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We shall compare three constructions of Urysohn universal space, namely the original one by Urysohn, an unpublished
one by Hausdorff, and finally a general construction given by Katětov. We show that the idea of the Hausdorff’s construction
works for higher cardinals too, like the Katětov’s one—the main difference is that the former one gives a concrete description
of the space, which may be useful in some situations.

We shall not deal with some abstract constructions implying existence of Urysohn universal space like Jónsson classes or
Fraïssé limits.

1. Historical view

M. Fréchet defined metric spaces in 1905 (the term metric spaces comes from Hausdorff (1914)) and proved in [1] that
every separable metric space can be isometrically embedded into l∞ . He repeated the result in [2]. At the end of the latter
paper Fréchet asks if it is possible to have a separable space instead of l∞ . Before the paper was submitted (the date under
the paper is August 21, 1924), he informed about that question Aleksandrov and Urysohn (probably during summer 1924).

In about the middle of July 1924, both Aleksandrov and Urysohn visited Hausdorff in Bonn. Then they spent one week
by Brouwer and several days in Paris (without meeting any mathematician, they planned to stop by Fréchet on their way
back). At the end of July they came to Bourg de Batz (now called Batz-sur-Mer) in Bretagne. On August 3 they sent a letter
to Hausdorff where Urysohn announced a construction of a separable complete metric space containing isometrically any
other separable metric space:

. . . In dieser letzten Hinsicht ist es Urysohn gelungen einen (in Ihrem Sinne) vollständigen metrischen Raum mit
abzählbarer dichter Teilmenge, der einen jeden anderen separablen metrischen Raum isometrisch enthält und ausser-
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dem eine recht starke Homogenitätsbedingung füllt, zu konstruieren; letzterer besteht darin, dass man den ganzen Raum
(isometrisch) so auf sich selbst abbilden kann, dass dabei eine beliebige endliche Menge M in eine ebenfalls beliebige,
der Menge M kongruente Menge M1 übergeführt wird. Es lässt sich noch beweisen, dass dieser Raum der einzige voll-
ständige separable Raum ist, der diese beiden Eigenschaften (die Maximal- und die Homogenitätseigenschaft) besitzt;
man dürfte ihn als den “Universellen metrischen separablen Raum” bezeichnen.

The letter does not contain any detail of a construction (and does not mention Fréchet). Also, it seems that such a ques-
tion was not under discussion with Hausdorff any time before.

In Hausdorff’s heritage, several pages of unpublished notes were found concerning his own look at universal metric
separable spaces. Very probably, after reading the Urysohn’s result he started to construct a universal space by his own.

On the first page dated August 9, 1924, he reproved the Fréchet’s result on universality of l∞ (without mentioning
Fréchet). He notices that l∞ is not separable and adds a remark that Urysohn constructed a separable universal space.
The next page dated August 10, 1924, starts a construction of a universal metric separable space. Hausdorff proves that
his construction gives a separable metric space containing isometrically all separable metric spaces and starts to prove
homogeneity but did not finish it. On August 11, he writes in details about his procedure to Aleksandrov and Urysohn to
Bourg de Batz (see [9]) and asks for details of Urysohn’s construction. Although it is probable that Urysohn read the letter,
no reply came back (Urysohn died on August 17).

The next notes from the Hausdorff’s heritage have a comment middle of August (Urysohn † 17.8.1924)—see [3], where these
notes are published. They contain his previous construction (written in a more elegant way) and continue in proving the
homogeneity of his space. The proof has not been finished, but the remaining part is not difficult to complete (see the next
section).

The Urysohn universal space was announced in C. R. Acad. Paris in 1925 (séance 2.2.1925), [10]. The announcement
contains a sketch of the proof and other properties of the space, namely universality of spheres and example of 4-point
metric space that cannot be embedded isometrically into l2. All the details were published in Bulletin Sci. Math. in 1927
(with the same title as the announcement); the paper was prepared by Aleksandrov. The Hausdorff’s approach was not
mentioned and Hausdorff himself has not published it (and, probably, never returned back to the problem).

After more than 60 years, M. Katětov presented at the Prague Topological Symposium in 1986 his own construction of
universal metric spaces (not only separable ones).

For an infinite cardinal κ he defines a metric space X to be κ-homogeneous if every isometry between two subsets
of X of cardinalities less than κ can be extended to an isometry of X . Urysohn’s homogeneity coincides with Katětov’s
ω-homogeneity.

For an infinite cardinal κ he defines a metric space X to be κ-universal if every metric space of cardinality at most κ
can be embedded isometrically into X . When every metric space having weight at most κ can be embedded isometrically
into X , he calls X strongly κ-universal.

Some Katětov’s results:

(1) If κ = κ<κ > ω there exists exactly one (up to isometry) strongly κ-universal κ-homogeneous metric space of weight κ and that
space is complete.

(2) If κ < κ<κ then there exists no κ-universal κ-homogeneous space of weight κ .
(3) There exists a meager strongly ω-universal ω-homogeneous separable space.

The last result answers Urysohn’s question whether there exists a non-complete universal metric separable space that is
ω-homogeneous. Urysohn’s “universal” coincides with Katětov’s “strongly ω-universal”.

The Katětov’s approach was used, e.g., by V.V. Uspenskii for other deep and interesting results about Urysohn universal
space (see, e.g., [13,14] or [15] in this volume for other references).

2. Three constructions

2.1. Urysohn’s construction

This construction is published and full details can be found in [11] (it was republished in [12]). Nevertheless, we shall
briefly go through the construction because of completeness (and also because the original is not always accessible now).

Urysohn first constructs a countable space U0 having for distances rational numbers and containing isometric copies of
any other such space. The completion U of U0 is a universal separable space. We shall use the original notation; sometimes,
also in this issue, the space U0 is denoted by UQ .

To define a convenient metric on U0 = {a1,a2,a3, . . .}, he first orders finite subsets of positive rationals into a se-
quence {Q n} such that, except for the first member, the index n is larger than the cardinality of Q n . Every Q n has a
fixed order of its elements (say, for the next definition of metric, ρ1,ρ2, . . . , ρq). The metric is defined by induction, starting
with ρ(a1,a1) = 0. If all the distances ρ(ai,ak) are defined for i,k � n, the distance ρ(an+1,a j) equals either to ρ j (the jth
member of Q n) or to max{ρ(ai,ak); i,k � n}, depending whether the inequalities |ρi − ρk| � ρ(ai,ak) � ρi + ρk hold for all
i,k � n or not. The triangle inequality for ρ is proved by induction according its definition.
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The first case in the definition of the metric is important for the whole construction (the value of metric in the second
case is defined so that the triangle inequality trivially holds). If one takes a segment a1,a2, . . . ,an of U0 and positive rational
numbers μ1, . . . ,μn such that |μi − μ j | � ρ(ai,a j) � μi + μ j and the point am+1, where Q m = {μ1, . . . ,μn} (recall that
m > n) then ρ(am+1,ai) = μi for all i � n.

Now, it suffices to realize (it is not so simple but not too difficult) that any finite set ak1 , . . . ,akn in U0 and positive
rational numbers μk1 , . . . ,μkn such that |μki − μk j | � ρ(aki ,ak j ) � μki + μk j can be completed by “missing” numbers μp
to get the whole segment a1,a2, . . . ,akn satisfying the above inequalities.

It follows that U0 is a universal space for all countable metric spaces having rationals for values of their metrics.
The next step is to extend the previous procedure to the completion U of U0, which gives as a consequence that U is

universal for all separable metric spaces. In fact, the following result is proved, denoted by Urysohn as Theorem I:

Theorem I. For any finite subset x1, . . . , xn of U and positive real numbers α1, . . . ,αn such that |αi − α j | � ρ(xi, x j) � αi + α j one
can find y ∈ U such that ρ(y, xi) = αi for every i = 1, . . . ,n.

To prove that, Urysohn finds a1, . . . ,an ∈ U0 and rationals ν1, . . . , νn close to corresponding given points xi and num-
bers αi , and satisfying corresponding inequalities. By the previous construction, there is a point y1 ∈ U0 with ρ(ym,ai) = νi
and |ρ(y1, xi) − αi | < α/2 = min{αi}/2.

Now, Urysohn adds y1 to the set x1, . . . , xn and α/2 to α1, . . . ,αn and repeats the procedure (with the approximating
points a’s and numbers ν ’s in U0 closer to the corresponding points and numbers than before) to get a point y2 ∈ U0 with
|ρ(y2, xi) − αi | < ε/2 and ρ(y2, y1) < 3α/4.

The procedure results in a Cauchy sequence {ym} in U0 converging to a requested point y.
A slightly stronger version of Theorem I (namely that the completion of a metric space with the approximation one-point

extension property has the one-point extension property) was proved in [8].

2.2. Haudsorff’s construction

The Hausdorff’s construction has not been published (it will appear in collected work [3] of F. Hausdorff soon). So, we
shall provide some details here; more details can be found in the last section of this contribution.

Hausdorff first defines a set U consisting of symmetric square matrices (ai, j)i, j�n , n ∈ N, with zeros in diagonal, where
ai, j � 0 and ai, j +a j,k � ai,k for all i, j,k � n. Thus one takes a finite pseudometric space, orders its points as p1, . . . , pn and
defines ai, j as the distance between pi and p j .

Denote the above matrix as αn . For m � n we denote by αm the matrix generated in the above sense by p1, . . . , pm , i.e.,
a segment of αn . The distance between such matrices is defined by the equality d(αm,αn) = d(αn,αm) = am,n . It is trivial
that this distance satisfies triangle inequality on all segments of a given matrix from U .

The function d can be extended to a distance between any elements of U by induction:

Definition 1. Let αn, βm ∈ U and all the distances d(αn, βl), d(αk, βm) were defined for k < n, l < m. Then we define

d(αn, βm) = d(βm,αn) = max
{∣∣d(αn,αk) − d(βm,αk)

∣∣,
∣∣d(αn, βl) − d(βm, βl)

∣∣; k < n, l < m
}
.

Notice that if βm is a segment αm of αn , then this last definition of d(αn, βm) coincides with the former one.

Proposition 2. (U ,d) is a pseudometric space.

Proof. The proof of triangle inequality d(αn, βm) + d(βm, γp) � d(αn, γp) goes by induction on n + m + p (it is trivially true
for m = n = p = 1). Suppose that d(αn, γp) = |d(αn,αk) − d(γp,αk)| for some k < n. Then

d(αn, γp) �
∣∣d(αn,αk) − d(βm,αk)

∣∣ + ∣∣d(βm,αk) − d(γp,αk)
∣∣ � d(αn, βm) + d(βm, γp). �

Hausdorff identifies matrices having distance zero and denotes the resulting metric space of equivalent classes also by U .

Proposition 3. The metric space U is universal for all countable metric spaces.

Proof. If p1, p2, . . . is a countable metric space X , then the distance–matrices αn of the segments p1, p2, . . . , pn form a
subspace of U isometric to X . �

It follows easily by induction (on n + m) that d(αn, βm) is a continuous function of numbers in the matrices. Thus
matrices composed of rational numbers form a dense set in U (that assertion is just stated in the notes but, by my opinion,
it needs a little work).

Proposition 4. U is separable.
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As a consequence of previous assertions we have

Theorem 5. The completion V of U is a separable universal space for all separable metric spaces.

2.3. Katětov’s construction

This construction is published in [5] which is not widely available. Nevertheless, it is described in the paper by V.V. Us-
penskii in this volume and so, we shall mention an idea only.

Every nonempty metric space (S,d) determines a metric space E(S) = { f : S → R; | f (p) − f (q)| � d(p,q) � f (p) +
f (q) for every p,q ∈ S} endowed with the sup-metric. When one identifies p ∈ S with the function f (x) = d(x, p), one may
assume S ⊂ E(S).

If T is a subspace of S , then E(T ) embeds isometrically into E(S): every f ∈ E(T ) extends to f S ∈ E(S), f S (s) =
inf{d(s, t) + f (t); t ∈ T }. Thus we may consider E(T ) as a subspace of E(S) and define for cardinals κ > 1,

E(S, κ) =
⋃{

E(T ); T ⊂ S, 0 < |T | < κ
} ⊂ E(S)

and by induction, starting with S0 = S ,

Sα+1 = E
(

Sα,ω · |α|+)
, Sα =

⋃

β<α

Sβ,

the last case for limit α. Notice, that |Sα | � 2<α .
If κ = κ<κ then, for any metric space S with |S| � 2ω , Sκ is a strongly κ-universal space from the first of the Katětov’s

results quoted above. For κ = ω we obtain a Urysohn universal space.

3. Homogeneity

When we said that there were no other contributions to a construction of a universal space between 1924 and 1986, it
does not mean there were no papers dealing with properties of that space. Most of them concern homogeneity. Urysohn
universal space is ω-homogeneous (according to the Katětov’s terminology). Urysohn also showed that there are infinite
isometric subsets of his universal space such that the isometry cannot be extended to the whole space. The cardinality
of those subsets is 2ω (one subset is a sphere together with its center, the other is a subset of that sphere; now, the
complement (in U ) of the first set is not connected, the complement of the other is connected).

In 1953, Mrówka published an example of countable isometric subsets of Urysohn universal space such that the isometry
cannot be extended to an isometry of the whole space, [7].

Two years later, Huhunaišvili noted that the Urysohn’s example with uncountable sets M, N implies a countable case: it
suffices to take a countable dense subset A of M and its isometric image B in N , [4].

Huhunaišvili asks whether the isometry between closed countable subsets can be extended to the whole space. He
answers the question in the negative using the Urysohn’s approach:

Take a closed infinite ε-net {yn} in the sphere S(a,1), where ε < 1. The set A = {a} ∪ {yn} is isometric to a subset B of
S(a,1). This isometry cannot be extended to the whole space.

If one goes even further and requests the original isometry to be between compact countable sets, the answer is now in
the positive. In fact, the following result is proved in [4]: Any isometry between totally bounded subsets of the Urysohn complete
separable metric space can be extended to an isometry of the whole space.

For more examples of isometries non-extendible to the whole Urysohn space, see Melleray’s paper [6] in this volume.

3.1. Homogeneity of the Urysohn’s universal space

To extend an isometry ai � bi between two finite subsets a1, . . . ,an and b1, . . . ,bn of U to an isometry on U , it suffices
to extend isometrically both finite sets by a countable dense set {dn+1,dn+2, . . .}. Using Theorem I for xi = ai and αi =
d(dn+1,ai) one gets yn+1 ∈ U such that {ai, . . . ,an,dn+1} is isometric to {b1, . . . ,bn, yn+1}. Repeating the same process for
the new set {b1, . . . ,bn, yn+1} as the set of xi ’s, and distances of dn+1 to the points of this new set as αi ’s, one gets
a point zn+2 such that the sets {ai, . . . ,an,dn+1, zn+2} and {b1, . . . ,bn, yn+1,dn+1} are isometric. This procedure gives two
isometric dense sequences

{a1, . . . ,an,dn+1, zn+2,dn+2, zn+3, . . .} ∼ {b1, . . . ,bn, yn+1,dn+1, yn+2,dn+2, . . .}.
Because of completeness of U , this final isometry extends to an isometry of U onto itself.

The uniqueness of U announced in the letter to Hausdorff is an easy consequence of homogeneity. If P is another
universal separable ω-homogeneous metric space, then the same procedure described in the previous paragraph gives an
isometry between U and P : one starts with empty sets {ai}, {bi} and countable dense sets {dn}, {d′

n} in U or P respectively.
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3.2. Homogeneity of the Hausdorff’s universal space

The proof of universality of the Hausdorff’s space V was very simple. Urysohn used for his proof of universality of U more
complicated Theorem I. But having Theorem I, Urysohn had a simple way to show homogeneity of his space, meanwhile
Hausdorff had to prove a kind of Theorem I anyway.

We shall follow Hausdorff’s notations. By indexed Greek letters like αn we mean a member of U being a matrix (n × n)
(then αi , 0 < i < n, is the ith segment of αn , i.e., the left upper (i × i)-submatrix of αn). The lower Latin letters (indexed or
not, like a, b j ) denote elements of U without specification of size of matrices.

For two finite or countable sequences in U having the same cardinality, Hausdorff uses the following notation:

{a1, . . . ,an} � {b1, . . . ,bn}
means isometry preserving indices, i.e., d(ai,a j) = d(bi,bi), i, j = 1, . . . ,n.

Hausdorff first shows the following fact that follows directly from the definition of d:

Lemma 6. Let αn, βm ∈ U such that

• For every j < m there is i < n with d(β j,αi) = 0;
• {α1, . . . ,αn−1,αn} ∼ {α1, . . . ,αn−1, βm}.

Then d(αn, βm) = 0.

So, if {α1, . . . ,αm, β1, . . . , βn, γ1, . . . , γp, . . .} ∼ {ξ1, ξ2, . . .}, then every ith member of the left sequence has zero distance
from the ith member of the right sequence. Consequently, every sequence (finite or countable) {an} in U is a subsequence
of some sequence {ξ1, ξ2, . . .}. (Recall that similar fact was used by Urysohn, too.)

Hausdorff now uses a very nice “tricky” way to prove the following analogy of Urysohn’s Theorem I:

Proposition 7. If {a1, . . . ,am} ∼ {ξ1, . . . , ξm} and ξm is a segment of ξm+1 , then there is some am+1 ∈ U with {a1, . . . ,am+1} ∼
{ξ1, . . . , ξm+1}.

Proof. Hausdorff shows the proof for m = 3, i.e., to the equivalence {αm, βn, γp} ∼ {ξ1, ξ2, ξ3} he constructs δq so that
{αm, βn, γp, δq} ∼ {ξ1, ξ2, ξ3, ξ4}.

There is some ηm+n+p ∈ U such that

{αm, βn, γp,α1, . . . ,αm−1, β1, . . . , βn−1, γ1, . . . , γp−1} ∼ {η1, . . . , ηm+n+p}.
(We may assume ηi = ξi for i = 1,2,3.) Then there is some ζm+n+p+1 with

{η4, . . . , ηm+2, η1, ηm+3, . . . , ηm+n+1, η2, ηm+n+2, . . . , ηm+n+p, η3, ξ4} ∼ {ζ1, . . . , ζm+n+p+1}.
The requested δq equals to ζm+n+p+1. Indeed, by the first lemma one has d(αm, ξm) = 0, d(βn, ξm+n) = 0, d(γp, ξm+n+p) = 0
so that

{αm, βn, γp, δq} ∼ {η1, η2, η3, η4} = {ξ1, ξ2, ξ3, ξ4}. �
Corollary 8. If {a1, . . . ,an} ∼ {b1, . . . ,bn} in U and bn+1 ∈ U there exists an an+1 ∈ U such that {a1, . . . ,an+1} ∼ {b1, . . . ,bn+1}.

The following weaker form of Theorem I can now be proved in the same way as Theorem I.

Proposition 9. If {a1, . . . ,an} ∼ {b1, . . . ,bn} in U then there exists an isometry of V onto itself extending that given isometry.

Here the Hausdorff’s notes finish with the remark that one should now extend the preceding result to finite subsets
{a1, . . . ,an} ∼ {b1, . . . ,bn} in V . We do not know why Hausdorff did not finish his proof (at least, no continuation was
found). It seems probable that he knew how to finish the proof since remaining procedures are quite natural. We can
suggest one of them.

To use the same technique as in the proof of Proposition 9 one needs the assertion of Corollary 8 for V instead of for U ,
in fact a little less. Since every finite metric space can be isometrically embedded in U , it suffices to prove the assertion of
Corollary 8 for {ai} ⊂ V, {bi} ⊂ U and bn+1 ∈ U . To simplify our procedure, we shall first prove the following lemma.

Lemma 10. For every finite set {a1, . . . ,an} ⊂ V there exist sequences {ak,i}k in U converging to ai such that d(ak,i,ak, j) = d(ai,a j)

for all possible i, j, k.
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Proof. We shall assume that d(ai,a j) 
= 0 for i 
= j and denote r = min{d(ai,a j); i 
= j}. Let {a′
k,i}k be sequences from U

converging to ai . We may assume that |d(a′
k,i,a′

k, j) − d(ai,a j)| � r2−k for all i, j, k.
Let ak,1 = a′

k,1 for all k = 1,2, . . . . Suppose now that 1 < m � n and sequences {ak,i}k having the requested properties are

constructed for all i < m. Moreover, we shall assume that d(ak,i,a′
k,i) � r2−k−n+i (true for i = 1). We shall now construct

a sequence {ak,m}k having similar corresponding properties.
Proof goes by induction on indices k. For k = 1 and i < m let ηi = d(am,ai), ηm = r2m−n−1. Then by Corollary 8 there is

a point a1,m with ηi = d(a1,m,a1,i) for i < m and ηm = d(a1,m,a′
1,m). To use Corollary 8 one must check that

|ηi − η j | � d(a1,i,a1, j) � ηi + η j for i, j < m,

|ηi − ηm| � d
(
a1,i,a′

1,m

)
� ηi + ηm for i < m.

The first row is clear. The second one follows from the following inequalities:

d
(
a′

1,i,a′
1,m

) − d
(
a1,i,a′

1,i

)
� d

(
a1,i,a′

1,m

)
� d

(
a1,i,a′

1,i

) + d
(
a′

1,i,a′
1,m

)
,

d(ai,am) − r/2 � d
(
a′

1,i,a′
1,m

)
� d(ai,am) + r/2

(we must realize that r(2−1−n+i + 1/2) � r2−1−n+m).
If ak,m with the requested properties are constructed for all k < p one can construct ap,m in the same way using ηi =

d(am,ai), ηm = r2m−n−p and the points {ap,i}i<m and a′
p,m . �

It remains to prove the following assertion.

Proposition 11. Let {a1, . . . ,an} ∼ {b1, . . . ,bn} in V and suppose the latter set to be a part of U . Then for any bn+1 ∈ U there exists
some an+1 ∈ V such that {a1, . . . ,an+1} ∼ {b1, . . . ,bn+1}.

Proof. For every ai we fix a sequence {ak,i}k in U converging to ai such that for all possible i, j, k we have
d(ak,i,ak+1,i) � 2−k and d(ak,i,ak, j) = d(ai,a j) (by the previous corollary). Let ϕ be an isometric embedding of {ai}i ∪{ak,i}k,i

onto a set {ci}i ∪ {ck,i}k,i ⊂ U . There is some ci+1 ∈ U such that {bi}n+1
i=1 is pointwise isometric to {ci}n+1

i=1 .
Using the same procedure as in the previous lemma, one can construct a sequence {ak,n+1}k in U such that for i =

1, . . . ,n and all k

d(ak,n+1,ak,i) = d(bn+1,bi), d(ak,n+1,ak+1,n+1) � 2−k.

Now, {ak,n+1}k is a Cauchy sequence and, thus, converges to a point an+1 in V . Clearly, {a1, . . . ,an+1} ∼ {b1, . . . ,bn+1}. �
3.3. Homogeneity of the Katětov’s universal space

Katětov first proves that every isometry of S extends uniquely to an isometry of E(S,α) and then uses the standard
procedure (used also by Urysohn and Hausdorff) of extending an isometry to sets containing dense subsets.

To prove uniqueness of his universal spaces, Katětov uses the original Urysohn procedure modified for uncountable
densities.

4. Nonseparable spaces

We shall now modify the Hausdorff’s construction to higher cardinals to see which parts of the Katětov’s results can be
proved by this approach.

In the sequel, the ordinal number 0 is excluded from our indexing systems (it would cause difficulties in using sums of
ordinals). Nevertheless, we shall not always write ξ > 0 because it would make some indices long.

4.1. Construction

For an ordinal ξ > 0 denote by Aξ a symmetric square matrix (aα,β)0<α,β�ξ having zeros in diagonal and such that

aα,β � aα,γ + aγ ,β

for any α,β,γ � ξ . Such a matrix is a distance matrix (d(pα, pβ))α,β�ξ of a sequence {pα}α�ξ of points in a pseudometric
space.

For ζ < ξ , a segment Aζ of Aξ is a left upper (ζ × ζ )-submatrix of Aξ (in the previous representation, Aζ corresponds
to the distance matrix of the initial part {pα}α�ζ of {pα}α�ξ ).

Denote by U the class of all such matrices Aξ for all ordinals ξ > 0. The elements of U are denoted as Aξ , Bτ , Cζ ,
where the indices mean the size of matrices. In case of two matrices with the same capital, say Aξ , Aζ , one of the matrix
is a segment of the other.
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If Aξ ∈ U , 0 < ζ � η � ξ , the function d(Aζ , Aη) = d(Aη, Aζ ) = αζ,η is a pseudometric on the set of segments of Aξ .
As in the finite case, one can now define distances between any two elements of U by induction.

Definition 12. Define a symmetric function d on U ×U by induction:
Let d(A1, A1) = 0. If d(Aϕ, Bψ) is defined whenever 0 < φ � ξ,0 < ψ � ζ where at least one of the inequalities � is not

equality, then

d(Aξ , Bζ ) = d(Bζ , Aξ ) = sup
{∣∣d(Aξ , Aμ) − d(Aμ, Bζ )

∣∣,
∣∣d(Aξ , Bν) − d(Bν, Bζ )

∣∣;μ < ξ,ν < ζ
}
.

To prove that d is a pseudometric on the class U , we must show that it is finite and satisfies triangle inequality
d(Aξ , Bζ ) � d(Aξ , Cτ ) + d(Cτ , Bζ ).

If Bζ coincides with a segment of Aξ then the previous definition of d coincides the former one. Thus the above triangle
inequality holds if Aξ , Bζ , Cτ are segments of some element of U . Also the following special case of triangle inequality
holds (substitute μ = 1 into the definition of d):

d(Aξ , A0) � d(Aξ , Bζ ) + d(Bζ , A0).

Lemma 13. The function d is finite, i.e., has its values in R.

Proof. We shall prove by induction that d(Aξ , Bζ ) � a1,ξ + b1,ζ . The inequality is true for ξ = ζ = 1. Assume d(Aμ, Bν) �
a1,μ + b1,ν for 0 < μ � ξ and 0 < ν � ζ , where at least one inequality � is not equality. Consider |d(Aξ , Aμ) − d(Aμ, Bζ )|
(the procedure for the other absolute value in the definition of d is similar).

Suppose first that |d(Aξ , Aμ) − d(Aμ, Bζ )| = d(Aξ , Aμ) − d(Aμ, Bζ ). We have

d(Aξ , Aμ) − d(Aμ, Bζ ) � aξμ − (a1,μ − b1,ζ ) � a1,ξ + b1,ζ .

In the other case we have

d(Aμ, Bζ ) − d(Aξ , Aμ) � (a1,μ + b1,ζ ) − aξ,μ � a1,ξ + b1,ζ .

Therefor all the numbers in the right-hand side of the definition of d are bounded by a1,ξ + b1,ζ . �
Proposition 14. The triangle inequality d(Aξ , Bζ ) � d(Aξ , Cτ ) + d(Cτ , Bζ ) holds for any choice of Aξ , Bζ , Cτ from U .

Proof. The assertion is clearly valid for ξ = ζ = τ = 1. Take now arbitrary ξ , ζ , τ and assume that the triangle inequality is
valid for any 0 < ξ ′ � ξ , 0 < ζ ′ � ζ , 0 < τ ′ � τ where at least one of the inequalities � is not equality.

If d(Aξ , Bζ ) > d(Aξ , Cτ ) + d(Cτ , Bζ ) then there exists μ < ξ (or ν < ζ ) such that |d(Aξ , Aμ) − d(Aμ, Bζ )| > d(Aξ , Cτ ) +
d(Cτ , Bζ ) (or |d(Aξ , Bν) − d(Bν, Bζ )| > d(Aξ , Cτ ) + d(Cτ , Bζ ), respectively). But

∣∣d(Aξ , Aμ) − d(Aμ, Bζ )
∣∣ �

∣∣d(Aξ , Aμ) − d(Aμ, Cτ )
∣∣ + ∣∣d(Aμ, Cτ ) − d(Aμ, Bζ )

∣∣

and the first absolute value on the right-hand side is at most d(Aξ , Cτ ) by definition of d and the second one is at most
d(Cτ , Bζ ) by our inductive assumption. Similarly for the other possibility. We have got a contradiction. �
Definition 15. For an infinite cardinal κ denote by Uκ the subset of U composed of matrices having size less than κ .

The construction gives directly universality:

Proposition 16. The space Uκ is a κ-universal space.

Proof. Take a pseudometric space P of cardinality κ and well-order its elements as {pα}α<κ . For every ξ < κ let Aξ be the
distance matrix of the sequence {pα}α�ξ . Then the subset {Aξ ; ξ < κ} of Uκ is isometric to P . �
4.2. Homogeneity

The next assertion is quite easy:

Lemma 17. If ϕ is an isometry of a sequence {Aα}α<ζ into U then for any B ∈ U there exists an extension Aζ of the matrices {Aα}α<ζ

such that the extension of ϕ , mapping Aζ into B, is an isometry.

We must prove a similar result with switched existence of B , Aζ . The procedure will modify the Hausdorff’s one for κ =
ω. We shall say that two families A = {Aα

βα
}α<ξ and B = {Bα

γα
}α<ξ in U are pointwise isometric if the mapping ϕ :A → B

assigning Bα
γ to Aα is isometric.

α βα
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Lemma 18. Let Aζ , Bμ ∈ U satisfying

(1) d(Bμ, Aα) = d(Aζ , Aα) for every α < ζ ;
(2) for every β < μ there is some αβ < ζ with d(Bβ, Aαβ ) = 0.

Then d(Bμ, Aζ ) = 0.

Proof. By definition,

d(Bμ, Aζ ) = sup
α<ζ,β<μ

{∣∣d(Bμ, Aα) − d(Aα, Aζ )
∣∣,

∣∣d(Bμ, Bβ) − d(Bβ, Aζ )
∣∣}.

The first absolute value in the supremum equals to 0 according our condition (1). Using the condition (2), one may substi-
tute Aαβ instead of Bβ in the second absolute value and get 0 again by (1). �

In the sequel,
∑′

α<ζ βα denotes the usual sum of ordinals with the exception that the number 0 is not used, i.e., it is
the set {(α,γ ); 0 < α < ζ, 0 < γ < βα} endowed with the lexicographic order.

Corollary 19. If {Bα
βα

}α<ζ ⊂ U and {{Bα
γ }γ �βα }α<ζ is pointwise isometric to {Aδ}δ<∑′

α<ζ βα
then d(Bα

γ , A(α,γ )) = 0 for every

0 < α < ζ , 0 < γ � βα .

Proof. Proof goes by induction. The equality d(B1
1, A1) = 0 trivially holds. Suppose d(Bα

γ , A(α,γ )) = 0 for every (α,γ ) <

(α′, γ ′). To get the equality d(Bα′
γ ′ , A(α′,γ ′)) = 0 we shall use Lemma 18. Its conditions are satisfied according the assump-

tion in the assertion and our inductive hypothesis. Indeed, e.g. for condition (1) we have d(Bα′
γ ′ , A(α,γ )) = d(Bα′

γ ′ , Bα
γ ) =

d(A(α′,γ ′), A(α,γ )). �
We shall now modify the elegant step of the Hausdorff’s procedure to show κ-homogeneity of Uκ .

Lemma 20. Let Aλ ∈ U . Then any isometry of {Aα; 0 < α < λ} into U can be extended to an isometry of {Aα; 0 < α � λ} into U .

Proof. Let the isometry be of the form ϕ = {Aα � Bα
βα

} for 0 < α < λ. There is some C ∈ U that is pointwise isometric to

{Aδ}δ<λ ∪ {{Bα
γ }γ <βα }α<λ . We may assume Cδ = Aδ for 0 < δ < λ. Let p be a permutation of λ + ∑′

α<λ βα defined by

p(α) = (α,βα) for α < λ, p(α,γ ) = (α,γ ) otherwise.

The permutation p maps λ+∑′
α<λ βα onto

∑′
α<λ(βα +1). There is {Dα; 0 < α � τ = ∑′

α<λ(βα +1)+1} pointwise isomet-
ric to {C p(δ)}p(δ)�∑′

α<λ(βα+1) ∪ {Aλ}. According to Corollary 19 we have d(D(α,γ ), Bα
γ ) = 0 and d(Dτ , D(α,γ )) = d(Aλ, C(α,γ ))

for all possible indices.
Consequently, for every α < λ we have

d
(

Dτ , Bα
βα

) = d(Dτ , D(α,βα)) = d(Aλ, C(α,βα)) = d(Aλ, Aα).

The requested extension of the isometry ϕ maps Aλ to Dτ . �
The result is valid if one substitutes Uκ for U with an additional assumption, namely that κ is regular.
The previous lemma has the following consequence (the idea of the proof is the same as that in Katětov’s proof for his

classes).

Lemma 21. If κ > ω then Uκ is complete.

Proof. Let {xn} be a Cauchy sequence in Uκ and x be its limit in a completion of Uκ . Then the space {xn} ∪ {x} can be
isometrically embedded onto some {Aα}α�ω ⊂ Uκ , where An corresponds to xn . The isometry An � xn between {Aα}α<ω

and {xn} extends onto {Aα}α�ω . Clearly, the image of Aω under that isometry gives a limit of {xn} in Uκ (and equals
to x). �

Since isometries into complete spaces extend to isometries of closures, lemma gives immediately

Theorem 22. If κ > ω then Uκ is a strongly κ-universal space.

Notice that we claim nothing about weight of Uκ .
Using the previous crucial Lemma 19 in the same way as was used by Urysohn and Hausdorff, we can now prove the

following result (regularity of κ is needed according the note following Lemma 20).
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Proposition 23. Let κ be regular, A, B be isometric subsets of Uκ of cardinality λ < κ and D ⊂ Uκ have cardinality at most κ . Then
the isometry can be extended to some sets P , Q in Uκ with P ⊃ A ∪ D, Q ⊃ B ∪ D. For κ > ω one can construct such P , Q closed.

Proof. Let D = {dα; 0 < α < κ}, ϕA (or ϕB ) is an isometry of A (or B) onto {Aα}α<λ (or onto {Bα}α<λ , respectively).
By Lemma 17, ϕA extends to A ∪ {d1} onto {Aα}α<λ+1 and the pointwise isometry between {Aα}α<λ and {Bα}α<λ

extends to {Aα}α<λ+1 onto {Bα}α<λ+1. Now, using Lemma 19 we can extend the isometry ϕB of {Bα}α<λ+1 onto B ∪ {x1}
for some element x1 of Uκ . Thus we have an isometry between A ∪ {d1} and B ∪ {x1}.

Repeating the same procedure starting with B ∪ {x1,d1}, we get an isometry between B ∪ {x1,d1} and A ∪ {d1, y1} for
some point y1 of Uκ . By induction one constructs an isometry between the sets A ∪ {d1, y1,d2, y2, . . . ,dα, yα, . . .}α<κ and
B ∪ {x1,d1, x2,d2, . . . , xα,dα, . . .}α<κ . Those sets are the requested sets P , Q . If κ > ω, then the closures of P and Q are
complete and, therefore, the isometry extends to the closures. �

As a consequence, we have (recall that κ = κ<κ iff κ is regular and (2ω)<κ ).

Theorem 24. If κ = κ<κ > ω then Uκ is a strongly κ-universal and κ-homogeneous space having cardinality (and, thus, its weight)
equal to κ .

Proof. The cardinality of Uκ is at most (2ω)<κ , which is κ under our assumption κ = κ<κ . Proposition 23 gives κ-
homogeneity, Theorem 22 strong κ-universality. �

It follows from the Katětov’s results that, under κ = κ<κ , Uκ is isometric to his universal spaces. In fact, uniqueness
follows from homogeneity using the original Urysohn procedure shown in the third section.

4.3. Questions

There are several questions related to the previous construction.

1. Katětov constructed a non-complete strongly ω-universal and ω-homogeneous space W . Can one describe such a space
using the space Uω?

2. Katětov proved that there is no κ-universal and κ-homogeneous space having density κ if κ < κ<κ . We believe that
this result can be proved using Uκ . One should prove that density of Uκ is bigger than κ in this case. One possibility
might be to embed a discrete metric space X into Uκ (onto matrices having 1’s outside diagonal) and for a given λ and
sets S ⊂ X of cardinalities λ take the distance matrices for quotients of X sewing S into one point. I think that κλ of
such matrices will form a discrete space again.

3. V. Uspenskii used the Katětov’s construction for κ = ω to universality of the group of isometries of Urysohn universal
space. Is it possible to use the space Uκ for similar results?
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