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In this paper, the weighted couple-group consensus of continuous-time heterogeneous multiagent systems with input and
communication time delay is investigated. A novel weighted couple-group consensus protocol based on cooperation and
competition interaction is designed, which can relax the in-degree balance condition. By using graph theory, general Nyquist
criterion and Gerschgorin disc theorem, the time delay upper limit that the systemmay allow is obtained.The conclusions indicate
that there is no relationship betweenweighted couple-group consensus and communication time delay.When the agents input time
delay, the coupling weight between the agents, and the systems control parameters are satisfied, the multiagent system can converge
to any given weighted coupling group consistent state.The experimental simulation results verify the correctness of the conclusion.

1. Introduction

As an important branch of distributed system,multiagent sys-
tems (MASs) have been paid great attention bymany scholars
due to their wide application in many fields [1–6], such as
multirobot system, wireless sensor network, and distributed
target tracking. For example, in [5], the distributed formation
control problem for multiple nonholonomic wheeled mobile
robots would be solved by using a variable transformation,
algebraic graph theory, matrix theory, and Lyapunov control
approach.

Consensus or synchronization, as one of the most impor-
tant problems of MASs, is to design an appropriately dis-
tributed protocol to make different agents achieve a common
state. Group consensus, as an extension of consensus, is very
suitable for multitasks and large-scale problems. Up to now,
there are many results for consensus or group consensus
[7–18]. On the other hand, the controllability problem of

multiagent systems has attracted great interests and concern
since Tanner proposed it in 2004. In the past decades, many
controllability criteria have been given formultiagent systems
[19–24].However,most of these results focused on single time
scale. In [25], the group controllability of two-time-scalemul-
tiagent networks was firstly proposed and some easy-to-use
criteria were proposed for group controllability of two-time-
scale multiagent networks compared with the rank criterion.
In [26], Long et al. further investigated second-order con-
trollability of two-time-scale multiagent systems, and some
more effective second-order controllability conditions would
be determined only by the eigenvalues of system matrices. In
[27], a new format of time-varying formation shape was pro-
posed, and a new class of distributed adaptive observer-based
controllers was designed under the mild assumption that
both leaders and followers were introspective. As we know,
most existing results have been obtained mainly based on the
nodes of the network system. In some other real situations,
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each agent cannot obtain the neighbors state information
in a real networked system. Therefore, in [28], the authors
studied the discrete-time nonnegative edge synchronization
of networked systems based on neighbors output informa-
tion, which gives us a novelty and interesting synchronization
method.

1.1. Related Contributions. It should be noticed that all the
aforementioned results are based on the common assump-
tion that the multiagent systems are homogeneous. In this
situation, all agents of the whole systems have the same
dynamics. However, in real life, almost every agent has its
own dynamics because of different external and interaction
impacts. Hence, it is natural for us to model heterogeneous
multiagent systems. In recent years, some heterogeneous
multiagent systems models have been established [29–32]. In
[29], dynamical consensus of heterogeneous multiagent sys-
tems which consist of the first-order and second-order agent
dynamics has been discussed. In [30], a consensus protocol
is proposed for high-ordered heterogeneous systems with
uncertain communication delays. Furthermore, more and
more scholars pay much attention to the group consensus of
heterogeneous systems. For example, in [31], a heterogeneous
system consisting of first-order and second-order agents has
been studied on the basis of fixed and switching topologies.
In [32], some sufficient group consensus conditions have
been obtained for a kind of heterogeneous system with
diverse input time delays based on frequency-domain analy-
sis method andmatrix theory. In [33], some sufficient couple-
group consensus conditions have been derived for a kind
of discrete-time heterogeneous systems consisting of first-
order and second- order agents under the influence of com-
munication and input time delays. In [34], Li et al. studied
the consensus problem in heterogeneous linear discrete-time
MASs. In [35], Cui et al. discussed the consensus problem
of heterogeneous chaotic network systems with or without
delay. In [36], the consensus problems of linear systems and
nonlinear systems were studied separately. In [37], Liu et
al. studied the consensus problem of heterogeneous MASs
under certain assumptions. In [38], Goldin et al. studied
the consensus of heterogeneous networks with undirected
topology.

At the same time, some achievements have been made
in the research of weighted consensus. For example, in [39],
the concept of weighted consensus was proposed, and the
multiagentweighted average consensus is studied. In [40], Shi
et al. studied the robust consensus control for a class ofMASs
by PID algorithm and weighted edge dynamics. In addition,
MASs based on cooperation-competition interactions are
also receiving more and more attention. In [41], Hu et al.
studied the second-order consensus problem of heteroge-
neous MASs. In [42], Hu et al. studied the swarming behav-
ior of multiple Euler-Lagrange systems with cooperation-
competition interactions.

1.2. The Main Motivation. It is obvious that heterogeneous
systems are more complex than homogeneous systems and
it is more difficult for us to deal with the relevant crucial top-
ics. Inspired by the recent developments for heterogeneous

multiagent systems, this paper will further investigate the
weighted group consensus. To the best of our knowledge,
most of existing literatures only discuss homogeneous sys-
tems, the multiagent systems in which all agent share a
common value.

In this paper, we mainly investigate the weighted group
consensus for a class of continuous-time heterogeneous mul-
tiagent systems with input and communication time delay.
In recent years, although group consensus of multiagent
systems has derived many significant results. It is worth
mentioning that most of the existing results only discussed
the situation where all agents possessed a fixed weighted-
value, even most of the obtained results mainly focused
on the consensus of heterogeneous multiagent systems, and
few results were proposed for group consensus of heteroge-
neous networks with input and communication time delay.
Furthermore, all these related conclusions were based only
on agents’ competitive or cooperative relation. However,
in complicated practical situation, the consensus protocol
needs to be adjusted with circumstances, cooperative tasks,
or other constraint conditions. All these reasons incite us
to study the weighted group consensus for heterogeneous
multiagent systems with input and communication time
delay.

1.3. Statement of Contributions. There are three main con-
tributions in this paper. Firstly, the model is different from
cooperative or competitive heterogeneous networks, both
cooperative and competitive interactions are considered,
it extends the scope of the existing research, and a kind
of weighted couple-group consensus agreement based on
cooperation-competition relationship is introduced, which
is quite different from the literature [31, 32, 35, 37, 38].
Relying on the new protocol control, the agents can receive
neighbor information more reasonably and speed up the
system to achieve group consensus. Secondly, in order to
simplify the analysis process, we remove the dynamic virtual
speed of the first-order agent, such as in [29, 31, 32, 37]. A
novel weighted couple-group consensus protocol is designed,
which relaxes the in-degree balance condition and the results
are also applicable to directed and undirected graphs. On
the other hand, we turn the weighted matrix into a dynamic
form, which makes the designed controller more flexible.
Thirdly, some sufficient conditions have been obtained for
the group consensus of this system by using graph theory,
general Nyquist criterion, and Gerschgorin disc theorem.
Unlike the [31, 32, 37], we do not require that the system
satisfies the condition that the geometric versatility of the zero
eigenvalues of the Laplacian matrix is not less than 2, which
makes the system’s topology more flexible. With the help of
these conditions, the time delay upper limit of this system can
be computed and the multiagent system can converge to any
given state only if the weighted group consensus parameters
are satisfied. The simulation results well verify the correctness
of the conclusion.

The rest of this article is organized as follows. The sec-
ond section lists some preliminary knowledge and problem
description. The third section presents the main results
and proof process of group consensus. The fourth section
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verifies the correctness and effectiveness of the proposed
method through simulation. Finally we come to a conclu-
sion.

Note. In this context, C denotes a complex set and 𝑅 denotes
a real set. 𝐼𝑁 represents a unit matrix, where 𝑁 represents
a dimension. Re(𝑍) is the real part, and |𝑍| is the model,
where ∀𝑍 ∈ C. 𝜆𝑖(𝐴) represents the 𝑖𝑡ℎ eigenvalue of
matrix 𝐴, and det(𝐴) represents the determinant of the ma-
trix.

2. Problem Description and
Preliminary Knowledge

In order to facilitate the follow-up work, we need introduce
some preliminary knowledge of the graph theory.

2.1. GraphTheory and Interconnection Topology. Considering𝑁 agents, the topological relationship of the agent is repre-
sented by the graph 𝐺 = (𝑉, 𝐸, 𝐴), where𝑉 = {V1, V2, ⋅ ⋅ ⋅ , V𝑁}
represent the set of vertices of the graph. 𝐸 ⊆ 𝑉 × 𝑉 and 𝐴 =(𝑎𝑖𝑗)𝑁×𝑁 ∈ 𝑅𝑁×𝑁 represent the edge set and the adjacency
matrix, respectively. In this article, the case of containing a
self-loop is not considered.

Note that the undirected graph can be thought as a special
directed graph, and we assume 𝑎𝑖𝑗 > 0 if 𝑒𝑖𝑗 ∈ 𝐸 in this
paper.That is, if and only if the node (agent) is able to receive
information from the node (agent), 𝑎𝑖𝑗 > 0. At the same time,𝑁𝑖 = {𝑗 ∈ 𝑉 : 𝑒𝑖𝑗 ∈ 𝐸} represents the set of neighbor
nodes, and 𝐷𝑖 = deg𝑖𝑛(𝑖) = ∑𝑁𝑗=1 𝑎𝑖𝑗 represents the set of
nodes within the degree, where the in-degree matrix 𝐷 can
also be expressed as diag{𝑑1, 𝑑2, ⋅ ⋅ ⋅ 𝑑𝑁}.Therefore, 𝐿 = 𝐷−𝐴
is defined as a Laplacianmatrix.Note.The adjacencymatrix𝐴
is a symmetric matrix if and only if the graph is an undirected
graph.

2.2. Problem Statement. Based on the above-mentioned pre-
liminary knowledge of graph theory, in this paper we propose
a heterogeneous multiagent system with 𝑁 agents, which
contains second-order and first-order dynamics. In order not
to lose generality, it is assumed that the first 𝑛 agents are
second-order dynamics, and the last 𝑚 agents are first-order
dynamics, where𝑁 = 𝑚 + 𝑛. The specific system model can
be designed as follows:

𝑥̇𝑖 (𝑡) = V𝑖 (𝑡) ,
V̇𝑖 (𝑡) = 𝑢𝑖 (𝑡) ,𝑖 ∈ 𝑜1𝑥̇𝑖 (𝑡) = 𝑢𝑖 (𝑡) , 𝑖 ∈ 𝑜2,

(1)

where 𝑜1 = {1, 2, . . . , 𝑛}, 𝑜2 = {𝑛+1, 𝑛+2, . . . , 𝑛+𝑚}, 𝑜 = 𝑜1∪𝑜2,𝑥𝑖(𝑡), V𝑖(𝑡), and 𝑢𝑖(𝑡) ∈ 𝑅, where 𝑥𝑖(𝑡) is the location of the
agent 𝑖, 𝑢𝑖(𝑡) is the control rule of the 𝑖 agent, and V𝑖(𝑡) is the

speed. Obviously, since each agent’s neighbors can be first-
order or second-order, they are divided into𝑁𝑖,𝑠 and𝑁𝑖,𝑓. So
the neighbor node set𝑁𝑖 = 𝑁𝑖,𝑓 ∪𝑁𝑖,𝑠. Because the dynamics
of the agent in the system are heterogeneous, Its adjacency
matrix can be expressed as

𝐴 = [𝐴𝑠 𝐴𝑠𝑓𝐴𝑓𝑠 𝐴𝑓] (2)

where𝐴 𝑠 ∈ 𝑅𝑛×𝑛 is an adjacency matrix composed of second-
order agents, 𝐴𝑠𝑓 is composed of coupling weights from
second-order agents to first-order agents, 𝐴𝑓𝑠 is composed
of first-order to second-order coupling weights, and 𝐴𝑓 ∈𝑅𝑚×𝑚 is an adjacency matrix composed of first-order agents.
Therefore, we can further write the Laplacian matrix as
follows.

𝐿 = 𝐷 − 𝐴 = [𝐿 𝑠 + 𝐷𝑠𝑓 −𝐴𝑠𝑓−𝐴𝑓𝑠 𝐿𝑓 + 𝐷𝑓𝑠] (3)

The matrix 𝐿 represents the interaction between only the
second-order agents, and the matrix 𝐿𝑓 represents the inter-
action between only the first-order agents. It should be noted
that both of the matrices are Laplacian matrices, where𝐷𝑠𝑓 =
diag{∑𝑗∈𝑁𝑖,𝑓 𝑎𝑖𝑗, 𝑖 ∈ 𝑜1} and 𝐷𝑓𝑠 = diag{∑𝑗∈𝑁𝑖,𝑠 𝑎𝑖𝑗, 𝑖 ∈𝑜2} are the in-degree matrix of the agent 𝑖, which rep-
resents the neighbor information received from different
orders.

To facilitate the follow-up work, here are some definitions
and lemmas.

Definition 1. For the heterogeneous MASs to progressively
implement the weighted couple-group consensus, the system
should satisfy the following two conditions:

lim
𝑡󳨀→+∞

󵄩󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡)󵄩󵄩󵄩󵄩󵄩 = 0, if 𝑖, 𝑗 ∈ 𝑜𝑘, 𝑘 = 1, 2,
lim
𝑡󳨀→+∞

󵄩󵄩󵄩󵄩󵄩V𝑖 (𝑡) − V𝑗 (𝑡)󵄩󵄩󵄩󵄩󵄩 = 0, if 𝑖, 𝑗 ∈ 𝑜𝑘, 𝑘 = 1. (4)

Definition 2. For the bipartite graph 𝐺 = (𝑉, 𝐸), the vertex
set 𝑉 can be split into two disjoint subsets 𝑉1 and 𝑉2, where𝑉1 ∩ 𝑉2 = 0, and at the same time ∀𝑒 = (𝑤, 𝑞) ∈ 𝐸, where𝑤 ∈ 𝑉1 and 𝑞 ∈ 𝑉2.
Lemma3 (see [15]). For an undirected bipartite graph,𝜆𝑖(𝐿) ∈𝑅. At the same time, it should be noted that directed bipartite
graphs containing directed spanning trees have the following
two properties: (1) 𝑟𝑎𝑛𝑘(𝐿) = 𝑛 − 1, (2) when 𝜆𝑖(𝐿) ̸= 0,
Re(𝜆𝑖(𝐿)) > 0, where 𝑛 is the number of system agents, matrix𝐿 = 𝐷 + 𝐴.
3. Main Results

Most existing works are based on the competition or coop-
eration relationship of agents. At the same time, only a
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single form of delay is considered. For example, in [38], the
grouping of heterogeneous systems with the same input delay
is studied. Its system is described as follows:𝑥̇𝑖 (𝑡) = V𝑖 (𝑡) ,
V̇𝑖 (𝑡) = ∑

𝑗∈𝑜1

𝑎𝑖𝑗 [𝑥𝑗 (𝑡 − 𝜏) − 𝑥𝑖 (𝑡 − 𝜏)]
+ ∑
𝑗∈𝑜2

𝑎𝑖𝑗𝑥𝑗 (𝑡 − 𝜏)
+ ∑
𝑗∈𝑜1

𝑎𝑖𝑗 [V𝑗 (𝑡 − 𝜏) − V𝑖 (𝑡 − 𝜏)]
+ ∑
𝑗∈𝑜2

𝑎𝑖𝑗V𝑗 (𝑡 − 𝜏) , 𝑖 ∈ 𝑜1.

(5)

And𝑥̇𝑖 (𝑡) = V𝑖 (𝑡 − 𝜏) + ∑
𝑗∈𝑜2

𝑎𝑖𝑗 [𝑥𝑗 (𝑡 − 𝜏) − 𝑥𝑖 (𝑡 − 𝜏)]
+ ∑
𝑗∈𝑜1

𝑎𝑖𝑗𝑥𝑗 (𝑡 − 𝜏) ,
V̇𝑖 (𝑡) = ∑

𝑗∈𝑜2

𝑎𝑖𝑗 [𝑥𝑗 (𝑡) − 𝑥𝑖 (𝑡)] + ∑
𝑗∈𝑜1

𝑎𝑖𝑗𝑥𝑗 (𝑡) , 𝑖 ∈ 𝑜2.
(6)

In (5) and (6), it is not difficult to see that the agents rely
on cooperative relationships for information exchange, and
there are also speed estimates in the first-order agents. Con-
sidering that in practical applications, competitive interac-
tions are inevitable. Therefore, we design a weighted couple-
group consensus protocol that utilizes the competition-
cooperative interaction of agents. The specific form is as
follows:𝑥̇𝑖 (𝑡) = V𝑖 (𝑡) ,
V̇𝑖 (𝑡) = 𝛼𝑖 [[ ∑

𝑗∈𝑁𝑠𝑖

𝑎𝑖𝑗 [𝑥𝑗 (𝑡 − 𝜏𝑖𝑗) − 𝑥𝑖 (𝑡 − 𝜏)]
− ∑
𝑗∈𝑁𝑑𝑖

𝑎𝑖𝑗 [𝑥𝑗 (𝑡 − 𝜏𝑖𝑗) + 𝑥𝑖 (𝑡 − 𝜏)]]] − 𝛽𝑖V𝑖 (𝑡 − 𝜏) ,
𝑖 ∈ 𝑜1.

(7)

And ̇𝑥𝑖 (𝑡) = 𝛾𝑖 [[ ∑
𝑗∈𝑁𝑠𝑖

𝑎𝑖𝑗 [𝑥𝑗 (𝑡 − 𝜏𝑖𝑗) − 𝑥𝑖 (𝑡 − 𝜏)]
− ∑
𝑗∈𝑁𝑑𝑖

𝑎𝑖𝑗 [𝑥𝑗 (𝑡 − 𝜏𝑖𝑗) + 𝑥𝑖 (𝑡 − 𝜏)]]] , 𝑖 ∈ 𝑜2. (8)

Here 𝜏𝑖𝑗 indicates communication delay between agent 𝑗
and agent 𝑖, and 𝜏 represents the identical input delay of
the agents. 𝑁𝑠𝑖 denotes a neighbor of the same dynamic as
the agent 𝑖. Similarly, 𝑁𝑑𝑖 denotes a neighbor of a different
dynamic from the agent 𝑖. Meanwhile, 𝛼𝑖, 𝛽𝑖, and 𝛾𝑖 > 0,
where 𝛼𝑖 = {𝛼1, 𝛼2, . . . , 𝛼𝑁}, 𝛽𝑖 = {𝛽1, 𝛽2, . . . , 𝛽𝑁}, 𝛾𝑖 ={𝛾1, 𝛾2, . . . , 𝛾𝑁},𝑁 is the number of agents.

Remark 4. This paper designs a controller with weighted
coefficients. By adjusting the weighted coefficient of the
controller, the state of many agents can be globally con-
verged to any given weighted state. Compared with the
original controller, the designed controller is more flexible
and more adaptable to different states. At the same time,
when the agent 𝑗 and the agent 𝑖 have the same dynamic,
we adopt a cooperative approach. When the agents 𝑗 and𝑖 have different dynamic, we use a competitive approach.
By using cooperation-competition relationship, we ensure
that heterogeneousMASs can achieveweighted couple-group
consensus.

Theorem 5. Based on system (7) and (8), and the undi-
rected bipartite graph is assumed to be the topology of the
system. if these conditions hold: 𝛽2𝑖 > 2𝛼𝑖𝐷𝑖 and 𝜏 ∈{0,min[1/2𝛽𝑖, 1/2𝛾𝑖max{𝐷𝑖}]}, where 𝐷𝑖 = ∑𝑗∈𝑁𝑖 𝑎𝑖𝑗, 𝑖 ∈ 𝑜1
and 𝐷𝑖 = ∑𝑗∈𝑁𝑖 𝑎𝑖𝑗, 𝑖 ∈ 𝑜2, then the system can progressively
achieve weighted couple-group consensus.

Proof. By performing the Laplace transform on (7) and (8),
we can get the following expression:𝑠𝑥𝑖 (𝑠) = V𝑖 (𝑠) ,𝑠V𝑖 (𝑠) = 𝛼𝑖 [[ ∑

𝑗∈𝑁𝑠𝑖

𝑎𝑖𝑗 [𝑒−𝜏𝑖𝑗𝑠𝑥𝑗 (𝑠) − 𝑒−𝜏𝑠𝑥𝑖 (𝑠)]
− ∑
𝑗∈𝑁𝑑𝑖

𝑎𝑖𝑗 [𝑒−𝜏𝑖𝑗𝑠𝑥𝑗 (𝑠) + 𝑒−𝜏𝑠𝑥𝑖 (𝑠)]]] − 𝛽𝑖𝑒−𝜏𝑠V𝑖 (𝑠) ,𝑖 ∈ 𝑜1.
(9)

𝑠𝑥𝑖 (𝑠) = 𝛾𝑖 [[ ∑
𝑗∈𝑁𝑠𝑖

𝑎𝑖𝑗 [𝑒−𝜏𝑖𝑗𝑠𝑥𝑗 (𝑠) − 𝑒−𝜏𝑠𝑥𝑖 (𝑠)]
− ∑
𝑗∈𝑁𝑑𝑖

𝑎𝑖𝑗 [𝑒−𝜏𝑖𝑗𝑠𝑥𝑗 (𝑠) + 𝑒−𝜏𝑠𝑥𝑖 (𝑠)]]] , 𝑖 ∈ 𝑜2. (10)

Transform 𝑥𝑖(𝑡) and V𝑖(𝑡) into Laplace forms 𝑥𝑖(𝑠) and V𝑖(𝑠),
respectively. From the (9), we have

𝑠2𝑥𝑖 (𝑠) = 𝛼𝑖 [[ ∑
𝑗∈𝑁𝑠𝑖

𝑎𝑖𝑗 [𝑒−𝜏𝑖𝑗𝑠𝑥𝑗 (𝑠) − 𝑒−𝜏𝑠𝑥𝑖 (𝑠)]
− ∑
𝑗∈𝑁𝑑𝑖

𝑎𝑖𝑗 [𝑒−𝜏𝑖𝑗𝑠𝑥𝑗 (𝑠) + 𝑒−𝜏𝑠𝑥𝑖 (𝑠)]]] − 𝛽𝑖𝑠𝑒−𝜏𝑠𝑥𝑖 (𝑠) ,𝑖 ∈ 𝑜1.
(11)
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After transformation, we can get the following formula:

𝑠𝑥𝑖 (𝑠) = −𝑠2𝑥𝑖 (𝑠) + 𝛼𝑖 [∑𝑗∈𝑁𝑠𝑖 𝑎𝑖𝑗 [𝑒−𝜏𝑖𝑗𝑠𝑥𝑗 (𝑠) − 𝑒−𝜏𝑠𝑥𝑖 (𝑠)] − ∑𝑗∈𝑁𝑑𝑖 𝑎𝑖𝑗 [𝑒−𝜏𝑖𝑗𝑠𝑥𝑗 (𝑠) + 𝑒−𝜏𝑠𝑥𝑖 (𝑠)]]𝛽𝑖𝑒−𝜏𝑠 , 𝑖 ∈ 𝑜1. (12)

Next, we define 𝑥𝑠(𝑠) = [𝑥1(𝑠), 𝑥2(𝑠), . . . , 𝑥𝑛(𝑠)]𝑇, 𝑥𝑓(𝑠) =[𝑥𝑛+1(𝑠), 𝑥𝑛+2(𝑠), . . . , 𝑥𝑛+𝑚(𝑠)]𝑇, and
𝐿̂ = (𝑙̂𝑖𝑗)(𝑛+𝑚)×(𝑛+𝑚) = {{{{{

𝑒−𝜏𝑖𝑗𝑠𝑎𝑖𝑗, 𝑖 ̸= 𝑗∑
𝑗∈𝑁𝑖

𝑎𝑖𝑗𝑒−𝜏𝑠, 𝑖 = 𝑗. (13)

According to (10) and (12), we can get𝑠𝑥𝑠 (𝑠)= −𝑠2𝐶2𝑥𝑠 (𝑠) + 𝐶2𝐶1−1 (𝐿̂ 𝑠 + 𝐷𝑠𝑓) 𝑥𝑠 (𝑠) − 𝐶2𝐶1−1𝐴 𝑠𝑓𝑥𝑓 (𝑠)𝑒−𝜏𝑠 ,𝑠𝑥𝑓 (𝑠) = −𝐶3−1𝐴𝑓𝑠𝑥𝑠 (𝑠) − 𝐶3−1 (𝐿̂𝑓 + 𝐷𝑓𝑠) 𝑥𝑓 (𝑠) .
(14)

Here

𝐶1 =((
1𝛼1 . . . 0... d

...0 ⋅ ⋅ ⋅ 1𝛼𝑁
)
)

,

𝐶2 =((
1𝛽1 . . . 0... d

...0 ⋅ ⋅ ⋅ 1𝛽𝑁
)
)

,
𝐶3 =( 1𝛾1 . . . 0... d

...0 ⋅ ⋅ ⋅ 1/𝛾𝑁).

(15)

Next, we define 𝑦(𝑠) = [𝑥𝑇𝑠 (𝑠), 𝑥𝑇𝑓(𝑠)]𝑇, and we have𝑠𝑦 (𝑠) = Υ̃ (𝑠) 𝑦 (𝑠) . (16)

HereΥ̃ (𝑠)
= [[[

−𝐶2𝑠2 − 𝐶2𝐶1−1 (𝐿̂ 𝑠 + 𝐷𝑠𝑓)𝑒−𝜏𝑠 −𝐶2𝐶1−1𝐴 𝑠𝑓𝑒−𝜏𝑠−𝐶3−1𝐴𝑓𝑠 −𝐶3−1 (𝐿̂𝑓 + 𝐷𝑓𝑠)]]] . (17)

According to (16), we can get Θ̃(𝑠) = det(𝑠𝐼−Υ̃(𝑠)). According
to the Lyapunov stability criterion, when the Re(𝜆𝑖(Θ̃(𝑠))) <0, or 𝑠 = 0, the system achieves group consensus. Next,
using general Nyquist criteria, we discuss these two situa-
tions.

When 𝑠 = 0, it can be clearly seen that 0 is a characteristic
value of the matrix 𝐷 + 𝐴, so one root of the formula can be
obtained when 𝑠 = 0. At the same time, when 𝑠 = 0, Θ̃(0) =
det(𝐷 + 𝐴)(∏𝑛𝑖=1𝛼𝑖/∏𝑛𝑖=1𝛽𝑖)∏𝑚𝑖=1𝛾𝑖.

When 𝑠 ̸= 0, set Θ̃(𝑠) = det(Φ(𝑠) + 𝐼) and
Φ (𝑠)
= [[[[[

𝑠2𝐶2 + 𝐶2𝐶1−1 (𝐿̂ 𝑠 + 𝐷𝑠𝑓)𝑠𝑒−𝜏𝑠 𝐶2𝐶1−1𝛼𝑖𝐴 𝑠𝑓𝑠𝑒−𝜏𝑠𝐶3−1𝐴𝑓𝑠𝑠 𝐶3−1 (𝐿̂𝑓 + 𝐷𝑓𝑠)𝑠
]]]]]

(18)

where 𝑠 = 𝑗𝜔. In order for the system to achieve group
consensus, the general Nyquist criterion, if and only if the
point (−1, 𝑗0) is not surrounded by the Nyquist curve, Θ̃(𝑠)󸀠𝑠
root is located on the left half of the complex field. Based on
the Gerschgorin disk theorem, we can get

𝜆 (Φ (𝑗𝜔)) ∈ {Φ𝑖, 𝑖 ∈ 𝑜1} ∪ {Φ𝑖, 𝑖 ∈ 𝑜2} . (19)

When 𝑖 ∈ 𝑜1, we have the following.
Φ𝑖 = {{{𝑥 : 𝑥 ∈ C, 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥 − 𝛼𝑖𝑗𝜔𝛽𝑖 ∑𝑗∈𝑁𝑖 𝑎𝑖𝑗 − 𝑗𝜔𝛽𝑖 𝑒𝑗𝜔𝜏󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∑
𝑗∈𝑁𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝛼𝑖𝑎𝑖𝑗𝑗𝜔𝛽𝑖 𝑒−𝑗𝜔(𝜏𝑖𝑗−𝜏)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨}}}
(20)

For the convenience of calculation, we set𝐷𝑖 = ∑𝑗∈𝑁𝑖 𝑎𝑖𝑗, 𝑖 ∈𝑜1. At the same time, according to the general criteria, since
the point (−𝑎, 𝑗0), 𝑎 ≥ 1, cannot be encircled in Φ𝑖, 𝑖 ∈ 𝑜1,
we can further transform the inequality into the following
form: 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨−𝑎 − 𝛼𝑖𝐷𝑖𝑗𝜔𝛽𝑖 − 𝑗𝜔𝛽𝑖 𝑒𝑗𝜔𝜏󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 > ∑

𝑗∈𝑁𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝛼𝑖𝑎𝑖𝑗𝑗𝜔𝛽𝑖 𝑒−𝑗𝜔(𝜏𝑖𝑗−𝜏)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 . (21)
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According to the Euler formula and from (21), we can get󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨−𝑎 − 𝛼𝑖𝐷𝑖𝜔𝛽𝑖 𝑗 − 𝑗𝜔𝛽𝑖 (cos𝜔𝜏 + 𝑗 sin𝜔𝜏)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨> 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝛼𝑖𝐷𝑖𝑗𝜔𝛽𝑖 (cos𝜔 (𝜏𝑖𝑗 − 𝜏) − 𝑗 sin𝜔 (𝜏𝑖𝑗 − 𝜏))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 . (22)

After some transformation, we can get the following.

𝑎2 − 2𝑎𝜔𝛽𝑖 sin𝜔𝜏 + 𝜔2𝛽2𝑖 − 2𝛼𝑖𝐷𝑖𝛽𝑖2 cos𝜔𝜏 > 0 (23)

It is easy to see from (23) that when 𝑎 ≥ 1, 𝑎2 −(2𝑎𝜔/𝛽𝑖) sin𝜔𝜏 is monotonically increasing.

1 − 2𝜔𝛽𝑖 sin𝜔𝜏 + 𝜔2𝛽2𝑖 − 2𝛼𝑖𝐷𝑖𝛽𝑖2 cos𝜔𝜏 > 0 (24)

Since 𝛽𝑖 is a positive number, we can transform (24) into the
following form.𝛽2𝑖 − 2𝜔𝛽𝑖 sin𝜔𝜏 + 𝜔2 − 2𝛼𝑖𝐷𝑖 cos𝜔𝜏 > 0 (25)

According to (24), it is obvious that the following two
inequalities are true:2𝛼𝑖𝐷𝑖 cos𝜔𝜏 − 𝛽2𝑖 < 0 (26)

and 2𝜔𝛽𝑖 sin𝜔𝜏 − 𝜔2 < 0. (27)

According to (26), we can get 𝛽2𝑖 > 2𝛼𝑖𝐷𝑖, because cos𝜔𝜏 ≤ 1.
According to (27), we can change it to the following form.1 − 2𝛽𝑖𝜏 ( sin𝜔𝜏𝜔𝜏 ) > 0 (28)

Since (sin𝜔𝜏/𝜔𝜏) ≤ 1, (27) is established if and only if 𝜏 ≤(1/2𝛽𝑖).
Similarly, when 𝑖 ∈ 𝑜2, we can get the following inequali-

ties according to the Gerschgorin theorem:

Φ𝑖 = {{{𝑥 : 𝑥 ∈ C, 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥 − 𝛾𝑖𝑗𝜔 ∑
𝑗∈𝑁𝑖

𝑎𝑖𝑗𝑒−𝑗𝜔𝜏󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ∑
𝑗∈𝑁𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝛾𝑖𝑎𝑖𝑗𝑗𝜔 𝑒−𝑗𝜔𝜏𝑖𝑗 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨}}}
(29)

so, the point (−𝑎, 𝑗0), 𝑎 ≥ 1, cannot be encircled inΦ𝑖, 𝑖 ∈ 𝑜2,
and then the following inequality is obtained.󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨−𝑎 − 𝛾𝑖𝑗𝜔 ∑

𝑗∈𝑁𝑖

𝑎𝑖𝑗𝑒−𝑗𝜔𝜏󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 > ∑
𝑗∈𝑁𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛾𝑖𝑎𝑖𝑗𝑗𝜔 𝑒−𝑗𝜔𝜏𝑖𝑗 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (30)

Next, we define 𝐷𝑖 = ∑𝑗∈𝑁𝑖 𝑎𝑖𝑗, 𝑖 ∈ 𝑜2; then from (30), we
have the following.󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨−𝑎 + 𝛾𝑖𝐷𝑖𝑗𝜔 ∑

𝑗∈𝑁𝑖

(𝑗 cos𝜔𝜏 + sin𝜔𝜏)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨> ∑
𝑗∈𝑁𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝛾𝑖𝐷𝑖𝑗𝜔 (−𝑗 cos𝜔𝜏𝑖𝑗 − sin𝜔𝜏𝑖𝑗)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (31)

After some calculations, we can get the following simplified
formula. 𝑎2 − 2𝑎𝛾𝑖𝐷𝑖𝜔 sin𝜔𝜏 > 0 (32)

From (32), we know that 𝑎2−(2𝑎𝛾𝑖𝐷𝑖/𝜔) sin𝜔𝜏will gradually
increase as 𝑎 increases. Here we set 𝑎 = 1. Obviously, we have
the following. 1 − 2𝛾𝑖𝐷𝑖𝜔 sin𝜔𝜏 > 0 (33)

Since (sin𝜔𝜏/𝜔𝜏) ≤ 1, (32) is established if and only if 𝜏 ≤(1/2𝛾𝑖𝐷𝑖).
Obviously, we have completed the proof of Theorem 5.

Corollary 6. Based on system (7) and (8), a bipartite digraph
containing a directed spanning tree is assumed to be the
topology of the system. If these conditions hold: 𝛽2𝑖 > 2𝛼𝑖𝐷𝑖 and𝜏 ∈ [0,min{1/2𝛽𝑖, 1/2𝛾𝑖max{𝐷𝑖}}], where 𝐷𝑖 = ∑𝑗∈𝑁𝑖 𝑎𝑖𝑗, 𝑖 ∈𝑜1, and 𝐷𝑖 = ∑𝑗∈𝑁𝑖 𝑎𝑖𝑗, 𝑖 ∈ 𝑜2, then the system can
progressively achieve weighted couple-group consensus.

Combined with the previous analysis, it is clear that the
theorem is completed.

Using Proof and Lemma 3, it is clear that Corollary 6 is
true.

Theorem 5 is proved.

Remark 7. From Theorem 5, we can see that the control
parameters 𝛼𝑖, 𝛽𝑖, 𝛾𝑖 and coupling weight of the system are
the key parameters affecting the consensus of the weighted
couple-group, and the input time delay is determined by the
coupling weight and the control parameters. However, we
can see that communication delay has no effect on group
consensus.

Remark 8. The proposed system (7) and (8) is constructed
by using the cooperation-competitive interaction between
agents in this paper. Since most of the agents currently
working rely on the cooperation or competitive relationship,
such as in [17, 18, 29, 31, 32, 34–39], this paper studies the
group consensus of heterogeneous complex systems from a
new perspective. At the same time, it should be noted that in
the proposed protocol, the first-order agent does not contain
virtual speed estimation, which can make more rational use
of resources and reduce computational cost, for example, in
[29, 31, 32, 37].
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Figure 1: The bipartite digraph topology of the heterogeneousMASs.

Remark 9. Different from the works in [31, 32, 37], we
have relaxed the condition of intra-degree balance, which
facilitates communication between agents. In real life, there
are many limitations in in-degree balance, because it will
result in no actual communication between subsystems [13].
In other words, it will cause the interaction between agents
in different subsystems to be offset. At the same time, we do
not require that the system satisfies the condition that the
geometric versatility of the zero eigenvalues of the Laplacian
matrix is not less than 2, which makes the system’s topology
more flexible.

Remark 10. Most of the works are weighted by a fixed
value. We use dynamic weighted methods here, namely,𝛼𝑖, 𝛽𝑖, and 𝛾𝑖. The weighted coefficients corresponding to
each agent are different, which enables the MASs state to
converge globally to any given weighted state. Compared
with the original controller, the designed controller is more
flexible and more adaptable to different states. In addition,
in most of the existing works, the consideration of the
delay problem is relatively simple. Only the effects of either
input delays [36] or time delays are not considered, such as
[31, 32, 36].

To discuss the effect of different input delays and commu-
nication delays on the multiagent implementation of group
consensus, we rewrite (7) and (8) as follows:̇𝑥𝑖 (𝑡) = V𝑖 (𝑡) ,

V̇𝑖 (𝑡) = 𝛼𝑖 [[ ∑
𝑗∈𝑁𝑠𝑖

𝑎𝑖𝑗 [𝑥𝑗 (𝑡 − 𝜏𝑖𝑗) − 𝑥𝑖 (𝑡 − 𝜏𝑖)]
− ∑
𝑗∈𝑁𝑑𝑖

𝑎𝑖𝑗 [𝑥𝑗 (𝑡 − 𝜏𝑖𝑗) + 𝑥𝑖 (𝑡 − 𝜏𝑖)]]] − 𝛽𝑖V𝑖 (𝑡− 𝜏𝑖) , 𝑖 ∈ 𝑜1.
(34)

̇𝑥𝑖 (𝑡) = 𝛾𝑖 [[ ∑
𝑗∈𝑁𝑠𝑖

𝑎𝑖𝑗 [𝑥𝑗 (𝑡 − 𝜏𝑖𝑗) − 𝑥𝑖 (𝑡 − 𝜏𝑖)]
− ∑
𝑗∈𝑁𝑑𝑖

𝑎𝑖𝑗 [𝑥𝑗 (𝑡 − 𝜏𝑖𝑗) + 𝑥𝑖 (𝑡 − 𝜏𝑖)]]] , 𝑖 ∈ 𝑜2. (35)

Here 𝜏𝑖𝑗 represents the communication delay between the
agents 𝑖 and 𝑗, and 𝜏𝑖 represents the input time delay of the
agent 𝑖.
Theorem 11. Based on Protocol (34) and (35), the undirected
bipartite graph is assumed to be the topology of the system. If
these conditions hold: 𝛽2𝑖 > 2𝛼𝑖𝐷𝑖 and if 𝑖 ∈ 𝑜1, 𝜏𝑖 ∈ [0, 1/2𝛽𝑖]
or, otherwise, 𝜏𝑖 ∈ [0, 1/2𝛾𝑖𝐷𝑖], 𝑖 ∈ 𝑜2, where 𝐷𝑖 = ∑𝑗∈𝑁𝑖 𝑎𝑖𝑗,𝑖 ∈ 𝑜1, and 𝐷𝑖 = ∑𝑗∈𝑁𝑖 𝑎𝑖𝑗, 𝑖 ∈ 𝑜2, then the system can
progressively achieve weighted couple-group consensus.

Corollary 12. Based on Protocol (34) and (35), a bipartite
digraph containing a directed spanning tree is assumed to be
the topology of the system. If these conditions hold: 𝛽2𝑖 > 2𝛼𝑖𝐷𝑖
and if 𝑖 ∈ 𝑜1, 𝜏𝑖 ∈ [0, 1/2𝛽𝑖] or, otherwise, 𝜏𝑖 ∈ [0, 1/2𝛾i𝐷𝑖],𝑖 ∈ 𝑜2, where 𝐷𝑖 = ∑𝑗∈𝑁𝑖 𝑎𝑖𝑗, 𝑖 ∈ 𝑜1, and 𝐷𝑖 = ∑𝑗∈𝑁𝑖 𝑎𝑖𝑗,𝑖 ∈ 𝑜2, then the system can progressively achieve weighted
couple-group consensus.

The conclusion here is obvious.

Remark 13. From Theorem 11, the communication delay of
the agent has no effect on the group consensus of the
system. At the same time, the upper limit of the input time
delay is controlled by the control parameters and coupling
weights with the same dynamics, and the delay conditions
between different dynamics are different. Communication
delay has no effect on the group consensus of the sys-
tem.

Remark 14. Since the system needs some other external con-
ditions when implementing group consensus, our assumed
topology is not a specific topology. For example, in [31, 32,
36, 37], the topology of the system is also an undirected
graph or a graph containing a directed spanning tree. At the
same time, in order to achieve group consensus, some addi-
tional assumptions are needed, mentioned in Remarks 7, 8,
and 9.

4. Simulation

In this section, several simulation results will be used to
illustrate the validity of the results obtained. Figure 1 shows a
binary topology of a heterogeneous system.The entire system
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Figure 2: The agents position trajectories, where 𝜏 = 0.05. (a) 𝜏𝑖𝑗 = 0, (b) 𝜏𝑖𝑗 = 0.5, and (c) 𝜏𝑖𝑗 = 0.9.
is divided into two subgroups,𝐺1 and𝐺2.The system contains
agents 1, 2, 3, 4, 5, 6, and 7. In order not to lose generality,
we denote 2, 4, and 7 as second-order agents, denoted by 𝑜1.
The first-order agent includes the remaining agents 1, 3, 5,
and 6 and is represented by 𝑜2. Obviously, subgroup 𝐺1 and
subgroup 𝐺1 are heterogeneous in Figure 1.

Remark 15. From Figure 1, the dynamics of the agents in
subgroup 𝐺1 and subgroup 𝐺2 are heterogeneous. Obviously,
we do not require that the dynamics of agents within the same
subgroup be homogeneous, such as [32, 37].

Example 16. For convenience, we set 𝑎𝑖𝑗 = 1, 𝑖, 𝑗 ∈ [1, 7],
and let 𝛼𝑖 = diag[1, 1.5, 2, 3, 0.9, 0.8, 0.5], 𝛽𝑖 = diag[3, 4,

3, 4, 3, 3, 2], 𝛾𝑖 = diag[1, 1.5, 2, 3, 0.9, 0.8, 0.5]. Since Figure 1
is an undirected bipartite graph, we can get 𝑑1 = 2, 𝑑2 =4, 𝑑3 = 2, 𝑑4 = 2, 𝑑5 = 2, 𝑑6 = 2, 𝑑7 = 2.

According to the qualification conditions proposed by
Theorem 5, we can calculate the range of the input delay as𝜏 = min{𝜏1, 𝜏2, 𝜏3, 𝜏4, 𝜏5, 𝜏6, 𝜏7}. In the simulation experiment,
we assume 𝜏 = 0.05. Obviously, 𝜏 at this time satisfies all
the qualifications. To verify the impact of different delays on
system group consensus, we assume different input delays
and communication delays. In Figure 2, we assume an input
delay of 𝜏 = 0.05 and then input different communication
delays to compare their effects on the system convergence
rate. In Figure 3, we fixed the communication delay and then
assumed different input delays.
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Figure 3:The agents position trajectories, where 𝜏𝑖𝑗 = 0.2. (a) 𝜏 = 0,
(b) 𝜏 = 0.03, and (c) 𝜏 = 0.08.
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Figure 4: The state trajectories of the agents under undirected
topology in Figure 1 with different input time delays 𝜏1 = 0.2, 𝜏2 =0.1, 𝜏3 = 0.1, 𝜏4 = 0.1, 𝜏5 = 0.15, 𝜏6 = 0.25, 𝜏7 = 0.2, communication
delay 𝜏𝑖𝑗 = 0.9. (a) Positions. (b) Velocities.
Remark 17. It can be seen from Figures 2 and 3 that the input
delay and communication delay will affect the convergence
trajectory of the agent. When the input delay or the com-
munication delay increases, the convergence speed of the
agent decreases, so we can increase the convergence speed by
reducing the delay.

From the qualification ofTheorem 11, we can calculate the
range of input delay for each agent: 𝜏1 = [0, 1/4], 𝜏2 = [0, 1/8],𝜏3 = [0, 1/8], 𝜏4 = [0, 1/8], 𝜏5 = [0, 1/3.6], 𝜏6 = [0, 1/3.2],𝜏7 = [0, 1/4]. Here we take 𝜏1 = 0.2, 𝜏2 = 0.1, 𝜏3 =0.1, 𝜏4 = 0.1, 𝜏5 = 0.15, 𝜏6 = 0.25, 𝜏7 = 0.2. Obviously
all 𝜏 are satisfied withTheorem 11. Figure 4 demonstrates that
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Figure 5:The state trajectories of the agents under undirected topology in Figure 1 with different input time delays 𝜏1 = 0.2, 𝜏2 = 0.5, 𝜏3 = 0.1,𝜏4 = 0.1, 𝜏5 = 0.15, 𝜏6 = 0.25, 𝜏7 = 0.2, communication delay 𝜏𝑖𝑗 = 0.9. (a) Positions. (b) Velocities.
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Figure 6: The directed graph topology of the heterogeneousMASs.

weighted couple-group consensus is achievable. At the same
time, according to the upper bound calculated byTheorem 11,
we assume 𝜏2 = 0.5. As can be seen from Figure 5, the system
is divergent at this time.

Next, we will testify Theorem 11 and Corollary 12.

Example 18. We assume that the topology of a heterogeneous
system contains a directed spanning tree, as shown in
Figure 6. Since Figure 6 is an directed bipartite graph, we can
get 𝑑1 = 2, 𝑑2 = 3, 𝑑3 = 1, 𝑑4 = 1, 𝑑5 = 1, 𝑑6 =1, 𝑑7 = 2. According to Corollary 6, we can assume that 𝜏 =0.05; obviously, 𝜏 satisfies all the qualifications. In Figure 7,
we set the input delay 𝜏 = 0.05 to a fixed value and enter
different communication delays. According to the topology
and Corollary 12 of Figure 6, we set 𝜏1 = 0.2, 𝜏2 = 0.1,

𝜏3 = 0.2, 𝜏4 = 0.1, 𝜏5 = 0.5, 𝜏6 = 0.5, 𝜏7 = 0.2, and 𝜏𝑖𝑗 =0.9, as shown in Figure 8. Obviously, fromFigures 7 and 8, we
can easily find that the system can progressively implement
weighted couple-group consensus. When 𝜏4 = 0.5, the system
is divergent, as shown in Figure 9.

5. Conclusion

This paper studies the group consensus problem of het-
erogeneous MASs based on bipartite graph structure. The
dynamicweighted couple-group consensus in the case of time
delay is considered. A new weighted couple-group consensus
protocol is designed by using cooperation and competition
interaction between agents. Using graph theory, matrix the-
ory, Gerschgorin disk theorem, and generalNyquist criterion,
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Figure 7: The agents position trajectories, where 𝜏 = 0.05. (a) 𝜏𝑖𝑗 =0, (b) 𝜏𝑖𝑗 = 0.5, and (c) 𝜏𝑖𝑗 = 0.9.
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Figure 8:The state trajectories of the agents under directed topology
in Figure 6 with different input time delays 𝜏1 = 0.2, 𝜏2 = 0.1, 𝜏3 =0.1, 𝜏4 = 0.1, 𝜏5 = 0.5, 𝜏6 = 0.5, 𝜏7 = 0.2, communication delay𝜏𝑖𝑗 = 0.9. (a) Positions. (b) Velocities.
the upper bound of the maximum delay that can be tolerated
when the system reaches convergence is obtained. It is not
difficult to see from the theoretical results that the weighted
couple-group consensus of the heterogeneous MASs is not
directly related to the communication delay. The heteroge-
neous MASs implement weighted couple-group consensus,
which is determined by the coupling weight between the
agents, the input time delay, and the control parameters. In
addition, in order to speed up the convergence of the system,
we can reduce the communication delay or input delay, or
both of them. The simulation example validated the results.
In the future work, we will study the group consensus prob-
lems of more complex heterogeneous multiagent systems.
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Figure 9: The state trajectories of the agents under directed topology in Figure 6 with different input time delays 𝜏1 = 0.2, 𝜏2 = 0.1, 𝜏3 = 0.1,𝜏4 = 0.5, 𝜏5 = 0.5, 𝜏6 = 0.5, 𝜏7 = 0.2, communication delay 𝜏𝑖𝑗 = 0.9. (a) Positions. (b) Velocities.
For example, we will consider switching topology or event
driven.
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