat-
ing the variation in correlation between features in the image and a
‘trial’ fibre, as a function of orientation angle of the trial fibre, aver-
aged over a region of interest. The trial fibre orientation giving the
minimum variation in the correlation function identifies the fibre
angle within this region, as illustrated in Fig. 3. This bespoke
algorithm is particularly effective because the fibre and matrix fea-
tures defining the orientation are long thin bands of light and dark
with a more-or-less uniform intensity. Three relatively minor
changes were made to the original algorithm: (i) some optimisation
of the code was undertaken to speed up the original algorithm,
(ii) problems associated with alignment of fibres with the pixel
direction were addressed and (iii) a more accurate method of deter-
mining the minimum in correlation was used. Previous develop-
ments of the MFIA method were limited by the calculation time
[11], but the revised implementation was relatively rapid. The total
CPU time required to analyse a typical micrograph was about
10 min on an Intel Core i7 2.8 GHz processor.

The circles shown in Fig. 4 give a typical variation of correlation
function with trial angle. A quadratic function is fitted to the mea-
sured dependence of correlation function on orientation angle,
through the data points close to the minimum. The minimum in
this fit is used to determine the fibre orientation angle. There is a
particular issue where the image edges are aligned with the fibre
direction. Spurious peaks were seen in the correlation function
when a large number of trial fibre orientations were used to deter-
mine the correlation function, as shown in Fig. 4. This perturbation,
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Fig. 3. MFIA method used to identify fibre angle. The trial fibre orientation h gi
which was also noted in [9], would cause an error in estimating the
correct orientation angle. It was observed empirically that this er-
ror does not occur at angles equal to sin�1(i/N), where i is an inte-
ger and N is the number of pixels in the averaging region in the
fibre direction. Presumably the error is associated with the discrete
nature of the pixel representation of the image, perhaps arising
from interpolation of the image at an angle to the edges of the im-
age. By using only angles equal to sin�1(i/N) for the correlation
evaluation, this error can be effectively eliminated, as shown by
the circular markers at such ‘nodes’ plotted in Fig. 4. The effective-
ness of this approach was checked by confirming that the resulting
values of the correlation function averaged over many images did
not contain spurious peaks. However the preferred approach is to
ensure that fibres are not aligned along the pixel direction by
appropriate alignment of the specimen with respect to the camera
pixel orientation, so avoiding this problem.

Fig. 5 shows typical results for polished and X-ray images. The
regions of interest over which the orientation is averaged are given
by the inclined squares. An averaging area of side length 300 lm
was used. The length of the ‘trial fibre’ was 40 lm for the polished
samples and 64 lm for the X-ray image. Results are not sensitive to
the choice of this length; these values were chosen as being
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ving the minimum variation in the correlation identifies the fibre angle /.
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Fig. 5. Typical analyses of the fibre orientation angle: (a) polished micrograph sample and (b) X-ray image. The patch colour/grayscale value denotes the orientation angle in
degrees, as per the scale bar. The superimposed squares show the extent of the averaging regions, which have side lengths of 300 lm.
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Fig. 6. Example of analysis of a polished micrograph section, (a) polished section, (b) fibre orientation map of 0� plies (contour scale bar gives the orientation, relative to the
mean value, in degrees) and (c) interpolated gridded data, including correlation length and width of patch as estimated from the corresponding autocorrelation functions
shown in Fig. 7. All images are to same scale, as per the scale bar. Grey patches containing crosses mark regions without a valid estimate of the orientation.
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Fig. 7. Autocorrelation functions for data from Fig. 6 for a polished micrograph
sample used to identify the correlation length and width of waviness regions.
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comparable to the length of the features observed in the images
which ensured the robustness of the method. The slightly longer
length for the X-ray image, corresponding to 10 pixels, was used
on account of the larger pixel size for this data. The estimate of
the fibre orientation is given by the colour/greyscale value of the
patch within each box, as denoted by the scale bar. Estimates
match well with a visual check. The image analysis algorithm
was reasonably robust, even when the fibres were not so elongated
because the sectioning plane was at a significant angle to the fibres
or when the image not so sharp (e.g. because of polishing or focus-
sing difficulties).

Fig. 6b shows the results of the analysis on the polished sample
given in Fig. 6a. The orientation angle was evaluated at regions of
interest of side-length 300 lm spaced 300 lm apart, to give
around 300 measures of the fibre angle. In this case three sets of
images have been stitched together, so evaluations have been
avoided where images are joined. Regions in which a fibre orienta-
tion evaluation was not possible are indicated by grey patches and
superimposed crosses. Many of these points correspond to areas
outside the 0� plies, though there are some regions where the im-
age quality was not good enough or where the fibre orientation
was not well defined.
4.2. Characterisation of typical size of misaligned region

The method described above can extract the fibre orientation
angle as a function of position. In this section we extend the work
in [9] to estimate typical dimensions for the patches of misalign-
ment. Previous work has used a spectral approach to estimating
wavelengths [10]. Here we simplify the analysis to extract a single
measure for the characteristic length l along the fibre direction and
the width w transverse to the fibres of regions of misalignment.
The analysis was undertaken by first selecting as large a rectangu-
lar region as possible which contains continuous 0� material from
each section. The measured variation in misalignment angle data
over the area was conditioned using the matlab gridfit algorithm
[22], which generates a regular interpolating grid of values from
a randomly spaced set of data and avoids difficulties with missed
data points. Parameters were chosen to minimise smoothing of
the dataset. Fig. 6c shows an example of the resulting interpolated



Fig. 8. Assessment of accuracy of fibre orientation, (a) typical artificial fibre pattern and (b) artificial pattern with noise which is beginning to degrade the accuracy. As these
are artificial images there is no associated length scale.
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data taken from the central region of the polished sample of Fig. 6a.
A 2D autocorrelation function was then determined for the gridded
data and used to find the autocorrelation functions along and
transverse to the fibre direction. The autocorrelation function
R(x), scaled to equal one at zero lag x, is defined for a function
f(x) with mean l and variance r2 as

RðxÞ ¼ E½ðf ðx0Þ � lÞðf ðx0 þ xÞ � lÞ�
r2 ð1Þ

where E is the expected value operator. The correlation length is de-
fined here as the lag distance x where the autocorrelation function
equals 0.1, following standard practice in analysis of surface rough-
ness length scales [23]. The autocorrelation function is used in a
similar way to define a length scale in other fields, for example in
turbulent flows [24]. Autocorrelation functions for the misalign-
ment data given in Fig. 6 are plotted in Fig. 7. In this case the corre-
lation length and width of waviness are estimated as 0.58 and
1.21 mm, respectively. These lengths are included in Fig. 6c, illus-
trating how the correlation length provides a reasonable approxi-
mation of the size of the waviness regions.

4.3. Discussion of potential errors and sensitivity to analysis
parameters

There are three areas of error or uncertainty present in identifi-
cation of fibre orientation: errors arising from poor definition of
the orientation in the image, the accuracy of the algorithm itself
(a) 

Fig. 9. Effect of analysis area on orientation angle for RTM sample. (a) polished microgra
scale bar shown on the figure applies to all three images.
and uncertainty over how to choose an appropriate area over
which to average the fibre directions.
4.3.1. Poor definition of the orientation in the image
One of the advantages of the MFIA algorithm is that relatively

low resolution microscope images can be used to extract a fibre
orientation. Moreover it is not essential that the fibres are precisely
sectioned along their length as long as a preferred orientation can
be seen. However there comes a point at which the visual image no
longer provides sufficient detail to detect a fibre direction. It is
important with the automated approach to detect and exclude
spurious orientation estimates arising, for example, where there
are no 0� fibres, poorly polished regions or large non-fibre features
(e.g. voids). On the other hand, where such ‘missing data’ occur,
subsequent interpolation may miss real variations in misalignment
near defects, so that it is important to minimise such exclusions.
Hence the MFIA algorithm was modified to include three criteria
which were used to validate an angle measurement: (i) the reduc-
tion in correlation function associated with alignment of the trial
fibre and image features had to exceed a threshold value, typically
5% of the background value, (ii) a good fit was required between
the calculated variation of correlation function with angle and a
quadratic fit through the data near the minimum (typically the
standard deviation in the difference between the data and the fit
was less than 25% of the range of the correlation function), and
(iii) the average intensity within the region had to fall within a
specified range. A wide range was allowed for the last criterion,
(c) 

(b) 

2°0°-2°

1 mm 

ph section, (b) 150 lm averaging area side-length and (c) 300 lm side-length. The
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which was used to exclude in a simple way regions of the micro-
graph beyond the edge of the sample or plies which were not at
a 0� orientation. Values of these validation parameters were tuned
by comparison with visual examination for the particular type of
image used. These criteria provided a robust and automated way
of excluding regions which were obviously inappropriate, on closer
inspection, as not covering regions with well defined fibre orienta-
tions, while not affecting the measurement for good parts of the
image. Although the choice of these parameters was not critical,
nevertheless it was important to select reasonable values to avoid
spurious measurements. Alternative screening of appropriate parts
of the sample, for example using manual segmentation, could have
been used, although this would have been more cumbersome.

4.3.2. Accuracy of the algorithm
Visual spot-checks were made on the data to verify that the de-

tected orientation matched a reasonable ‘by eye’ estimate. To as-
sess the accuracy in an objective way, artificial fibre patterns
were created with thin elliptical shapes all orientated at 10� but
with random centre locations. Ten realisations were constructed,
see Fig. 8a for an example. Using the standard algorithm with a rel-
atively course interval between angle steps of 1�, the estimated an-
gle differed from the nominal value of 10� by at most 0.13� in any
of the 10 realisations. Introducing noise into the signal causes a sig-
nificant reduction in accuracy only when the image itself is seri-
ously degraded. For example the accuracy is still better than
0.17� for the image of Fig. 8b, which has random noise introduced
at every pixel, with the level of noise uniformly distributed in the
range ±194% of the difference between light and dark intensity lev-
els. With this level of noise the measures for determining whether
the angle estimate is valid are near the values used to reject
estimates.

4.3.3. Choosing the averaging area
To guide the choice of averaging area, it is noted that fibre wavi-

ness patches of size smaller than about 100 times the fibre diameter
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Fig. 10. Normalised histogram of fibre orientation angles, relative to the mean orientatio
out-of-plane RTM, (c) X-ray out-of-plane prepreg and (d) X-ray in-plane prepreg.
d are significantly strengthened by fibre bending and so not critical
to the strength. For the samples measured in this work, very local
perturbations in fibre waviness appears to be relatively minor, so
that it is appropriate to average over an area of side-length
150–600 lm, corresponding to 25–100d. The choice of averaging
area is then dictated by the minimum size that gives an accurate
estimate. Fig. 9 compares calculations of fibre orientation angle with
averaging area side-lengths of 150 and 300 lm. The overall pattern
of orientation is similar for the two analyses, but there seems to be
some local variations for the smaller averaging area which may be
unreliable. Moreover there are more data-points rejected as unreli-
able for the smaller sampling distance, as it becomes more difficult
to extract the orientation over a small area. The standard deviation
in the fibre orientation l, taking the mean of three prepreg
out-of-plane samples, equals 0.85�, 0.70� and 0.56� for averaging
area side-lengths of 150, 300 and 600 lm, respectively. There is a
significant decrease in /0 with increasing averaging area, as minor
changes within the sample area are averaged out. There is a similar
sensitivity of correlation length and width to sample area size. For
example the correlation length l, taking the mean of three prepreg
out-of-plane samples, equals 1.22, 1.57 and 1.96 mm for averaging
area side-lengths of 150, 300 and 600 lm, respectively. To give a
compromise of reliability while maintaining adequate spatial sensi-
tivity a side-length of 300 lm is chosen in the analysis.
5. Results

5.1. Polished sections

Fig. 10a and b shows typical normalised histograms of fibre ori-
entation angles on out-of-plane sections, relative to the mean ori-
entation, for prepreg and RTM samples. There is an approximately
normal distribution of angles which can be characterised by the
standard deviation /0 in the fibre orientation angle. Fig. 11a plots
/0 for the different samples, grouped by section orientation and
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n, for: (a) polished micrographs of out-of-plane prepreg, (b) polished micrographs of
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Fig. 11. Polished micrograph sample measurements: (a) standard deviation in fibre
orientation and (b) correlation length scales.
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component. Values are in the range 0.6–1.8�, i.e. similar to wavi-
ness data reported previously for carbon fibre composites
[5,9,10,12]. The mean values of the angle standard deviations /0

for the prepreg component are 1.12� and 0.70�, for in-plane and
out-of-plane sections, respectively. The corresponding values for
the RTM in-plane and out-of-plane sections are 1.37� and 1.63�,
respectively. The fibre mis-orientation angles for out-of-plane
waviness of the prepreg component are significantly smaller than
for the other sample measurements (significance at the 1% level
confirmed using a Student’s t-test). This probably reflects both dif-
ferences in the fabric geometry and factors associated with the
consolidation process.

Fig. 11b plots corresponding values of the correlation length l

and width w of the different samples. There is significant scatter
within a given category, part of which may be due to the fact that
the areas used for characterisation are relatively small compared
with these correlation lengths. The mean values of the correlation
length l for the prepreg component are 3.7 mm and 2.4 mm, for in-
plane and out-of-plane sections, respectively. Values for the RTM
in-plane and out-of-plane sections are 1.6 mm and 1.1 mm, though
in the later case there is only one data point rather than a mean as
ply blocks were too thin to make a reliable evaluation of l and w in
most of these cases. These lengths match reported values in the lit-
erature for the wavelengths of waviness in carbon fibre composites
[10,14–17]. Regions of waviness are significantly longer in the pre-
preg as compared with the RTM component (significance at the 5%
level was confirmed using a Student’s t-test, but results were not
significant at the 1% level). The nature of the manufacturing pro-
cess is presumably affecting these length scales. The width w of
the patches tends to be significantly smaller than the length (sig-
nificance at the 1% level confirmed using a Student’s t-test), rang-
ing from 0.37 to 1.30 mm, being broadly similar across the sample
types. The mean width, averaging over all sample types, is
0.73 mm.

5.2. X-ray images

Fig. 10c and d shows histograms of fibre orientations, relative to
the mean, from X-ray images of the prepreg sample. Again fibre an-
gles are approximately normally distributed. The standard devia-
tions of fibre orientation are 1.21� and 0.75� for in-plane and
out-of-plane misalignment, respectively. These estimates agree
well with values of 1.12� and 0.70� (in-plane and out-of-plane,
respectively) for the mean of the standard deviations from all the
corresponding polished samples.

An advantage of X-ray imaging is that in and out-of-plane mis-
alignment angles can be measured at the same location, c.f. the re-
sults of Requena et al. [8]. It might be expected that factors causing
high misalignment in one plane would lead to high misalignment
in another. However an insignificant Pearson’s correlation coeffi-
cient of 0.29 was observed between the misalignment angles in
the two fibre orientations at the same location. This lack of corre-
lation suggests that little extra information would be gained for
these samples by characterising the waviness in a 3D manner,
rather than using 2D slices from the images. However such a 3D
quantification might add useful additional information where the
quality of the sample imaging was relatively poor.
6. Conclusions

The method described by Creighton et al. [9] to measure fibre
misalignment in composite materials has been improved and ap-
plied to the unidirectional ply blocks of carbon fibre in two indus-
trial components. These were made either using resin transfer
moulding or prepreg/vacuum consolidation. Measurement of wav-
iness in the plane of the component and out-of-plane were under-
taken by appropriate sectioning, either of polished samples or
micro-CT X-ray images. Values for the standard deviation in fibre
orientation angle were in the range 0.6–1.8�. The fibre alignment
varied significantly less for in-plane waviness of the prepreg com-
ponent, compared with the other sample measurements. The mea-
surement technique of [9] has been extended using an
autocorrelation function approach to characterise the length and
width of the waviness region along and transverse to the fibres.
The length of the waviness patch is in the range 1.1–4.4 mm, being
significantly greater for the prepreg than the RTM component. The
width of the patches tend to be significantly smaller than the
length, ranging from 0.37 to 1.30 mm, being broadly similar across
the sample types. Measurements of waviness from the X-ray
images were in good agreement with the data from the polished
sections, confirming the effectiveness of the fibre orientation mea-
surement technique with X-ray images. The methods presented in
this paper to characterise the spatial distribution of fibre orienta-
tion could equally be applied to other measurement techniques,
either from polished micrographs [11] or X-ray imaging [7,8].
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