
Towards More Effective Virus Detectors
Raghunathan Srinivasan and Partha Dasgupta

Arizona State University
1. Introduction

Viruses (or malware) are a scourge, with
potentially unlimited fraudulent uses. Smart viruses
can hide, mutate and disable detection methods.
Computers are an important part of everyday life to
many people across the world. The Internet has
revolutionized everyday life. The Internet has also
brought an ugly side of computers: a plethora of
malware. Home computers are most vulnerable to
attacks by malicious programs and hackers. This is
because many home users are less equipped to
prevent or counter an infection. Even if the user
possesses the required skills, a smart virus that
appropriately hooks onto the system can hide its
presence on the machine, and remain undetected.
These compromised machines are vulnerable to
hackers who steal secret data or even install
additional software that enables the use of the
machine as part of a botnet to launch Denial of
Service attacks on servers, or to intrude on
government agencies.

Virus writers use a variety of techniques to attack a
machine. They can be enumerated as follows:

 Social engineering
 Spamming
 Exploitation of software vulnerabilities
 Code Injection
 Cross Site Scripting
 Pharming

Elimination of software vulnerabilities requires the
implementation of secure OS and secure coding. Both
the issues have been researched heavily but have been
ineffective in practice, mainly due to the abundance
of legacy code. The OS kernel consists of millions of
lines of code, and writing a secure OS would require
that the entire kernel is bug free. Writing bug free
code is a very complex problem. Creation of a
completely secure OS is unlikely (Basili & Perricone,
1984). The problem of preventing infections is made
difficult by the fact that most hackers rely on human
error (social engineering) to compromise systems. It
can be inferred from above that it is hard to prevent
an infection since it is difficult to foresee the exact
error a user may commit. Hence, security software
rely on detection instead of prevention.

Software such as Anti-Virus (AV) solutions, and
firewalls offer some protection against computer
attacks; however, they are not completely effective.
Virus detection is surprisingly hard, it has been
shown that there is no algorithm that can perfectly
detect the presence of malicious code (Cohen, 1993).
Since the AV relies on definitions or known

behavioural patterns of malicious programs, a code
that is new in design can effectively use the zero day
exploit (Schneier, 2003).

The AV and other security software suffer from
several shortcomings. The AV is a user level
application that can be killed by any process with
administrator privileges, or it can be infected by
viruses, due to which the detection engine is
rendered useless. Like a virus, the AV software may
attempt to hide itself, but such attempts to hide can
also be detected.

Software in most machines is identical (genetic
uniformity). Due to this, an attacker can use one
machine to carry out experiments and find out ways
to exploit vulnerabilities, and use the information to
carry out the same attack on other machines. By
making programs dissimilar on every machine the
complexity and cost of an attack can be increased.

Motivations behind malwares have changed
constantly over time. Early viruses were designed to
cause disruptions by wiping out hard drives and
deleting files. Recent malwares are aimed at stealing
information such as bank account numbers, credit
card information. The payload of a malware has also
undergone changes. It may contain a virus, rootkit
and a password logger. Malwares are a big threat in
today’s computing world.

AV software has evolved continuously with
malware (Nachenberg, 1997; Sanok, 2005). AV
products have made it tougher for viruses to escape
detection. The virus writers have responded by
creating a new trend. Malicious programs disable the
AV and other security related processes in the
system.

The SpamThru Trojan gets installed on a host
system by social engineering. It patches the running
AV to block updates and prevent its detection. It
installs a pirated and patched copy of a popular AV
to scan the system to remove other malwares. This is
done to ensure that there are no competitors for
system resources. It runs a root kit to conceal its own
files from the scanner and system (Naraine, 2006).
Beast is a backdoor Trojan horse; it works as a
Remote Administration Tool. It injects its DLL’s
into explorer and winlogon. Once it infects a system,
it shuts off the AV, Firewall, and the attacker obtains
control of the system (The Beast, (n.d.)).

This list is not limited to only these two; Klez,
Bugbear and Lirva are other examples of viruses that
disable AV programs. This is known as Armoring
(Chen, 2003). Armoring marks a significant change
in virus behaviour. Till now any infection could be

contained and cleaned by the AV after the arrival of
an update, however, the latest trend of killing the AV
process threatens to make their presence
inconsequential. This means that there is an urgent
necessity to protect the AV from rogue programs.

This paper presents a software based solution to
prevent malware from disabling security software.
This problem is similar to that of preventing
infections and also similar to the problems faced by
virus writers in hiding their programs from the AV. It
is not possible to provide a solution that will hide the
AV from a malware completely; however, this paper
aims to make the process of locating and killing the
AV difficult.

2. Related Work

Hiding information is used for malicious and
benevolent purposes. The benevolent uses are to hide
passwords, credit card information and code
obfuscation for DRM. Malicious uses are typically to
hide the presence of malware. To achieve this, the
malware monitors and intercepts the state and actions
of the compromised system. A Rootkit is a popular
tool used by hackers to hide the presence of malicious
entities in the system. Shadow Walker (Sparks &
Butler, 2005) is a rootkit designed to deceive in
memory signature scanners. It hooks on to the page
fault handler and the page table entries in the system.
It detects the read requests made by the scanners and
provides fake values for the corrupted section of
memory to remain hidden. SubVirt (King & Chen,
2006) and Bluepill (Rutkowska, 2006) are Virtual
Machine (VM) based rootkits that take advantage of
the fact that the lower layers in a system can
effectively control the upper layers. SubVirt and
Bluepill install themselves between the hardware and
the operating system to control the machine. These
rootkits cannot be detected by processes running
within the system. The exact sequence of events in
the installation process for the rootkits is beyond the
scope of this paper.

It can be seen that use of a rootkit ensures that a
process remains hidden in the system from other
system programs, hence may be used to hide the AV
in the system. However, the problem with this
approach is that if in any eventuality a virus patches
on to the AV software then the virus can never be
removed, also the aim of this paper is to hide the AV
from malicious code, and not the system
administrator.

Another reason for not using any approach similar
to rootkits is that it would involve placing the AV
inside the kernel of the OS. The AV requires frequent
updates. Updating the kernel or a VM is a tedious
process; hence, the AV process must remain as an
application in the user space.

Code Injection is a technique used to introduce
code into a process from an outside source during
execution. These techniques are very popular in
system hacking and cracking. Kc, Keromytis and
Prevelakis (2003) describe code injection
methodologies for various languages and platforms.
Benevolent use of code injection occurs when a user
changes the behaviour of a program to meet system
requirements. This is done when the cost of
modifying the software is a costly process and it is
cheaper and convenient to inject code in the program
to achieve the desired functionality. In this paper,
code injection is used as one of the means to hide the
AV process in the system.

3. Threat Model

All security related problems cannot have a single
universal solution. Each solution lives up to a threat
model. A threat model describes the assumptions and
factors considered while making a solution. It also
describes the problems that are addressed by the
solution. The assumptions made in this paper are:
The AV will get installed on a clean machine. The
virus will not attempt to kill all processes, or delete
all files in the system. The virus will allow some
application to upgrade to newer versions. Rootkits
are not installed on the system. This solution works
effectively against malware that attempt to identify
the AV by scanning the system registry, process
table entries and file system for the presence of
known AV software solutions. This solution also
works effectively against programs that identify the
AV by the files and libraries used by it.

4. Design

To evade detection by malicious programs, the AV
should remain hidden from all processes in the
system. The reason for this is that any program on
the machine may be infected. To effectively hide a
program, its file structure, registry entries and
process table entries have to be hidden. These issues
are addressed by a two fold process. The first step
involves installing the program as a different
program on the machine. This serves to hide the file
structure and registry entries, and also ensures each
copy of the AV looks different. The next step
involves using code injection to migrate the program
code and library into other processes. Migration of
code serves to hide process table entries from all
other system components. By performing code
injection and the subsequent migration after certain
time intervals, another threat is addressed. It
becomes difficult for malware to locate where the
AV resides currently even if it finds where the AV
resided previously.

The design of the solution is illustrated in Figure 1;
this solution was implemented on the Windows 2000
platform.
4 a) Installing the Program

Viruses are known to insert sections of their code in
other programs to hide their presence. A similar trick
can be used to hide the AV. Writing part of the AV
code on an executable is not a good solution as it
would be too much virus like. Instead, the AV is
installed as a different program. This involves
replicating the directory structure and file names of
the software being replicated. The installation suite
contains the list of commonly used software in
consumer computers. During installation, the suite
finds out the software in the list have not been
installed on the machine. The suite then provides the
truncated list to the user to choose the software in
whose name and structure the AV should be installed.
On obtaining the response, the suite proceeds to
replicate the directory, file structure and registry
entries of the chosen software. By obtaining user
response, the solution ensures that the name and
directory structure of the AV is different in every user
machine. This provides the genetic diversity that
helps in cloaking the AV system.
4 b) Starting the Process

The first step in hiding the AV is to cloak the point
from where the process loads. Malware search
registry entries to find values that match the names of
popular AV software. The registry entry containing
information about the location of start up items is
vulnerable to attacks; hence this entry has to be
cloaked or removed. This is achieved by forcing
another process to start the AV. The best choices for
the starter process are system programs that load on
boot.

This part of the solution was implemented by
inserting a call to load the AV program inside the
code of msgina.dll, a library used by the system
process winlogon. If this process is different in every
machine, then it would be very difficult for a malware
to detect where the start up information of the AV is
stored.
4 c) Execution of the Process

In the previous two sections, it has been made
fairly difficult for malware to identify and disable the
AV; however, there exists a threat that a program
may identify the AV by taking the snapshot of the
system at any given time and analyse the result to
identify the AV. To make it tougher for the malware
to disable the AV, code injection is used to move the
AV code and libraries from one process space to
another.

To achieve this, the scheme described by Kuster, R
(2003) to inject code and library into another
process. The user is requested to enter a random
sequence every time the machine boots. The AV
process chooses a target process running in the
system using the entered value after time period ‘x’.
Once this process is chosen, the libraries and code
are injected into it. This process occurs after every
‘x’ period of time, it must be noted that ‘x’ is a value
that can be set by the system administrator on every
system.
4 d) Watch Processes

Malicious programs run a system query to identify
the AV process. The same technique is used to
monitor whether the Anti virus is running on the
system or not. A standalone process can monitor
whether the AV is disabled, or for better results, ‘N’
different processes can monitor the AV. Each of
these monitors the AV process by receiving the name
of the AV and the random sequence provided by the
user as a start up parameter. These processes locate
the AV program in the injected processes with the
aid of the random sequence, and restart the program
with human supervision in case the AV is disabled.
In addition, each process also receives the name of
the other ‘N-1’ processes so that every watch process
can be monitored. The watch processes also compute
and store the hash values of the known good copy of
the installed AV software and the modified system
library files. Prior to shutdown, the watch processes
check if any files have been modified, if so, the user
is notified to perform a re-installation of the AV.

This was implemented by using 3 processes to
monitor the AV. Each process calls the system API
GetProcessId to find whether the AV and the other
watch processes are executing. If a watch process is
disabled, then it is started immediately. If the AV is
disabled, then the user is prompted to start the AV. If
the user declines to start the program, the answer is
stored in memory to avoid prompting at a later time.

It can be argued that a malware may store the
integrity values of all known software, binaries and
libraries, and compare these values with the files in a
target system to identify the possible presence of the
AV. However, the size of such a database would be
very large and computing results would require
extremely high storage and computational
complexity. A malware is typically a light-weight
program that is designed to work without catching
the user’s attention; hence, this technique would be
infeasible. This issue is also partially solved by
making the watch threads perform integrity check
during system shut-down.

Figure1: Design for hiding the Anti-virus from malware

5. Conclusion and Future Work

This paper highlighted the growing problem of
malicious programs disabling the security software
and the need to tackle it. A software based solution
was presented to hide the AV program in the system
from malware. The solution provided protection from
malware that scan the registry entries, file structure,
and process table entries for the presence of the AV
by installing it as a different program and cloaking its
start up information. The solution also provided
migration of code to counter malware that may attack
the AV program by taking a system snapshot and
computing offline results. Finally, multiple watch
processes were introduced to monitor the AV and
perform some shut down events that are critical to
maintaining the integrity of the AV.

As seen in section 1, most malware successfully
use the zero day exploit. The reason for this is that
AV uses Blacklists to identify malicious code. If AV
solutions migrate to using a list of known good
programs (White-list), then the zero day exploit can
be countered and many viral infections can be
prevented. The only argument against usage of white-
lists is that there are too many good programs around.
However, all of them are not likely to reside on every
system. The AV program can scan the system on
installation to store a white-list. Every time a new
program is detected on the machine, the user can be
prompted to identify it. If the user cannot identify the
program, it can be discarded or quarantined. A
combination of white-lists and blacklists can serve to
make consumer computing secure, and should be
incorporated in Anti-virus solutions.

References
Basili, V.R. and Perricone, B.T. (1984). Software
errors and complexity: an empirical investigation 0.
Communications of the ACM. 27, 42 – 52.
Cohen, F.B. (1993). Operating system protection
through program evolution. Computers and Security,
12. 565 – 584
Schneier, B. (2003). Attack trends: 2004 and 2005. Q
focus: security, 3(5). 52 - 53.
Nachenberg, C. (1997). Computer virus-antivirus
coevolution, Communications of the ACM, 40. 46 - 51
Sanok. Jr, D.J. (2005), An analysis of how antivirus
methodologies are utilized in protecting computers
from malicious code. InfoSecCD ’05, 142 - 144
Naraine, R. (2006). Spam Trojan Installs Own Anti-
Virus Scanner. Retrieved October 20, 2006.
Website:http://www.eweek.com/article2/0,1895,2034
680,00.asp
The Beast. (n.d.). Retrieved October 13, 2005.
Website:http://lists.virus.org/dshield-
0310/msg00337.html
Chen, T.M. (2003). Trends in Viruses and Worms.
The Internet Protocol Journal, 6(3). 23 - 33
Sparks, S., & Butler, J. (2005). Shadow Walker:
Raising the bar for windows rootkit detection. Black
Hat.
King, S.T., & Chen, P.M. (2006). SubVirt:
implementing malware with virtual machines.
Security and Privacy, IEEE, pp 14 – 28.
Rutkowska, J. (2006). Subverting Vista Kernel for
Fun and Profit. Black Hat.
Kc, G.S., Keromytis, A.D., and Prevelakis, V. (2003).
Countering Code-Injection Attacks With Instruction-
Set Randomization. ACM CCS, 272 – 280.
Kuster, R. (2003). Three ways to inject your code into
another process. www.codeproject.com

