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Abstract. These notes are designed to accompany the lectures given by the
author in the Geometric Langlands Seminar at the University of Chicago in the
autumn quarter of 2007. The goal of the lectures was to give a brief introduction
to J. Lurie’s work on ∞-categories. In the notes we provide some additional
background from category theory and homotopy theory, as well as an extensive
collection of exercises that may help the reader digest the material.
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Introduction

In these notes we provide an introduction to the language of ∞-categories de-
veloped in J. Lurie’s book [T]. It would be difficult to improve upon Lurie’s own
treatment of the subject, and we made no attempt to do that. Instead, our goal was
to ease the transition into the world of ∞-categories for the reader who only has a
modest background in classical category theory. The material covered in our notes
corresponds merely to a portion of Sections 1.1 and 1.2 of [T]. Although the notes
can, in principle, be read independently of [T], we do not recommend doing so.
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2 MITYA BOYARCHENKO

Organization of the text. The rather extensive first section provides an overview
and an informal discussion of the main notions of higher category theory that
will be explained in these notes. For now we only mention that three sorts of
higher categories will appear in this text: ∞-categories1 (in the terminology of [T]),
which are also called quasi-categories by A. Joyal [Joy] and weak Kan complexes by
J.M. Boardman and R.M. Vogt; simplicial categories ; and topological categories.

Sections 2–5 give some background from ordinary category theory and the (ho-
motopy) theory of simplicial sets needed to understand Lurie’s approach to higher
category theory. The background is discussed in more detail below.

Section 6 is rather technical, and discusses the “simplicial nerve functor” N and
its left adjoint, C. These functors are the analogues for simplicial categories of the
usual nerve functor for ordinary categories and of its left adjoint, taking a simplicial
set to its “fundamental (or Poincaré) category”.

The basic language of ∞-categories is introduced in Section 7. To the reader
who is familiar with classical category theory and homotopy theory, we recommend
proceeding from Section 1 directly to Section 7 and referring back to Sections 2–6
as needed. Section 8 discusses the important notion of a homotopy (co)limit of a
functor from an ordinary (small) category to an ∞-category.

Background for Lurie’s work. Lurie’s book [T] is very nearly self-contained. In
particular, the appendix to it provides all the background from category theory, the
theory of simplicial sets and the theory of model categories, that is required to read
the book. Moreover, in the main body of [T], the introduction of every concept of
higher category theory is accompanied with a concise review of its classical (category-
theoretical or homotopy-theoretical) analogue. Nevertheless, as we only cover about
3% of [T] in these notes, we found it appropriate to supply the reader with a little
bit of background as well. We assume the knowledge of elementary category theory,
including the notions of adjoint pairs of functors and enriched categories. Some
standard terminology is reviewed in Section 2, while in Section 3 we introduce a
convenient technical device for proving general category-theoretical results. The
notion of a simplicial set and Quillen’s model category structure on the category
thereof are reviewed in Section 4. Finally, Section 5 recalls the definition of the
nerve of a small category, and describes the left adjoint to the nerve functor.

A few words about the exercises. Section 9 of these notes contains a list of
exercises that are meant to help the reader digest the material explained in the
notes. We would like to thank Vladimir Drinfeld and Jacob Lurie for suggesting
some of these exercises. Many other exercises are either standard facts from category
theory and homotopy theory, or results taken from Lurie’s book [T] whose proof only
requires a knowledge of the material presented in these notes.

1As explained in Section 1, a more precise term is “(∞, 1)-categories”.
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The reader is strongly advised to at least attempt all of the non-starred exercises
that we gave. (The starred ones are optional for the first reading.) Many of the
exercises ask for proofs of various results stated in the text; usually it is better to
find the proofs on your own than to look them up somewhere. As a general rule, we
recommend solving the exercises in the order in which they are stated.

Acknowledgements. Jacob Lurie helped us immensely by quickly and concisely
answering numerous question about his works (most of these questions were asked
by Drinfeld, who also communicated the answers to me). I would also like to thank
Vladimir Drinfeld for valuable advices (on preparing both my lectures and these
notes), Peter May for his comments on the notes, and Peter May and Michael
Shulman for their help with questions on algebraic topology and category theory.

1. Overview of the main notions

This section is an informal introduction to the notions of higher category theory
that we discuss in these notes. We will be as brief as possible with the motivational
comments, because we can say nothing that is not already contained in [T], and the
reader will surely find Lurie’s book to be very informative and inspirational (in par-
ticular, §§1.1.1–1.1.2 thereof carefully explain the motivation behind the approach
to higher category theory introduced by Joyal and explored by Lurie).

1.1. General remarks on higher categories. Roughly speaking, the theory of
higher categories aims to find a generalization of classical category theory where, in
addition to the ordinary objects and morphisms, one also has “morphisms between
morphisms”, usually called 2-morphisms; 3-morphisms; and so on. In developing this
approach one can either stop at a finite level and obtain the notion of an n-category,
where n ∈ N, or continue indefinitely and obtain the notion of an ∞-category.

However, working with compositions of n-morphisms immediately presents the
following problem. If one assumes that all compositions are strictly associative (i.e.,
associative in the usual sense of this word), higher categories become easy to define
by induction2, but for n ≥ 3 one obtains a notion which has an extremely limited
scope of applications3. To get the correct notion one must only require compositions
of n-morphisms to be associative up to certain (n+1)-morphisms, for all n ≥ 1, but
carefully writing out all the necessary coherence axioms is very difficult in practice.
For instance, the precise definition of a 3-category along these lines takes many pages
to spell out, and to the best of our knowledge, there exists no place in the literature
where the full definition of a 4-category is written down.

2One regards the collection of (small) strict n-categories, n−Catstrict, as an ordinary category,
and one defines a strict (n + 1)-category to be a category enriched over n−Catstrict.

3Most 3-categories that occur in practice are not equivalent to strict 3-categories.



4 MITYA BOYARCHENKO

The approach to higher category theory used by Joyal and Lurie is different. They
define the notion of an ∞-category directly (without first defining n-categories for
n ≥ 2), but they restrict attention to a special class thereof, namely, to ∞-categories
where n-morphisms are invertible for all n ≥ 2. A more precise name for this sort of
categories is (∞, 1)-categories4. More generally, an (∞, k)-category is an∞-category
where n-morphisms are invertible for all n > k. In principle, the theory developed in
[T] allows one to give a definition of an (∞, k)-category by induction on k. However,
for the most part, Lurie restricts attention to the cases k = 0 and k = 1.

1.2. ∞-groupoids and topological categories. By convention [T], the two terms
“(∞, 0)-category” and “∞-groupoid” have the same meaning, even though neither
of them has a unique definition. One of the most common choices is to define an
∞-groupoid to be simply a topological space. Now, if C is an (∞, k)-category in any
reasonable sense, then the collection of morphisms (i.e., 1-morphisms) between two
objects of C should form an (∞, k− 1)-category (more or less by definition). In par-
ticular, taking k = 1, these remarks immediately lead to one candidate of the notion
of an ∞-category. Namely, one could try to develop the theory of ∞-categories in
the framework of topological categories, which are, by definition, categories enriched
over the category of topological spaces.

In many places his book [T], Lurie explains how to define various higher categorical
notions in the setting of topological categories, but he also explains why this setting
is technically rather difficult to manage. Thus, for the development of the general
theory, he uses a different “model” of higher categories. This is not to say that
topological categories, as well as their “combinatorial cousins”, simplicial categories
(see §1.5), should be completely disregarded. On the contrary, they are used as
important technical tools in Lurie’s work.

1.3. Quasi-categories, a.k.a. ∞-categories. The term “quasi-category” was in-
troduced by André Joyal. By definition, a quasi-category is a simplicial set X with
the property that for all integers 0 < i < n, every morphism from the “inner horn”

Λn
i

f−→ X extends, possibly non-uniquely, to a morphism ∆n f̃−→ X. Here, ∆n

denotes the standard n-simplex, viewed as a simplicial set in the usual way, and Λn
i

is obtained from ∆n by removing its interior and the interior of the fact opposite to
the i-th vertex of ∆n. It turns out that quasi-categories provide the most technically
convenient model of the notion of an ∞-category.

Originally, quasi-categories were introduced under the name weak Kan complexes
by Boardman and Vogt. (The terminology is motivated by the fact that if we require
the extension property for all 0 ≤ i ≤ n in the definition above, we arrive at the
notion of a usual Kan simplicial set.) However, Joyal was the first person to realize
that this notion should play an important role in higher category theory [Joy]. In

4Thus general (even strict) 2-categories are not ∞-categories in Lurie’s sense.
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these notes, in order to be consistent with the terminology used in [T], we will use
the term ∞-category in place of quasi-category.

Let us observe right away that the notion of an ∞-category can be viewed as a
generalization of the notion of an ordinary category. Namely, recall that if C is a
small category, its nerve, N(C), is a simplicial set, from which C can be recovered up
to an isomorphism (not merely up to an equivalence). Furthermore, simplicial sets
that are isomorphic to nerves of ordinary categories can be characterized as those
that satisfy the extension property appearing in the definition of a quasi-category

with the added requirement of uniqueness of the extension f̃ .

1.4. Passage from topological categories to ∞-categories. Lurie’s book [T]
provides ample evidence that Joyal’s notion of a quasi-category is “the right one”,
and that it yields an extremely convenient setting for higher category theory. Thus
we will not elaborate on this point any further. However, the reader may pose the
natural question of how do topological categories relate to ∞-categories. In this
subsection we informally explain how every (small) topological category gives rise
to an ∞-category, leaving all the details for the main body of the notes.

Let C be a small topological category. To obtain an ∞-category from C, we would
like to imitate and generalize the usual construction of the nerve of an ordinary
category. The most naive approach would be to define the nerve N(C) in exactly
the same way as in classical category theory. In other words, the 0-simplices of
N(C) would be the objects of C, the 1-simplices of N(C) would be the morphisms
of C, and in general, the n-simplices of N(C) would be sequences of n composable
morphisms of C. The face and degeneracy maps of N(C) would be given by various
partial compositions and insertions of identity morphisms.

However, this construction disregards the topologies on the Hom spaces in the
category C, and thus clearly must yield an incorrect notion of a nerve. The failure
of this approach can already be seen from the fact that the correct notion of an
equivalence between two topological categories, C1 and C2, is a topological functor
F : C1 −→ C2 such that the induced maps HomC1(X,Y ) −→ HomC2(F (X), F (Y ))
are weak homotopy equivalences for all X, Y ∈ C1 and F is essentially surjective5.
Nevertheless, two topological categories that are equivalent in this correct sense may
have naive nerves that are rather different from each other6.

To obtain the correct notion one must remember that usually it is wrong to require
two morphisms in a topological category to be equal. Rather, one should apply the
philosophy of higher category theory and require instead that the two morphisms be

5Also in the appropriate topological sense, which is made precise in Definition 7.10(a).
6For instance, if M is a contractible topological monoid, it determines a topological category C

with one object, and C is topologically equivalent to a category with one object and one morphism.
However, the (geometric realization of the) naive nerve of C is the classifying space of M viewed
as a monoid with the discrete topology.
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connected by a continuous path7 and remember the choice of this path. Similarly,
one should not require two paths between two morphisms to be equal; instead, one
should require them to be homotopic, and remember the choice of a homotopy;
and so forth. Thus, if C is a (small) topological category and we try to define the
“clever” nerve, N(C), of C, the 0-simplices and the 1-simplices of N(C) should be the
objects and morphisms of C, but to give a 2-simplex of N(C) one must give objects

x0, x1, x2 ∈ C, morphisms x0
f01−−−→ x1, x1

f12−−−→ x2, x0
f02−−−→ x2, and a continuous

path in Hom(x0, x2) joining f02 and f12 ◦ f01.

The description of the 3-simplices in N(C) is more complicated. Let us list all the
data needed to specify an element of N(C)3:

• Four objects, x0, x1, x2, x3, of C.
• Six morphisms, fij : xi −→ xj, in C for all 0 ≤ i < j ≤ 3.
• Four continuous paths (in the appropriate Hom spaces), namely, a path γ0

joining f13 and f23 ◦ f12; a path γ1 joining f03 and f23 ◦ f02; a path γ2 joining
f03 and f13 ◦ f01; and a path γ3 joining f02 and f12 ◦ f01.

• A (continuous) homotopy (with fixed endpoints) between the two resulting
paths joining f03 and f23 ◦ f12 ◦ f01, namely,

γ1 • (constf23 ◦γ3) and γ2 • (γ0 ◦ constf01).

(Here, • denotes the concatenation of paths; ◦ denotes the composition law
in the category C; and constf denotes the constant path at a given element
f of some Hom space of C.)

In principle, one could define N(C)n for all n ∈ N along these lines, but it is not
convenient to work with the increasingly long lists of data with which one will have
to deal. Fortunately, Lurie explains a much more concise definition of N(C) in §1.1.5
of [T]; he calls it the topological nerve of C. An important fact, which follows from
Proposition 1.1.5.9 in loc. cit., is that N(C) is always an ∞-category.

Moreover, it is obvious from the description of N(C) sketched above that the
notion of a topological nerve does generalize the classical notion of a nerve, in the
sense that if C is an ordinary category, viewed as a topological category where all
the Hom spaces in C are equipped with the discrete topology, then the topological
nerve N(C) coincides with the ordinary nerve of C, by definition.

A remark on our notation. In [T], Lurie uses the notation N(C) to denote the
ordinary nerve, the topological nerve, or the simplicial nerve, of a given category
C, depending on whether C is an ordinary category, or is enriched over topological
spaces or over simplicial sets, respectively. As he points out, this choice of notation
could lead to some confusion, since the enriched nerve is often quite different from the
ordinary one. Moreover, he denotes the functor that is left adjoint to the simplicial
nerve functor by the Fraktur letter C. Thus we find it reasonable in these notes to

7Continuous paths between morphisms play the role of 2-morphisms in the present situation.
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denote the simplicial nerve and the topological nerve functors by the Fraktur letter
N, and reserve the letter N for the ordinary nerve functor.

1.5. Simplicial categories. It is clear from the description of the topological nerve
N(C) of a topological category C given above that N(C) only depends on the cat-
egory Sing(C) obtained from C by replacing all of the Hom spaces with their total
singular complexes. More generally, simplicial categories are a useful tool for un-
derstanding the relationship between topological categories (which provide a very
intuitive approach to higher category theory) and ∞-categories (which yield the
most technically convenient setting for higher category theory).

2. General notation and conventions

2.1. Universes. To avoid set-theoretical difficulties that might occur at a very basic
level, we will use Grothendieck’s approach. Namely, we fix two universes, U and
V , with the property that U ∈ V . Elements of U will be called sets. For more
details on this we refer the reader to §1.2.15 of [T].

2.2. Categories. In these notes we will exclusively deal with locally small categories
C, i.e., those that have the property that the class of objects of C is an element of V ,
and for any two objects X, Y of C, morphisms from X to Y in C form an element of
U . The set of morphisms from X to Y in C will always be denoted by HomC(X, Y ).
This notation is consistent with that used in Lurie’s book [T].

The classes of objects and morphisms of a category C will be denoted by Ob(C)
and Ar(C), respectively (and morphisms may sometimes be called “arrows”). By
the standard abuse of notation, we will often write X ∈ C in place of X ∈ Ob(C).

The opposite category (or dual category) of a category C will be denoted by Cop.

2.3. Small categories. A category is said to be small if its class of objects is a set
(i.e., lies in U ). Unless explicitly stated otherwise, most of the categories that we
consider will be small. Two notable exceptions8 are the category Set of all sets and
the category Cat of all small categories. In accordance with the conventions of §2.2,
if C,D ∈ Cat, we write HomCat(C,D) for the set of all functors C −→ D.

2.4. Yoneda embedding. If C is a category and X ∈ C, we define the functor
hC
X : Cop −→ Set by hC

X(Y ) = HomC(Y,X). It is well known that for any functor F :
Cop −→ Set, there is a natural bijection between the set of natural transformations
ϕ : hC

X −→ F and the set F (X), given by ϕ 7−→ ϕX(idX). In particular, for all
X, Y ∈ C, we obtain a natural bijection between the set of natural transformations
hC
X −→ hC

Y and HomC(X, Y ), which is compatible with compositions.

8Other exceptions, such as the category Top of topological spaces, the category Set44 of simplicial
sets, and the category Cat44 of small simplicial categories, are introduced later.
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If C is small, we obtain a fully faithful embedding hC of C into the category of all
functors Cop −→ Set, called the Yoneda embedding. The only reason we require C to
be small is that otherwise we cannot consider all functors Cop −→ Set at once.

2.5. Enriched categories. If H is any monoidal category, one knows how to define
the notion of a category enriched over H. If C is such a category and X, Y ∈ C

are objects, we write MapC(X, Y ) ∈ H for the corresponding object of morphisms
between X and Y . This is again consistent with [T].

If the category H does not have a specified monoidal structure, then whenever we
speak about H-enriched categories, we always assume that H has finite products and
is equipped with the Cartesian monoidal structure9. For instance, the category Cat
is naturally enriched over itself. Thus, for C,D ∈ Cat, we denote by MapCat(C,D)
the category of functors from C to D.

2.6. Lifting properties. Let C be a category (not necessarily small), and let L
and R be two classes of morphisms in C. Suppose that the ordered pair (L ,R) has
the following property: given any commutative square

A

`
��

// X

r

��
B // Y

in C with ` ∈ L and r ∈ R, there exists a (possibly non-unique) morphism x :
B −→ X in C making the diagram above commute. In this case we say that:

• morphisms in L have the left lifting property (L.L.P.) with respect to R (or
“with respect to morphisms in R”); and

• morphisms in R have the right lifting property (R.L.P.) with respect to L .

If M is any class of morphisms in C, we denote by λ(M ) and ρ(M ) the classes of
all morphisms in C having the L.L.P. and the R.L.P. with respect to M , respectively.

3. Small categories and diagram schemes

3.1. Diagram schemes. In these notes, in order to prove certain general results
from category theory, we will employ a useful formalism that we learned from the
book [GZ]. A more familiar special case of this story is recalled in §3.2.

Definition 3.1. A diagram scheme is an ordered quadruple D = (O,A, s, t), where
O, A are sets and s, t : A −→ O are maps. Elements of O are called the “objects”
or “vertices” of the diagram scheme D, and elements of A are called the “arrows”
of the diagram scheme D. If a ∈ A, then s(a) ∈ O and t(a) ∈ O are called the
“source” and “target” of the arrow a, respectively. Arrows in D will usually be

9That is, the monoidal bifunctor is the direct (or Cartesian) product bifunctor, with the obvious
associativity and unit constraints arising from the universal properties of direct products.
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drawn as follows: s(a)
a−→ t(a). Sometimes, by abuse of notation, we will write

x ∈ D in place of x ∈ O. Thus “x ∈ D” means “x is an object of D”.

Thus, what we call a diagram scheme is also sometimes referred to as an oriented
graph, and sometimes as a quiver. We chose our terminology to be compatible with
that of [GZ], and also so as to remind the reader of the relation of the notion we
introduced to category theory.

The notion of a morphism of diagram schemes is defined in the obvious way. We
will denote the category of diagram schemes by Dia. Note that it is not small.

Remark 3.2. Consider the category K which has two objects, α and ω, and two
nonidentity arrows ω −→ α. It is obvious that Dia is equivalent to the category of
presheaves of sets on K, i.e., functors Kop −→ Set.

3.2. Free monoids. In the rest of this section we will explore the relationship
between small categories and diagram schemes. Roughly speaking, the notion of
a diagram scheme is convenient for defining what it means for a category to be
“freely generated” by a given set of morphisms. Let us recall that a category with
one object is “the same thing as” a monoid. On the other hand, a diagram scheme
whose set of objects (or vertices) has one element is “the same thing as” a set, and
it is well known what it means for a monoid to be freely generated by a given set.

Let us formulate these comments in a category theory language. Let Mon denote
the category of monoids. If ∗ = {0} denotes a fixed set with one element, we have
a natural fully faithful functor Set ↪→ Dia defined by

S 7−→ (∗, S, pS, pS), where pS : S −→ ∗ is the unique map,

and a natural fully faithful functor Mon ↪→ Cat defined by

M 7−→ the category with set of objects ∗ and End(0) = M as monoids.

On the other hand, if S ∈ Set, we define FM(S) to be the monoid whose elements
are finite, possibly empty, strings (s1, s2, . . . , sn) of elements of S (so n ≥ 0), and
where composition is defined by concatenation of strings (so the empty string is the
unit element). We call FM(S) the free monoid on S. It is clear that FM can be
extended to a functor Set −→ Mon. The following fact is essentially obvious.

Lemma 3.3. The functor FM is left adjoint to the forgetful functor Mon −→ Set.

Recall that there is an analogous construction, which is perhaps even more fa-
miliar, in group theory: if S is a set, one can define the free group FG(S) on S.
However, there is an important difference between groups and monoids: whereas a
free group can be free on many10 different sets of generators, the set of free genera-
tors of a free monoid is uniquely determined. Namely, let us define an element x of
a monoid M to be indecomposable if x 6= 1 and x 6= yz for any y, z ∈M \ {1}.

10In fact, infinitely many if the group is not cyclic.
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Lemma 3.4. (a) If S is any set, the indecomposable elements of the monoid FM(S)
are precisely the strings of length 1. Thus the set of indecomposable elements of
FM(S) can be naturally identified with S.

(b) Let Set× and Mon× denote the groupoids obtained from the categories Set and
Mon by discarding all noninvertible morphisms. The functor Set× −→ Mon×

obtained by restricting FM to Set× is fully faithful.

It turns out that the forgetful functor Mon −→ Set can be extended to a functor
U : Cat −→ Dia (see the beginning of §3.3), and the functor FM : Set −→ Mon
can be extended to a functor Pa : Dia −→ Cat (see Definition 3.7). The functor Pa
is left adjoint to U , and an analogue of Lemma 3.4 holds for Pa (Exercise 9.9).

3.3. Categories and diagram schemes. Recall that Cat denotes the category of
small categories. If C ∈ Cat, we write Ob(C) for the set of objects of C, and Ar(C)
for the set of morphisms in C. The two maps Ar(C) −→ Ob(C), taking a morphism

X
f−→ Y in C to X and Y , respectively, define a diagram scheme U(C), which we

will call the underlying diagram scheme of the category C. We obtain a functor

U : Cat −→ Dia,

which is faithful, but certainly neither full nor essentially surjective11.

Lemma 3.5. The functor U has a left adjoint.

In Definition 3.7 below, we will explicitly describe a functor Pa : Dia −→ Cat.
We leave it as a trivial exercise for the reader to verify that Pa is left adjoint to U .

Definition 3.6. Let D = (O,A, s, t) be a diagram scheme and n ∈ N. A path of
length n in D is a sequence of arrows a1, . . . , an ∈ A such that t(aj) = s(aj+1) for
all 1 ≤ j ≤ n− 1. Pictorially, we represent such a path as follows:

x
a1−→ • a2−→ • a3−→ · · · an−1−→ • an−→ y,

where x = s(a1) and y = t(an). We also say that this path joins x to y. It is
convenient to define a path of length 0 in D to be an object x ∈ O; we say that such
a path joins x to x.

Definition 3.7. Let D = (O,A, s, t) be a diagram scheme. The path category, Pa(D),
of D, is defined as the category whose objects are elements of O, and where, for any
x, y ∈ O, the set of morphisms from x to y equals to the set of all paths in D of
arbitrary (finite) length ≥ 0 joining x to y. Composition of morphisms in Pa(D) is
defined as concatenation of paths. In particular, the paths of length 0 are the unit
morphisms in Pa(D). This obviously yields a functor Pa : Dia −→ Cat.

11For instance, if D is any diagram scheme which is in the essential image of the functor U ,
then for any object x of D, there must exist at least one arrow x −→ x.
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3.4. Small limits and colimits. In the standard treatment of limits and colimits,
one usually defines (co)limits of functors I −→ C, where C is an arbitrary category
and I is a small category of “indices”. Here we recall an equivalent approach, via
(co)limits of diagrams, which we also borrowed from [GZ].

Definition 3.8. Let D be a diagram scheme. If D′ is another diagram scheme, a
diagram of type D in D′ is a morphism of diagram schemes D −→ D′. If C is a (not
necessarily small) category, a diagram of type D in C is a functor Pa(D) −→ C.

Remark 3.9. If C is a small category, then, of course, a diagram of type D in C is
a morphism of diagram schemes D −→ U(C). The only reason we cannot repeat
the same definition in general is that we only defined “small” diagram schemes, and
hence U(C) also makes sense only for small categories.

If C is any category, we can also describe diagrams of type D = (O,A, s, t) in
C more concretely. Namely, giving such a diagram is equivalent to giving a rule
that to every x ∈ O assigns an object F (x) ∈ Ob(C), and to every a ∈ A assigns a
morphism F (a) : F (s(a)) −→ F (t(a)) in C.

Definition 3.10. Let D = (O,A, s, t) be a diagram scheme, let C be a category, and
let F be a diagram of type D in C, as described in Remark 3.9. A colimit12 of F is
the datum of an object Y of C, and of a morphism ix : F (x) −→ Y in C for every

x ∈ O, so that iy ◦F (a) = ix for every arrow x
a−→ y of D; and such that this datum

is universal(ly repelling, i.e., “initial”) among all such data.

The universal property mentioned in this definition is as follows. Let Z ∈ C, and
suppose that for every x ∈ O we are given a morphism jx : F (x) −→ Z in C, so that

jy ◦ F (a) = jx for every arrow x
a−→ y of D. Then there exists a unique morphism

f : Y −→ Z in C such that f ◦ ix = jx for all x ∈ O.

Often, by abuse of notation, we will denote a colimit of F by the single symbol
lim
−→
F , or by lim

−→
x∈D

F (x); this will also denote the object Y from Definition 3.10.

Remark 3.11. It is easy to see that this language is really equivalent to the language
of colimits of functors from small categories to the category C. On the one hand, with
the setup above, Pa(D) is a small category, and the definition of the colimit of the
diagram F is equivalent to the definition of the colimit of the corresponding functor
F : Pa(D) −→ C. On the other hand, if I is any small category and G : I −→ C

is any functor, let U(G) denote the diagram of type U(I ) in C obtained from G in
the tautological manner. It is easy to see that a colimit of the diagram U(G) is also
a colimit of the functor G, and vice versa.

12The term “direct limit” (or “inductive limit”) is used in [GZ] in place of “colimit”.
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Definition 3.12. We say that a (not necessarily small) category C has all small
colimits, or is cocomplete, if for every diagram scheme D, every diagram of type D

in C has a colimit in the sense of Definition 3.10.

Remark 3.13. Informally speaking, the notion of a limit of a diagram in a category
can be obtained from the notion of a colimit by inverting all the arrows. To make
this statement more precise, given a diagram scheme D, let us define the “opposite
diagram scheme”, Dop, to be the diagram scheme obtained from D by switching the
source map with the target map. If C is any category, a diagram of type D in C can
be regarded as a diagram of type Dop in Cop. By definition, a limit of the former
diagram in C is the same as a colimit of the latter diagram in Cop.

For the reader’s convenience, let us write out the definition of a limit explicitly in
the format identical to that of Definition 3.10.

Definition 3.14. Let D = (O,A, s, t) be a diagram scheme, let C be a category, and
let G be a diagram of type D in C, as described in Remark 3.9. A limit13 of G is
the datum of an object Y of C, and of a morphism px : Y −→ G(x) in C for every

x ∈ O, so that G(a) ◦ px = py for every arrow x
a−→ y of D; and such that this

datum is universal(ly attracting, i.e., “final”) among all such data.

The universal property mentioned in this definition is as follows. Let Z ∈ C, and
suppose that for every x ∈ O we are given a morphism qx : Z −→ G(x) in C, so that

G(a) ◦ qx = qy for every arrow x
a−→ y of D. Then there exists a unique morphism

g : Z −→ Y in C such that px ◦ g = qx for all x ∈ O.

3.5. Small colimits of small categories. It is easy to check that the category of
diagram schemes has all small colimits, which are computed, so to speak, “entry-
wise”. In other words, for a fixed diagram scheme D and a diagram F of type D in
Dia, if we write F (x) = (Ox, Ax, sx, tx) for every vertex x of D, then

lim
−→
x∈D

(
Ox, Ax, sx, tx

)
=

(
lim
−→
x∈D

Ax, lim−→
x∈D

Ox, lim−→
x∈D

sx, lim−→
x∈D

tx

)
.

For instance, this claim follows immediately from Remark 3.2.

One can use this observation to prove the following

Proposition 3.15. The category Cat of small categories has all small colimits.
Moreover, the functor Pa : Dia −→ Cat preserves small colimits.

Proof. The second statement is formal, because Pa is left adjoint to the functor
U : Cat −→ Dia. To prove the first statement, let us fix a diagram scheme D and
a diagram F of type D in Cat. Then U ◦ F is a diagram of type D in Dia, so by
the previous observation, it has a colimit. Let us call it L, and let us denote the
“structure morphisms” by Ix : U(F (x)) −→ L.

13The term “inverse limit” (or “projective limit”) is used in [GZ] in place of “limit”.
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Now L is a diagram scheme, so we can form the path category Pa(L) ∈ Cat, in-
troduced in Definition 3.7. Moreover, we have a natural morphism L −→ U(Pa(L)),
and we obtain the induced compositions I ′x : U(F (x)) −→ U(Pa(L)) for all x ∈ D.

If these compositions came from functors F (x) −→ Pa(L), then Pa(L) would be
the colimit of the diagram F in Cat, and the proof would be complete. In general,
there is no reason for this to be the case (remember that the functor U is faithful,
but not full). Instead, we must replace Pa(L) by a suitable quotient which, so to
speak, forces all the I ′x to become functors.

Let us consider the smallest equivalence relation ∼ on the set of morphisms in
Pa(L) with the following properties:

• if f, g ∈ Ar(Pa(L)) and f ∼ g, then h ◦ f ◦ h′ ∼ h ◦ g ◦ h′ for all morphisms
h, h′ ∈ Ar(Pa(L)) such that the compositions are defined;

• if x ∈ D and α, β ∈ Ar(F (x)) are such that α ◦ β is defined in F (x), then

I ′x(α ◦ β) ∼ I ′x(α) ◦ I ′x(β) in Ar(Pa(L));

• if x ∈ D and Y ∈ F (x), then I ′x(idY ) ∼ idI′x(Y ) in Ar(Pa(L)).

If C is the category with Ob(C) = Ob(Pa(L)) and Ar(C) = Ar(Pa(L))/ ∼, with the
composition of morphisms induced by that in Pa(L), it is clear that the diagram
morphisms I ′x : U(F (x)) −→ U(Pa(L)) induce functors ix : F (x) −→ C for every
x ∈ D, and it is straightforward to verify that the datum (C, ix) satisfies the universal
property defining the colimit of the diagram F in Cat. �

4. Homotopy theory of simplicial sets

The goal of this section is to recall some terminology and basic facts from the
homotopy theory of simplicial sets. The main reference is Chapter V of [GM].

4.1. Notation and terminology. The category of simplicial sets will be denoted
by Set44. By definition, it is the category of functors from 44op to the category of
sets, where 44 is the category with objects [n] := {0, 1, . . . , n}, where [n] is viewed
as a totally ordered set in the usual way and n = 0, 1, 2, . . . , and with morphism the
nondecreasing maps.

More generally, if C is any category, a simplicial object in C is a functor44op −→ C.
Simplicial objects in categories other than Set will not be used in these notes.

By abstract nonsense, the category Set44 has (small) limits and colimits; in par-
ticular, it has an initial object, ∅, and a final object, ∗. By definition, ∅([n]) is the
empty set, and ∗([n]) has exactly one element, for every n ≥ 0. Given X ∈ Set44, the
canonical maps ∅ −→ X and X −→ ∗ will be denoted by iX and pX , respectively.
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4.1.1. Simplices and related notions. Let us introduce some standard and classical
terms that are used in working with simplicial sets.

(a) If X ∈ Set44, we will usually write Xn in place of X([n]); elements of the set Xn

are called the n-simplices of X. If f : [m] −→ [n] is a morphism in the category
44, the induced map Xn −→ Xm will be denoted by f ∗.

(b) IfX ∈ Set44, elements ofX0 are usually called the vertices ofX, while elements of
X1 are called the edges of X. Note that the edges of X are oriented, in the sense
that every e ∈ X1 defines an ordered pair (s(e), t(e)), where s(e) = j∗0(e) ∈ X0

is the source of e, and t(e) = j∗1(e) ∈ X0 is the target of e. Here, j0, j1 : [0] ↪→ [1]
are the maps defined by 0 7→ 0 and 0 7→ 1, respectively.

(c) One generalization of the notions of the source and target of an edge is provided
by the notion of a vertex of simplex. Namely, if X ∈ Set44 and 0 ≤ i ≤ n, we
define, for each z ∈ Xn, the i-th vertex, vi(z) ∈ X0, of z, as the image of z under
the map Xn −→ X0 induced by the inclusion [0] ↪→ [n], 0 7→ i.

(d) Two special kinds of morphisms in the category 44 play a prominent role. Given
0 ≤ i ≤ n with n ≥ 1, we define ∂in : [n − 1] −→ [n] as the unique strictly
increasing map whose image does not contain i. For instance, the maps j0 and
j1 introduced above are the same as ∂1

1 and ∂0
1 , respectively.

(e) With the same notation, if X ∈ Set44 and z ∈ Xn, the (n− 1)-simplex ∂i(z) :=
(∂in)

∗(z) is called the i-th face of z. Informally speaking, ∂i(z) is “the face of z
opposite to the i-th vertex of z”. Note that, by definition, vertices of X do not
have faces. The map ∂i : Xn −→ Xn−1 is called the i-th face map.

(f) If 0 ≤ i ≤ n, we let σin : [n + 1] −→ [n] be the unique nondecreasing surjective
map of sets that takes on the value i twice. It is easy to see that every morphism
in the category 44 can be factored uniquely as a surjective map followed by
an injective map, and that, in turn, every surjective (respectively, injective)
morphism in 44 can be written as a composition of the maps σin (respectively,
∂in). We refer the reader, for instance, to §II.2 of [GZ] for a proof of the fact that
all relations among these maps in 44 are generated by the following relations:

∂jn+1 ◦ ∂in = ∂in+1 ◦ ∂j−1
n if i < j;

σjn ◦ σin+1 = σin ◦ σ
j+1
n+1 if i ≤ j;

σjn−1 ◦ ∂in =


∂in−1 ◦ σ

j−1
n−2 if i < j,

id[n−1] if i = j or i = j + 1,

∂i−1
n−1 ◦ σ

j
n−2 if i > j + 1.

(g) If X ∈ Set44 and 0 ≤ i ≤ n, we write si = (σin)
∗ : Xn −→ Xn+1, and call it

the i-th degeneracy map for X. A simplex (of any dimension) in X is said to
be nondegenerate if it is not in the image of any of the degeneracy maps. Note
that, by definition, all 0-simplices of X are nondegenerate.
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4.1.2. First examples of simplicial sets. The following special classes of simplicial
sets are ubiquitous in homotopy theory, and will appear often in these notes.

(1) For each n = 0, 1, 2, . . . , we write ∆n for the object of Set44 represented by [n],
i.e., (∆n)m = Hom44([m], [n]) for all m ≥ 0. This object is called the standard
n-simplex.

(2) The simplicial (n− 1)-sphere14 is defined as the subobject
•

∆n ⊂ ∆n given by( •

∆n
)
m

=
{
f ∈ Hom44([m], [n])

∣∣ f is not surjective
}
.

(3) If 0 ≤ i ≤ n, we define the (n, i)-horn Λn
i ⊂ ∆n as the subobject given by(

Λn
i

)
m

=
{
f ∈ Hom44([m], [n])

∣∣ Im(f) 6= [n], Im(f) 6= [n] \ {k}
}
.

This horn is said to be inner if 0 < i < n.

4.2. General comment. The main goal of this section is to recall the definitions
and basic properties of several classes of morphisms in the category of Set44, namely:

• cofibrations, defined simply as the monomorphisms in Set44;
• Kan fibrations;
• weak equivalences;
• acyclic Kan fibrations (i.e., Kan fibrations that are also weak equivalences);
• acyclic cofibrations, also known as the anodyne morphisms.

The notion of a Kan fibration is always defined in terms of a certain lifting property.
The notion of a cofibration is of course the most understandable one. The notion of
a weak equivalence is probably easiest to grasp when it is defined using the geometric
realization functor (see §4.3). However, this notion also has a purely combinatorial
definition: see, for instance, §V.1 of [GM], and also §4.10 below. A summary of all
the relevant definitions is given in §4.11 at the end of this section.

Remark 4.1. It is proved in loc. cit. that there exists a model category structure on
Set44 for which the cofibrations are the monomorphisms, the fibrations are the Kan
fibrations, and the weak equivalences are the weak equivalences between simplicial
sets. The notion of a model category15 will not appear in this section. Nevertheless,
the classes of the morphisms mentioned above will be very important for us.

4.3. Geometric realization. Let Top denote the category of topological spaces
and continuous maps. We have an adjoint pair of functors,

|·| : Set44 −→ Top and Sing : Top −→ Set44,

where |·| is called the geometric realization functor and Sing is called the total
singular complex functor; Sing is right adjoint to |·|.

14Many authors use the notation ∂∆n in place of
•

∆n.
15Introduced by D.G. Quillen in 1967.
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Let us briefly recall how these functors are constructed. For each n = 0, 1, 2, . . . ,
we define the standard n-dimensional simplex as the following subset of Rn:

|∆n| =
{
(x1, . . . , xn) ∈ Rn

∣∣ 0 ≤ x1 ≤ · · · ≤ xn ≤ 1
}
.

We equip |∆n| with the topology induced by the standard topology on Rn. By
convention, both R0 and |∆0| consist of one point.

We would like to turn the assignment [n] 7−→ |∆n| into a functor16 44 −→ Top.
Given a nondecreasing map f : [m] −→ [n], let us explain a geometric construction
of the corresponding continuous map |f | : |∆m| −→ |∆n|. A different description of
the functor [n] 7−→ |∆n| can be found in §4.4 below.

Let us first note that the set of all points of |∆n| has a natural partial order,
given by x ≤ y ⇐⇒ xj ≤ yj for all 1 ≤ j ≤ n. This partial ordering induces
a total ordering on the set of all vertices of the simplex |∆n| (the vertices are the
points (0, . . . , 0, 1), (0, . . . , 0, 1, 1), . . . , (1, 1, . . . , 1)). Thus there is a unique order-
preserving bijection between [n] and the set of vertices of |∆n|. With this in mind,
we define |f | : |∆m| −→ |∆n| to be the unique affine map that takes vertices of |∆m|
to vertices of |∆n| in the way determined by the map f : [m] −→ [n].

We have thus described the geometric realization functor |·| on the full subcategory
of Set44 formed by the representable functors. This is enough to recover the functor
|·| on all of Set44, using the fact that this functor must commute with small colimits.
We do not wish to recall the precise description of |·|, since it is quite standard17.

The total singular complex functor Sing : Top −→ Set44 is defined as follows: given
any X ∈ Top, the functor Sing(X) : 44op −→ Set is the composition

44op Yoneda−−−−−−→ Setop44
|·|−−−−→ Topop

Hom(·,X)−−−−−−−−−→ Set.

4.4. An alternate description of |∆n|. There exists a different description of the
topological space |∆n|, explained in [Dri], which makes the functorial nature of the
assignment [n] 7−→ |∆n| especially obvious. Let us briefly explain this description.

Consider all nondecreasing maps γ : [0, 1] −→ [n], where [0, 1] denotes the closed
unit interval with the standard ordering. Any such map is necessarily piecewise
constant. Let us introduce an equivalence relation on the set Sn of all such maps,
defined as follows: γ1 ∼ γ2 if γ1 and γ2 agree outside of a finite subset of [0, 1].

There is a natural bijection between |∆n| and the set Sn/∼ of the equivalence
classes for this relation, given by sending a point (x1, . . . , xn) ∈ |∆n| to the equiv-
alence class formed by the maps [0, 1] −→ [n] that take (0, x1) to 0, (x1, x2) to 1,

16By definition, such a functor is called a “cosimplicial topological space”.
17For the references, we especially recommend §I.2.2 in [GM] and [Dri].
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(x2, x3) to 2, etc., and (xn, 1) to n. It is not hard to check that this bijection becomes
a homeomorphism if we equip Sn/∼ with the topology induced by the metric

d
(
[γ1], [γ2]

)
= µ

(
{x ∈ [0, 1]

∣∣ γ1(x) 6= γ2(x)}
)
,

where [γ1], [γ2] are the equivalence classes of γ1, γ2 ∈ Sn, and µ is the standard
Lebesgue measure on [0, 1].

Now, given any morphism f : [m] −→ [n] in 44, composition with f defines a
continuous map Sm/∼−→ Sn/∼, and using the identification above, we obtain a
continuous map |f | : |∆m| −→ |∆n|.

4.5. A category-theoretical remark. The construction of the functors |·| and
Sing recalled above can be thought of as a particular instance a much more general
pattern. Namely, it can be obtained by applying Proposition 4.2 below to the functor
44 −→ Top, [n] 7−→ |∆n|, which was described in §4.3 and in §4.4.

To state the next result, we introduce the following notation. If D is a small
category, we write PreSh(D) for the category of functors Dop −→ Set, and call it
the category of presheaves of sets on D. (We would not have been able to define
PreSh(D) without assuming that D is small.) Thus, for example, Set44 = PreSh(44).

Let us recall from §2.4 that we have the Yoneda embedding hD : D −→ PreSh(D),
which is a fully faithful functor given by hD(X) ≡ hD

X = HomD(·, X).

Proposition 4.2 ([GZ], Proposition II.1.3). Let D be a small category, and let C

be an arbitrary category which has all small colimits.

(a) For an arbitrary functor

L : PreSh(D) −→ C,

the following two statements are equivalent:
(i) the functor L commutes with all small colimits;
(ii) the functor L has a right adjoint, R : C −→ PreSh(D).

(b) The functor L 7−→ L ◦ hD defines an equivalence between the full subcategory of
the category of functors PreSh(D) −→ C formed by those functors that commute
with direct limits, and the category of all functors D −→ C.

(c) Thus, we see that every functor F : D −→ C determines a unique (up to
canonical isomorphism) adjoint pair of functors, L : PreSh(D) −→ C and
R : C −→ PreSh(D), so that L◦hD = F . Furthermore, we have R(Z) = hC

Z ◦F ,
where F is viewed as a functor Dop −→ Cop.

To the reader who is seeing this material for the first time, we recommend proving
this proposition as an instructive exercise.

Remark 4.3. Part (b) of Proposition 4.2 can be interpreted (somewhat imprecisely)
as follows: one gets the category of presheaves of sets on D from the category D

itself by formally adding small colimits of objects of D in a universal way.
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4.6. Compactly generated spaces. Sometimes it is more convenient to view the
geometric realization functor as taking values in a certain full subcategory of Top,
namely, the category CG of “compactly generated spaces”, introduced below. For
instance, the functor |·| : Set44 −→ Top does not commute with finite limits (see
Exercise 9.1), while working with CG resolves this issue. On the other hand, it is
well known that in “abstract” point-set topology and algebraic topology, one should
work with the category CG to avoid various pathologies that occur in Top.

Definition 4.4. (a) A topological space X is said to be weak Hausdorff if for every
compact Hausdorff space K, the image of any continuous map K −→ X is closed
in X (thus Hausdorff ≡ T2 =⇒ weak Hausdorff =⇒ T1).

(b) A subset A of a topological space X is said to be compactly closed if for ev-
ery compact Hausdorff space K and every continuous map f : K −→ X, the
preimage f−1(A) is closed in K.

(c) A topological space X is said to be a k-space if every compactly closed subset
of X is closed.

(d) A compactly generated18 space is a weak Hausdorff k-space.

We let CG denote the category of all compactly generated topological spaces.

Proposition 4.5. For any simplicial set X, the geometric realization |X| is a com-
pactly generated space. Viewed as a functor Set44 −→ CG, the geometric realization
functor |·| commutes with finite limits and arbitrary (small) colimits.

For a discussion of this result, we refer the reader to [Dri]. (Of course, the result
itself is much older; it goes back to the work of J. Milnor in the 1950s).

4.7. Kan fibrations. A morphism of simplicial sets is said to be a Kan fibration
if it satisfies the right lifting property (see §2.6) with respect to all horn inclusions
Λn
i ↪→ ∆n, for all 0 ≤ i ≤ n. A simplicial set E is said to be Kan (or a Kan complex)

if the canonical morphism pE : E −→ ∗ is a Kan fibration.

For instance, if X is any topological space, then the total singular complex
Sing(X) is a Kan complex (Exercise 9.19). For another class of examples of Kan
complexes, see Exercise 9.20.

Remark 4.6. A simplicial set E is Kan if and only if the canonical (adjunction)
morphism ηE : E −→ Sing|E| admits a retraction, i.e., if and only if there exists a
morphism f : Sing|E| −→ E with f ◦ ηE = idE. Indeed, the “if” direction follows
from the definition of Kan fibrations and the easy exercise that if C is any category
and M is any class of morphisms in C, then the class of morphisms ρ(M ), defined
in §2.6, is stable under retractions. The “only if” direction follows from the fact

18In [GZ], the term “Kelley space” is used in place of “compactly generated topological space”.
Also, in [GZ], Kelley spaces are required to be Hausdorff. However, the weak Hausdorff requirement
is both more natural (see, e.g., Exercise 9.3) and technically more convenient.
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that ηE is an acyclic cofibration (see §§4.9–4.10 below) and that Kan fibrations have
the R.L.P. with respect to all acyclic cofibrations; thus, the commutative square

E
idE //

ηE

��

E

��
Sing|E| // ∗

can be completed to a commutative diagram via a morphism f : Sing|E| −→ E.

4.8. The inner Hom in Set44. The category Set44 is Cartesian closed, meaning that
for any pair of objects X, Y ∈ Set44, there exists an object XY ∈ Set44 together with
a functorial collection of bijections

HomSet44(Z × Y,X) ∼= HomSet44(Z,XY ) for all Z ∈ Set44.

Explicitly, XY is the simplicial set given by (XY )n = HomSet44(∆n × Y,X) (one

could also define XY abstractly via a suitable application of Proposition 4.2).

In fact, we see that Set44 becomes enriched over itself, i.e., becomes a simplicial
category. In order to emphasize this fact, we will sometimes write Map(Y,X) or
MapSet44

(X, Y ) in place of XY , for a pair of simplicial sets X, Y .

Definition 4.7 (Homotopy classes of morphisms). For any simplicial set Z, we write
π0(Z) for the quotient of the set Z0 ≡ Z([0]) by the equivalence relation generated
by the relation z ≈ w if there exists σ ∈ Z1 with ∂0(σ) = z and ∂1(σ) = w.

If X and Y are simplicial set, we define a set [X, Y ] by [X, Y ] = π0(Map(X, Y ));
its elements are called the (combinatorial) homotopy classes of morphisms from X
to Y . We warn the reader that usually, [X, Y ] is only the right object to consider
when Y is a Kan complex.

4.9. Cofibrations and anodyne morphisms. We define a morphism f : X −→
Y of simplicial sets to be a cofibration if f is a monomorphism in Set44; equivalently,
if the induced map of sets fn : Xn −→ Yn is injective for all n ≥ 0 (Exercise 9.6).

Cofibrations in Set44 admit an alternate characterization. Namely, let us define
T to be the class of all morphisms in Set44 that have the right lifting property (§2.6)

with respect to all sphere inclusions
•

∆n ↪→ ∆n (n ≥ 0).

Lemma 4.8 (cf. Lemma V.2.5 in [GM]). The monomorphisms in Set44 are precisely
the morphisms having the left lifting property with respect to all morphisms in T .

Definition 4.9. A morphism in Set44 is said to be anodyne if it has the left lifting
property with respect to all Kan fibrations (see §4.7).

It is perhaps not immediately obvious, but true, that anodyne morphisms in
Set44 are cofibrations. Moreover, anodyne morphisms can be characterized as those
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cofibrations in Set44 that are also weak equivalences (see §4.10 and Lemma 4.13).
A typical example of an anodyne morphism is a horn inclusion Λn

i ↪→ ∆n, where
0 ≤ i ≤ n; this follows tautologically from Definition 4.9.

The next result is useful. It is left as an instructive exercise for the reader.

Lemma 4.10 (cf. Lemma V.2.8 in [GM]). Let f : X ↪→ Y be any cofibration, and
let g : Z −→ W be an anodyne morphism, in Set44. The induced morphism

(X ×W )
∐
X×Z

(Y × Z) −→ Y ×W

is also anodyne, where the left hand side is the pushout of the morphisms (idX ×g) :
X × Z −→ X ×W and (f × idZ) : X × Z −→ Y × Z.

4.10. Weak equivalences between simplicial sets. If one is allowed to use the
geometric realization functor (§4.3), the easiest way to define weak equivalences of
simplicial sets is as follows. Let us recall that a continuous map f : X −→ Y of
topological spaces is said to be a weak homotopy equivalence if for every x ∈ X, the
map πi(X, x) −→ πi(Y, f(x)) induced by f is bijective for all i ≥ 0.

Definition 4.11. A morphism f : X −→ Y of simplicial sets is a weak equivalence
if the induced continuous map |f | : |X| −→ |Y | is a weak homotopy equivalence of
topological spaces.

Remark 4.12. In fact, it is known that |X| and |Y | are CW complexes, so a weak
homotopy equivalence between them is the same as a homotopy equivalence.

The following results are well known (see §V.2 of [GM], and [May]).

Lemma 4.13. A morphism in Set44 is anodyne if and only if it is both a cofibration
and a weak equivalence.

Proposition 4.14 (Characterizations of weak equivalences). For a morphism f :
X −→ Y of simplicial sets, the following are equivalent:

(i) f is a weak equivalence;

(ii) f can be factored as g ◦h, where g satisfies the R.L.P. (§2.6) with respect to all

sphere inclusions
•

∆n ↪→ ∆n (see §4.1), and h satisfies the L.L.P. with respect
to all Kan fibrations (§4.7);

(iii) for every Kan complex E, the map [Y,E] −→ [X,E] induced by f is a bijection.

We remark that the equivalence between properties (ii) and (iii) is proved in
Theorem V.2.3 of [GM].
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4.11. Summary. Let F , G and W denote the classes of Kan fibrations, cofibra-
tions, and weak equivalences in the category Set44, introduced in §4.7, §4.9 and
§4.10, respectively. Let H and S denote the classes of horns and spheres in Set44,
defined as the arbitrary disjoint unions of the horn inclusions Λn

i ↪→ ∆n and the

sphere inclusions
•

∆n ↪→ ∆n, respectively, where 0 ≤ i ≤ n. With the notation of
§2.6, the relations between these classes of morphisms can be summarized as follows:

• F = ρ(H ) = ρλρ(H ) = ρ(G ∩W ) (the last two equalities are formal);
• G = λρ(S ) = λ(F ∩W ) = {all monomorphisms in Set44};
• W is the class of morphisms f : X −→ Y in Set44 whose geometric realization
|f | : |X| −→ |Y | is a weak homotopy equivalence (§4.10); combinatorially,

W = ρ(S ) ◦ λρ(H ) = (F ∩W ) ◦ (G ∩W ).

• F ∩W = ρ(S ) = ρ(G ) (the last equality is formal);

• G ∩W = λ(F ) ≡ λρ(H )
def
= {anodyne morphisms in Set44}.

4.12. An application of Quillen’s formalism. In this subsection we give an il-
lustration of how the various relations between Kan fibrations, cofibrations and weak
equivalences in Set44 can be used formally to prove non-obvious results. Namely,
recall that a Kan complex is a simplicial set E characterized by the property that

for all 0 ≤ k ≤ n, every morphism Λn
k

f−→ E extends to a morphism ∆n −→ E.
However, this extension is often non-unique19. Therefore, it is natural to ask if some-
thing can be said about the set of all possible extensions of f . From the naive point
of view, these extensions form a discrete set, so of course, we cannot say anything
interesting about it. Instead, we observe that this set can be naturally viewed as
the set of 0-simplices of a simplicial set, namely, the fiber over f of the morphism
Map(∆n, E) −→ Map(Λn

k , E) induced by the inclusion Λn
k ↪→ ∆n (see §4.8).

It turns out that this simplicial set is a contractible Kan complex (a Kan complex
Z is said to be contractible if the morphism pZ : Z −→ ∗ is a weak equivalence).
This statement is a special case of its relative version:

Proposition 4.15. Let f : X −→ Y be a Kan fibration of simplicial sets, and
consider a commutative square

Λn
k

ι

��

α̃ // X

f

��
∆n

α
// Y

where ι is the natural inclusion. Consider the simplicial set of all lifts ∆n −→ X
preserving commutativity, i.e., the fiber, Z, of the natural morphism

(f∗, ι
∗) : Map(∆n, X) −→ Map(∆n, Y )×Map(Λn

k , X)

19It is always unique if and only if E is isomorphic to the nerve of a small groupoid.
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over the 0-simplex (α, α̃). This fiber is a contractible Kan complex.

Proof. We must show that the morphism pZ : Z −→ ∗ is an acyclic Kan fibration.
Acyclic Kan fibrations are characterized as the morphisms having the R.L.P. with
respect to all cofibrations, i.e., monomorphisms of simplicial sets. Thus let j : S ↪→
S ′ be any monomorphism of simplicial sets, and consider a morphism β : S −→ Z.
We must show that there is a morphism β′ : S ′ −→ Z with β = β′ ◦ j.

By definition, giving β [respectively, β′] amounts to giving a morphism S −→
Map(∆n, X) [respectively, S ′ −→ Map(∆n, X)] whose composition with (f∗, ι

∗)
equals the constant morphism given by (α, α̃). In turn, this is equivalent to giv-
ing a morphism γ : S ×∆n −→ X [respectively, γ′ : S ′ ×∆n −→ X] such that:

• the restriction of γ to S×Λn
k equals α̃◦pr2, where pr2 : S×Λn

k −→ Λn
k is the

second projection [respectively, the restriction of γ′ to S ′×Λn
k equals α̃◦pr′2,

where pr′2 : S ′ × Λn
k −→ Λn

k is the second projection]; and

• the composition f ◦ γ equals α ◦ pr2, where pr2 : S × ∆n −→ ∆n is the
second projection [respectively, the composition f ◦ γ′ equals α ◦ pr′2, where
pr′2 : S ′ ×∆n −→ ∆n is the second projection].

Thus we see that the existence of the desired extension β′ of β is equivalent
to the existence of an extension γ′ of γ as specified above. We can rephrase this
extension problem in a more compact way as follows. Consider the pair of morphisms
γ : S ×∆n −→ X and α̃ ◦ pr′2 : S ′×Λn

k −→ X, where the notation is as above. The
restrictions of these morphisms to S×Λn

k coincide by construction. Thus we obtain a
morphism from the corresponding pushout to X that fits into a commutative square(

S ×∆n
) ∐
S×Λn

k

(
S ′ × Λn

k

)
��

// X

f

��
S ′ ×∆n

α◦pr′2 // Y

Moreover, finding γ′ amounts to finding a lift S ′ ×∆n −→ X in this diagram that
preserves commutativity. However, the left vertical arrow in this diagram is an
anodyne morphism by Lemma 4.10. Therefore the desired lift exists because Kan
fibrations have the R.L.P. with respect to all anodyne morphisms. �

5. Small categories and simplicial sets

5.1. Categories and posets. We use the standard abbreviation: “poset” means
“partially ordered set”. If P is any poset, we form a small category whose objects
are elements of P , and where, given x, y ∈ P , the set Hom(x, y) has precisely one
element if x ≤ y, and is empty otherwise (this determines composition of morphisms
uniquely). By abuse of notation, we will denote this category by P as well.



NOTES AND EXERCISES ON ∞-CATEGORIES 23

Observe that if P1 and P2 are posets, then defining a functor P1 −→ P2 between
the corresponding categories is the same as defining a nondecreasing map P1 −→ P2.
Thus the category of posets and nondecreasing maps is a full subcategory of Cat.

5.2. The nerve of a small category. Let C be a small category. The nerve of C

is the simplicial set N(C) : 44op −→ Set defined by20

N(C)([n]) ≡ N(C)n = HomCat([n],C).

We recall that HomCat(C1,C2) denotes the set of all functors between two small
categories, C1 and C2; and that in the formula above, the (totally) ordered set
[n] = {0, 1, . . . , n} is viewed as a category in the way described in §5.1.

5.3. The Poincaré category of a simplicial set. We recall the following

Proposition 5.1. The nerve functor N : Cat −→ Set44 has a left adjoint.

We will explicitly describe a functor P : Set44 −→ Cat in Definition 5.3. It is a
simple exercise to check that this functor is left adjoint to N . The construction of
the functor P is taken from the proposition in §II.4.2 of [GZ].

Definition 5.2. Let X be a simplicial set. We denote by D(X) the diagram scheme
(X1, X0, ∂0, ∂1), where X0 = X([0]), X1 = X([1]), and ∂0, ∂1 : X1 −→ X0 are the
maps induced by the inclusions [0] ↪→ [1] given by 0 7→ 0 and 0 7→ 1, respectively.

Definition 5.3. Let X be a simplicial set. The Poincaré category21 of X, written
P(X), is the quotient of the path category Pa(D(X)) by the equivalence relation on
morphisms generated by the “elementary relation” ≈ defined as follows.

If σ ∈ X2 = X([2]), we declare ∂1(σ) ≈ ∂2(σ) ◦∂0(σ), where ∂0, ∂1, ∂2 : X2 −→ X1

are induced by the three strictly increasing maps [1] ↪→ [2] whose images omit 0, 1
and 2, respectively.

Remark 5.4. Observe that if X is any simplicial set, the Poincaré category P(X)
depends only on the 2-skeleton22 of X.

Remark 5.5. The nerve functor N : Cat −→ Set44 and the Poincaré category functor
P : Set44 −→ Cat could be formally defined by applying Proposition 4.2 to the
functor 44 −→ Cat that takes [n] to the ordered set [n] viewed as a category.

20The action of N(C) on morphisms in 44 is defined in the obvious way.
21In the literature, P(X) is sometimes called the “fundamental category” of X, or the category

“generated by”, or “presented by”, X. We thank Michael Shulman for explaining its definition to
us. Lurie calls P(X) the “homotopy category” of X; it is studied in §1.2.3 of [T].

22That is, the minimal simplicial subset sk2 X ⊂ X such that (sk2 X)n = Xn for n = 0, 1, 2.
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5.4. Characterization of nerves of small categories. It turns out that a small
category can be recovered from its nerve up to an isomorphism (not merely an
equivalence), and that the class of all simplicial sets that are isomorphic to nerves
of small categories admits a simple characterization. These facts lie at the heart of
the approach to ∞-categories that we will explain below.

The proofs of the following results are left as exercises.

Lemma 5.6. The nerve functor N : Cat −→ Set44 is fully faithful. If C is any
small category, the adjunction morphism P(N(C)) −→ C (induced by the identity
morphism N(C) −→ N(C)) is an isomorphism of categories.

Lemma 5.7. If X ∈ Set44, then X ∼= N(C) for some small category C if and only
if for all 0 < i < n, every morphism f : Λn

i −→ X admits a unique extension to a
morphism ∆n −→ X.

6. Topological and simplicial categories

6.1. Definitions of topological and simplicial categories. This section is de-
voted to the analogue for simplicial categories of the story explained in Section 5.
For us, the original motivation comes from trying to understand the relationship
between topological categories and ∞-categories (the latter will be discussed in Sec-
tion 7). We defined and discussed topological categories in §1.2 and §1.4, but for
consistency with [T], let us slightly change the definition:

Definition 6.1. A topological category is a category enriched over the category CG of
compactly generated topological spaces (Definition 4.4). Thus, to give a topological
category, we must give an ordinary category C and a compactly generated topology
on each of the sets HomC(X, Y ) such that the composition laws

HomC(Y, Z)× HomC(X,Y ) −→ HomC(X,Z)

are continuous for all objects X, Y, Z ∈ C. Note that the product on the left hand
side is computed in CG, so its topology may be finer than the product topology.

As mentioned in §2.5, if C is a topological category, we will write MapC(X,Y ),
rather than HomC(X, Y ), for the topological space of morphisms X −→ Y in C.

Definition 6.2. A simplicial category is a category enriched over the category Set44
of simplicial sets. Thus, to give a simplicial category C, we must give a class Ob(C)
of objects of C, and, for every pair X,Y ∈ Ob(C), a simplicial set MapC(X, Y ),
together with composition laws

MapC(Y, Z)×MapC(X, Y ) −→ MapC(X,Z)

for all triples X,Y, Z ∈ Ob(C), satisfying the usual associativity and unit23 axioms.

23The identity endomorphism of any X ∈ Ob(C) is necessarily a 0-simplex in MapC(X, X).
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It is useful to keep the following comments in mind.

Remarks 6.3. (1) A simplicial category C gives rise to a countable collection of ordi-
nary categories. Namely, for each n ≥ 0, we can consider the category Cn which
has the same objects as C, and with HomCn(X, Y ) = MapC(X, Y )n for all X, Y .

(2) The sequence Cn mentioned in the previous remark is a simplicial object in
“the category of categories”. Conversely, an arbitrary simplicial object in “the
category of categories” arises from a simplicial category in the sense of Definition
6.2 if and only if its underlying simplicial set of objects is constant. (We are
using quotation marks because one has to formulate this remark more carefully
if one wishes to allow large categories. If we only work with small simplicial
categories, there are no technical problems.)

(3) It is also easy to check that a category object in the category of simplicial sets
is “the same thing as” a simplicial object in the category of small categories.

6.2. Relation between three types of higher categories. As we mentioned in
Section 1, the notion of a topological category provides one of the most intuitive
approaches to higher category theory. On the other hand, the notion of a quasi-
category [Joy], a.k.a. ∞-category [T], is technically the most convenient one. In
order to compare these two notions, one employs an appropriate version of the nerve
construction. In §1.4, we briefly explained why the ordinary nerve construction
is not suitable in the setting of topological categories, and outlined an approach
for obtaining the “correct” notion of a nerve, called the topological nerve. It is
possible to write down a complete definition of the topological nerve N(C) of a
(small) topological category C along the lines of §1.4. However, this approach has
the disadvantage of producing long lists of data that are rather difficult to manage.

Fortunately, Lurie explains in [T, §1.1.5] a much more concise approach to the
definition of N(C). His approach uses simplicial categories, which, more generally,
are a very convenient tool for comparing ∞-categories with other models of higher
category theory.

The relationship between simplicial categories and topological categories is easy
to describe. Let Cat44 and Cattop denote the categories of all small simplicial (re-
spectively, topological) categories. The geometric realization and the total singular
complex functors,

|·| : Set44 −→ CG and Sing : CG −→ Set44,

are adjoint, and they both preserve finite products (for Sing, this follows from ab-
stract nonsense; for |·|, see Proposition 4.5). It follows that by applying these two
functors to the spaces of maps in a simplicial (respectively, topological) category,
we obtain an adjoint pair of functors

|·| : Cat44 −→ Cattop and Sing : Cattop −→ Cat44.
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(The functor |·| is again left adjoint to Sing.)

In order to compare simplicial categories and ∞-categories (more generally, arbi-
trary simplicial sets), one also uses an adjoint pair of functors, Set44 −→ Cat44 and
Cat44 −→ Set44, which we study below.

6.3. Simplicial Poincaré category. The rest of this section is devoted to a study
of the functor

C : Set44 −→ Cat44

introduced in §1.1.5 of [T]. Its definition is recalled in §6.4 below. Lurie does not
give this functor a name. Following a suggestion of A. Beilinson, given X ∈ Set44, we
will call C(X) the simplicial Poincaré category of X. The terminology is motivated
by §5.3 and the fact that C is left adjoint to the simplicial nerve functor

N : Cat44 −→ Set44,

which is also introduced in §1.1.5 of [T].

Remark 6.4. The simplicial nerve functor is denoted by N in [T]. However, for
the purposes of these notes, it seems reasonable to use the letter N, so as to avoid
confusion with the usual nerve functor N . The definition of N is recalled in §6.4.

6.4. An abstract definition of C and N. In order to define the adjoint pair of
functors C : Set44 −→ Cat44 and N : Cat44 −→ Set44 (where C is left adjoint to N),
Lurie defines a functor C : 44 −→ Cat44, [n] 7−→ C[∆n], and applies the construction
of Proposition 4.2 to this functor.

Let us recall Lurie’s definition of C[∆n].

Definition 6.5 (auxiliary). Fix integers i, j ≥ 0. We define a poset Pi,j as follows.
The elements of Pi,j are sets of integers I such that i, j ∈ I, and if k ∈ I, then
i ≤ k ≤ j. The partial ordering on the set Pi,j is by inclusion.

Thus, for example, Pi,j = ∅ whenever i > j. If j = i or j = i + 1, then Pi,j has
exactly one element. If j > i, then Pi,j has 2j−i−1 elements.

Definition 6.6. For n = 0, 1, 2, . . . , we define C[∆n] as the simplicial category with
the set of morphisms {0, 1, . . . , n}, and with the morphism spaces given by

MapC[∆n](i, j) = N(Pi,j),

where N(Pi,j) is the nerve (§5.2) of the category defined by the poset Pi,j (see §5.1).
Note that Pi,j = ∅ if i > j, in which case we also have N(Pi,j) = ∅. Composition in
the simplicial category C[∆n] is induced by the union maps ∪ : Pj,k × Pi,j −→ Pi,k.

Remark 6.7. If S is any set, the poset of all subsets of S can be identified with the
poset of functions f : S −→ {0, 1}, equipped with the partial ordering defined by

f ≤ g ⇐⇒ f(s) ≤ g(s) ∀ s ∈ S.
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It follows that the nerve of the category defined by this poset is isomorphic to an
S-cube, i.e., the product of copies of the standard 1-simplex ∆1 indexed by S.

Now if j ≥ i, then the poset Pi,j can be identified with the poset of all subsets of
the set {i+1, i+2, . . . , j−1} (the latter set is empty unless j ≥ i+2). In particular,
for j > i, we see that N(Pi,j) is a (j − i− 1)-dimensional cube.

Definition 6.8. The simplicial nerve functor N : Cat44 −→ Set44 is defined by

N(C)([n]) ≡ N(C)n := HomCat44(C[∆n],C).

The simplicial Poincaré category functor C : Set44 −→ Cat44 is defined as its left
adjoint, which exists by Proposition 4.2. By the same result, C is also the unique
colimit-preserving extension of the functor ∆n 7−→ C[∆n] introduced in Definition
6.6, defined on the full subcategory of Set44 formed by the representable presheaves.

Following [T], given any X ∈ Set44, we will write C[X] in place of C(X). To the
best of our knowledge, [T] does not contain an explicit description of the functor C.
The main goal of this section is to present such a description.

6.5. Digression: properties of the functor N. Before studying the functor C
in more detail, we make a small digression and mention an important property of
the functor N. First, let us agree that if C is a small topological category, then
N(C) denotes the simplicial set N(Sing(C)), where Sing(C) is the simplicial category
defined by C (see §6.2). Further, in this situation, we call N(C) the topological nerve
of C. This should cause no confusion with the simplicial nerve functor (§6.4).

We leave it to the reader to check (cf. Exercise 9.42) that the ad hoc construction
of the topological nerve of a topological category outlined in §1.4 agrees with the
definition that we just explained, at least at the level of n-simplices, where 0 ≤ n ≤ 3.

Proposition 6.9 ([T], Proposition 1.1.5.9). Let C be a fibrant simplicial category,
i.e., having the property that MapC(X,Y ) is a Kan complex for all X, Y ∈ C. Then
N(C) is an ∞-category (see §1.3 for a definition).

Corollary 6.10. If C is a topological category, then N(C) is an ∞-category.

6.6. Explicit description of the functor C. In this subsection we state a se-
quence of results that may help the reader understand the structure of the simplicial
category C[X], for an arbitrary simplicial set X. The proofs of these results are left
as exercises, since it is much more instructive to find them on your own.

We do not explain why the category C[∆n] is defined the way it is defined; such
an explanation is beyond the scope of these notes. However, taking the definition
of C[∆n] as given, we hope that our approach will help the reader visualize C[X] for
an arbitrary simplicial set X. It also has a concrete application (Corollary 6.15).
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Step 1. Let us recall (Remark 6.3(a)) that a simplicial category C gives rise to a
sequence of ordinary categories C0,C1,C2, . . . . We begin with a statement that can
be verified directly using the definition of the simplicial category C[∆d]. We believe
that it would be instructive for the reader to prove this lemma before moving on.

Lemma 6.11. For all integers d, n ≥ 0, the ordinary category C[∆d]n is free, i.e.,
isomorphic to the path category of a certain diagram scheme with vertices 0, 1, . . . , d.

We refer the reader to §3.3 for the terminology used in this lemma. If C is a
small category isomorphic to Pa(D) for a diagram scheme D, then, by a slight abuse
of notation, the morphisms in C corresponding to arrows of D will be called the
free generators, or just generators, of C (we recall from Exercise 9.9 that for a free
category, just as for a free monoid, the set of free generators is uniquely determined).

Step 2. It turns out that the statement of Lemma 6.11 remains true with ∆n replaced
by an arbitrary simplicial set X:

Proposition 6.12. If X ∈ Set44, then for every integer n ≥ 0, the ordinary category
C[X]n is free.

However, unlike Lemma 6.11, the last proposition seems to be difficult to prove
directly without first having a guess about what the free generators of C[X]n are.
They are exhibited very explicitly in part (d) of the next result.

Theorem 6.13. Let X be an arbitrary simplicial set.

(a) For every integer n ≥ 0, all the degeneracy maps C[X]n −→ C[X]n+1 take free
generators of C[X]n to free generators of C[X]n+1.

(b) For every integer n ≥ 1, all the face maps C[X]n −→ C[X]n−1, perhaps except
for ∂0 and ∂n, take free generators of C[X]n to free generators of C[X]n−1.

(c) The nondegenerate24 free generators of C[X]n are in one-to-one correspondence
with pairs (σ,F) consisting of a nondegenerate simplex σ ∈ Xk for some k ≥ 1
and a strictly ascending chain of subsets

{0, k} = F0 ( F1 ( F2 ( · · · ( Fn−1 ( Fn = {0, 1, . . . , k}.
(d) More generally, for each n ≥ 0, consider the set An of pairs (σ,F), where σ ∈ Xk

is a nondegenerate simplex for some k ≥ 1, and F is a (possibly non-strictly)
ascending chain of subsets

{0, k} = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fn−1 ⊆ Fn = {0, 1, . . . , k}.
Consider the map γn : An −→ Ar

(
C[X]n

)
, defined as follows. If (σ,F) ∈ An, we

can view F as an n-simplex of the simplicial set MapC[∆k](0, k), while σ defines

a simplicial functor C[σ] : C[∆k] −→ C[X]. We put γn(σ,F) = C[σ](F).

24It follows formally from Proposition 6.12 that every generator of C[X]n can be obtained by
applying a sequence of degeneracy maps to a nondegenerate generator of C[X]m for some m ≤ n.
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The map γn is a bijection between An and the set of all free generators of the
category C[X]n.

(e) Suppose n ≥ m ≥ 0 and f : [n] −→ [m] is a surjective nondecreasing map. With
the notation of (d), there is a commutative diagram

Am
γm //

f∗

��

Ar
(
C[X]m

)
f∗

��

An
γn // Ar

(
C[X]n

)
where the vertical arrow on the right is the map coming from the simplicial
category structure on C[X], while the vertical arrow on the left is defined by
f ∗(σ,F) = (σ, f∗F), with f ∗F being the chain of subsets

{0, k} = F0 = Ff(0) ⊆ Ff(1) ⊆ · · · ⊆ Ff(n−1) ⊆ Ff(n) = Fm = {0, 1, . . . , k}.

Remarks 6.14. (1) In parts (c) and (d) of the theorem, it is clear that if n = 0, then
the integer k is forced to be equal to 1, whereas if n ≥ 1, then, in principle, k is
allowed to be arbitrary (so long as X has a nondegenerate k-simplex).

(2) There is obviously some redundancy in the statements above; Proposition 6.12
and Theorem 6.13 could be reformulated together in a more compact way (for
instance, parts (a) and (c) of the theorem follow formally from parts (d) and
(e)) . However, we find the sequence of the statements above, in the order in
which we presented them, easier to digest.

(3) In turn, part (e) of the theorem follows trivially from the statement (d) and
the fact that, with the notation of (d), C[σ] is a simplicial functor. Moreover,
statement (b) is not hard to deduce from (d) as well.

(4) Thus, the heart of our description of the functor C lies in Proposition 6.12
combined with Theorem 6.13(d). The proof is left as an exercise (see Exercise
9.44, where we provide some hints).

An application. As far as we know, the next result is useful, but not obvious from
the definition of the functor C given in [T]. It follows easily from the results stated
above, and, once again, is left as an exercise for the reader (see Exercise 9.45).

Corollary 6.15. If f : S −→ S ′ is a monomorphism of simplicial sets, the induced
functor C[f ] : C[S] −→ C[S ′] is faithful in the sense that for any pair of objects x, y ∈
C[S], the corresponding morphism of simplicial sets MapC[S](x, y) −→ MapC[S′](x

′, y′)
is a monomorphism, where x′ = C[f ](x) and y′ = C[f ](y).
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7. Basic notions of ∞-category theory

7.1. Objects and morphisms. First we recall the definition of an ∞-category.
For all integers n ≥ i ≥ 0, we have the standard n-simplex ∆n ∈ Set44 and the
“horn” Λn

i ↪→ ∆n, introduced in §4.1.2. A simplicial set X is said to be an ∞-
category [T] (or a quasi-category [Joy], or a weak Kan complex ) if for all n > i > 0,
every morphism Λn

i −→ X can be extended, possibly non-uniquely, to a morphism
∆n −→ X. Thus the notion of an ∞-category is a simultaneous weakening of the
notion of a Kan complex (§4.7) and of the property that characterizes the nerves of
small categories among all simplicial sets (Lemma 5.7).

The main goal of this section is to explain the analogues of the most basic notions
of classical category theory (notably, that of an equivalence of categories) in the
∞-categorical setting, and to give a few elementary illustrations of what makes
∞-categories special by comparison with more general simplicial sets.

If one analyzes the process by which an ordinary (small) category can be recovered
from its nerve, one immediately arrives at the following

Definition 7.1. If X is an ∞-category, the objects of X are the elements of the set
X0 (i.e., the vertices of X), while the morphisms (or arrows) of X are the elements
of the set X1 (i.e., the edges of X). Given f ∈ X1, we already introduced (§4.1.1(b))
the source and target of f , which are objects s(f), t(f) ∈ X0. If x ∈ X0, the identity

morphism x
idx−→ x is the constant 1-simplex at x.

As usual, instead of writing “let f be a morphism in X with source x and target

y,” we will often simply write “let x
f−→ y be a morphism in X.”

The first difference between ∞-categories and ordinary categories reveals itself
when we try to define the composition of two morphisms in an ∞-category.

7.2. A naive approach to compositions. Let X be an ∞-category, and consider

a composable pair of morphisms x
f−→ y

g−→ z in X. This pair obviously defines
a morphism Λ2

1 −→ X. If X were (isomorphic to) the nerve of an ordinary (small)
category, this map could be extended to a unique morphism ∆2 −→ X, and the

image of the edge ∂1(∆
2) under this extension would give the composition x

g◦f−→ z.

In general, however, we no longer have the uniqueness property for the extension,
so we are forced to introduce the following definition.

Definition 7.2. A composition of f and g in X is a morphism x
h−→ z that is the

image of ∂1(∆
2) under some extension of the morphism Λ2

1 −→ X defined by the
pair f, g to a morphism ∆2 −→ X.

Remark 7.3. Implicit in this definition is the important fact that not only can f

and g have many different compositions, but also, a given morphism x
h−→ z can be

realized as a composition of f and g in many different ways.
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Fortunately, the non-uniqueness of compositions is not very serious from the view-
point of homotopy theory, in the sense that, informally speaking, “the space of all
possible choices is contractible.” More generally (and more precisely), given any

∞-category X, any pair of integers 0 < i < n and any morphism Λn
i

α−→ X, the set
of all possible extensions of α to a morphism ∆n −→ X can be naturally identified
with the set of vertices of a certain contractible Kan complex. We refer the reader
to Exercise 9.33 for the details.

7.3. An explicit description of P(X) for an ∞-category X. As a first illustra-
tion of how to work with ∞-categories, we present an alternate construction of the
Poincaré category P(X) (which can be defined for any simplicial set X, cf. Definition
5.3) in the case where X is an ∞-category.

Let us first recall that the objects of P(X) are by definition the vertices of X, and
the morphisms in P(X) are certain equivalence classes of oriented paths. Suppose

now that X is an ∞-category. If x
f−→ y

g−→ z are morphisms in X and x
h−→ z is

a composition of f and g in the sense of Definition 7.2, it is clear that g◦f and h are
equivalent as paths, and hence define the same morphism in P(X). By induction, it
follows that every morphism in P(X) can be represented by a path of length ≤ 1.

We see that if X is an ∞-category, the morphisms in P(X) can be represented
as certain equivalence classes of morphisms in X in the sense of Definition 7.1. It
turns out that the corresponding equivalence relation has a very simple description.
We explain it in the next result, following [T, §1.2.3].

Let us say that two morphisms, x
ϕ−→ y and x

ϕ′−→ y, in X, are homotopic,
written ϕ ∼ ϕ′, if there exists a 2-simplex σ ∈ X such that the edges ∂2(σ), ∂1(σ)
and ∂0(σ) are the morphisms ϕ, ϕ′ and idy, respectively. Pictorially, we think of σ
as a triangle25

y
idy

��>
>>

>>
>>

x

ϕ
??��������

ϕ′
// y

Proposition 7.4. (a) The homotopy relation ∼ is an equivalence relation on X1.

(b) If x
f−→ y

g−→ z are morphisms in X and x
h−→ z is a composition of f and

g, the equivalence class of h with respect to ∼ depends only on the equivalence
classes of f and g.

(c) In view of the above, we get a well defined composition law on X1/ ∼. It is
associative, and allows us to define an ordinary category πX whose set of objects
is X0, and whose morphisms are the homotopy classes of morphisms in X.

25It is very important to remember that σ also determines the “interior” of this triangle.
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(d) The natural functor P(X) −→ πX is an isomorphism of categories.

The proof of this result is left as an exercise (Exercise 9.32).

Remarks 7.5. (1) The reader may object that the definition of the homotopy relation
∼ is not self-dual, i.e., it is not obviously preserved if we replace X by the
opposite∞-category [T, §1.2.1]. Of course, it is a consequence of the proposition
that ∼ is in fact self-dual, but this fact depends on X being an ∞-category.

(2) The analogue of πX can be easily defined for other sorts of higher categories.
Namely, if C is a simplicial category or a topological category, let us define
πC to be the ordinary category whose objects are the objects of C, and whose
morphisms are defined by HomπC(X, Y ) = π0 MapC(X, Y ).

(3) If X is an arbitrary simplicial set, the Poincaré category of X can be recov-
ered from the simplicial Poincaré category of X: namely, we have a canonical
isomorphism P(X) ∼= πC[X]. This follows from abstract nonsense (Exer. 9.41).

7.4. Equivalences in higher categories. The correct analogue of the notion of
an isomorphism between two objects of an ordinary category is provided by

Definition 7.6. A morphism in an ∞-category (respectively, a simplicial or a topo-
logical category) C is an equivalence if it becomes an isomorphism in πC.

First, let us note that this is indeed a generalization of the classical notion of
an isomorphism. Namely, if C is an ordinary small category, a morphism in C

is an equivalence in the corresponding ∞-category N(C) if and only if it is an
isomorphism in C in the usual sense. This statement is obvious, since we know that
πN(C) ∼= P(N(C)) by Proposition 7.4 and P(N(C)) ∼= C by Lemma 5.6.

Joyal found convenient characterizations of equivalences in ∞-categories; and of
Kan complexes among all ∞-categories. We state his results without proofs.

Proposition 7.7 (Joyal; see Proposition 1.2.4.3 in [T]). Let X be an ∞-category.
A morphism ϕ ∈ X1 is an equivalence in X if and only if for each n ≥ 2, every
morphism f0 : Λn

0 −→ X such that f0

∣∣
∆{0,1}= ϕ extends to ∆n.

Here, we use the standard notation, where ∆{0,1} denotes the edge of ∆n joining
the vertices 0 and 1 (this edge is contained in Λn

0 since n ≥ 2).

Proposition 7.8 (Joyal [Joy]). For a simplicial set X, the following are equivalent:

(i) X is an ∞-category and πX is a groupoid;
(ii) X is a Kan complex.

Remark 7.9. There are two natural candidates for the notion of an ∞-groupoid.
One is to define an ∞-groupoid to be the same things as a Kan complex, as we
already discussed. However, by analogy with classical category theory, one could also
define an ∞-groupoid to be an ∞-category where every morphism is an equivalence.
Proposition 7.8 implies that these two definitions are in fact equivalent.
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7.5. Equivalences between higher categories. In this subsection we consider
the question of what is the appropriate notion of an equivalence between two ∞-
categories, or simplicial categories, or topological categories. One motivation for
asking this question comes from the observation that every “reasonable” construc-
tion in the world of higher categories should be invariant under equivalences.

In the setting of topological or simplicial categories, we have the notion of an
equivalence in the sense of enriched category theory. For instance, we can define
a topological functor F : C1 −→ C2 between topological categories to be a strong
equivalence if there exists a topological functor G : C2 −→ C1 such that F ◦ G and
G ◦ F are isomorphic to the identity functors IdC2 and IdC1 , respectively. However,
this notion is too restrictive to be useful. As an example, consider a contractible
topological monoid M , and let C be the topological category with one object defined
by M . From the point of view of homotopy theory, C should be equivalent to the
trivial category (with one object and one morphism); however, this is not so in the
sense of enriched category theory.

The correct notion of an equivalence is defined as follows.

Definition 7.10. (a) If C1 and C2 are topological categories and F : C1 −→ C2 is
a topological functor, we say that F is an equivalence if F induces a weak
homotopy equivalence MapC1

(X, Y )
∼−→ MapC2

(F (X), F (Y )) for every pair
X, Y ∈ C1, and the functor πF : πC1 −→ πC2 is essentially surjective26.

(b) If C1 and C2 are simplicial categories and F : C1 −→ C2 is a simplicial functor,
we say that F is an equivalence if F induces a weak equivalence of simplicial
sets MapC1

(X, Y )
∼−→ MapC2

(F (X), F (Y )) for every pair X, Y ∈ C1, and the
induced functor πF : πC1 −→ πC2 is essentially surjective.

(c) A morphism f : S1 −→ S2 between simplicial sets is a categorical equivalence if
C[f ] : C[S1] −→ C[S2] is an equivalence of simplicial categories, in the sense we
just defined.

Remark 7.11. It turns out [T] that the correct definition of a functor between ∞-
categories is simply as a morphism of simplicial sets. If X, Y are ∞-categories,
we write Fun(X, Y ) = MapSet44

(X, Y ); this is a simplicial set whose vertices are
functors X −→ Y . This simplicial set is automatically an ∞-category as well. More
generally, if K is any simplicial set and C is an ∞-category, then MapSet44

(K,C) is

also an ∞-category (Exercise 9.34).

7.6. The Joyal model category structure on Set44. Categorical equivalences
between simplicial sets turn out to be a part of a certain model category structure
on Set44, which was discovered by Joyal. We state his result without proof27.

26And thus, in view of the previous requirement, is an equivalence of ordinary categories
27As Lurie explains in [T], Joyal’s original definition of this model structure is different.
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Theorem 7.12 (Joyal; see Theorem 2.2.5.1 in [T]). There exists a model category
structure on Set44 for which the cofibrations are the monomorphisms of simplicial
sets, and the weak equivalences are the categorical equivalences.

The fibrations in the Joyal model structure are called the categorical fibrations
of simplicial sets. From the general properties of model categories, it follows that
categorical fibrations can be characterized as those morphisms of simplicial sets,
which have the right lifting property with respect to monomorphisms that are also
categorical equivalences. We state a few more facts, also without proofs.

Remarks 7.13. (1) Joyal defines a morphism A
f−→ B of simplicial sets to be a

weak categorical equivalence if for every ∞-category C, the induced functor
π Fun(B,C) −→ π Fun(A,C) is an equivalence of ordinary categories. Lurie
proves in [T, Proposition 2.2.5.8] that a morphism in Set44 is a weak categorical
equivalence in the sense of Joyal’s definition if and only if it is a categorical
equivalence in the sense of Definition 7.10(c).

(2) The fibrant objects for the Joyal model structure are precisely the ∞-categories;
this already explains why this structure is useful.

(3) In view of the previous remark, one might naively expect that the categorical
fibrations are the same as the inner fibrations, defined as the morphisms having
the right lifting property with respect to inner horn inclusions Λn

i ↪→ ∆n, 0 <
i < n. This is false. Every categorical fibration is an inner fibration [T,
Remark 2.2.5.5], but not conversely (see Exercise 9.52). Of course, the previous
remark implies that if X is any simplicial set, then the natural map X −→ ∗ is
a categorical fibration if and only if it is an inner fibration.

(4) It is also known that a categorical equivalence between simplicial sets is also a
weak equivalence, but the converse is again false (Exercise 9.51).

(5) It follows formally from the previous remark that every Kan fibration is also
a categorical fibration. The converse, of course, is again false (e.g., not every
∞-category is an ∞-groupoid).

(6) The class of acyclic cofibrations for Quillen’s model structure on Set44 has a
convenient set of generators (namely, the horn inclusions Λn

i ↪→ ∆n, 0 ≤ i ≤ n).
It would be interesting to describe explicitly a (countable) set of morphisms
generating the class of acyclic cofibrations for the Joyal model structure. Such
a description is not known to us.

(7) Similarly, one can ask whether the acyclic cofibrations for the Joyal model struc-
ture admit a convenient “geometric” (or “visual”) characterization. (For com-
parison, recall that anodyne morphisms can be characterized as monomorphisms
of simplicial sets whose geometric realizations are homotopy equivalences, and
in practice one can often “see” whether this property holds or not.) Once again,
the answer to this question is not known to us.
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7.7. An alternate viewpoint on categorical equivalences. In §7.5 we ex-
plained that the usual notion of an equivalence in the sense of enriched category
theory is unsuitable for defining the correct notion of an equivalence between sim-
plicial or topological categories. On the other hand, it is clear that the correct
notion can still be approached from the viewpoint of enriched category theory, only
the “enrichment” has to be changed.

Indeed, after some preliminaries, we will associate to every simplicial or topological
category, or an ∞-category, C, its “homotopy category” hC (see §7.10), which is a
category enriched over “the homotopy category H of spaces” (defined in §7.8).

In particular, if C is an ∞-category, we will have four different ways of associating
an enriched category to C. Namely, we can consider:

(i) the Poincaré category P(C) ∼= πC, which is an ordinary category; or

(ii) the homotopy category hC, which is enriched over H; or

(iii) the simplicial Poincaré category C[C], which is enriched over Set44; or

(iv) the category |C[C]|, which is enriched over CG.

It is clear that P(C) is the most crude invariant of C. From the viewpoint of
homotopy theory, (iii) and (iv) above are more or less equivalent to each other.
Finally, (ii) occupies an intermediate position between (i) and (iii)–(iv).

7.8. The homotopy category of spaces. In this subsection we recall the defini-
tion of the “homotopy category of spaces”, denoted H. This category has (at least)
four equivalent constructions, two of which are topological, while the other two are
simplicial. It is often useful to keep all four approaches in mind. Some remarks
about them, and an explanation of why they are equivalent, are given in §7.9.

First definition of H. We define H as the category whose objects are CW complexes,
and whose sets of morphisms are defined by

HomH(X, Y ) = {continuous maps f : X −→ Y }/ ∼,
where ∼ is the equivalence relation of homotopy.

Second definition of H. We define H to be the category obtained from the cate-
gory CG of compactly generated topological spaces by formally inverting all weak
homotopy equivalences (the latter are defined at the beginning of §4.10).

Third definition of H. We define H to be the category whose objects are Kan
complexes, and whose morphism sets are defined by HomH(K,L) = [K,L] (the set
of “combinatorial” homotopy classes of morphisms K −→ L, cf. Definition 4.7).

Fourth definition of H. We define H to be the category obtained from the category
Set44 of simplicial sets by formally inverting all weak equivalences (Definition 4.11).
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7.9. A remark on the four definitions of H. The first and third definitions of H

that we mentioned clearly pose no set-theoretical problems. The second and fourth
definitions are potentially problematic, since CG and Set44 are “large” categories.
Besides, one must also check that all four definitions of H are in fact equivalent to
each other.

In fact, suppose for the moment that we defined H using the first approach.
Then one can construct natural functors CG −→ H and Set44 −→ H that satisfy
the universal properties of the corresponding localizations.

If X ∈ CG, it is well known that there exist a CW complex X ′ and a weak
homotopy equivalence X ′ ∼−→ X. Moreover, X ′ is unique up to canonical homotopy
equivalence. Thus we obtain a functor CG −→ H, and (essentially by a theorem
of Whitehead) this functor satisfies the universal property of the localization of CG

with respect to all weak homotopy equivalences.

The desired functor Set44 −→ H is induced by the geometric realization functor
Set44 −→ CG, which automatically takes values in the category of CW complexes.
By a theorem of Quillen, the functor Set44 −→ H satisfies the universal property of
the localization of Set44 with respect to all weak equivalences.

Finally, to establish the equivalence between the first and third approaches, it is
enough, in view of Remark 4.6 and the previous comments, to prove the following

Lemma 7.14. If X and Y are Kan complexes and f, g : X −→ Y are morphisms of
simplicial sets, then f and g are “combinatorially” homotopic (i.e., define the same
element of [X, Y ]) if and only if the geometric realizations |f |, |g| : |X| −→ |Y | are
homotopic in the usual sense of algebraic topology.

The proof of this lemma is left as an exercise (see Exercise 9.18).

7.10. The homotopy category of a simplicial set. It is not hard to check that
the homotopy category H of spaces has finite products, and that the natural functors
CG −→ H and Set44 −→ H commute with finite products. In particular, if C is a
simplicial category or a topological category, then, by replacing each MapC(X, Y ),
where X, Y ∈ C, with its image in H, we obtain a category enriched over H. It is
called the homotopy category of C and denoted by hC.

The homotopy category of an ∞-category, or, more generally, of an arbitrary
simplicial set, is defined by means of the simplicial Poincaré category functor C that
we studied in Section 6. Namely, if X ∈ Set44, we put hX := hC[X].

In particular, if C is either an∞-category, or a simplicial category, or a topological
category, then we know how to associate to C a category hC enriched over H.
It is immediate from the definition that in each of the three settings, a functor
F : C1 −→ C2 (in the appropriate sense) is an equivalence in the sense of Definition
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7.10 if and only if the corresponding functor hF : hC1 −→ hC2 is an equivalence of
categories enriched over H.

Remark 7.15. Let C be as above. In [T], Lurie often uses the notation hC and the
term “the homotopy category of C” for the ordinary category obtained from hC by
replacing the homotopy types of morphism spaces with their π0’s. In other words,
he uses hC to denote what we called πC. While this abuse of terminology is often
justified, in these notes we will always denote by hC the category enriched over H

associated to C, and reserve the notation πC for the corresponding ordinary category.

7.11. Mapping spaces in hX for an ∞-category X. If X is an ∞-category, it
turns out that the (homotopy types of) the spaces of maps in the homotopy category
hX admit concrete descriptions that do not use the functor C. Namely, in §1.2.2 of
[T], Lurie introduces, for a given ∞-category X and a pair of objects x, y ∈ X0, the
right mapping space HomR

X(x, y), which is a simplicial set defined as follows.

For each n ≥ 0, the elements of HomR
X(x, y)n are the simplices z ∈ Xn+1 such

that vn+1(z) = y and ∂n+1(z) is the constant n-simplex at the vertex x (here we are
using the notation of §4.1.1). It is easy to make the assignment [n] 7−→ HomR

X(x, y)n
functorial with respect to [n] ∈ 44op.

It turns out that HomR
X(x, y) always has the homotopy type of MaphX(x, y).

The advantage of this description of mapping spaces is that HomR
X(x, y) has a very

concrete and manageable definition; moreover, it is always a Kan complex (Exercise
9.39), unlike MapC[X](x, y). The disadvantage is that there are no naturally defined

composition laws MapRX(y, z)×MapRX(x, y) −→ MapRX(x, z) for x, y, z ∈ X0.

8. Homotopy colimits in ∞-categories

8.1. Generalities. The notion of a (co)limit of a diagram of objects and morphisms
in an ordinary category (see §3.4) plays a central role in classical category theory.
In this section we discuss the analogous notion in the setting of ∞-categories. It
was introduced in [Joy] and explored in [T]. Our presentation follows [T, §1.2.13],
except that we simplify the definitions by only considering special types of (co)limits.
Namely, Joyal and Lurie work with (co)limits of a morphism K −→ C, where K
is an arbitrary simplicial set and C is an ∞-category. On the other hand, we only
consider simplicial sets K of the form N(I ), where I is an ordinary small category.

This suffices for a first introduction to the notion of a (co)limit, and allows us to
reduce the number of preliminary definitions (for instance, we only have to discuss
joins of categories and not of simplicial sets). Besides, many of the (co)limits that
arise in practice (such as the cartesian and cocartesian squares appearing in the
theory of stable ∞-categories) are “indexed by” ordinary categories.
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Let us note that we decided to use the term “homotopy (co)limit”, rather than
simply “limit” (as used by Joyal and Lurie), to emphasize the connection with
the notion of a homotopy (co)limit in algebraic topology, and the fact that we are
working with a “smart” notion of a (co)limit28.

From now on, for concreteness, we choose to work with homotopy colimits; of
course, all the definitions related to the notion of a homotopy limit can be formally
obtained from the ones we present below by “reversing the arrows”29.

We will motivate the notion of a homotopy colimit in an ∞-category by first
rewriting the classical definition of a colimit in such a way that all the ingredients
in the definition will have natural ∞-categorical analogues.

8.2. Homotopy coherent diagrams. Of course, the first ingredient in the clas-
sical definition of a colimit is the notion of a commutative diagram in an ordinary
category. It turns out that the “correct” version of this notion in the setting of
higher category theory is provided by the notion of a homotopy coherent diagram.

If C is an ∞-category (respectively, a topological category) and K is a simplicial
set, Lurie defines a K-shaped homotopy coherent diagram in C as a morphism of
simplicial sets K −→ C (respectively, K −→ N(C)). If K = N(I ) for an ordinary
small category I , a K-shaped homotopy coherent diagram in C is called a functor
I −→ C (of course, if C is an ∞-category, this is a special case of the notion of a
functor between ∞-categories mentioned in Remark 7.11).

The notion of a homotopy coherent diagram should be contrasted with the notion
of a homotopy commutative diagram in C, defined simply as a commutative diagram
in the homotopy category hC. We refer the reader to [T, §1.2.6] for a clear and
concise discussion of these two notions, and an explanation of why the former is the
“correct” one to use, while the latter is quite unsatisfactory.

8.3. Colimits in ordinary categories, revisited. Let I and C be ordinary cate-
gories, where I is small, and consider a functor F : I −→ C (the reader may prefer
to forget about the composition law on I and merely view F as an I -shaped dia-
gram in C, since this makes no difference from the point of view of colimits).

The definition of a colimit of F presented in §3.4 is unsuitable for ∞-categorical
generalizations, since it is somewhat complicated and involves too many equalities
between compositions of morphisms. Our first task is to rewrite the definition in a
more compact and more abstract way.

28In the setting of topological categories, there is also a naive notion of a (co)limit, which is
obtained by disregarding the topologies on the mapping spaces and applying the classical definition
of a (co)limit. This notion is rarely useful in practice.

29In the setting of ∞-categories, this amounts to replacing a simplicial set with the opposite
one; see [T, §1.2.1] for the precise definition and a discussion.
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The universal property appearing in the definition of a colimit of F can be
rephrased by introducing a new category, CF/, called the undercategory of the func-
tor F . This definition is a generalization of the more familiar undercategory X/C,
where X is a fixed object of C (this is the case where I is a category with one
object and one morphism). In general, objects of CF/ are pairs

(
Z, {jx}x∈I

)
, where

Z ∈ C is an object and jx : F (x) −→ Z is a morphism for every x ∈ I , such that

jy ◦ F (a) = jx for every morphism x
a−→ y in I . Morphisms in CF/ are defined in

the obvious way.

With this notation, a colimit of the functor F is nothing but an initial object
in the undercategory CF/. It turns out that both ingredients in this definition of a
colimit have ∞-categorical analogues: namely, there is a good notion of an initial
object in an ∞-category (§8.4), and a good construction of CF/ in case C is a general
∞-category (§8.5). We now proceed to discuss these two notions.

8.4. Initial and final objects in ∞-categories. The notion of an initial object
in an ∞-category was introduced in [Joy]. For the sake of brevity, we will be content
with summarizing §1.2.12 of [T].

Definition 8.1. (a) Let C be a simplicial or topological category, or an arbitrary sim-
plicial set, so that the homotopy category hC is defined. An object (respectively,
vertex) x of C is said to be initial if MaphC(x, y) is contractible (i.e., is a final
object of H) for every object (respectively, vertex) y of C.

(b) Let X be a simplicial set. A vertex x of X is strongly initial if for each n ≥ 0,

every morphism f0 :
•

∆n −→ X (see §4.1.2) such that f0(0) = x can be extended
to a morphism f : ∆n −→ X.

As usual, one can obtain the notions of a final object (or vertex) and of a strongly
final vertex formally by reversing the arrows in the last definition.

Proposition 8.2 (see [Joy] and §1.1.12 of [T]). (a) If X is a simplicial set, then
every strongly initial vertex of X is also initial, and the converse holds in case
X is an ∞-category.

(b) (Joyal) Initial objects in ∞-categories, if they exist, are unique in the following
sense. Let C be an ∞-category, and let C′ be the simplicial subset of C formed by
those simplices, all of whose vertices are initial in C. Then C′ is either empty,
or a contractible Kan complex.

8.5. Over- and undercategories in the ∞-categorical setting. In order to
motivate the definition of undercategories in the ∞-categorical setting, let us again
consider a functor F : I −→ C between ordinary small categories and try to
compute the nerve of the undercategory CF/.

To this end, let us first observe that objects of CF/ can be regarded as certain
functors. Namely, let I . denote the “right cone category” over I , obtained from
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I by adding an extra object ∗ so that Hom(X, ∗) has exactly one element for each
X ∈ I ., and Hom(∗, X) = ∅ for each X ∈ I (this determines the composition
law in I . uniquely). It is clear that objects of CF/ can be viewed as functors
I . −→ C that extend F . With this interpretation, morphisms in CF/ are natural
transformations of functors that restrict on I to the identity transformation of F .

Using this viewpoint on CF/, it is not hard to describe n-simplices in N(CF/) for
all n ≥ 0. To present this description in a concise way, it is convenient to introduce

Definition 8.3. If D and D′ are (ordinary) categories, the join of D and D′ is defined
as the category D ? D′, where an object of D ? D′ is either an object of D or an
object of D′ (i.e., Ob(D ?D′) = Ob(D)

∐
Ob(D′)), and where the morphism sets are

given as follows (∗ denotes a set with one element):

HomD?D′(X, Y ) =


HomD(X, Y ) if X, Y ∈ D;

HomD′(X, Y ) if X, Y ∈ D′;

∅ if X ∈ D′, Y ∈ D;

∗ if X ∈ D, Y ∈ D′.

The composition of morphisms in D?D′ is defined in the obvious way. Observe that
both D and D′ can be canonically realized as full subcategories of D ?D′.

The next result is immediate from the definitions.

Lemma 8.4. For each n ≥ 0, there is a natural bijection between N(CF/)n and the
set of functors I ? [n] −→ C that extend F .

Here, the poset [n] is viewed as a category in the usual way (§5.1). The lemma
motivates the following

Definition 8.5. Let C be an ∞-category, let I be a small ordinary category, and
let F : I −→ C be a functor (§8.2). We construct simplicial sets CF/ and C/F as
follows. For each n ≥ 0, we define (CF/)n (respectively, (C/F )n) to be the set of all
functors I ? [n] −→ C (respectively, [n] ?I −→ C) that extend F .

According to Exercise 9.57, the simplicial sets CF/ and C/F are ∞-categories as
well. They will be called the overcategory and undercategory of the functor F (but
remember that they are usually not ordinary categories!).

8.6. Homotopy colimits in ∞-categories. It was observed by Joyal that the
definitions of §§8.4–8.5 can be used to give the “correct” definition of colimits in
∞-categories. It concludes our introduction to the theory of ∞-categories.

Definition 8.6. If C is an∞-category, I is a small ordinary category, and F : I −→
C is a functor, a homotopy colimit of F is an initial object of the ∞-category CF/.

The classical notion of a colimit of a functor between small ordinary categories
turns out to be a special case of this definition (see Exercise 9.58).
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9. Exercises

The exercises have not been proofread very carefully.

Please let me know if any of them appear to be incorrect.

Further hints and references will be added in due course.

Exercises related to geometric realizations

9.1. Find two simplicial sets, X and Y , such that the natural continuous map
|X×Y | −→ |X|×|Y | is not a homeomorphism of topological spaces, where |X|×|Y |
is equipped with the usual product topology.

9.2. If wH is the category of weak Hausdorff topological spaces, prove that the
natural inclusion functor CG ↪→ wH admits a right adjoint. Describe it explicitly.

9.3. If X is a k-space, prove that X is weak Hausdorff (and hence compactly
generated) if and only if the diagonal is compactly closed in X ×X.

9.4. Read the first section of [Dri] and prove Proposition 4.5 using the definition
of geometric realization introduced therein. [As a first step, you need to understand
how to construct limits in the category CG, using Exercise 9.2.]

Exercises on categories of presheaves

9.5. Prove the claim in the first paragraph of §2.4 (it is called Yoneda’s lemma).

9.6. If D is a small category, prove that a morphism ϕ : F −→ G in the category
PreSh(D) of functors Dop −→ Set is a monomorphism (respectively, epimorphism)
if and only if the corresponding map of sets ϕX : F (X) −→ G(X) is injective
(respectively, surjective) for all X ∈ D. [Hint : for the “only if” direction, it may be
helpful to consider the fiber product F ×

G
F (respectively, the pushout G

∐
F

G).]

9.7. Prove Proposition 4.2. [Hint. An important step in the proof is to observe
that every functor F : Dop −→ Set can be realized as a colimit of a diagram of
representable functors in a canonical way. Namely, consider the diagram scheme
whose vertices are pairs (X, s), where X ∈ D and s ∈ F (X), and where an arrow
between (X, s) and (X ′, s′) is a morphism f ∈ HomD(X,X ′) with F (f)(s′) = s. Let
us denote this diagram scheme30 by D/F . Show that the map (X, s) 7−→ hD

X , where
hD
X is the presheaf represented by X, can be made into a diagram of type D/F in

the category PreSh(D), and that F can be naturally identified with the colimit of
this diagram. Yoneda’s lemma plays a role in the proof of the last statement.]

Exercises on free monoids and free categories

30In fact, this diagram scheme comes from a category, which is usually called the “category of
objects of D over F”, explaining our notation.
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9.8. Prove that the functor Pa : Dia −→ Cat introduced in Definition 3.7 is left
adjoint to the functor U : Cat −→ Dia defined at the beginning of §3.3.

9.9. Prove Lemma 3.4, then state and prove its analogue for the functor Pa.

9.10. (Drinfeld) Prove that a retract of a free monoid is free. In other words, if S

is a set, M is any monoid, and M
i−→ FM(S)

p−→ M are monoid homomorphisms
such that p ◦ i = idM , then M is a free monoid. [Hint. First reduce to the case
where p(s) 6= 1 for any s ∈ S. In this situation, if S ′ is the set of elements s ∈ S
such that s = i(p(s)), verify that p(S ′) generates M freely.]

Exercises on nerves of small categories

9.11. Prove that the functor P : Set44 −→ Cat constructed in Definition 5.3 is left
adjoint to the nerve functor N : Cat −→ Set44 introduced in §5.2.

9.12. Prove Lemma 5.6.

9.13. Show that a small category C is a groupoid (that is, every morphism in C is
invertible) if and only if its nerve, N(C), is a Kan complex (see §4.7).

9.14. (Lurie) Prove Lemma 5.7.

9.15. Given small categories C and D, construct a natural isomorphism between
the nerve of the category of functors C −→ D and MapSet44

(N(C), N(D)).

9.16. If C is a small category, the geometric realization BC = |N(C)| of its nerve
is called the classifying space of C. If G is a small groupoid, prove that:

(a) the set π0(BG) of connected components of BG can be naturally identified with
the set of isomorphism classes of objects of G;

(b) if x ∈ G, and we view x as a 0-simplex of N(G) and thus as a point of BG, then
the fundamental group π1(BG, x) is naturally isomorphic to the group AutG(x);

(c) with the notation of (b), πn(BG, x) = 0 for all n ≥ 2.

Note that as a consequence of (a) and (b), the Poincaré groupoid31 of the topological
space BG is naturally equivalent to G as a category.

Exercises on simplicial sets

9.17. If S is any simplicial set and K is a Kan complex, prove that MapSet44
(S,K)

is a Kan complex as well (the method of Proposition 4.15 can be used here).

31Also known as the “fundamental groupoid”.
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9.18. If S is any simplicial set and K is a Kan complex, prove that two morphisms
S −→ K of simplicial sets define the same element of [S,K] if and only if their
geometric realizations |S| −→ |K| are homotopic in the usual sense. [Hint : Use the
adjunction between the functors |·| and Sing together with Remark 4.6.]

9.19. If X is any topological space, prove that Sing(X) is a Kan complex.

9.20. Let G be a simplicial group, i.e., a functor from44op to the category of groups.
By forgetting the group structures on all the Gn’s, we obtain a simplicial set. Prove
that the latter is a Kan complex. (A solution of this exercise is given in [GM, ch. II,
§2.1(b)] and [May, §17].)

9.21. ∗ In this exercise you should not use the geometric realization functor. The
goal is to give purely combinatorial proofs in the spirit of Chapter V of [GM].

Read the proof of Lemma V.2.8 in [GM] and fill in all the missing details. Observe
that this lemma is a special case of Lemma 4.10. Then prove Lemma 4.10.

9.22. Now, prove Lemma 4.10 via a topological argument. Namely, the map in
question is obviously a cofibration, so you only need to check that its geometric
realization is a homotopy equivalence, which is rather easy.

The next series of exercises (9.23–9.31) was suggested by Vladimir Drinfeld. It
is meant to help the reader become comfortable with the notion of a Kan complex,
a.k.a. Kan simplicial set (defined at the beginning of §4.7).

9.23. Prove that if a Kan complex contains a 1-dimensional simplex with first
vertex x and second vertex y, then it also contains a 1-dimensional simplex with
first vertex y and second vertex x.

9.24. Prove that if n > 0, then ∆n is not a Kan complex.

9.25. Let A ⊂ ∆n be the union of the 1-simplices {0, 1}, {1, 2}, . . . , {n−1, n} ⊂ ∆n.
Then the embedding A ↪→ ∆n is an acyclic cofibration (a.k.a. anodyne morphism).

Remark 9.1. There are two definitions of an acyclic cofibration: on the one hand,
the class of acyclic cofibrations is, in a certain sense, generated by the inclusions
of horns into simplices; on the other hand, acyclic cofibrations can be defined as
those embeddings of simplicial sets that induce homotopy equivalences between the
geometric realizations. For proving that something is an acyclic cofibration, it is
better to use the second definition.

9.26. If a Kan complex has a nondegenerate 1-simplex, then it has a nondegenerate
n-simplex for each n ≥ 1. [Hint : use the results of Exercises 9.23 and 9.25.]

9.27. Let 0 < k ≤ n. Show that there exists a collection of k-dimensional simplices
A1, . . . , Am ⊂ ∆n such that their union is contractible and each 1-simplex {i, i+1} ⊂
∆n is an edge of some Aj.
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9.28. If a Kan complex has a nondegenerate k-simplex for some k > 0, then it has
a nondegenerate n-simplex for each n ≥ k. [Hint : take the smallest k satisfying the
assumption of this exercise and apply the result of Exercise 9.27.]

9.29. ∗ Let G be an abelian simplicial group. Then the homotopy groups32 of G
(viewed as a simplicial set) are equal to the homology groups of G. (A solution of
this exercise can be found in [May, Theorem 22.1].)

Given a simplicial set S let C(S) denote the simplicial abelian group freely gen-
erated by S (so that the homology of the simplicial abelian group C(S) equals the
homology of the simplicial set S).

9.30. ∗ Let π be an abelian group and n a nonnegative integer. Then the simplicial

group (see Exercise 9.20) (C(∆n)/C(
•

∆n)) ⊗ π has the homotopy type of K(π, n)
(i.e., its n-th homotopy group equals π and the other homotopy groups are zero).

(We recall that
•

∆n denotes the simplicial (n−1)-sphere, defined as the “boundary”
of the standard n-simplex ∆n; see §4.1 for the precise definition.)

9.31. ∗ Prove that the simplicial group defined in Exercise 9.30 is a minimal Kan
complex in the sense of Definition 9.2 below.

Definition 9.2. A Kan complex S is said to be minimal if it satisfies one of the
following two properties, which are known to be equivalent [May, Lemma 9.2]:

(i) for every non-negative integer m, if two morphisms s, s′ : ∆m −→ S are homo-
topic33, then they are equal;

(ii) for every integer N ≥ 2, every horn ΛN
i ⊂ ∆N , and every pair of simplices

α, β : ∆N −→ S with α
∣∣
ΛN

i
= β

∣∣
ΛN

i
, one has α

∣∣ •
∆N

= β
∣∣ •
∆N

.

It is known34 that every Kan complex S contains a simplicial subset S ′ ⊂ S such
that S ′ is a minimal Kan complex and the embedding S ′ ↪→ S is a weak equiva-
lence. It is also known that weakly equivalent Kan complexes are isomorphic, and,
moreover, any weak equivalence between minimal Kan complexes is an isomorphism.
So the minimality property from Exercise 9.31 uniquely characterizes the simplicial
model of K(π, n) defined in Exercise 9.30.

32The definition of homotopy groups of a Kan simplicial set S can be found in [May, Defini-
tions 3.6 and 4.1] or [Hov, §3.4]. It is known that the homotopy groups of S are equal to the
homotopy groups of the geometric realization of S; if you wish, you can use this to define the
group operation on πn(S). Furthermore, if G is a simplicial group, the group operation on πn(G)
coincides with that induced by the group operation on G [May, Proposition 17.2].

33The word “homotopic” means that the restrictions of s and s′ to ∂∆m are equal and that s
and s′ are homotopic as morphisms with fixed restriction to ∂∆m

34See [May, §§9-10] and [Hov, §3.5].
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Remark 9.3. The simplicial version of Postnikov’s theory [May, §8 and Ch.V] says
that every Kan complex is, in a certain sense, built from Kan complexes, each of
which has the homotopy type of some K(π, n).

Exercises on the definition of an ∞-category

9.32. Prove Proposition 7.4; if any difficulties arise, see [T, §1.2.3]. As a hint, we
note that only the weak Kan extension property for 2- and 3-dimensional simplices
needs to be used in the proof. We strongly recommend drawing all the 3-dimensional
pictures accompanying the proof.

Let us outline what is probably the shortest possible path one could choose (fol-
lowing loc. cit.). First, it is clear that the homotopy relation ∼ is reflexive. One
can show simultaneously that it is symmetric and transitive by proving that if ϕ, ϕ′

and ϕ′′ are morphisms in X such that ϕ ∼ ϕ′ and ϕ ∼ ϕ′′, then ϕ′ ∼ ϕ′′. This can
be done using a single 3-dimensional diagram.

Next, one can use a single diagram to show that if x
ϕ−→ y

ψ−→ z are morphisms
in X, if ψ ∼ ψ′, if η is any composition of ϕ and ψ, and η′ is any composition of ϕ
and ψ′, then η ∼ η′. We also need to verify the “dual” property, where the roles of
ϕ and ψ are reversed, but this follows formally by looking at the opposite category
of X (see [T, §1.2.1] for the definition).

Thus composition of homotopy classes of morphisms in X is well defined. Next,
check that it is associative, so that the category πX can be formed, and construct
a canonical functor P(X) −→ πX using the explicit presentation of P(X) by gener-
ators and relations (Definition 5.3).

Finally, observe that this functor is bijective at the level of objects and surjective
at the level of morphisms by construction. To check that it is injective at the level
of morphisms, use the observation that every morphism in P(X) can be represented
by a path of length ≤ 1.

9.33. Let X be an ∞-category, let 0 < k < n, and let f : Λn
k −→ X be a morphism

of simplicial sets. Show that the simplicial set of all possible extensions of f to a
morphism ∆n −→ X is a contractible Kan complex.

Background. To formalize this statement, imitate the discussion in §4.12. To
prove it, use the strategy described in the proof of Proposition 4.15. At some point
you will need an analogue of Lemma 4.10. This analogue can be formulated as
follows. Let us define an inner fibration to be a morphism of simplicial sets having
the R.L.P. with respect to all inner horn inclusions Λn

k ↪→ ∆n (0 < k < n). Thus a
simplicial set X is an ∞-category if and only if the morphism pX : X −→ ∗ is an
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inner fibration. Let us define an inner anodyne35 morphism to be a morphism of
simplicial sets that has the L.L.P. with respect to all inner fibrations. By a result
of Joyal (see Corollary 2.3.2.4 in [T]), if A −→ A′ is an inner anodyne morphism of
simplicial sets and B −→ B′ is any cofibration (i.e., monomorphism) of simplicial
sets, the induced morphism (A×B′)

∐
A×B

(A′ ×B) −→ A′ ×B′ is inner anodyne.

9.34. If K is any simplicial set and C is an ∞-category, then the simplicial set
Fun(K,C) (defined to be MapSet44

(K,C)) is also an ∞-category. [Hint : Joyal’s

result mentioned in Exercise 9.33 can be used here as well.]

9.35. Let C be an ordinary small category, let X be any simplicial set, and let
p : X −→ N(C) be a morphism. Then p is an inner fibration (see Exercise 9.33 for
the definition of this notion) if and only if X is an ∞-category.

9.36. (Lurie) Let C be an ordinary small category, and let f : X −→ N(C) be
a morphism of simplicial sets. Suppose that X is an ∞-category. Show that each
fiber36 of f is an ∞-category.

9.37. (Lurie) Show that, up to isomorphism, there is a unique simplicial set X
with the following properties:

(i) X has a single nondegenerate simplex of each dimension;
(ii) every face of a nondegenerate simplex of X is again nondegenerate.

Prove that X is isomorphic to the nerve of an ordinary category.

Remark (Lurie). We can think of X as the receptacle for the “universal idempo-
tent”. In other words, for every ∞-category C, we can think of maps X −→ C as
objects of x in C together with a (coherently) idempotent map f : x −→ x.

9.38. If X is a Kan complex, then X, viewed as an ∞-category, has an initial
object (see [T, §1.2.12] and §8.4 above) if and only if X is contractible.

9.39. ∗ If X is an ∞-category and x, y ∈ X0, show that the right mapping space
MapRX(x, y), defined in [T, §1.2.2] and in §7.11 above, is a Kan complex.

9.40. ∗ Let X be an∞-category. Check directly (using the definition of MapRX(x, y)
and the definition of morphisms in the category πX given in Proposition 7.4) that for
all x, y ∈ X0, the set π0 MapRX(x, y) can be canonically identified with HomπX(x, y).

Exercises on the functors N and C

35We use the terminology of Lurie [T]. Joyal uses the terms “mid-fibration” and “mid-anodyne
morphism” in place of “inner fibration” and “inner anodyne morphism”.

36Fibers of a morphism g : Y −→ Z of simplicial sets are to be understood in the following
sense. If z ∈ Z0 = Z([0]), we think of z as a morphism ∆0 −→ Z and form the fiber product
g−1(z) := ∆0 ×Z Y in the category Set44. The simplicial sets g−1(z), z ∈ Z0, are the fibers of g.
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9.41. Prove that the functor π : Cat44 −→ Cat is left adjoint to the obvious inclusion
functor Cat −→ Cat44 (obtained by viewing every set as a discrete simplicial set).
Deduce that for every simplicial setX, there is a canonical isomorphism of categories
P(X) ∼= πC[X].

9.42. Let N : Cat44 −→ Set44 denote the simplicial nerve functor, introduced in
Definition 1.1.5.5 of [T]. Let C be a topological category (op. cit., Definition 1.1.1.3),
and let Sing(C) denote the simplicial category obtained by applying the functor
Sing : Top −→ Set44 to each of the topological spaces of morphisms in C. The
simplicial nerve N(Sing(C)) will be denoted simply by N(C). (It is denoted by N(C)
and is called the topological nerve of C in [T].) An explicit description of the 0-
simplices, 1-simplices and 2-simplices of N(C) is given after Example 1.1.5.8 in [T].
Give a similar description of the 3-simplices of N(C), as well as of the various face
and degeneracy maps between the sets N(C)n for n = 0, 1, 2, 3.

9.43. Prove Lemma 6.11.

9.44. Prove Proposition 6.12 together with Theorem 6.13. We suggest the following
approach (although we do not claim that it is the only one). First, as explained in
the text, reduce the problem to proving the proposition combined with part (d) of
the theorem. Then, using the solution of Exercise 9.43, verify that the claim holds
when X = ∆d for some d ≥ 0.

Now the idea is to use the fact that C is the unique colimit-preserving functor
Set44 −→ Cat44 that acts as described in Definition 6.6 on the objects ∆d. Unfortu-
nately, the sets An described in Theorem 6.13(d) are not functorial with respect to
X in an obvious way37. To remedy this, we use an alternate description of An.

Fix a simplicial set X and an integer n ≥ 0. Consider the set Ãn of pairs (σ,F),
where σ and F are as in the definition of An, except that σ ∈ Xk can now be an
arbitrary k-simplex, with the only requirement that σ is not constant (i.e., does

not come from a 0-simplex in X). Introduce a relation � on Ãn as follows: given
σ′ ∈ Xk′ , we say that (σ,F) � (σ′,F′) if there exists an (automatically surjective)
nondecreasing map g : [k] −→ [k′] such that σ = g∗(σ′) and F′

j = g(Fj) for every

0 ≤ j ≤ n. Let ≈ be the equivalence relation on Ãn generated by �.

(a) Show that every equivalence class in Ãn with respect to ≈ contains a unique

representative (σ,F) such that σ is a nondegenerate simplex of X. Thus Ãn/ ≈
can be canonically identified with An.

(b) Prove that Ãn and Ãn/ ≈ can be naturally made to depend functorially on X.

37The problem is that morphisms of simplicial sets may take nondegenerate simplices to degen-
erate ones.
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(c) Let Dn denote the diagram scheme with X0 as the set of vertices, Ãn/ ≈ as
the set of arrows, and the maps taking (σ,F) to the 0-th and k-th vertices,
v0(σ) and vk(σ), of σ, as the source and target maps, respectively. Thus Dn

depends functorially on X as well. Prove that the formation of Dn commutes
with colimits of simplicial sets.

(d) Finally, complete the proof of Proposition 6.12 and Theorem 6.13(d). Keep in
mind the fact (which comes from abstract nonsense) that colimits in the category
of simplicial objects in Cat can be computed “simplex-wise”.

9.45. Let C[−] : Set44 −→ Cat44 denote the left adjoint to the simplicial nerve
functor N : Cat44 −→ Set44. (It is introduced in [T] just before Proposition 1.1.5.9.)
Prove that if f : S −→ S ′ is a monomorphism of simplicial sets, the induced functor
C[f ] : C[S] −→ C[S ′] is faithful in the sense that for any pair of objects x, y ∈ C[S],
the corresponding morphism of simplicial sets MapC[S](x, y) −→ MapC[S′](x

′, y′) is a
monomorphism, where x′ = C[f ](x) and y′ = C[f ](y).

9.46. (Lurie) Describe C[Λn
i ] as a simplicial subcategory of C[∆n]. (The solution

of this exercise is contained in the proof of Proposition 1.1.5.9 in [T]. We also
recommend reading and understanding this proof as part of the exercise.)

9.47. (Drinfeld) Let X be an arbitrary simplicial set, and consider the topological
category |C[X]| obtained by applying the geometric realization functor to each of the
spaces of morphisms in the simplicial Poincaré category C[X] of X. By discarding
the topology on the spaces of morphisms, view C[X] as an ordinary category. Prove
that this category is free and describe its generators explicitly.

9.48. ∗ Let Set×44 and Cat×44 denote the groupoids obtained from the categories
Set44 and Cat44, respectively, by discarding all non-invertible arrows. Prove that the
functor Set×44 −→ Cat×44, obtained by restricting C, is fully faithful.

Exercises on equivalences in ∞-categories

9.49. (Lurie) Taking Joyal’s characterization of equivalences (cf. Proposition 1.2.4.3
in [T], which is stated as Proposition 7.7 above) as a definition, prove that if X is
an ∞-category, then any composition of equivalences in X is again an equivalence.

9.50. (Lurie) Fill in the details of the proof of Proposition 1.2.5.3 in [T]. In other
words, suppose that X is an ∞-category, and let X ′ be the simplicial subset of X
spanned by those simplices, all of whose edges are equivalences in X. Show that X ′

is a Kan complex.

Exercises on the Joyal model structure on Set44
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9.51. If 0 ≤ i ≤ n, show that the inclusion Λn
i ↪→ ∆n is a categorical equivalence if

and only if 0 < i < n.

9.52. Give an example of a functor C −→ D between ordinary small categories such
that the induced morphism N(C) −→ N(D) is not a categorical fibration. (Note,
however, that it is always an inner fibration, by Exercise 9.35.)

Exercises on joins of categories and of simplicial sets

9.53. Show that the nerve of the join of two small categories is canonically isomor-
phic to the join of their nerves.

9.54. ∗ Show that the geometric realization functor takes joins of simplicial sets to
joins of compactly generated spaces.

9.55. (Lurie) Let X be a simplicial set, and suppose that X is isomorphic to a
cone Y ?∆0. Show that the isomorphism is unique, and that Y is determined by X
up to (unique) isomorphism. (The join operation ? is discussed in §1.2.8 of [T].)

9.56. (Joyal) If C and C′ are ∞-categories, prove that so is C ? C′.

Exercises on homotopy (co)limits in ∞-categories

9.57. If C is an ∞-category and I is an ordinary small category, prove that for
every functor F : I −→ C, the simplicial sets CF/ and C/F , constructed in Definition
8.5 (see also §1.2.9 in [T]), are ∞-categories as well.

9.58. (Lurie) Let f : I −→ C be a functor between ordinary small categories.
Show that colimits of f (in the sense of ordinary category theory) coincide with
homotopy colimits of the induced morphism N(f) : N(I ) −→ N(C) in the ∞-
categorical sense. (Homotopy limits and colimits in ∞-categories are discussed in
§1.2.13 of [T] and in Section 8.)

An exercise on model category structures

9.59. (Lurie) This exercise uses the language of model categories (the necessary
background is provided in Appendix A.2 to [T]). Consider the following properties
of a given model category A.

(i) The collection of weak equivalences in A is stable under Cartesian product.
(ii) If f : X ↪→ Y is a cofibration and Z is a cofibrant object38 in A, then the

induced morphism X × Z −→ Y × Z is a cofibration in A.
(iii) As a category, A is Cartesian closed39.

38This means that the unique arrow ∅ −→ Z is a cofibration, where ∅ is an initial object of A.
39That is, for every pair of objects X, Y ∈ A, there exists another object XY such that the

functors A −→ Set given by Z 7−→ HomA(Z,XY ) and Z 7−→ HomA(Z × Y, X) are isomorphic.
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Do the following.

(a) Prove that if a model category A satisfies properties (i)–(iii) above, then the
homotopy category hA is Cartesian closed.

(b) Show that the Joyal model structure on Set44 satisfies (i), (ii) and (iii). (The
Joyal model structure is defined and studied in §2.2.5 of [T].)

(c) Show that the model category Cat44 satisfies (i) and (iii). (The model category
structure on Cat44 referred to in this exercise is defined in §A.3.1 of [T].)

(d) Show that Cat44 does not satisfy (ii). [Hint. Let C = C[∆1] denote the simplicial
category containing a pair of objects and a single morphism between them. Show
that C is cofibrant, but C× C is not cofibrant.]

(e) Nevertheless, the homotopy category of Cat44 is Cartesian closed: this follows
from the equivalence of Cat44 with the Joyal model structure on Set44.

Try to prove this directly (the goal being not to succeed, but to gain an
appreciation of why some constructions are difficult in Cat44).
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