
Science of
Computer

ELSEVIER Science of Computer Programming 32 (1998) 145-176
Programming

Towards a

Roberto Barbuti”,

logical semantics for pure Prolog’

Nicoletta De Francesco b, Paolo Mancarella”? *,
Antonella Santone b

aDipartimento di Infbrmatica. Universitci di Pisa, I-56125 Piss. Italy
bDipartimento di Ingeyneria dell’lnfom~azione, Universitri di Pisa. I-56125 Pisa, Ital)

Abstract

The coincidence of the declarative and procedural interpretations of logic programs does not
apply to Prolog programs, due to the depth-first left-to-right evaluation strategy of Prolog inter-

preters. We propose a semantics for Prolog programs based on a four-valued logic. The semantics
is based on a new concept of completion analogous to Clark’s and it enjoys the nice proper-
ties of the declarative semantics of logic programming: existence of the least Herbrand model,
equivalence of the model-theoretic and operational semantics. @ 1998 Elsevier Science B.V. All
rights resewed.

Keywords: Logic programming; Prolog; Semantics; Multi-valued logics

1. Introduction

One of the most attractive features of the logic programming paradigm is the equiv-

alence between its declarative and procedural reading. When looked at as a first-order

theory, a collection of Horn clauses can be characterized by its least Herbrand model;

when looked at as a set of procedure definitions, a collection of Horn clauses can

be characterized by its success set, which coincides with the least Herbrand model.

Unfortunately, it is well known that this equivalence is lost when moving from logic

programming to Prolog programming, the reason being that Prolog interpreters use, for

efficiency reasons, a depth-first left-to-right computation strategy. As a consequence,

the declarative semantics of logic programming cannot be adopted as the abstract log-

ical semantics for Prolog programs. For this reason, usually the semantics of Prolog is

defined using non-logical frameworks [4-6,8-10,161.

When dealing with computational issues, one has to abandon classical two-valued

logic and has to move to multiple-valued logic. A first attempt is to adopt a three-valued

logic where the third truth value (unde$ned) is introduced to model non-terminating

* Corresponding author. E-mail: paolo@di.unipi.it.
’ Work partially supported by the EEC Project KIT01 l-LPKRR.

0167~6423/98/$19.00 @ 1998 Elsevier Science B.V. All rights reserved.
PII: SO167-6423(97)00033-6

146 R. Barbuti et al. IScience of Computer Programming 32 (1998) 145-176

computations (see, e.g. [1,2, 14, 17,201). However, these three-valued based semantics

do not allow to model the computational behaviour of Prolog.

In this paper we propose a logical semantics for pure Prolog (without extra-logical

features and negation) based on a four-valued logic. Roughly speaking, the fourth truth

value is intended to model a computation in which a success is “followed by” a non-

termination as in the computation of the goal c p with respect to the Prolog program

{P, PhPI.
The semantics is based on the notion of sequential completion of a Prolog program,

which differs from Clark’s completion in that the standard connectives A and V are

interpreted as sequential conjunction and sequential disjunction. These connectives are

suitably defined on our four-valued logic and their logical meaning reflect the compu-

tational behaviour of Prolog: A models the left-to-right computation rule of Prolog,

while v models the search strategy, i.e. the sequential use of the clauses in a program.

The semantics we propose for Prolog enjoys the nice properties of the declarative

semantics of logic programming (existence of the least Herbrand model, equivalence

of the model-theoretic and operational semantics).

It is worth mentioning that our semantics is truly logical for propositional Prolog,

whereas it looses part of its logical flavour when moving to the non-propositional

case. This is due to the evaluation of existentially quantified goals which is based on

a suitable ordering on ground instances of goals, which is obtained by exploiting the

fixpoint approach of [9]. However, the truth value of an existentially quantified goal is

still obtained logically as the sequential disjunction of its ground instances, according

to the ordering just mentioned.

For the sake of clarity, we first explore our approach for propositional Prolog, and

then we extend it to full, pure Prolog.

2. Preliminaries

In this section, we will provide the basic notions of multiple-valued logic and logic

programming.

2.1. Multiple valued logics

There are different ways to present multiple-valued logics (see, e.g. [13,23,21]): in

this paper we basically follow the approach of [21] based on valuation systems.
We consider a predicate language ?Z = (9, F, V, Co, Z?), where 9 is a set of predicate

symbols, F is a set of function symbols, V is a set of variables, 0 is a set of operators

(connectives), and L!J is a set of quantifiers. With each function symbol f E 9, predicate

symbol p E 9, and operator o in 0 is associated a unique natural number called its

arity. We assume that the language contains at least one constant symbol (constant

symbols are function symbols of arity 0). The ground term algebra over 9 is denoted

by Tm(F). The non-ground term algebra over F and V is denoted by Tm(F,f).

R. Barbuti et al. IScience of Computer Programming 32 (1998) 145-176 147

The set of atoms constructed from predicate symbols in $27’ and terms from Tm(P, Y”)

is denoted Am(Y, F, V) or Am for short.

A formula is (i) an atom, or (ii) o($l,. . .,c#+,), where each 4i is a formula and o

has arity n, or (iii) q x.4, where q is a quantifier in 2, x is a variable in V and 4 is

a formula.

Given a formula 4, the notion of free and bound occurrence of a variable is defined

as usual. We denote by b[x:= t] the formula obtained from C$ by replacing the free

occurrences of the variable x by the term t. As usual, bound variables in 4 may be

renamed in order to avoid conflict with the variables in t.

A valuation system V for a predicate language 2? = (P,F, V, 0,s) is a tuple

(Y, 9,92,C!2) where

- Y is the set of truth values, with at least two elements;

- 9 is the set of designated truth values, a non-empty proper subset of Y;

- W is a set of functions. Each function r, E 9 corresponds to one operator in 0, and

it is such that r . F&a --+ F 0’ (w h ere n, is the arity of the operator 0). We say that

r, interprets 0;

- Y is a set of functions from g(r) to Y. Each function gq corresponds to one

quantifier q and it maps possibly infinite subsets of .Y onto an element of 5.

A basic assignment a relative to a valuation system (~,~,B,~) for a predicate lan-

guage 2 = (P’, 9, -Y; 0,&L?) is a pair LX = (p, I), where I is a non-empty set of individuals
(also called universe of discourse) and p is a mapping such that

- p(t) E I for each t E Tm(P, V);
- p(p) : I” + F for each predicate p E P with arity n.

Each basic assignment a induces an interpretation (or valuation) v, of a sentence in

the language, inductively defined as follows:
- &(P(h,..., t,)) = p(p)(p(t,), . . . ,p(t,)), where p E 9 with arity n, and tl,. . . , tn E

Tm(9, V);

- v,(o(41,..., &))=ro(ua(41),. . . ,v,($,)), where 0 E 0 with arity n, and r, inter-

prets 0;

- G4 x. 4) = gq({ud+[x := tl> I t E WW)).
An interpretation u, is a model for a sentence 4 iff v,(4) E 9. Given two formulae

c$,# we say that 4’ is a logical consequence of 4, denoted by 4 t= I#+, iff u,(#) E 9,

for all models v, of 4.

As an example, consider the language 9 = (YC, 9$, K, UC’,, S?!,) of classical first-order

logic, where CC& = {A, V, 7, _L} and 2 = {V, 3). In the corresponding valuation system,

we have Y={Cf}, g={t>, _LfV,f7 are the classical interpretations of the con-

nectives A,V and 7, while f~ is a constant function which returns the truth value f.
Finally, the functions gv and g3 are defined as follows:

sv(X) =
f iffEX,

t otherwise,
B(X) =

t if tEX,

f otherwise.

It is worth noting that this definition of gv (resp. gg) corresponds to the usual inter-

pretation of the universal (resp. existential) quantifier as a possibly infinite conjunction

148 R Barbuti et al. IScience of Computer Programming 32 (1998) 145-176

(resp. disjunction). Later we will use an ordered set for X in the above for sequential

quantification.

2.2. Logic programming

We assume that the reader is familiar with logic programming, and so we recall only

some basic definitions. For the concepts which are not reported here, the reader can re-

fer to [18,3]. Logic programming is based on a predicate language 9’1~ = (9$, Fb, V&

Log, 91,), where 61, = {A, t, false} and & = {Q, 3). A definite clause is a formula of

the form A c B where A is an atom and B is a conjunction B, A . . . A B, of atoms.

A is called the head of the clause, and B is called the body of the clause. All the vari-

ables occurring in a clause are implicitly universally quantified. Hence, A + B stands

for Qxt . ..Vxk. AtB, where xl,... ,Xk are all the variables (possibly none) occurring

in the clause.

A logic program is a (finite) set of definite clauses P. A goal is a clause with an

empty head, denoted by +-z.

The declarative semantics of logic programs is given by classical two-valued logic

and Herbrand interpretations. The interpretation of the operators in Olp is the classical

one, namely A is interpreted as conjunction, +- as consequence and false as the truth

value f.
The ground term algebra Tm(F) is referred to as the Herbrand Universe. A Her-

brand interpretation is a valuation v, corresponding to a basic assignment (p, Trn(9)),
in which the domain of individuals is the Herbrand Universe. The standard semantics

of a logic program P based on a first-order language JZ is given by its least Herbrand

model.

On the other hand, the operational semantics of logic programs is given in terms

of SLD-resolution and the SLD-refutation procedure. Given a logic program P and

a goal G, an SLD-tree for P and G is a tree satisfying the following: (i) each node

of the tree is a (possible empty) goal, and (ii) the root node is G, and (iii) let

Bt,&,...,&,..., B, (m > 1) be a node in the tree and B, be the selected atom for this

node via a computation rule. Then, for each clause A + B such that mgu(A, B,) = 29 #
fail, the node has child (Bl,Bl,. . .,B,. . ., B,,,)I~, where mgu(A,B) denotes the most

general unifier of A and B, which is fail if A and B do not unify.

A search rule is a strategy for searching SLD-trees. An SLD-refutation procedure
is specified by a computation rule together with a search rule. Success branches in

an SLD-tree are the ones ending in the empty goal, while failure branches are the

ones ending in a non-empty node without children.

The operational semantics of Prolog corresponds to a particular way of constructing

and visiting SLD-trees, which can be formalized as follows. A Prolog-tree is an SLD-

tree such that
_ the computation rule is the left-to-right one (i.e., s= 1);

- the children of a non-leaf node are obtained (from left to right) by considering the

clauses in the textual order they appear in the program.

R. Barbuti et al. IScience of’ Computer Programming 32 (1998) 145-176 149

Finally, the operational semantics of Prolog corresponds to the list of substitutions at

success nodes encountered in the left-to-right depth-first traversal of the Prolog-tree for

a given goal.

3. Related works

The idea of giving the semantics to logic programs by means of a multiple-valued

logic is not new. A third value, the undefined value u, was introduced to model in-

finite computations. Examples of semantic definitions based on Kleene’s three-valued

logic are the ones in [14, 17,201. These logical semantics are defined for pure logic

programming, i.e., they model an operational behaviour based on SLD-trees built by

a fair computation rule and visited by a breadth-first strategy. Recall that a fiir com-

putation rule is such that any (instance of) atom occurring in a goal is eventually

selected.

In [2], a semantics for Prolog in a logical style is presented. This logical semantics

is proved correct with respect to an operational one, which essentially mimics the

left-to-right depth-first visit of a Prolog tree. The left-to-right depth-first search rule is

taken into account by using the completion of programs and by giving a sequential

interpretation to the disjunction in the right part of each predicate-completed definition.

Of course, in this case, the order of the arguments of the disjunction is essential. This

order must respect exactly the order of clauses. Moreover, the left-to-right computation

rule is modelled by the sequential interpretation of the conjunction.

To define the semantics with respect to the completion of a program, [2] generalizes

the standard notion of goal, in the style of [191. We refer to a similar notion of goal,

which reflects the type of formulae which arise when Clark’s completion is taken

into account. To simplify the notation, in the following we denote simply by x and t

a sequence of variables and terms, respectively. Moreover, we denote simply by s = t

a conjunction of equations si = tl A . . . A Sk = tk where s;, t, are terms. So, for instance,

x = t may denote a conjunction of equations of the form xi = tl A . . . AX, = t,,.

Definition 1. A goal is an element of the syntactic category Dis j-Goal defined as

follows:

Dis j -Goal : : = Ex-Goal V Dis j -Goal 1 Ex-Goal

Ex-Goal ::=Conj_Goal]h. s=tAConj_Goal

Con j -Goal : :=AtomIAtomAConj_Goal

Atom : :=fuhe 1 true 1 p(t)

In the rest of the paper we will refer to this definition of goal.

As an example, consider the Prolog program

P(S) + r(s’).

150 R. Barbuti et al. IScience of‘ Computer Programming 32 (1998) 145-l 76

where t, t’,s, s’ are sequences of terms. Its completion is given by

p(x) - 3y.(x = t A q(t’)) v 3z.(x = s A Y(d)),

where y, z are the sequences of variables occurring in the two clauses, respectively.

The semantics of Prolog is obtained by giving an order to the evaluation of V, so

that, when evaluating the definition of p(n), the part corresponding to the first clause is

examined first, and the second part is evaluated only if the truth result of the first one

is f. The same evaluation order is given to A. The evaluation order of V models the

sequential use of the clauses, while the one of A models the left-to-right computation

rule.

More formally, [2] gives the semantics in terms of the three truth values, {t, f, II} 2

with the following interpretation of V and A. The function v is a valuation function
mapping ground formulae onto truth values:

v(C) if v(B)=f,
v(BVC)= u(BAC)=

v(C) if u(B)=t,

v(B) otherwise, v(B) otherwise.

Unfortunately, this interpretation of the connectives does not allow a complete logical

specification of Prolog semantics. Consider the following propositional Prolog program

(in completed form):

p”qvloop. loop ++ loop. q tf true. r i-k false.

where the computation of the predicate loop is infinite. In the three-valued logic this

behaviour is modelled by assigning the truth value u to loop.

Consider the two goals p and r. It is easy to see that, by using the valuation

function v and the predicate definitions, the first one has truth value t, while the

second one has value f. Consider now the goal p A r which is equivalent, by using

the definition of p, to (qV loop) Ar. By using the values of q, loop and r and the

valuation function u we obtain the result f, but this is not the result we get by a Prolog

interpreter. In fact, due to the backtracking, the goal p A r would run indefinitely, thus

its truth value should be u.

If we expand the definition of p and we apply the distributivity of V on A we obtain,

from p A Y, the goal (q A r) V (loop A Y), which has the right value u.

Intuitively, the problem comes from the fact that the valuation function v cannot

model backtracking on different alternatives in a predicate definition. It works well

only on goals in which the alternatives are “compiled”, by applying distributivity,

in a disjunction. For this reason, [2] gives semantics to Prolog programs in two steps.

In the first one a goal is transformed into an O-formula, that is a formula in which

each disjunction is an immediate subformula of either a negation or other disjunctions.

2 Actually, one more value, n, is used to model floundering of negation. We do not consider it, since in

this paper we do not take negation into account.

R. Barbuti et al. IScience of Computer Programming 32 (1998) 145-176 151

Then, to these formulae, the valuation function is applied to get the truth value. In the

above example, (q A r) v (loop A r) is an O-formula, while (q V loop) A r is not.

Although [2] represents a step towards the definition of a logical semantics of Prolog,

the approach is not completely satisfactory. It is not a truly logical semantics because

it is not compositional on all the possible goals. In the previous example, the true

value of pA r is not given simply by the and of the values of p and r. To get the

correct value we have to apply a transformation, which has the sound of making some

computation steps, to get a formula in the O-form.

In the following section, we will present a four-valued logic which can be used to

give a compositional truly logical semantics of Prolog. The fourth truth value, which

is denoted by t,, models the computational behaviour of a goal which has at least one

solution, but whose computation is infinite.

A first intuition on the use of this fourth truth value can be found in [20], in which

a value corresponding to t, was used to model a goal which results in t under some

evaluation strategies and u in others. However, this is not suitable for the semantics of

Prolog, because a solution for a goal is given only if the success branch, corresponding

to this solution, has no infinite branches on the left.

4. A logical semantics for propositional Prolog

Our aim is to give a compositional logical semantics to Prolog by using a four-

valued logic. For the sake of clarity, we first define the semantics of propositional

Prolog. In the next section this semantics is extended to Ml Prolog.

4.1. Propositional multiple-valued logics

Throughout this section we refer to a propositional language. Propositional languages

can be viewed as special cases of predicate languages, where predicate symbols have

all arity 0, and neither variables, nor function symbols nor quantifiers are considered.

Hence, a propositional language 3 is simply a pair (9,8), where 9 is a collection of

predicate symbols and 8 is a set of connectives. The set of sentences of a propositional

language 9’ is the smallest set containing 9 and closed under the operators 0”.

The notion of valuation system for a propositional language is a simplified version of

the one given in Section 2.1. Here, a valuation system V is simply a triple (Y, 9,9$)

where

- Y is the set of truth values, with at least two elements;

- LB is the set of designated truth values, a non-empty proper subset of 5;

- W is a set of functions. Each function r, f 93 corresponds to one operator in 0, and

it is such that r 0 : P’u + F (w h ere n, is the arity of the operator 0).

Finally, a basic assignment p relative to a valuation system (Y, 9,B) for a proposi-

tional language (9,U) is simply a mapping p : 9 + F. Each basic assignment induces

152 R. Barbuti et al. IScience of Computer Programming 32 (1998) 145-176

an interpretation (or valuation) up of a sentence in the language, inductively defined

by
- vp(P) = P(P), for P E 9’.

- v~(o(~I,...,~~))=Y,(~~(~I),...,~~(~~)), h w ere n is the arity of o and r, inter-

prets 0.

4.2. Propositional logic programming

A propositional logic program is a collection of definite clauses from a propositional

language _!??I~ = (9$,, Co,), where 91, is a set of propositional symbols and 0b = {A,

c, false} (see Section 2.2).

Our semantics is based on the notion of completion of a logic program which is

similar to Clark’s completion [ll]. The latter was originally introduced by Clark in

order to provide a declarative semantics to negation as finite failure. However, (variants

of) Clark’s completion have been adopted to capture the logical meaning of Prolog,

and this is the case also for our approach. Let us briefly recall the definition of Clark’s

completion for propositional logic programs.

Given a propositional language _!Z’b as before, let _Y~Omp = (9Jccomp, Ocomp) be the lan-

guage where .!??cOmp = 9$ and O,,,p = {V, A, H, false, true}.

Definition 2. Let P be a logic program on the language _5Zb and let

C,, Z p+Bi Odi<m

be the sequence of m clauses of P with head p, where each Bi is a (possibly empty)

conjunction of atoms. The completed dejnition of p is the following formula in the

language Ycomp :

p-E, v ..’ VE,,

where Ei coincides with Bi if Bi is a non-empty conjunction, and Ei is true otherwise.

If an atom p E 9$, never occurs in the head of a clause in P, its completed definition
is the formula p-false in the language 3’~0,,,p. The completion of a propositional

Prolog program P, denoted by camp(P) is the collection of the completed definitions

of the predicates in p E YCcomp.

For instance, the completion of the logic program

p+qAr

4+

on a language such that 9rp = {p, q,r} is

P+-+qAr

q H true

r H false.

R. Barbuti et al. IScience of Computer Programming 32 (1998) 145-176 153

4.3. A four-valued logic

In this section we introduce the valuation system _y^4 defining the four-valued logic

we will use to provide propositional Prolog with a logical semantics.

As mentioned in the previous section, the idea is to extend the usual three-valued

logic by a fourth truth value, t,, which is intended to model an infinite Prolog tree

which has at least a successful branch to the left of the first infinite one. Moreover,

the connectives A and V are interpreted in a sequential manner, in order to reflect the

operational behaviour of Prolog. Since the semantics of a Prolog program P is given in

terms of (a variant of) its Clark’s completion, we directly define our valuation system

with respect to the language _Y~OMp = (9&,,p, Ocomp) introduced in Section 4.2.

Definition 3. The valuation system Y& = (&,9~,9&) is defined as follows:

- ~~~={f,u,t,,t};

- 94 = {t};
_ The O-at-y functions jjblse and f&,, are defined as fibl.,r = f and ftrur = t, the functions

f,,,fv are defined according to the following truth tables:

fA(X, Y> fvk Y)

and the function f,+ is defined in the usual way:

f-(x, v> =
t ifx=y,

f otherwise.

Let us explain intuitively the above definitions. The interpretation of A mimics the

computation corresponding to a conjunction of goals. Since t is intended to model

a finite success, if it is the first argument of a sequential conjunction the result is

equivalent to the second argument. An argument equal to t, models a computation in

which there is at least a success and then it is infinite; if it is the first argument of a

sequential conjunction, the resulting computation is still infinite, but the existence of

a success, in the whole computation, depends on the value of the second argument.

Finally, a value f or u for the first argument is the result of the whole computation.

On the other hand, the interpretation of V mimics the result of exploring different

alternatives in a computation of a Prolog goal. The first argument equal to t models

the fact that we have got a finite success in the computation of the first alternative;

of course, if the second argument corresponds to an infinite computation the result

must reflect it. If the first argument is t, we have at least a success and an infinite

154 R. Barbuti et al. IScience of Computer Programming 32 (1998) 145-I 76

computation independently from the behaviour of the second alternative. Obviously,

when the first alternative has a finite computation without successes, the result of the

whole computation is the one of the second alternative, and, finally, when the first

alternative has an infinite computation without successes, we cannot pass to examine

the second one.

Finally, the H connective is defined in the expected way also in our four-valued

logic, that is it has t if and only if the two arguments have the same truth value.

Otherwise its value is f.

4.4. Semantics of propositional Prolog

The semantics of a propositional Prolog program P is given in terms of its sequen-
tial completion, denoted by s_comp(P), which is similar to Clark’s completion (see

Definition 2). The only difference is that, when constructing the sequential completion

of a program P, the textual order in which atoms occur in the body of a clause as well

as the textual order in which clauses defining a predicate p occur in P determine ex-

actly the syntactic form of the completed definition of p. Due to its similarity with the

definition of Clark’s completion, we omit the definition of s_comp(P) and we illustrate

by means of a simple example. Consider the following clauses defining a predicate p:

and assume that they appear in this order within a Prolog program P. Then, the com-

pleted definition of p in s_comp(P) is exactly the formula

On the other hand, since Clark’s completion is usually interpreted in a classical

two-valued or three-valued logic, the formula

p++sV(rAq)

could equally be taken as the completed definition of p in Clark’s completion.

It is important to notice that, for propositional Prolog, the notion of goal as in

Definition 1 collapses down to the following definition.

Definition 4. A goal is an element of the syntactic category Dis j-Goal defined as

follows:

Disj-Goal : : = Conj_GoalVDisj_Goal 1 Conj-Goal

Conj-Goal : : = Atom 1 Atom A Conj_Goal

Atom :: = false 1 true 1 PropLetter

Prop-Letter :: = plq1 . . .

R. Barbuti et al. IScience of Computer Programming 32 (1998) 145-176 155

The first important observation is that in our four-valued logic we can logically

model backtracking, as stated by the following proposition. Recall that a model of a

formula, in a valuation system V= (Y-, 9,9), is an interpretation up, where p is a

basic assignment, which assigns to the formula a truth value in 9 (the truth value t

in the case of our valuation system ~74)).

Proposition 5. Given three goals, G, G’ and G”, in propositional Prolog, every in-
terpretation is a model of the formula

((G v G’) A G")++((G A G") v (G’ A G")).

Stated otherwise, the formulae (G V G’) A G” and (G A G”) V (G’ A G”) are equiv-

alent, i.e. they have the same truth value in every interpretation.

Let us consider the sequential completion of the example of Section 3.

pHqVloOp
loop H loop
q H true
r *false

Assigning the truth value u to loop, the value of p is now t, and, hence, the value of

the goal p A r is u.

It is important to remark that the classical properties of V and A are not preserved

in our valuation system. For example, the formulae G A (G’ V G”) and (G A G’) V

(G A G”) are not equivalent. 3 However, we are interested in maintaining the proper-

ties which model the evolution of Prolog computations. In this respect, notice that

(G A G’) V (G A G”) does not model the evolution of the computation of the goal

G A (G’ V G”).

Now, we can define the model-theoretic semantics of propositional Prolog as the least
model of s_comp(P) with respect to a suitable ordering between basic assignments. This

ordering is the pointwise ordering obtained from an ordering between the four truth

values based on the following Hasse diagram:

t
/

‘\ 2
U

Following [15], we will refer to this ordering as the knowledge ordering, denoted

by 6,.

3 Consider the values t,,, f and t for the goals G, G’ and G”, respectively. The goal G A (G’ V G”) has
truth value tU, while (GA G’) V (G A G”) has value u.

156 R. Barbuti et al. IScience of’ Computer Programming 32 (1998) 145-176

Definition 6. Given a propositional language 2 = (S, O), let p, p’ : 9 --+ 94 be two

basic assignments relative to the valuation system Va. We say that p is less than or

equal than p’, denoted by p <, p’, iff for all atoms pi 9 we have p(p) 6, p’(p).

It is clear that the set of basic assignments relative to 922 is a complete partial order

with respect to 6,.

Proposition 7. Let 9 be a propositional language, Vd be the corresponding valuation
system, and & be the set of basic assignments relative to Vh. Then the poset (&, <,)
is a complete partial order.

Proof. Straightforward. Cl

The next proposition states the existence of the least model of s_comp(P).

Proposition 8. Given a propositional Prolog program P, the set of all models of
s_comp(P) has a least element with respect to <,.

The existence of the least model is based on the definition of a suitable bottom-

up operator Yp associated with any program P, which is the analogue of the Fitting

operator @p for the three-valued case.

Definition 9. Let P be a propositional Prolog program and 9 = (9, 0) be the language

of its sequential completion. The operator Yjj mapping basic assignments in d to basic

assignments in JZ! is defined as follows. For each predicate symbol pi 9

of = v,(4),

where p * 4 is the sequential completed definition of p in s_comp(P), and up is the

valuation induced by p.

Lemma 10. Let P be a propositional Prolog program, 3 = (9,O) be the language
of its sequentiai completion, and Fp be the operator associated with P. Then the
following facts hold
(i) & is continuous with respect to <k,

(ii) a valuation up is a model of s_comp(P) ifs p is a jxpoint of Fp.

Proof. (i) based on the continuity of A and V with respect to <k;

(ii) let p E g and p t-) 4 be the sequential completed definition of p in s_comp(P).
Assume that the basic assignment p is a fixpoint of Fp. Then,

R. Barbuti et al. IScience of Computer Programming 32 (1998) 145-176 157

Hence, up is a model of s_comp(P). On the other hand, let up be a model of s_comp(P).

Then

P(P) = Up(P) = Q(4) = so)(P)?

hence, p is a fixpoint of 3~. 0

As a consequence, we have that the interpretation umin induced by the least fixpoint

of the 9jj operator is the least model of s_comp(P).
Finally, we show that the least model of s_comp(P) reflects indeed the operational

behaviour of Prolog.

Theorem 11. Let P be a propositional Prolog program, vmi” the least model of
s_comp(P) and G a goal:

v,in(G) = t ifs the Prolog tree of P and G is jinite, and it contains at least one
success branch
v,i”(G) = f ifs the Prolog tree of P and G is jinite, and it does not contain any
success branch
v,in(G) = t, lr the Prolog tree of P and G is infinite, and it contains at least a
success branch on the left of the first infinite branch
U,in(G) = u ifs the Prolog tree of P and G is infinite, and it contains no success
branch on the left of the first injinite branch.

Proof. See Appendix A. 0

5. Pure Prolog

In this section we extend the logical semantics to pure Prolog. The sequential com-

pletion of a Prolog program is obtained by extending the one of Section 4.4 to programs

on a predicate language 2 = (9’,9, V, 0,s) (which we consider fixed from now on-

wards), where 6 is the set of operators {V, A, +-+, false, true} and 22 = (3).

The sequential completion of a Prolog program is again very similar to Clark’s

completion. Each clause

p(t1,t2,h) + 3

is transformed into

P(XI,X2 ,...,Xk)ts3JJ.X, =t1 Ax2=t2 A...AXk=tkAB,

where xi , . . . ,xk are new variables and y is the sequence of variables occurring in the

original clause. Then the process proceeds as in the sequential completion of proposi-

tional programs. Recall that both the order in which atoms appear in clause bodies and

the order of clauses is relevant when constructing the sequential completion. In addition

158 R. Barbuti et al. IScience of Computer Programming 32 (1998) 145-I 76

to the completed definitions of predicates, the sequential completion is equipped with

the axioms of Clark’s equality theory [1 I] which are used to interpret the symbol = as

the syntactic identity.

Recall that we refer to the definition of goal as given in Definition 1.

To give a logical semantics to Prolog we have to give a meaning to 3. It is worth

noting that the meaning of a formula 3x.G, cannot be simply given classically by the

disjunction of G[x : = t] under all possible assignments for n. Actually, the disjunction

must be interpreted as a form of sequential disjunction, and the assignments have to

be considered following a special order. To have an intuition of this let us give an

example.

Example 12. Consider the following Prolog program on a first-order language in which

F={a,b} and S=(p).

p(b) + p(b). p(a).

Its sequential completion is given by

p(x)++(x=b A p(b)) V (x=a A true).

Obviously, the Prolog goal p(x) will loop, and this should be reflected by the mean-

ing of the goal &p(x). The meaning of !kp(x) cannot be simply given by the dis-

junction p(x)[x := a] V p(x)[x := b], because this disjunction has truth value t in the

least model of the program. Note that the program could be viewed as a propositional

one, thus, in its least model the atom p(b) would have value u, while p(a) would

have value t.

On the other hand, the meaning of 3x.p(x) cannot be given either by the sequential

disjunction p(x)[x := a] V p(x)[x := b], b ecause in this case its truth value would be t,.

The value for the goal, corresponding to the operational behaviour of Prolog, is given

by the sequential disjunction p(x)[x := b] V p(x)[x := a] in which the assignments for

x are taken in the “right” order. This order is essentially given by the order of clauses

in the Prolog program.

In the following, we define the order in which the assignments for the variables

must be taken to model the computational behaviour of Prolog. In a previous version

of this work [8], we defined such an order by means of a relation + between ground

substitutions, defined inductively on the structure of the program. However, the same

notion can be given an easier and more intuitive characterization, by exploiting the

notion of sequences used in [9] to give a bottom-up semantics for Prolog.

5.1. The bottom-up semantics of Bossi et al.

In [9], Bossi et al. present a fixpoint reconstruction of the semantics of Prolog

which captures both the left-to-right selection rule and the depth-first search strategy

R. Barbuti et al. IScience of Computer Programming 32 (1998) 145-176 159

underlying the Prolog evaluation mechanism. We summarize the most relevant defini-

tions and results below, and we refer to [9] for further details.

Roughly speaking, the idea underlying the approach of [9] is to make use of an

extended notion of interpretations, rather than Herbrand interpretations, which include

more complex syntactic objects than ordinary ground atoms. An interpretation is a set

of sequences, composed by either ordinary (possibly non-ground) atoms or divergent

atoms. A sequence in an interpretation is an abstraction of the ordered set of partial

answers obtained by a depth-first and left-to-right traversal of a partial Prolog tree for a

query in its most general form (i.e. p(x) where x is a tuple of variables). A divergent

atom in a sequence represents the fact that the corresponding branch of the partial

Prolog tree can be further expanded.

Given a set of symbols S let us denote by S’ the set of finite sequences of symbols

in S. The concatenation of two sequences si and s2 is denoted by si :: ~2, whereas il

stands for the empty sequence.

Definition 13. Let &? = Am(.Y, 9, ‘V). The extended base 6!8E is defined as

&={A^JAE&~}U@.

The newly introduced atoms of the form A^ are referred to as divergent atoms. The

set Y(Bi) is a complete lattice under the usual inclusion ordering, with top and bottom

elements defined, respectively, as Bi and 0.

Sequences in 22; can be used to represent the frontiers of any finite cut of a Prolog

tree, and such sets can be constructed bottom-up by a suitable operator. Recall that a

finite cut at depth k of a tree is the tree obtained by cutting at depth k each branch

longer than k. As mentioned above, the presence of a divergent atom in a sequence

represents the fact that the sequence corresponds to the frontier of a cut of the Prolog

tree containing nodes which can be further expanded, i.e. they are neither failure nor

success nodes.

As an example, consider the following Prolog program:

P(Q).

P(b) + P(b).

The sequence

P(a) 1: P%)

represents any cut at level k 2 1 of the Prolog tree corresponding to the goal p(x).

In fact, the leftmost branch of this tree is a success branch with answer substitution

x = a, whereas the rightmost branch is an infinite one, which can be expanded indefi-

nitely by using the second clause.

In [9], an interpretation /.L is a set of sequences of elements in go. Given an in-

terpretation ~1, a sequence SET and an atom A, we define Q(S), the projection of A

on S, as the subsequence of S which consists of the elements which unify with A. If

160 R. Barbuti et al. IScience of Computer Programming 32 (1998) 145-l 76

A is in most general form, say A = p(x), then TC~(S) will be used as a shorthand for

z~(~)(S). In the next definition, clauses are assumed to be standardized apart each time

they are used, in order to avoid variables clashes.

Definition 14. Let c be a clause. & : Bz -+ $9; is defined as follows:

- If c is the unit clause A, then ~A(S)=A.

- If c=(A c B,D) and n~(S)=dl :: ... ::dk. Then

+c(s)=~l :: . . . :: tlk where c(i =
Zi if di = @,

&A+D)o,(S) if di =B’

and Oi=mgu(B,B’) for i~[l..k].

Definition 15. Let P be a program and cl,. . . , c,, the clauses of P. ~$p : ~$32 + 93; is

defined as 4p(S) = &(S) :: . . . :: &,,(S).

Definition 16. Let P be a program. Then P# = ~3,) :: . . . :: psn), where P,, . . . P,,
are the predicate symbols in P.

Definition 17. The operator @p : P(@i) -+ 9(Bi) is defined in terms of +p as follows:

@P(fi) = {MS) I SEPL) u UT

The least fixpoint of the operator @p, 9’jj~~(P), consists of the ordered set of the

sequences over BE which represent all the possible partial computations (w.r.t. the

depth-first left-to-right derivation) originating from the most general atoms in the pro-

gram.

Definition 18. yl,,(P) = @#,?I).

Consider the interpretations po,. . . , pk,. . . resulting from the iterative computation of

the fixpoint. At the first step, ~0 = @+(a) = {P”}. Similarly, at the second step, p1 =

@(PO)= {P”, $p(P”)}. In general, at step k, pk will consist of k + 1 sequences

SO,..., & and these sequences can be ordered so as to ensure that, for any j E [l..k],

~P(S~__I) = Sj. The fixpoint yb,(P) can then be viewed as the limit interpretation p,

consisting of the (finite or infinite) ordered set of sequences S,-,, . . . , Sk,. . .

Consider the following example taken from [9]. Given the Prolog program P,

p(b).

P(X) + 4x)

P(C).

40) + P(U)

r(b) + db)

R. Barbuti et al. IScience of Computer Programming 32 (1998) 145-176 161

the least fixpoint y?DFL(P) is computed at a finite iteration and it consists of the fol-

lowing set of ordered sequences:

So=p~)::r~)::~~)

Sr ==p(b)::pT)::p(c)::rF)::r+Pj

S* = p(b) :: p&P) :: p$P) :: p(c) :: YG)

S, = p(b) :: p&G) :: p(c) :: T$$.

Notice that divergent atoms can evolve to ordinary atoms or they can disappear in

later sequences, representing success or failure branches, respectively.

Consider now the program

P(O).

P(G)> +- P(X).

In this case the least fixpoint requires infinitely many iterations and it contains se-

quences of the form

Sk = p(0) :: p@(O)) :: . . . :: p(sk_l(O)) :: p(?@)).

Finally, consider the

P(W) +- P(X)

PW

Also in this case the

sequences of the form

program

least fixpoint requires infinitely many iterations and it contains

Sk = f&b)) :: p(sk-‘(o)) :: ’ ’ . :: p(s(o)) :: p(0).

Among others, an important result which is a direct consequence of the results

reported in [9] and which we will use is the following.

Proposition 19 ([9]). Let 3y.G be a closed goal. Then the following facts hold:

(i) the Prolog tree of G is finite and it contains at least one success branch iff for

some k, Sk is non-empty and does not contain divergent atoms

(ii) the Prolog tree of G is jinite and it contains no success branch ifs for some k,

.!$ = 2.

(iii) the Prolog tree of G is injinite @for each k, Sk is not empty and does contain

a divergent atom.

162 R. Barbuti et al. IScience of Computer Programming 32 (1998) 145-I 76

5.2. A logical semantics for pure Prolog

The problem with an existentially quantified goal of the form 3x.G is that the dis-

junction of all possible ground instances G[x:=g] must be taken in the right order

corresponding to the order of evaluation of Prolog. The idea is that this order is repre-

sented by the sequences in Y’,(P). The projection of a sequence Sk in yb,,(P) over

a goal p(x) can be seen as representing the frontier of the cut at level k of the Prolog

tree for p(x), which induces an order between ground instances. For instance, given

the goal Ix.p(x), the order induced by the sequence p(a):: p(b):: p(c) imposes that

[x := a] must precede [x := b] which itself must precede [x := c]. Hence, in the disjunc-

tion corresponding to the evaluation of Zlx.p(x) with respect to a basic assignment p,

p(p(x)[x:= a]) must occur before p(p(x)[x:=b]) and the latter must occur before

p(p(x)k= cl). Consider now the sequence p(a) :: pF) :: p(c), in which the divergent

atom p(b) represents a potentially infinite path in the Prolog tree. This is reflected, in

the evaluation of !lx.p(x), by taking the disjunction p(p(x)[x := a]) V u V . . .

The actual truth value of an existential goal should be computed as a function of the

truth value of the same goal with respect to any sequence in &L(P). Since a set 9 of

truth values may not have a maximal value with respect to the B, ordering, we define

the maxf(Y) function which in such cases ignores the f value.

Definition 20. Let 3 be a set of truth values in {t,f, tu,u}. Then maxf(Y) is defined

as follows:

max,f(Y) =

i

maxK(9\{f}) if 9 n {t, tU) # 0,

max,(y) otherwise,

where max, is the maximal value with respect to the GK ordering.

Given a sequence and an assignment, we define the sequential disjunction of the

sequence, which is based, according to the previous informal discussion, on the fact

that the sequence dictates in which order the ground instances represented by the

sequence should be evaluated.

Definition 21. Given a sequence S = dl :: . . . :: d, in 63; and an assignment p, the

sequential disjunction corresponding

;(,,)v...“$(,) P P n

where

if d is a divergent atom,
Zp(d) =

U

max&(p(t)@) I Y ground} if d = p(t)&

to S in p, denoted by v(S) is defined by
P

if S = 2,

otherwise,

where max, is the maximal value with respect to the truth ordering f Gr u Gt t, Gt t.

R. Barbuti et al. IScience of Computer Programming 32 (1998) 145-l 76 163

Notice that the above definition reflects the intuition that any divergent atom in

a sequence “represents” the undefined truth value, whereas a non-divergent atom rep-

resents the logical disjunction of all possible truth values of its ground instances in the

assignment p.

In the next definition we exploit the notion of sequential disjunction to assign a truth

value to existentially quantified goals. Notice that in the definition the projection of

a sequence is defined over a possibly non-atomic conjunctive goal. The trivial extension

of the projection operator n over a conjunctive goal G is still denoted by ?to and it is

given in Appendix A (see Definition 32).

Since &FL(P), in general, can be an infinite set of sequences, we must consider the

sequential disjunction of the goal with respect to any such sequence and then take the

maximal non-false value obtained in this way.

Definition 22. Given a closed goal G, and an assignment p, the truth value of G with

respect to the interpretation t+,, denoted by z+(G), is obtained as follows:

- f if G is false,
- t if G is true,

- the truth value p(G) if G is (t = t’) or G is p(t),
- the value of vp(GO) V v,(Gi) if G is the goal Ga V Gi ,

- the value of vp(Ga) A u,JGi) if G is the goal Gc A Gi,

- maxf{vai (CLi = zG’(&), for each S; E&FL(P)}, if G is the goal 3x.G’.
P

Now we can define the notion of model for pure Prolog.

Definition 23. Given a Prolog program P and an assignment p, the interpretation v,,

induced by p is a model of s_comp(P) iff for every definition

P(X) t-t G

in s_comp(P) we have that p(p(x)[x:=t]) is the same truth value of up(G[x :=t]), for

each sequence t of terms in Tm(9).

According to this notion of model, the results for propositional Prolog can be ex-

tended to pure Prolog. In particular, we can define a new Yp operator.

Definition 24. Let P be a Prolog program and Y = (9,9, V, 0, { 3)) be the language

of its sequential completion. The operator Yp mapping basic assignments to basic

assignments is defined as follows. For each predicate symbol p E 9’

WP)(P(t)) = $(4b := tl),

where p(x) * C#I is the sequential completed definition of p in s_comp(P), t is a se-

quence of terms in Tm(9) and up is the interpretation induced by p.

164 R. Barbuti et al. IScience of Computer Proyramminy 32 (1998) 145-I 76

Proposition 25. Let P be a Prolog program.
(i) An interpretation up is a model of s_comp(P) ifs p is a jixpoint of Fp.

(ii) The Fp operator is continuous.

Thus, we have that the interpretation v min induced by the least fixpoint of the J~P

operator is the least model of s_comp(P).
Finally, as in the propositional case we show that the least model of s_comp(P)

reflects indeed the operational behaviour of Prolog.

Theorem 26. Let P be a Prolog program, v,in the least model of s_comp(P) and G
be a closed goal belonging to Ex-Goal as in Dejinition 1, i.e. G = G’ if it does not
contain variables, or G = 3x.G’.

v,in(G) = t iff the Prolog tree of P and G’ is finite, and it contains at least one
success branch
v,in(G) = f tjJ” the Prolog tree of P and G’ is jmite, and it does not contain any
success branch
v,in(G) = t, 13 the Prolog tree of P and G’ is injinite, and it contains at least
a success branch on the left of the first injinite branch
v,in(G) = u tff the Prolog tree of P and G’ is injinite, and it contains no success
branch on the left of the first infinite branch.

Proof. See Appendix A. 0

Let us now give two examples.

Example 27. Consider the Prolog

p: p(s(x)) + P(X).

Its sequential completion

In the least model of

0,1,2)...) have value t.

Consider now the goal

program

P(0).

is given by p(x)+-+(3y.~=s(y)Ap(y))V(x=OAtrue).
the sequential completion all the atoms p(s”(O)), with n =

G = Zlx.p(x). The computation of Y~FL(P) requires infinitely

many iterations of @,“(a). At step k, pk contains the k+ 1 sequences {SO,. . . , Sk}, where

for each j

Sj =
{

PT) j = 0,

p(z)) :: p(sj-‘(0)) :: . . . :: p(0) j>O.

The truth value of the goal is then obtained as

maxf{u, uVt ,..., uVtV...Vt}.

This corresponds to the value II, which is the value of the initial goal, Ix.p(x), as

well.

R Barbuti et al. IScience of Computer Programming 32 (I 998) 145-176 165

This models the operational behaviour of the Prolog goal p(x) with respect to the

given program, which has an infinite Prolog tree where all the success branches are

inaccessible since an infinite number of nodes precedes them in the leftmost depth-first

traversal.

Example 28. Consider the Prolog program

p: P(O). PW>) + P(X).

Its sequential completion is given by p(x) H (x = 0 A true) V (3 y.x = s(y) A p(y)).

In the least model of the sequential completion all the atoms p(s”(O)), with n =

0,1,2)...) have value t.

Consider now the goal G = 3x.p(x). The computation of Y”FL(P) requires infinitely

many iterations of G,“(s). At step k, pk contains the k sequences {SO,. . .,&}, where

for each j

Sj =

i

PTI j = 0,

p(O)::...::p(s j-'(O)):: p(z)) j>O.

The truth value of the goal is then obtained as

maxf{u, tVu ,..., tVtV...Vu}.

This corresponds to the value t,.

This models the operational behaviour of the Prolog goal p(x) which has an infinite

Prolog tree with infinitely many success branches on the left of an infinite one.

6. Conclusion

We have shown how Prolog programming can be given a logical semantics based

on a four-valued logic. Besides the usual unde$ned truth value, we have a fourth truth

value t, which models the computation of a goal which succeeds (at least once) and

then loops. Future work will concentrate mainly on two issues. First of all, we plan

to extend it to normal Prolog programs (i.e. Prolog programs with negation-as-failure),

possibly adapting the approach of [2] where an extra truth value N is introduced to

model j?oundering. Second, we plan to explore the possibility of further extending the

approach to cope with other extra-logical features of Prolog.

Appendix A. Proofs

The proofs of the main results are performed by relating the construction of the least

model Umin with the sequences in &L(P). The least model U,in is the least fixpoint

166 R. Barbuti et al. IScience of’ Computer Programming 32 (1998) 145-l 76

FpU of the 5~ operator, where

and I assigns u to every atom.

We first give some useful definitions and technical lemmas and, for the sake of the

reader, we give first the proofs for propositional Prolog and then the ones for pure

Prolog.

Definition 29. Let S be a sequence in 93;, p(t),q(t’),r(s) be atoms, S’ = np(,)(S) =

ar :: . . . a,, S” = 7q1’)(S) = b, :: . . . :: bk, where each ai (resp. bj) is either p(t)& (resp.

4(t’)‘) or PGQi 09. d6Yj).

composer(,)(S’, s”) = Cl :: . . . :: c,,

where cr :: . . . :: c, is obtained from S’ and S” as follows:
_ C; = &jZIj if Ui is J+j$i;
- ci=b; :I... :: b:, where each b,! is I iff mgu(f9i,yj) =fad, bj =r(~)dj, Sj = mgu(Oi,yj)

otherwise (as usual, mgu(8i,yj) denotes the most general solution of the union of

the set of equations corresponding to the substitution 8i,yj).

Example 30. Assume S is a sequence such that S’ = z+)(S) = qB[x := c] :: q(x)[x :=
a] and S”=n,(,,)(S)=r(x,y)[x:=a,y:=b]::r(x,y)[x:=b,y:=b]. Then

compose,(,,(S’, S”) = pT)[x := c] :: p(x)[x := a, y := b].

Lemma 31. Let c: p(t)+ql(tl),..., qk(tk) be a clause in P, and let S be a sequence.
For each i= 1 ,. . ., k let also ai be the sequence for qi(ti) given by zq,ct,)(S). Then

Proof. Obvious by definition of compose and &(S). 0

As an example, consider the clause p(x) t q(x),r(x, y) and the sequence S of the

previous example.

The following definition is a slight extension of the projection operator rc over se-

quences in Y’FL(P) for arbitrary goals G.

R. Barbuti et al. IScience of Computer Programming 32 (1998) 145-176 167

Definition 32.

nG(si > =

Let Sj be a sequence in Y&L(P) and G be a goal.

’ qQ)Vi 1 if G = p(t)

aZoO 1: no,(&) if G = GO V Gi

A if G = 3x.t = t’ A G’ and t and t’ do not unify

nG/dSi) if G = 3x.t = t’ A G’ and 0 = mgu(t, t’)

compose,,,G.,)(@l, ...compose,i_,(,_,)(ak-l, mk)...)

if G=ql(tl),...,qk(tk), where anso is a new

predicate symbol, x are the free variables in G,

and for each h = 1,. . . ,k, mh = TC~,,(~,,~($).

We will make the following abuse of notation. Given a goal G = q(tl) A. A q(tm)

and a sequence & in y?DFL(P) the sequence zo(&) ends up in a sequence of the form

d, ::... :: d,,, where each dj is an atom of the form anso or an&(x), where x are

the free variables of G (see Definition 32). In this case, it may not be clear what

p(anso(x)y) stands for, y being a ground substitution for the variables x. However,

we still use this notation with the proviso that

dansG(xh) = P(dtl 7)) A ’ ’ ’ A P(‘dtrnY)h

Lemma 33. Let P be a logic program, p(g) be a ground atom and

CI :p(tl)tGI

cn :p(tn) +- G

be the ordered set of clauses for p in P. Moreover, for each j = 1,. . , n, let

mj” =

i

A if there is no mgu(g, tj),

%,0, (Sk > if ej = m&g, tj 1,

where Sk is a sequence in y)DFL(P). Then

n,(,)(Sk+l) = a: :: ’ ’ :: p,“,

where, for each j=l,...,n, /?;=A if $=A, and b;=d{:: s.. ::dk if $=d,::

. . . :: d,, where dI = pz) if di is a divergent atom, d: = p(g) otherwise.

Proof. The proof is straightforward by definition of x and by definition of &(sk). 13

The following proposition points out some useful properties of sequences in YDFL(P)

which are obvious consequences of the definition of the operator @p in [9].

Proposition 34. Let P be a logic program, and YDFL(P) = {So,Sl,. . . ,&,. . .}. Given

a goal G, the following facts hold:

168

(i)

(i.l)

(i.2)

(ii)

(iii)

R. Barb& et al. IScience of Computer Programming 32 (1998) 145-176

if for some k, nc(Sk) = 2 then
for each k’ 2 k, xG(Sk) = 2
for each k’ -C k, if zC(Sk’) # ,? then T&(&l) contains only divergent atoms.
iffor some k, T@(Sk)=dl :: ... ::d, and each di is not a divergent atom, then
for each k’ak, xc(&) = xc(&)
iffor some k, T@(Sk) contains a non divergent atom d, then any T’@(Sk’), with
k’ 2 k contains the same atom d.

As we mentioned before, the proofs are based on relating the least fixpoint of the

4 operator to the sequences in ~‘DFL(P). The idea is that each Sk in 9&,(P) can be

associated with an assignment pk, and that the limit assignment induced by these pk

coincide with Jo-” P .

Definition 35. Let Sk be a sequence in YD,vL(P). The assignment pk associated with

Sk is defined as follows:

(

f if zp(f)(Sk) = I&,

Pk(N)) =
t if np(,j(Sk) # 1, and does not contain divergent atoms,

n if znp@)(Sk) = &je :: S’,

t, if np(f)(Sk) = p(X)& :: . . . :: p(x)& :: p&j6 :: s’.

We will see that, in the propositional case, each pk coincides with the qk, whereas

in the non-propositional case the coincidence is obtained only at the limit assignment.

A.1. Proofs for propositional Prolog

In this section we will refer to a sequence of the form po :: . . . :: pk such that each

pi is either p or ^p as a sequence for p. Obviously, given an arbitrary sequence S,

rcP(S) is a sequence for p.

Definition 36. Let S = go :: . . . :: q,, be a sequence for q, and let p be a predicate

symbol. Then

rename,(S) = po :: . . . :: pn,

where pi=p if qi=q, and pi=p if qi=q.

Definition 37. Let S = po :: . . ::p,, be a sequence for p, S’=qo:: ... ::qk be a se-

quence for q, and r be a predicate symbol. Then

compose,(S, S’) = dl :: . . . :: d,

where d, =i: if pi = ij, and di = rename, if pi = p.

The following lemma is the analogous, for the propositional case, of Lemma 33.

R. Barbuti et al. IScience of’ Computer Programming 32 (1998) 145-176 169

Lemma 38. Let c : p + 41,. . . , qk be a clause for p, and let S be a sequence. For

each i= 1 , . . . , k let also ai be the sequence for qr given by x+(S). Then

&-(S)=compose,(al, ...composeql_,(ak_l, c(k)...).

Proof. Straightforward by definition of 4C. 0

Lemma 39. Let S=po:: ... ::p,, he a sequence for p, S’=qo:: ... ::qk be a se-

quence for q, and r be a predicate symbol. Then
(i) pCOi?lpOSe, ($S’)

(r) =8(P) A pS’(9)1

(ii) P
renume,(S):: rmamr,qr) = pS(p) ” pS’(q),

Proof. Straightforward by case analysis on the truth value of pco”posr~(xS’)(r) in

case (i) and on the truth value of pr~“Ume~(S)“r’n”m’~(S’)(r) in case (ii). 0

Lemma 40. Let P be a propositional Prolog program, and let pk be the assignment

associated with the sequence Sk. Then, the assignments FPk and pk coincide for each k.

Proof. We show by induction that for each k and for each predicate symbol p

qk(p) = L’k(p).

Base step: Obvious.

Inductive step: Let

Cl : p + qf A . . . A 4;,

. . .

crl 1 P +qlA ‘.. Aq;: I?

be the ordered set of clauses defining p in P. Moreover, for each qi., let c$ = rcq;(&).

For i= l,...,n, let

pi = compose,(af , . . compose,, _ ,,, ,(&Y 4J-).

Then, by definition of @p and Lemma 38,

np(&+,) = PI :: . ’ ’ :: Pn.

By Lemma 39(i), we have that, for each i = 1,. . . ,n,

pq p) = p”i (q{) A . . . A pai, (qi,).

Hence, by the inductive hypothesis (since p”:(q:) = pk(qj)) we have that

(i)

170 R. Barbuti et al. I Science of Computer Programming 32 (1998) 145-l 76

Let /?=/3t :: ... I:$. We have that

Pk+l(P)

P”(P)

{definition of pj}

= {Lemma 39(ii)}

p”‘(p) v . . . v #j”(P)
= {statement (t)}

(%k(4!) A . . . A %kGd 1)
v .‘. v

(&kMw ... WkM,J
= {definition of Fp}

&k+‘(p). •J

Corollary 41. Let P be a propositional Prolog program. Then pw = $“.

Proof of Theorem 11. The theorem is a consequence of Proposition 19, Corollary 41.

A.2. Proofs for pure Prolog

Lemma 42. For each k and ground atom p(g),

Proof. Straightforward by definition of pk and Proposition 34. 0

By the previous lemma we can define the limit assignment pw as follows:

Definition 43.

pYp(g)) = ki Pk(P(g))y
w

where u denotes the least upper bound with respect to 6,.

The following lemma points out a useful property of pw which will be used in the

sequel.

Lemma 44. Let G be a goal of the form 3x.G’, & be a sequence in Y,Q,cL(P) and
& = nG(&). Then

PrOOf. ak = A + 7 & = f by Definition 2 1.
0”’

R. Barbuti et al. /Science of Computer Programming 32 (1998) 145-176 171

Assume now ~CQ = f, and assume that ak # 2. By Definition 21, ak is a non-empty
P”’

sequence of the form d I :: . . I :: d, where each dj is not a divergent atom. Clearly,

for each j = 1,. . , n and for each ground substitution y, we have that pk(d/y) = t, by

Definition 35, and by Lemma 42, pk+‘(d,y)= t. Hence, for each dj,

Zp,,>(dj) = t,

which implies that Vxk = t, contradiction. q
P”

Lemma 45. Let P be a logic program. Then

%(P”) <K PW.

Proof. Let p(g) be an arbitrary ground atom and let

p(x) ++ ($.x=t, AG,)V ... V(Zly.x=t,~G,)

be the definition of p in s_comp(P). Then

%w?(P(g))
= {definition of Yp,>

+((3y.g = tl A G,) v . . . v (3y.g = t,, A G,))
{definition of V }

V op’,j(3y.g = ti A Gi).
if [Lnl

Let f = {jr , . . . , jh} be the ordered set of elements in [1, n] such that there exists

0, = mgu(g, tjr). Obviously, for each j E [1, n] such that j 9 % we have that ~,,~.,(Ily.g =

tj A Gj) = f and hence the above disjunction reduces to

V U,c.(Zly.g = tj A Gj).
.iE%

The proof is done by case analysis on the truth value of the last disjunction.

(i) if V jEY ~~~~~(3y.g = tj A Gj) = u there is nothing to prove, since u is the bottom

element with respect to d,.

(ii) Assume VjEB v,,~~(ZIy.g = tj A Gj) = f.

We calculate

V Vp,,>(3y.g=tjAGj)=f
.E/

= {definition of V }

Vj’jE.Vp~,,(3y.g=tjAGj)=f

f

where we have denoted by Zj the free variables in GjtIj. For each j, let G; = Gj6j.

172 R. Barbud et al. IScience of Computer Programming 32 (1998) 145-176

We have

Vp,,s(&j.GJ)
= {definition of up}

marf {$7+X)1 Si E YmLCP))

ZZ {previous calculation}

f

For each j E f we have

- {definition of maxf)

‘v’~.$$S~) E (u,f}, and

3t;.i7CQ(S/I) =f
/I”’

3 {Lemma 44)

Vi.~n~;(Sj) E {u,f}, and
P”]

%j.XG~(S/,) = A.

Hence, for each j E f, there exists t; such that Q(&,) = 1. Let then e = max(8’ 1

j E f}. By Lemma 33, it is clear that n,(,)(S/+1)=/2, and hence p’+‘(p(g))=f. By

this and Lemma 42 we conclude that p”‘(p(g)) = f.

(iii) Assume V, E g upC,,(3y.g = tj A G,) = t. We calculate

V vp<,>(3y_g=tj /\Gj)=t
iCf

ZE {definition of V 1

b’j E $.u,~,,(~_JJ.cJ = tj A Gj) E {f, t} and

3jE~.v,,,,(3y.g=tjAGj)=t

E { 0, = mgu(g, tj), definition of up}

Vjj_$.~,,~.(Elz~.Gj8j)E {f,t} and

3j~$.v,<.(GjOj)=t.

For each j, let Gj = Gj9j. Moreover, for each j such that V,~~~(Zkj.G~) = f we can rea-

son as in the previous case and conclude that there exists /’ such that zG;(&,) = II.

R. Barbuti et al. IScience of Computer Programming 32 (1998) 145-176 173

For each j such that u,c’,(%j.Gj) = t we have

maxf (~n,:(S,)lSii”nir(P)j =t

E {definition of mazf }

Vi.vrc~;(S;) E {u, t,, t}, and
0”’

-

Men,: E {u, t,, t}, and
P”’

Jej.nc:(S/,) # 2 with no divergent atoms.

definition of t
P

Hence, for each j E $ there exists ej such that

(a) either 71~ (St,) = 1,

(b) or xGr(S/:) # 1, and does not contain divergent atoms.

MoreoGer, at least one such j satisfies (b). Let then 6’= max{/ 1 j E 2). By

Lemma 33, it is clear that a,(,,(Sf+1)#3, and does not contain divergent atoms. Hence

p’+‘(p(g))= t. By this and Lemma 42 we can conclude that p”(p(g))= t.

(iv) Finally, assume V u,C,J(3y.g = tj A Gj) = t,. Assume now that the thesis does
.iEd

not hold, i.e.

(a) either p”(p(g)) = f

@I or, @“Mg)) = u.
In case (a), by definition of pw, there exists k > 1 such that

(a.1) for each k>8, npcy,(&)=A and #(p(g))=f

(a.2) for each k such that 0 <k <L, n peg) = PZ) :: S’ and #(p(g)) = u.

For j E 2 let, as in the previous cases, GJ = Gj8j, where 6, = mgu(g, tj).

For each k k/ and for each j E 2, we have

UP = 3,
=+ {Lemma 33)

nq(&_,)=i

=+

Cljnc;(&-,)=f

{definition of t)

0”’
=+

= maxf {~n,:(4)lSltYoii(P)} =f Idefinition Of maxf’

- {definition of up
and definition of GJ}

Vp’,,(3zj.g = tj A Gj) = f.

174 R. Barbuti et al. IScience of Computer Programming 32 (1998) 145-I 76

Hence, we also have that

V rp.J(3y.g = tj A Gj) E {u,f}
iV

which is a contradiction with the assumption V uP,,,(3y.g = tj A Gj) = t,.
jGf

In case (b), by definition of pw, for each k we have that n,(,,(&) = ~5):: S’ and

#(p(g)) = u. For each k 2 1, we have

n,(,)(&) = PZ) 1: s’
* {Lemma 33)

xc;,(&_,)=-&:s”

=+ {definition of v}
P

gli,,ca4=u

By observing that also V no;, (SO) = II, we have
P”’

= -

Vp,~~(3Zj.g=tj, AGj,)=U

*

{definition of vP and definition

of Gj, }

{definition of V }

V vp,,,(3y.g=tjAGj)=U
Ed

which is a contradiction with the assumption VjEBvp”l(3y.g=tj/\Gj)=tu. 0

Lemma 46. For each k, pkGKS(pW).

Proof. Analogous to the proof of Lemma 45. 0

Corollary 47. p” GK S(p”)

Lemma 48. pw is a jixpoint of 6.

Proof. Immediate consequence of Lemma 45 and Corollary 47. 0

Since TPU is the least fixpoint of TP we have the obvious corollary.

Corollary 49. qw GK pw.

In order to show that the converse of the last statement holds as well, we need first

some technical lemmas.

R. Barburi et al. IScience of Computer Programming 32 (1998)

Lemma 50. Let p(g) be a ground atom and p(x) t+ G the
s_comp(P). Then

pk+‘(p(g)) = VnG[x:=&).
P”

145-l 76 175

definition of p in

Proof. The proof is an easy case analysis on the value of #+‘(p(g)), exploiting

Definition 35 and Lemma 33. 0

Lemma 51. pk GK q”.

Proof. By induction on k.
Base step: Obvious.

Inductive step: Let p(g) be a ground atom and let p(x) t-t G be the definition of p

in s_comp(P). Then, by Lemma 50, #+‘(p(g)) = v nG[x:=y](&), which, by exploiting
P”

the inductive hypothesis, is in the relation < ,K with v ~ol~:=~l(&). Indeed, clearly
.v

this is itself in the relation dK with max/{ v Xolx:=gI(Si) 1 Si E Y’DFL(P)}, which is
g

nothing but v,v(G[x := g]). This, by definition of 9~ and the fact that FpW is a fixpoint

of Yp allows us to conclude the proof. q

Corollary 52. p” and &” coincide.

Proof of Theorem 26. For ground atoms, the theorem is a consequence of Proposi-

tion 19 and Corollary 52.

Let now G’ be a (possibly non-ground) conjunction of atoms and consider the closed

goal G = 3.G’. It is clear that the truth value of G in YpW coincides with the truth

value of the propositional symbol anSo in yp?“, where P’ is obtained by adding the

clause anSo t G’ to P. Hence the theorem. 0

References

[I] J.H. Andrews, The logical structure of sequential Prolog, in: S. Debray, M. Hermenegildo (Eds.), Proc.
1990 North American Conf. on Logic Programming, MIT Press, Cambridge, MA, 1990, pp. 585-602.

[2] J.H. Andrews, A logical semantics for depth-first Prolog with ground negation, in: D. Miller (Ed.),

[31

[41

r51

[61

Proc. 1993 Intemat. Symp. on Logic Programming, MIT Press, Cambridge, MA, 1993, pp. 220-234.
K.R. Apt, Introduction to logic programming, in: J. van Leeuwen (Ed.), Handbook of Theoretical

Computer Science, Vol. B: Formal Models and Semantics, Elsevier, Amsterdam and MIT Press,

Cambridge, MA, 1990, pp. 495-574.

B. Arbab, D.M. Berry, Operational and denotational semantics of Prolog, J. Logic Programming 4 (1987)
309-330.
R. Barbuti, M. Codish, R. Giacobazzi, G. Levi, Modelling Prolog control, J. Logic Comput. 3 (1993)
579-603.
R. Barbuti, M. Codish, R. Giacobazzi, M. Maher, Oracle semantics for Prolog, Inform. and Comput.

122 (1995) 178200.

176 R. Barbuti et al. IScience of Computer Programming 32 (1998) 145-I 76

[7] R. Barbuti, P. Mancarella, A multiple valued logical semantics for Prolog, in: Proc. ESOP 96,

April 1996.

[8] E. Biirger, D. Rosenzweig, A mathematical definition of full Prolog, Science of Computer Programming

24 (3) (1995) 249-286.

[9] A. Bossi, M. Bugliesi, M. Fabris, A new tixpoint semantics for Prolog, in: Proc. of the 10th Intemat.

Conf. on Logic Programming, MIT Press, Cambridge, MA, 1993, pp. 374-389.

[IO] A. de Bruin, E. de Vink, Continuation semantics for Prolog with cut, in: J. Diaz, F. Orejas (Eds.),

Proc. CAAP 89, Lecture Notes in Computer Science, Vol. 351, Springer, Berlin, 1989, pp. 178-192.

[l I] K.L. Clark, Negation as failure, in: Logic and Databases, Plenum Press, New York, 1978, pp. 293-322.

[12] SK. Debray, P. Mishra, Denotational and operational semantics for Prolog, in: M. Wirsing (Ed.), Formal

Description of Programming Concepts III, North-Holland, Amsterdam, 1987, pp. 245-269.

[131 G. Epstein, The lattice theory of Post algebras, in: D.C. Rine (Ed.), Computer Science and Multiple-

valued Logic, North-Holland, Amsterdam, 1984, pp. 23-40. Reprinted from Trans. Amer. Math. Sot.

95 (2) (1960) 300-317.

[l4] M. Fitting, A Kripke-Kleene semantics for logic programs, J. Logic Programming 4 (1985) 295-312.

[15] M. Fitting, Bilattices and the semantics of logic programming, J. Logic Programming 11 (1991) 91-l 16.

[16] N.D. Jones, A. Mycroft, Stepwise development of operational and denotational semantics for Prolog,

in: Sten-Ake Tamlund (Ed.), Proc. Second Intemat. Conf. on Logic Programming, 1984, pp. 281-288.

[17] K. Kunen, Negation in logic programming, J. Logic Programming 4 (1987) 298-308.

[18] J.W. Lloyd, Foundations of Logic Programming, 2nd Ed., Springer, Berlin, 1987.

[19] D. Miller, G. Nadathur, F. Pfenning, A. Scedrow, Uniform proofs as a foundation for logic programming,

Ann. Pure Appl. Logic 51 (1991) 125-157.

[20] A. Mycroft, Logic programs and multi-valued logic, in: M. Fontet, K. Mehlhom (Eds.), Proc. STACS

84, Lecture Notes in Computer Science, Vol. 166, Springer, Berlin, 1984, pp. 274-286.

[21] M. Rayan, M. Sadler, Valuation systems and consequence relations, in: S. Abramsky, D.M. Gabbay,

T.S.E. Maibaum (Eds.), Handbook of Logic in Computer Science, Vol. I, Clarendon Press, Oxford,

1992, pp. l-78.

[22] W.R. Smith, Minimization of multivalued functions, in: D.C. Rine (Ed.), Computer Science and

Multiple-valued Logic, North-Holland, Amsterdam, 1984, pp. 227-267.

[23] Special Section on Multiple-valued Logic, IEEE Trans. Comput. C-30 (1981) 617-706.

